Punjab State Board PSEB 7th Class Maths Book Solutions Chapter 13 Exponents and Powers Ex 13.2 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 7 Maths Chapter 13 Exponents and Powers Ex 13.2
1. Using laws of exponents, simplify and write the following in the exponential form :
(i) 27 × 24
(ii) p5 × p3
(iii) (-7)5 × (-7)11
(iv) 2015 ÷ 2013
(v) (-6)7 ÷ (-6)3
(vi) 7x × 73
Solution:
(i) 27 × 24 = 27+4 = 211
(ii) p5 × p3 = p5+3 = p8
(iii) (-7)5 × (-7)11 = (-7)5+11 = (-7)16
(iv) 2015 ÷ 2013 = 2015-13 = 202
(v) (-6)7 ÷ (-6)3 = (-6)7-3 = (-6)4
(vi) 7x × 73 = 7x+3
2. Simplify and write the following in exponential form.
(i) 53 × 57 × 512
Solution:
53 × 57 × 512 = 53+7+12
= 522
(ii) a5 × a3 × a7
Solution:
a5 × a3 × a7 = a5+3+7
= a15
3. Simplify and write the following in the exponential form :
(i) (22)100
Solution:
(22)100 = 22 × 100
= 2200
(ii) (53)7
Solution:
(53)7 = 53 × 7
= 521
4. Simplify and write in the exponential form:
(i) (23)4 ÷ 25
Solution:
(23)4 ÷ 25 = 212 ÷ 25
= 212-5
= 27
(ii) 23 × 22 × 55
Solution:
23 × 22 × 55 = 23+2 × 55
= 25 × 55
= (2 × 5)5
= 105
(iii) [(22)3 × 36] × 56
Solution:
[(22)3 × 36] × 56 = [22×3 × 36] × 56
= [26 × 36] × 56
= 66 × 56
= (6 × 5)6
= 306.
5. Simplify and write in the exponential form:
(i) 54 × 84
Solution:
54 × 84 = (5 × 8)4
= 404
(ii) (-3)6 × (-5)6
Solution:
(-3)6 × (-5)6 = (-3 × -5)6
= (+15)6
6. Simplify and express each of the following in the exponential form :
(i) \(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}\)
Solution:
\(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}=\frac{3^{2 \times 3} \times(-2)^{5}}{(-2)^{3}}\)
= 36 × (-2)5-3
= 36 × (-2)2
= 36 × 22
(ii) \(\frac{3^{7}}{3^{4} \times 3^{3}}\)
Solution:
\(\frac{3^{7}}{3^{4} \times 3^{3}}=\frac{3^{7}}{3^{4+3}}=\frac{3^{7}}{3^{7}}\)
= 37-7
= 30
= 11
(iii) \(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}\)
Solution:
\(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}=\frac{2^{8}}{\left(2^{2}\right)^{3}} \times \frac{a^{5}}{a^{3}}\)
= \(\frac{2^{8}}{2^{6}} \times a^{5-3}\)
= \(2^{8-6} \times a^{5-3}\)
= \(2^{2} \times a^{2}\)
= (2a)2
(iv) 30 × 40 × 50
Solution:
30 × 40 × 50
= 1 × 1 × 1
= 1
7. Express each of the following rational number in the exponontial form :
(i) \(\frac {25}{64}\)
Solution:
\(\frac {25}{64}\) = \(\frac{5 \times 5}{8 \times 8}=\frac{5^{2}}{8^{2}}\)
= \(\left(\frac{5}{8}\right)^{2}\)
(ii) \(\frac {-64}{125}\)
Solution:
\(\frac {-64}{125}\) = \(\frac{-4 \times 4 \times 4}{5 \times 5 \times 5}\)
= \(\frac{(-4)^{3}}{5^{3}}\)
= \(\left(-\frac{4}{5}\right)^{3}\)
(iii) \(\frac {-125}{216}\)
Solution:
\(\frac {-125}{216}\) = \(\frac{-5 \times 5 \times 5}{6 \times 6 \times 6}\)
= \(\frac{(-5)^{3}}{6^{3}}\)
= \(\left(-\frac{5}{6}\right)^{3}\)
(iv) \(\frac {-343}{729}\)
Solution:
\(\frac {-343}{729}\) = \(\frac{-7 \times 7 \times 7}{9 \times 9 \times 9}\)
= \(\frac{(-7)^{3}}{9^{3}}\)
= \(\left(-\frac{7}{9}\right)^{3}\)
8. Simplify :
(i) \(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\)
Solution:
\(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\) = \(\frac{2^{5 \times 2} \times 7^{3}}{\left(2^{3}\right)^{3} \times 7}\)
= \(\frac{2^{10} \times 7^{3}}{2^{9} \times 7}\)
= 210-9 × 73-1
= 21 × 72
= 2 × 7 × 7
= 98
(ii) \(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\)
Solution:
\(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\) = \(\frac{2 \times 2^{5} \times 3^{4}}{3 \times 3 \times\left(2^{2}\right)^{2}}\)
= \(\frac{2^{1+5} \times 3^{4}}{3^{2} \times 2^{4}}\)
= 26-4 × 34-2
= 22 × 32
= 2 × 2 × 3 × 3
= 36.
9. Express each of the following as a product of prime factors in the exponential form
(i) 384 × 147
Solution:
384 × 147
384 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
= 27 × 31
147 = 7 × 7 × 3
= 72 × 31
\(\begin{array}{l|l}
2 & 384 \\
\hline 2 & 192 \\
\hline 2 & 96 \\
\hline 2 & 48 \\
\hline 2 & 24 \\
\hline 2 & 12 \\
\hline 2 & 6 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
7 & 147 \\
\hline 7 & 21 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
384 × 147 = 27 × 31 × 72 × 31
= 27 × 32 × 72
(ii) 729 × 64
Solution:
729 × 64
729 = 3 × 3 × 3 × 3 × 3 × 3
= 36
\(\begin{array}{l|l}
3 & 729 \\
\hline 3 & 243 \\
\hline 3 & 81 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
64 = 2 × 2 × 2 × 2 × 2 × 2
= 26
\(\begin{array}{l|l}
2 & 64 \\
\hline 2 & 32 \\
\hline 2 & 16 \\
\hline 2 & 8 \\
\hline 2 & 4 \\
\hline 2 & 2 \\
\hline & 1
\end{array}\)
= 729 × 64 = 36 × 26
(iii) 108 × 92
Solution:
108 = 2 × 2 × 3 × 3 × 3
= 22 × 33
\(\begin{array}{c|c}
2 & 108 \\
\hline 2 & 54 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
92 = 2 × 2 × 23
= 22 × 23
\(\begin{array}{l|l}
2 & 92 \\
\hline 2 & 46 \\
\hline & 23
\end{array}\)
108 × 92 = 23 × 33 × 22 × 231
= 24 × 33 × 231
10. Simplify and write the following in the exponential form :
(i) 33 × 22 + 22 × 50
Solution:
33 × 22 + 22 × 50
= 3 × 3 × 3 × 2 × 2 + 2 × 2 × 5°
= 27 × 4 + 4 × 1
= 108 + 4
= 112
\(\begin{array}{c|c}
2 & 112 \\
\hline 2 & 56 \\
\hline 2 & 28 \\
\hline 2 & 14 \\
\hline 7 & 7 \\
\hline & 1
\end{array}\)
= 2 × 2 × 2 × 2 × 7
= 24 × 71
(ii) \(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\)
Solution:
\(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\) = (37-2) × 35
= 35 × 35
= 35+5
= 310
(iii) 82 ÷ 23
Solution:
82 ÷ 23 = (23)2 ÷ 23
= 26 ÷ 23
= 26-3
= 23
Multiple Choice Questions :
11. \(\left(\frac{-5}{8}\right)^{0}\) is equal to :
(a) 0
(b) 1
(c) \(\frac {-5}{8}\)
(d) \(\frac {-8}{5}\)
Answer:
(b) 1
12. (52)3 is equal to :
(a) 56
(b) 55
(c) 59
(d) 103
Answer:
(b) 55
13. a × a × a × b × b × b is equal to :
(a) a3b2
(b) a2b3
(c) (ab)3
(d) a6b6
Answer:
(c) (ab)3
14. (-5)2 × (-1)1 is equal to :
(a) 25
(b) -25
(c) 10
(d) -10
Answer:
(b) -25