PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

Punjab State Board PSEB 7th Class Maths Book Solutions Chapter 13 Exponents and Powers Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Maths Chapter 13 Exponents and Powers Ex 13.2

1. Using laws of exponents, simplify and write the following in the exponential form :

(i) 27 × 24
(ii) p5 × p3
(iii) (-7)5 × (-7)11
(iv) 2015 ÷ 2013
(v) (-6)7 ÷ (-6)3
(vi) 7x × 73
Solution:
(i) 27 × 24 = 27+4 = 211
(ii) p5 × p3 = p5+3 = p8
(iii) (-7)5 × (-7)11 = (-7)5+11 = (-7)16
(iv) 2015 ÷ 2013 = 2015-13 = 202
(v) (-6)7 ÷ (-6)3 = (-6)7-3 = (-6)4
(vi) 7x × 73 = 7x+3

2. Simplify and write the following in exponential form.

(i) 53 × 57 × 512
Solution:
53 × 57 × 512 = 53+7+12
= 522

(ii) a5 × a3 × a7
Solution:
a5 × a3 × a7 = a5+3+7
= a15

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

3. Simplify and write the following in the exponential form :

(i) (22)100
Solution:
(22)100 = 22 × 100
= 2200

(ii) (53)7
Solution:
(53)7 = 53 × 7
= 521

4. Simplify and write in the exponential form:

(i) (23)4 ÷ 25
Solution:
(23)4 ÷ 25 = 212 ÷ 25
= 212-5
= 27

(ii) 23 × 22 × 55
Solution:
23 × 22 × 55 = 23+2 × 55
= 25 × 55
= (2 × 5)5
= 105

(iii) [(22)3 × 36] × 56
Solution:
[(22)3 × 36] × 56 = [22×3 × 36] × 56
= [26 × 36] × 56
= 66 × 56
= (6 × 5)6
= 306.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

5. Simplify and write in the exponential form:

(i) 54 × 84
Solution:
54 × 84 = (5 × 8)4
= 404

(ii) (-3)6 × (-5)6
Solution:
(-3)6 × (-5)6 = (-3 × -5)6
= (+15)6

6. Simplify and express each of the following in the exponential form :

(i) \(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}\)
Solution:
\(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}=\frac{3^{2 \times 3} \times(-2)^{5}}{(-2)^{3}}\)
= 36 × (-2)5-3
= 36 × (-2)2
= 36 × 22

(ii) \(\frac{3^{7}}{3^{4} \times 3^{3}}\)
Solution:
\(\frac{3^{7}}{3^{4} \times 3^{3}}=\frac{3^{7}}{3^{4+3}}=\frac{3^{7}}{3^{7}}\)
= 37-7
= 30
= 11

(iii) \(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}\)
Solution:
\(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}=\frac{2^{8}}{\left(2^{2}\right)^{3}} \times \frac{a^{5}}{a^{3}}\)
= \(\frac{2^{8}}{2^{6}} \times a^{5-3}\)
= \(2^{8-6} \times a^{5-3}\)
= \(2^{2} \times a^{2}\)
= (2a)2

(iv) 30 × 40 × 50
Solution:
30 × 40 × 50
= 1 × 1 × 1
= 1

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

7. Express each of the following rational number in the exponontial form :

(i) \(\frac {25}{64}\)
Solution:
\(\frac {25}{64}\) = \(\frac{5 \times 5}{8 \times 8}=\frac{5^{2}}{8^{2}}\)
= \(\left(\frac{5}{8}\right)^{2}\)

(ii) \(\frac {-64}{125}\)
Solution:
\(\frac {-64}{125}\) = \(\frac{-4 \times 4 \times 4}{5 \times 5 \times 5}\)
= \(\frac{(-4)^{3}}{5^{3}}\)
= \(\left(-\frac{4}{5}\right)^{3}\)

(iii) \(\frac {-125}{216}\)
Solution:
\(\frac {-125}{216}\) = \(\frac{-5 \times 5 \times 5}{6 \times 6 \times 6}\)
= \(\frac{(-5)^{3}}{6^{3}}\)
= \(\left(-\frac{5}{6}\right)^{3}\)

(iv) \(\frac {-343}{729}\)
Solution:
\(\frac {-343}{729}\) = \(\frac{-7 \times 7 \times 7}{9 \times 9 \times 9}\)
= \(\frac{(-7)^{3}}{9^{3}}\)
= \(\left(-\frac{7}{9}\right)^{3}\)

8. Simplify :

(i) \(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\)
Solution:
\(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\) = \(\frac{2^{5 \times 2} \times 7^{3}}{\left(2^{3}\right)^{3} \times 7}\)
= \(\frac{2^{10} \times 7^{3}}{2^{9} \times 7}\)
= 210-9 × 73-1
= 21 × 72
= 2 × 7 × 7
= 98

(ii) \(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\)
Solution:
\(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\) = \(\frac{2 \times 2^{5} \times 3^{4}}{3 \times 3 \times\left(2^{2}\right)^{2}}\)
= \(\frac{2^{1+5} \times 3^{4}}{3^{2} \times 2^{4}}\)
= 26-4 × 34-2
= 22 × 32
= 2 × 2 × 3 × 3
= 36.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

9. Express each of the following as a product of prime factors in the exponential form

(i) 384 × 147
Solution:
384 × 147
384 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
= 27 × 31
147 = 7 × 7 × 3
= 72 × 31
\(\begin{array}{l|l}
2 & 384 \\
\hline 2 & 192 \\
\hline 2 & 96 \\
\hline 2 & 48 \\
\hline 2 & 24 \\
\hline 2 & 12 \\
\hline 2 & 6 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)

\(\begin{array}{l|l}
7 & 147 \\
\hline 7 & 21 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)

384 × 147 = 27 × 31 × 72 × 31
= 27 × 32 × 72

(ii) 729 × 64
Solution:
729 × 64
729 = 3 × 3 × 3 × 3 × 3 × 3
= 36
\(\begin{array}{l|l}
3 & 729 \\
\hline 3 & 243 \\
\hline 3 & 81 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
64 = 2 × 2 × 2 × 2 × 2 × 2
= 26
\(\begin{array}{l|l}
2 & 64 \\
\hline 2 & 32 \\
\hline 2 & 16 \\
\hline 2 & 8 \\
\hline 2 & 4 \\
\hline 2 & 2 \\
\hline & 1
\end{array}\)
= 729 × 64 = 36 × 26

(iii) 108 × 92
Solution:
108 = 2 × 2 × 3 × 3 × 3
= 22 × 33
\(\begin{array}{c|c}
2 & 108 \\
\hline 2 & 54 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
92 = 2 × 2 × 23
= 22 × 23
\(\begin{array}{l|l}
2 & 92 \\
\hline 2 & 46 \\
\hline & 23
\end{array}\)
108 × 92 = 23 × 33 × 22 × 231
= 24 × 33 × 231

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

10. Simplify and write the following in the exponential form :

(i) 33 × 22 + 22 × 50
Solution:
33 × 22 + 22 × 50
= 3 × 3 × 3 × 2 × 2 + 2 × 2 × 5°
= 27 × 4 + 4 × 1
= 108 + 4
= 112
\(\begin{array}{c|c}
2 & 112 \\
\hline 2 & 56 \\
\hline 2 & 28 \\
\hline 2 & 14 \\
\hline 7 & 7 \\
\hline & 1
\end{array}\)
= 2 × 2 × 2 × 2 × 7
= 24 × 71

(ii) \(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\)
Solution:
\(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\) = (37-2) × 35
= 35 × 35
= 35+5
= 310

(iii) 82 ÷ 23
Solution:
82 ÷ 23 = (23)2 ÷ 23
= 26 ÷ 23
= 26-3
= 23

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

Multiple Choice Questions :

11. \(\left(\frac{-5}{8}\right)^{0}\) is equal to :
(a) 0
(b) 1
(c) \(\frac {-5}{8}\)
(d) \(\frac {-8}{5}\)
Answer:
(b) 1

12. (52)3 is equal to :
(a) 56
(b) 55
(c) 59
(d) 103
Answer:
(b) 55

13. a × a × a × b × b × b is equal to :
(a) a3b2
(b) a2b3
(c) (ab)3
(d) a6b6
Answer:
(c) (ab)3

14. (-5)2 × (-1)1 is equal to :
(a) 25
(b) -25
(c) 10
(d) -10
Answer:
(b) -25

Leave a Comment