PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.2

Question 1.
In fig. (i) and (ü), DE U BC. Find EC in (i) and AD in (ii).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 1

Solution:
(i) In ∆ABC, DE || BC ……………(given)
∴ \(\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By using Basic Proportionality Theorem]
\(\frac{1.5}{3}=\frac{1}{\mathrm{EC}}\)
EC = \(\frac{3}{1.5}\)
EC = \(\frac{3 \times 10}{15}\) = 2
∴ EC = 2 cm.

(ii) In ∆ABC,
DE || BC ……………(given)
∴ \(\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By using Basic Proportionality Theorem]
\(\frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4}\)
AD = \(\frac{1.8 \times 7.2}{5.4}\)
= \(\frac{1.8}{10} \times \frac{72}{10} \times \frac{10}{54}=\frac{24}{10}\)
AD = 2.4
∴ AD = 2.4 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 2.
E and F are points on the sides PQ and PR respectively of a APQR. For each of the following cases, state whether EF || QR :
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
(ii) PE =4 cm, QE = 4.5 cm, PF =8 cm and RF = 9cm.
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm.
Solution:
In ∆PQR, E and F are two points on side PQ and PR respectively.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 2

(i) PE = 3.9 cm, EQ = 3 cm
PF = 3.6 cm, FR = 2.4 cm
\(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=\frac{39}{30}=\frac{13}{10}=1.3\)

\(\frac{P F}{F R}=\frac{3.6}{2.4}=\frac{36}{24}=\frac{3}{2}=1.5\) \(\frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}}\)

∴ EF is not parallel to QR.

(ii) PE = 4 cm, QE = 4.5 cm,
PF = 8 cm, RF = 9 cm.
\(\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{4}{4.5}=\frac{40}{45}=\frac{8}{9}\) ………….(1)
\(\frac{P F}{R F}=\frac{8}{9}\) ……………..(2)
From (1) and (2),
\(\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{\mathrm{PF}}{\mathrm{RF}}\)
∴ By converse of Basic Proportionality theorem EF || QR.

(iii) PQ = 1.28 cm, PR = 2.56 cm
PE = 0.18 cm, PF = 0.36 cm.
EQ = PQ – PE = 1.28 – 0.18 = 1.10 cm
ER = PR – PF = 2.56 – 0.36 = 2.20 cm
Here \(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}\) …………..(1)

and \(\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55}\) …………….(2)

From (1) and (2), \(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}\)
∴ By converse of Basic Proportionality Theorem EF || QR.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 3.
In fig., LM || CB; and LN || CD. Prove that \(\frac{\mathbf{A M}}{\mathbf{A B}}=\frac{\mathbf{A N}}{\mathbf{A D}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 3

Solution:
In ∆ABC,
LM || BC (given)
∴ \(\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AL}}{\mathrm{LC}}\) ………..(1)
(By Basic Proportionality Theorem)
Again, in ∆ACD
LN || CD (given)
∴ \(\frac{A N}{N D}=\frac{A L}{L C}\) …………..(2)
(By Basic Proportionality Theorem)
From (1) and (2),
\(\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{ND}}\)

or \(\frac{\mathrm{MB}}{\mathrm{AM}}=\frac{\mathrm{ND}}{\mathrm{AN}}\)

or \(\frac{\mathrm{MB}}{\mathrm{AM}}+1=\frac{\mathrm{ND}}{\mathrm{AN}}+1\)
or \(\frac{\mathrm{MB}+\mathrm{AM}}{\mathrm{AM}}=\frac{\mathrm{ND}+\mathrm{AN}}{\mathrm{AN}}\)

or \(\frac{\mathrm{AB}}{\mathrm{AM}}=\frac{\mathrm{AD}}{\mathrm{AN}}\)

or \(\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}\)
Hence, \(\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}\) is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 4.
In Fig. 6.19, DE || AC and DF || AE. Prove that \(\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 4

Solution:
In ∆ABC, DE || AC(given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 4

∴ \(\frac{B D}{D A}=\frac{B E}{E C}\) …………….(1)
[By Basic Proportionality Theorem]
In ∆ABE, DF || AE
\(\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}}\) …………….(2)
[By Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FE}}\)
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 5.
In fig. DE || OQ and DF || OR. Show that EF || QR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 5

Solution:
Given:
In ∆PQR, DE || OQ DF || OR.
To prove: EF || QR.
Proof: In ∆PQO, ED || QO (given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 6

∴ \(\frac{P D}{D O}=\frac{P E}{E Q}\)

[By Basic Proportionality Theorem]
Again in ∆POR,
DF || OR (given)
∴ \(\frac{P D}{D O}=\frac{P F}{F R}\) ………….(2)
[By Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}\)
In ∆PQR, by using converse of Basic proportionaIity Theorem.
EF || QR,
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 6.
In flg., A, B and C points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show thatBC || QR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 7

Solution:
Given : ∆PQR, A, B and C are points on OP, OQ and OR respectively such that AB || PQ, AC || PR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 8

To prove: BC || QR.
Proof: In ∆OPQ, AB || PQ (given)
∴ \(\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OB}}{\mathrm{BQ}}\) …………….(1)
[BY using Basic Proportionality Theorem]
Again in ∆OPR.
AC || PR (given)
∴ \(\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}}\) ……………….(2)
[BY using Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}\)
∴ By converse of Basic Proportionality Theorem.
In ∆OQR, BC || QR. Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 7.
Using Basic Proportionality theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved ¡t in class IX).
Solution:
Given: In ∆ABC, D is mid point of AB, i.e. AD = DB.
A line parallel to BC intersects AC at E as shown in figure. i.e., DE || BC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 9

To prove: E is mid point of AC.
Proof: D is mid point of AB.
i.e.. AD = DB (given)
Or \(\frac{\mathrm{AD}}{\mathrm{BD}}\) = 1 ……………..(1)
Again in ∆ABC DE || BC (given)
∴ \(\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By Basic Proportionality Theorem]
∴ 1 = \(\frac{\mathrm{AE}}{\mathrm{EC}}\) [From (1)]
∴ AE = EC
∴ E is mid point of AC. Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 8.
Using converse of Basic Proportionality theorem prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done ¡tin Class IX).
Solution:
Given ∆ABC, D and E are mid points of AB and AC respectively such that AD = BD and AE = EC, D and Eare joined

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 10

To Prove, DE || BC
Proof. D is mid point of AB (Given)
i.e., AD = BD
Or \(\frac{\mathrm{AD}}{\mathrm{BD}}\) = 1 ………………(1)
E is mid point of AC (Given)
∴ AE = EC
Or \(\frac{\mathrm{AE}}{\mathrm{EC}}\) = 1 ………………(2)
From (1) and (2),
By using converse of basic proportionality Theorem
DE || BC Hence Proved.

Question 9.
ABCD is a trapeiiumin with AB || DC and its diagonals Intersect each other at the point O. Show that \(\frac{A O}{B O}=\frac{C O}{D O}\).
Solution:
Given. ABCD is trapezium AB || DC, diagonals AC and BD intersect each other at O.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 11

To Prove. \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\)
Construction. Through O draw FO || DC || AB
Proof. In ∆DAB, FO || AB (construction)
∴ \(\frac{\mathrm{DF}}{\mathrm{FA}}=\frac{\mathrm{DO}}{\mathrm{BO}}\) ……………..(1)
[By using Basic Proportionality Theorem]
Again in ∆DCA,
FO || DC (construction)
\(\frac{\mathrm{DF}}{\mathrm{FA}}=\frac{\mathrm{CO}}{\mathrm{AO}}\)
[By using Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{AO}} \quad \frac{\mathrm{AO}}{\mathrm{BO}} \quad \frac{\mathrm{CO}}{\mathrm{DO}}\)
Hence Proved.

Question 10.
The diagonals of a quadrilateral ABCD Intersect each other at the point O such that \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\).Show that ABCD is a
trapezium.
Solution:
Given: Quadrilateral ABCD, Diagonal AC and BD intersects each other at O
such that = \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 12

To Prove. Quadrilateral ABCD is trapezium.
Construction. Through ‘O’ draw line EO || AB which meets AD at E.
Proof. In ∆DAB,
EO || AB [Const.]
∴ \(\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{DO}}{\mathrm{OB}}\) ………………(1)
[By using Basic Proportionality Theoremj
But = \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\) (Given)

or \(\frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\mathrm{BO}}{\mathrm{DO}}\)

or \(\frac{\mathrm{CO}}{\mathrm{AO}}=\frac{\mathrm{DO}}{\mathrm{BO}}\)

⇒ \(\frac{\mathrm{DO}}{\mathrm{OB}}=\frac{\mathrm{CO}}{\mathrm{AO}}\) …………….(2)
From (1) and (2),
\(\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{CO}}{\mathrm{AO}}\)
∴ By using converse of basic
proportionlity Theorem,
EO || DC also EO || AB [Const]
⇒ AB || DC
∴ Quadrilateral ABCD is a trapezium with AB || CD.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.1

Question 1.
Fill in the blanks using the correct word given in brackets:
(i) All circles are ………………. (congruent, similar).
Solution:
All circles are similar.

(ii) All squares are ………………. (similar, congruent).
Solution:
MI squares are similar.

(iii) All ………………. triangles are similar. (isosceles, equilateral).
Solution:
All equilateral triangles are similar.

(iv) Two polygons of the same number of sides are similar, if
(a) their corresponding angles are __________ and
Solution:
equal

(b) their corresponding sides are ………………. (equal, proportional).
Solution:
proportional.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Question 2.
Give two different examples of pair
(i) similar figures
(ii) non-similar figures.
Solution:
(i) 1. Pair of equilateral triangle are similar figures.
2. Pair of squares are similar figures.

(ii) 1. A triangle and quadrilateral form a pair of non-similar figures.
2. A square and rhombus form pair of non – similar figures.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Question 3.
State whether the following quadrilaterals are similar or not :-

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1 1

Solution:
The two quadrilaterals in the figure are not similar because their corresponding angles are not equal.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4

Question 1.
Which term of the A.P. 121, 117, 113, …………. is its first negative term?
Solution:
Given A.P is 121, 117, 113, …
Here a = T1 = 121 ;T2 = 117; T3 = 113
d = T2 – T1 = 117 – 121 = – 4
Using formula, Tn = a + (n – 1) d
Tn = 121 + (n – 1) (- 4)
= 121 – 4n + 4
= 125 – 4n.
According to question :—
Tn < 0
or 125 – 4n < 0
or 125 < 4n or 4n > 125.
or n > \(\frac{125}{4}\)
or n > 31\(\frac{1}{4}\).
But n must be integer, for first negative term.
∴ n = 32.
Hence, 32nd term be the first negative term of given A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 2.
The sum of the third and the seventh term of an A.P. is 6 and their product ¡s 8. Find the sum of first sixteer
terms of an A.P.
Solution:
Let ‘a’ and ‘d’ be the first term and common diftèrence of given A.P.
According to 1st condition
T3 + T7 = 6
[a + (3 – 1)d] + [a + (7 – 1) d] = 6
∵ [Tn = a + (n – 1) d]
or a + 2d + a + 6d = 6
or 2a + 8d = 6
or a + 4d = 3 …………….(1)
According to 2nd condition
T3 (T7) = 8
[a + (3 – 1) d] [a + (7 – 1)d] = 8
∵ [Tn = a + (n – 1) d]
or (a + 2d) (a + 6d) = 8
or [3 – 4d + 2d] [3 – 4d + 6d] = 8
[Using (1), a = 3 – 4d]
or (3 – 2d) (3 + 2d) = 8
or 9 – 4d2 = 8
or 4d2 = 98
or d2 = \(\frac{1}{4}\)
d = ± \(\frac{1}{2}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Case I:
When d = \(\frac{1}{2}\)
Putting d = \(\frac{1}{2}\) in (1), we get:
a + 4 (\(\frac{1}{2}\)) = 3
or a + 2 = 3
or a = 3 – 2 = 1
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S16 = \(\frac{16}{2}\) [2 (1) + (16 – 1) \(\frac{1}{2}\)].

Case II:
Putting d = – \(\frac{1}{2}\) in (1), we get,
When d = – \(\frac{1}{2}\)
a + 4 (-\(\frac{1}{2}\)) = 3
a – 2 = 3
or a = 3 + 2 = 5
Using formula,
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
S16 = \(\frac{16}{2}\) [2(5) + (16 – 1) (-\(\frac{1}{2}\))]
= 8[10 – \(\frac{15}{2}\)]
= 8 \(\left[\frac{20-15}{2}=\frac{5}{2}\right]\)
S16 = 20.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 3.
A ladder has rungs 25 cm apart (see fig.) The rungs decrease uniformly in length from 45 cm at the bottom to 25 cm at the top. If the top and bottom rungs are 2 latex]\frac{1}{2}[/latex] m apart, what is the length of the wood required for the rungs?

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4 1

[Hint: Number of rungs = \(\frac{250}{25}\) + 1]
Solution:
Total length of rungs = 2 \(\frac{1}{2}\) m = \(\frac{5}{2}\) m
= (\(\frac{5}{2}\) × 100) cm = 250 cm
Length of each rung = 25 cm
∴ Number of rungs = \(\frac{\text { Total length of rungs }}{\text { Length of each rung }}\) + 1
= \(\frac{250}{25}\) + 1 = 10 + 1 = 11
Length of first rung =45 cm
Here a = 45; l = 25; n = 11
Length of the wood for rungs
= S11
= \(\frac{n}{2}\) [a + l]
= \(\frac{11}{2}\) [45 + 25]
= \(\frac{1}{2}\) × 70
= 11 × 35 = 385
Hence, length of the wood for rungs has 385 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 4.
The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it and find this value of x.
[Hint: Sx – 1 = S49 – S1]
Solution:
Let ‘x’ denotes the number of any house.
Here a = T1 = 1 ;d = 1
According to question,
Sx – 1 = S49 – Sx
= \(\frac{x-1}{2}\) [2 (1) + (x – 1 – 1) (1)]
= \(\frac{49}{2}\) [1 + 49] – \(\frac{x}{2}\) [2 (1) + (x – 1) (1)]
[Using Sn = \(\frac{n}{2}\) [2a + (n – 1) d] and Sn = \(\frac{n}{2}\) (a + l) ]
or \(\frac{x-1}{2}\) [2 + x – 2] = \(\frac{49}{2}\) (50) – \(\frac{x}{2}\) [2 + x – 1]
or \(\frac{x(x-1)}{2}=49(25)-\frac{x(x+1)}{2}\)
or \(\frac{x}{2}\) [x – 1 + x + 1] = 1225
\(\frac{x}{2}\) × 2x = 1225
or x2 = 1225
or x = 35.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 5.
A small terrace at a football ground comprises of 15 step each of which is 50 m long and built of solid concrete. Each step has a rise of \(\frac{1}{4}\) m and a tread of \(\frac{1}{2}\) m (see fig.) Calculate the total volume of concrete required to build the terrace.
[Hint: Volume of concrete required to build of the first step \(\frac{1}{4}\) × \(\frac{1}{2}\) × 50 m3].

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4 2

Solution:
Volume of concrete required to build the first step \(\frac{1}{4}\) × \(\frac{1}{2}\) × 50 m3]
= [latex]\frac{25}{4}[/latex] m3
Volume of concrete required to build the second step = [\(\frac{25}{4}\) × \(\frac{1}{2}\) × 50] m3

= \(\frac{75}{2}\) m3
Volume of concrete required to build the third step = [\(\frac{3}{4}\) × \(\frac{1}{2}\) × 50] m3 and so on upto 15 steps.

Here a = T1 = \(\frac{25}{4}\);
T2 = \(\frac{25}{2}\);
T3 = \(\frac{75}{4}\); and n = 15.
d = T2 – T1 = \(\frac{25}{2}\) – \(\frac{25}{4}\)
= \(\frac{50-25}{4}\) = \(\frac{25}{4}\).

Total volume of concrete required to buld the terrace = S15
= \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{15}{2}\left[2\left(\frac{25}{4}\right)+(15-1) \frac{25}{4}\right]\)
= \(\left[\frac{25}{4} \times \frac{14 \times 25}{4}\right]\)
= \(\frac{15}{2}\left[\frac{25}{2} \times \frac{175}{2}\right]\)
= \(\frac{15}{2} \times \frac{200}{2}\) = 750
Hence, total volume of concrete required to build the terrace is 750 m3.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3

Question 1.
Find the sum of the following APs:
(i) 2, 7, 12, … to 10 terms.
(ii) – 37, – 33, – 29, ………….. to 12 terms.
(iii) 0.6, 1.7, 2.8, … to 100 terms.
(iv) \(\frac{1}{5}\), \(\frac{1}{12}\), \(\frac{1}{10}\), ………… to 11 terms.
Solution:
(i) Given AP. is 2, 7, 12, …
Here a = 2, d = 7 – 2 = 5 and n = 10
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
∴ S10 = \(\frac{10}{2}\) [2 × 2 + (10 – 1)5]
= 5 [4 + 45] = 245.

(ii) Given A.P. is – 37, – 33, – 29…
Here a = -37, d = – 33 + 37 = 4 and n = 12
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
∴ S12 = [2(-37) + (12 – 1)4]
= 6 [- 74 + 44] = – 180.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iii) Given A.P. is 0.6, 1.7. 2.8.
Here a = 0.6, d = 1.7 – 0.6 = 1.1 and n = 100
Sn = \(\frac{n}{2}\) [2a+(n – 1) d]
∴ S100 = \(\frac{100}{2}\) [2(0.6) + (100 – 1) 1.1]
= 50 [1.2 + 108.9] = 5505.

(iv) Given AP. is \(\frac{1}{5}\), \(\frac{1}{12}\), \(\frac{1}{10}\), ………… to 11 terms.
Here a = \(\frac{1}{5}\), d = \(\frac{1}{5}\) and n = 11
Sn = \(\frac{n}{2}\) [2a +(n – 1)d]
∴ S11 = \(\frac{11}{2}\left[2\left(\frac{1}{15}\right)+(11-1) \frac{1}{60}\right]\)

= \(\frac{11}{2}\left[\frac{2}{15}+\frac{10}{60}\right]=\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right]\)

= \(\frac{11}{2}\left[\frac{4+5}{30}=\frac{9}{30}\right]=\frac{33}{20}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 2.
Find the sums given below:
(i) 7+ 10\(\frac{1}{2}\) + 14 + …………… + 84
(ii) 34 + 32 + 30 + ………. + 10
(iii) – 5 + (- 8) + (- 11) +………+ (- 230)
Solution:
(i) Given A.P. is
7 + 10\(\frac{1}{2}\) + 14 + ………….. + 84
Here a = 7, d = 10\(\frac{1}{2}\) – 7 = \(\frac{21}{2}\) – 7
= \(\frac{21-14}{2}=\frac{7}{2}\)
and l = Tn = 84
or a + (n – 1) d = 84
or 7 + (n – 1) \(\frac{7}{2}\) = 84
or (n – 1) \(\frac{7}{2}\) = 84 – 7 = 77
or n – 1 = 77 × \(\frac{2}{7}\) =22
n = 22 + 1 = 23
∵ Sn = \(\frac{n}{2}\) [a + l]
Now, S23 = \(\frac{23}{2}\) [7 + 84]
= \(\frac{23}{2}\) × 91 = \(\frac{2093}{2}\).

(ii) Given A.P. is 34 + 32 + 30 + …………… + 10
Here a = 34, d = 32 – 34 = -2
l = Tn = 10
a + (n – 1) d = 10
or 34 + (n – 1) (- 2) = 10
or – 2(n – 1) = 10 – 34 = -24
or n – 1 = 12
n = 12 + 1 = 13
[∵ Sn = \(\frac{n}{2}\) [a + l]]
Now, S13 = \(\frac{13}{2}\) [34 + 10]
= \(\frac{23}{2}\) × 44
= 13 × 22 = 286.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iii) Give A.P. is – 5 + (- 8) + (- 11) + ……………. + (- 230)
Here a = – 5, d = – 8 + 5 = – 3
and l = Tn = – 230
a + (n – 1) d = – 230
or – 5 + (n – 1) (- 3) = – 230
or – 3(n – 1) = – 230 + 5 = – 225
or n – 1 = \(\frac{225}{3}\) = 75
or n = 75 + 1 = 76
Now, S76 = \(\frac{76}{2}\) [- 5 + (- 23o)]
= 38 (- 235) = – 8930.

Question 3.
In an AP:
(i) given a = 5, d = 3, an = 50 find n and Sn.
(ii) given a = 7. a13 = 35, find d and S13.
(iii) given a12 = 37, d = 3. find a and S12.
(iv) given a3 = 15, S10 = 125, find d and a10.
(y) given d = 5, S9 = 75, find a and a9.
(vi) given a = 2, d = 8, Sn = 90, find n and an.
(vii) given a = 8, an = 62, Sn = 210, find n and d.
(viii)given an = 4, d = 2, Sn = -14, find n and a.
(ix) given a = 3, n = 8, S = 192, find d.
(x) given l = 28, S = 144, and there are total 9 terms. Find a.
Solution:
(i) Given a = 5, d = 3, an = 50
an = 50
a + (n – 1) d = 50
or 5 + (n – 1) 3 = 50
or 3 (n – 1) = 50 – 5 = 45
or n – 1 = \(\frac{45}{3}\) = 15
or n = 15 + 1 = 16
Now, Sn = latex]\frac{n}{2}[/latex] [a + l]
= latex]\frac{16}{2}[/latex] [5 + 50] = 8 × 55 = 440.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(ii) Given a = 7, a13 = 35
a13 = 35
a + (n – 1) d = 35
or 7 + (13 – 1) d = 35
or 12 d = 35 – 7 = 28
or d = \(\frac{7}{3}\).
∵ [Sn = latex]\frac{n}{2}[/latex] [a + l]
Now, S13 = \(\frac{13}{2}\) [7 + 35]
= \(\frac{13}{2}\) × 42 = 273

(iii) Given a12 = 37, d = 3
∵ a12 = 37
a + (n – 1) d = 37
or a + (12 – 1) 3 = 37
a + 33 = 37
a = 37 – 33 = 4
∵ [Sn = latex]\frac{n}{2}[/latex] [a + l]
Now, S12 = \(\frac{13}{2}\) [4 + 37]
= 6 × 41 = 246.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iv)Given a3 = 15, S10 = 125
∵ a3 = 15
a + (n – 1) d = 15
a + (3 – 1) d = 15
or a + 2d = 15 …………….(1)
∵ S10 = 125
∵ [Sn = latex]\frac{n}{2}[/latex] [2a + (n – 1)d]
\(\frac{10}{2}\) [2a + (10 – 1) d] = 125
or 5[2a + 9d] = 125
Note this
or 2a + 9d = \(\frac{125}{5}\) = 25
or 2a + 9d = 25 …………(2)
From (1), a = 15 – 24 …………..(3)
Substitute this value of (a) in (2i, we c1
2(15 – 2d) + 9d = 25
or 30 – 4d + 9d = 25
5d = 25 – 30
or d = \(\frac{-5}{5}\) = -1
Substitute this value of d in (3), we get
a = 15 – 2(- 1)
a = 15 + 2 = 17
Now, a10 = 17 + (10 – 1)(- 1)
∵ Tn = a + (n – 1) d = 17 – 9 = 8.

(v) Given d = 5, S9 = 75
∵ S9 = 75
∵ [Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
\(\frac{9}{2}\) [2a + 40] = 75
or [2a + 40] = \(\frac{50}{3}\)
or 2a = \(\frac{50}{3}\) – 40
or a = \(-\frac{70}{3} \times \frac{1}{2}\)
or a = – \(\frac{35}{3}\)
Now, a9 = a + (n – 1) d
= – \(\frac{35}{3}\) + (9 – 1)0 × 5
= – \(\frac{35}{3}\) + 4o = \(\frac{-35+120}{3}\)
a9 = \(\frac{85}{3}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(vi) Given a = 2, d = 8, Sn = 90
∵ Sn = 90
\(\frac{n}{2}\) [2a + (n – 1)d] = 9o
or \(\frac{n}{2}\) [2 × 2 + (n – 1) 8] = 90
or n [2 + 4n – 4] = 90
or n (4n – 2) = 90
or 4n2 – 2n – 90 = 0
or 2n2 – 10n + 9n – 45 = 0
S = – 2
P = – 45 × 2 = – 90
or 2n [n – 5] + 9(n – 5) = 0
or (2n + 9) (n – 5) = 0
Either 2n + 9 = 0 or n – 5 = 0
Either n = – \(\frac{9}{2}\) or n = 5
∵ n cannot be negative so reject n = – \(\frac{9}{2}\)
∴ n = 5
Now, an = a5 = a + (n – 1) d
= 2 + (5 – 1) 8 = 2 + 32 = 34.

(vii) Given a = 8, an = 62, Sn = 210
∵ Sn = 210
\(\frac{n}{2}\) [a + an] = 210
or \(\frac{n}{2}\) [8 + 62] = 210
or \(\frac{n}{2}\) × 70 = 210
or n = \(\frac{210}{35}\) = 6
Now, an = 62
[∵ Tn = a + (n – 1) d]
or 5d = 62 – 8 = 54
or d = \(\frac{54}{5}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(viii) Given an = 4, d = 2, Sn = – 14
∵ an = 4
a + (n – 1) d = 4
or a + (n – 1)2 = 4
or a + 2n – 2 = 4
or a = 6 – 2n ……………(1)
and Sn = – 14
\(\frac{n}{2}\) [a + an] = – 14
or \(\frac{n}{2}\) [6 – 2n +4] = – 14 (Using (1))
or \(\frac{n}{2}\) [10 – 2n] = – 14
or 5n – n2 + 14 = 0
or n2 – 5n – 14 = 0
S = – 5
P = 1 × – 14 = – 14
or n2 – 7n + 2n – 14 = 0
or n(n – 7) + 2 (n – 7) = 0
or (n – 7) (n + 2) = 0
either n – 7 = 0
or n + 2 = 0
n = 7 or n = -2
∵ n cannot be negative so reject n = – 2
∴ n = 7
Substitute this value of n in (1), we get
a = 6 – 2 × 7
a = 6 – 14 = – 8.

(ix) Given a = 3, n = 8, S = 192
∵ S = 192
S8 = 192 [∵ n = 8]
∵ Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
or \(\frac{8}{2}\) [2 × 3 + (8 – 1) d] = 192
or 4 [6 + 7d] = 192
6 + 7d = \(\frac{192}{4}\) = 48
or 7d = 48 – 6 = 42
or d = \(\frac{42}{6}\) = 6.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(x) Given l = 28, S = 144 and there are total 9 terms
∴ n = 9; l = a9 = 28; S9 = 144
∵ a9 = 28
or a + (9 – 1) d = 28
∵ [an = Tn = a + (n – 1) d ]
or a + 8d = 28 …………….(1)
and S9 = 144
∵ [Sn = \(\frac{n}{2}\) [a + an]]
\(\frac{9}{2}\) [a + 28] = 144
or a + 28 = \(\frac{144 \times 2}{9}\) = 32
a = 32 – 28 = 4.

Question 4.
How many terms of the A.P : 9, 17, 5… must be taken to give a sum of 636?
Solution:
Given A.P. is 9, 17, 25, …………
Here a = 9, d = 17 – 9 = 8
But Sn = 636
\(\frac{n}{2}\) [2a + (n – 1) d] = 636
or \(\frac{n}{2}\) [2(9) + (n – 1) 8] = 636
or \(\frac{n}{2}\) [18 + 8n – 8] = 636
or n [4n + 5] = 636
or 4n2 + 5n – 636 = 0
a = 4, b = 5, c = – 636
D = (5) – 4 × 4 × (- 636)
= 25 + 10176 = 10201
∴ n = \(\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}\)

= \(\frac{-5 \pm \sqrt{10201}}{2 \times 4}=\frac{-5 \pm 101}{8}\)

= \(\frac{-106}{8} \text { or } \frac{96}{8}\)

= \(-\frac{53}{4}\) or 12
∴ n cannot be negative so reject n = \(-\frac{53}{4}\)
∴ n = 12
Hence, sum of 12 terms of given A.P. has sum 636.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 5.
The first term ofan AP is 5, the last term is 45 and the sum Is 400. Find the number of terms and the common difference.
Solution:
Given that a = T1 = 5; l = an = 45
and Sn = 400
∴ Tn = 45
a + (n – 1) d = 45
or 5 + (n – 1) d = 45
or (n – 1) d = 45 – 5 = 40
or (n – 1) d = 40 ……………….(1)
and Sn = 400
\(\frac{n}{2}\) [a + an] = 400
or \(\frac{n}{2}\) [5 + 45] = 400
or 25 n = 400
or n = \(\frac{400}{25}\) = 16
Substitute this value of n in (1), we get
(16 – 1) d = 40
or 15d = 40
d = \(\frac{40}{15}\) = \(\frac{8}{3}\)
Hence, n = 16 and d = \(\frac{8}{3}\)

Question 6.
The first and last terms of an AP are 17 and 350 respectively. 1f the common difference is 9, how many terms are there
and what is their sum?
Solution:
Given that a = T1 = 17;
l = an = 350 and d = 9
∵ l = an = 350
a + (n – 1) d = 350
17 + (n – 1) 9 = 350
or 9 (n – 1) = 350 – 17 = 333
or n – 1 = \(\frac{333}{9}\) = 37
n = 37 + 1 = 38
Now, S38 = \(\frac{n}{2}\) [a + l]
= \(\frac{38}{2}\) (17 + 350]
= 19 × 367 = 6973.
Hence, sum of 38 terms of given A.P. arc 6973.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 7.
Find the sum of first 22 terms of an AP. in which d = 7 and 22nd term is 149.
Solution:
Given that d = 7; T22 = 149 and n = 22
∵ T22 = 149
a + (n – 1) d = 149
or a + (22 – 1) 7 = 149
or a + 147 = 149
or a = 149 – 147 = 2
Now, S22 = [a + T22]
= \(\frac{22}{2}\) [2+ 149] = 11 × 151 = 1661
Hence, sum of first 22 temis of given A.P. is 1661.

Question 8.
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Solution:
Let ‘a’ and ‘d’ be fïrst term and common difference
Given that T2 = 14; T3 = 18 and n = 51
∵ T2 = 14
a + (n – 1) d = 14
a + (2 – 1)d = 14
or a + d = 14
a = 14 – d …………….(1)
and T3 = 18 (Given)
a + (n – 1) d = 18
a + (3 – 1) d = 18
or a + 2d = 18
or 14 – d + 2d = 18
or d = 18 – 14 = 4
or d = 4
Substitute this value of d in (1), we get
a = 14 – 4 = 10
Now, S51 = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{51}{2}\) [2 × 10 + (51 – 1) 4]
= \(\frac{51}{2}\) [2o + 2oo]
= \(\frac{51}{2}\) × 220 = 51 × 110 = 5610
Hence, sum of first 51 terms of given A.P. is 5610.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 9.
If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
According to 1st condition
S7 = 49
\(\frac{n}{2}\) [2a + (n – 1) d] = 49
or \(\frac{7}{2}\) [2a + (7 – 1) d] = 49
or \(\frac{7}{2}\) [2a + 6d] = 49
or a + 3d = 7
or a = 7 – 3d
According to 2nd condition
S17 = 289
\(\frac{n}{2}\) [2a+(n – 1)d]=289
\(\frac{17}{2}\) [2a + (17 – 1) d] = 289
a + 8d = \(\frac{289}{17}\) = 17
Substitute the value of a from (1), we get
7 – 3d + 8d = 17
5d = 17 – 7 = 10
d = \(\frac{10}{5}\) = 2
Substitute this value of d in (1), we get
a = 7 – 3 × 2
a = 7 – 6 = 1
Now, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{n}{2}\) [2 × 1 + (n – 1) × 2] = n [I + n – 1] = n × n = n2
Hence, sum of first n terms of given A.P. is n2.

Question 10.
Show that a1, a2, ……., an, … form an AP where is defined as below.
(i) an = 3 + 4n
(ii) an = 9 – 5n
Also find the sum of the first 15 terms In each case.
Solution:
(i) Given that an = 3 + 4n ………..( 1)
Putting the different values of n in(1), we get
a1 = 3 + 4(1) = 7;
a2 = 3 + 4 (2) = 11
a3 = 3 + 4 (3) = 15, …………
Now, a2 – a1 = 11 – 7
and a3 – a2 = 15 – 11 = 4
a2 – a1 = 11 – 7 = 4
and a3 – a2 = 4 = d(say)
∵ given sequence form an A.P.
Here a = 7, d = 4 and n = 15
∴ S15 = \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{15}{2}\) [2(7) + (15 – 1) 4]
= \(\frac{15}{2}\) [14 + 56] = \(\frac{15}{2}\) × 70
= 15 × 35 = 525.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(ii) Given that an = 9 – 5n ……………….(1)
Putting the different values of n is (1), we get
a1 = 9 – 5(1) = 4;
a2 = 9 – 5(2) = -1;
a3 = 9 – 5(3) = -6.
Now, a2 – a1 = – 1 – 4 = – 5
and a3 – a2 = – 6 + 1 = – 5
∵ a – a1 = a3 – a2 = – 5 = d (say)
∴ given sequence form an A.P.
Here a = 4, d = – 5 and n = 15
∴ S15 = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{15}{2}\) [2(4) + (15 – 1) (-5)]
= \(\frac{15}{2}\) [8 – 70]
= \(\frac{15}{2}\) (-62) = – 465

Question 11.
If the sum of the first n terms of an AP is 4n – n2, what is the first term (that is S1) ? What is the sum of two terms? What is the second term ? Similarly, find the 3rd, the 10th and the nth terms.
Solution:
Given that, sum of n terms of an A.P. are
Sn = 4n – n2
Putting n = 1 in (1), we get
S1 = 4(1) – (1)2 = 4 – 1
S1 = 3
∴ a = T1 = S1 = 3
Putting n = 2, in (1), we get
S2 = 4(2) – (2)2 = 8 – 4
S2 = 4
or T1 + T2 = 4
or 3 + T2 = 4
or T2 = 4 – 3 = 1
Putting n = 3 in (1), we get
S3 =4(3) – (3)2 = 12 – 9
S3 = 3
or S2 + T3 = 3
or 4+ T3 = 3
or T3 = 3 – 4 = – 1
Now, d = T2 – T1
d = 1 – 3 = -2
∴ T10 = a + (n – 1) d
= 3 + (10 – 1) (- 2)
T10 = 3 – 18 = – 15
and Tn = a + (n – 1) d
= 3 + (n – 1) (- 2)
= 3 – 2n + 2
Tn = 5 – 2n.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 12.
Find the sum of the first 40 positive integers divisible by 6.
Solution:
Positive integers divisible by 6 are 6, 12, 18, 24, 30, 36 42, …
Here a = T1 = 6, T2 = 12, T3 = 18, T4 = 24
T2 – T1 = 12 – 6 = 6
T3 – T2 = 18 – 12 = 6
T4 – T3 = 24 – 18 = 6
∵ T2 – T1 = T3 – T2 = T4 – T3 = 6 = d (say)
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S40 = \(\frac{40}{2}\) [2(6) + (40 – 1)6].
= 20 [12 + 234]
= 20 (246) = 4920
Hence, sum of first 40 positive integers divisible by 6 is 4920.

Question 13.
Find the sum of first 15 multiples of 8.
Solution:
Multiples of 8 are 8, 16, 24, 32, 40, 48, …………..
Here a = T1 = 8; T2 = 16; T3 = 24 ; T4 = 32
T2 – T1 = 16 – 8= 8
T3 – T2 = 24 – 16=8
T2 – T1 = T3 – T2 = 8 = d(say)
Ùsing formula. Sn = [2a + (n – 1) d}
S15 = \(\frac{15}{2}\) [2(8) + (15 – 1) 8]
= \(\frac{15}{2}\) [16 + 112]
= \(\frac{15}{2}\) × 128 = 960
Hence, sum of first 15 multiples of 8 is 960.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 14.
Find the sum of the odd numbers between 0 and 50.
Solution:
Odd numbers between 0 and 50 are 1, 3, 5, 7, 9, …………, 49
Here a = T1 = 1; T2 = 3; T3 = 5 ; T4 = 7
and l = Tn = 49
T2 – T1 = 3 – 1 = 2
T3 – T2 = 5 – 3 = 2
∵ T2 – T1 = T3 – T2 = 2 = d (say)
Also, l = Tn = 49
a + (n – 1) d = 49
1 + (n – 1) 2 = 49
or 2 (n – 1) = 49 – 1 = 48
n – 1 = \(\frac{48}{2}\) = 24
n = 24 + 1 = 25.
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S25 = \(\frac{25}{2}\) [2(1) + (25 – 1)2]
= \(\frac{25}{2}\) [2 + 48]
= \(\frac{25}{2}\) × 50 = 625
Hence, sum of the odd numbers between 0 and 50 are 625.

Question 15.
A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: ₹ 200 for
the first day, ₹ 250 for the second day, ₹ 300 for the third day, etc., the penalty for each succeeding day being ₹ 50 more than for the preceding day, How much money the contractor has to pay as penalty, if he hasdelayed the work by 30 days?
Solution:
Penalty (cost) for delay of one, two, third day are ₹ 200, ₹ 250, ₹ 300
Now, penalty increase with next day with a difference of ₹ 50.
∴ Required A.P. are ₹ 200, ₹ 250, ₹ 300, ₹ 350, …
Here a = T1 = 200; d = ₹ 50 and n = 30
Amount of penalty gives after 30 days
= S30
= \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{30}{2}\) [2(2oo) + (30 – 1) 50)
= 15 [400 + 1450]
= 15 (1850) = 27750
Hence, ₹ 27350 pay as penalty by the contractor if he has delayed the work 30 days.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 16.
A sum of ₹ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If
each prize is ₹ 20 less than its preceding prize, find the value of each of the prizes.
Solution:
Let amount of prize given to 1st student = ₹ x
Amount of prize given to 2nd student = ₹ (x – 20)
Amount of prize given to 3rd student = ₹ [x – 20 – 20] = ₹ (x – 40)
and so on.
∴ Required sequence are ₹ x, ₹ (x – 20), ₹ (x – 40), … which form on A.P. with
a = ₹ x, d = – 20 and n = 7
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S7 = \(\frac{7}{2}\) [2(x) + (7 – 1) (- 20)]
S7 = \(\frac{7}{2}\) [2x – 120] = 7 (x – 60)
According to question,
7 (x – 60) = 700
x – 60 = 7 = 100
x – 60 = 7 = 100
x = 100 + 60
x = 160
Hence, 7 prizes are ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60, ₹ 40.

Question 17.
In a school, student thought of planting trees in and around the school to reduce air pollution. It was decided that
number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g. – a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?
Solution:
Number of trees planted by three sections of class I = 3 × 1 = 3
Number of trees planted by three sections of class II = 3 × 2 = 6
Number of trees planted by three sections of class III = 3 × 3 = 9
…………………………………………………………………..
…………………………………………………………………..
……………………………………………………………………
Number of trees planted by three sections of class XII = 3 × 12 = 36
:. Required A.P. are 3, 6, 9, …………., 36
Here a = T1 = 3; T2 = 6; T3 = 9
and l = Tn = 36; n = 12
d = T2 – T1 = 6 – 3 = 3
Total number of trees planted by students
= S12
= \(\frac{n}{2}\) [a + l]
= \(\frac{12}{2}\) [3+ 36]
= 6 × 39 = 234
Hence, 234 trees will be planted by students to reduce air pollution.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 18.
A spiral is made up of successive semicircics, with centres alternately at A and B, starting with centre at A, of radii 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, …. as shown in Fig. What is the total length of such a spiral made up of thirteen consecutive semicircies? (Take π = \(\frac{22}{7}\))
[Hint: Length of successive semicircies is ‘l1’ ‘l2’ ‘l3‘ ‘l4‘ … wIth centres at A, B, A, B, …, respectively.]

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 1

Solution:
Let l1 = length of first semi circle = πr1 = π(0.5) = \(\frac{\pi}{2}\)
l2 = length of second semi circlem = πr2= π(1) = π
l3 = length of third semi circle = πr3 = π(1.5) = \(\frac{3 \pi}{2}\)
and l4 = length of fourth senil circle = πr4 = π(2) = 2π and so on
∵ length of each successive semicircle form an A.P.
Here
a = T1 = \(\frac{\pi}{2}\); T2 = π;
T3 = \(\frac{3 \pi}{2}\); T4 = 2π……… and n = 13
d = T2 – T1 = π – \(\frac{\pi}{2}\)
= \(\frac{2 \pi-\pi}{2}=\frac{\pi}{2}\)
Length of whole spiral = S13

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 2

Hence, total length of a spiral made up of thirteen consecutive semi circies is 143 cm

Question 19.
200 logs are stacked in the following manner : 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see Fig). In how many rows are the 200 logs placed and how many logs are in the top row?

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 3

Solution:
Number of logs in the bottom (1st row) = 20
Number of logs in the 2nd row = 19
Number of log in the 3rd row = 18 and so on.
∴ Number of logs in the each steps form an
Here a = T1 = 20; T2 = 19; T3 = 18…
d = T2 – T1 = 19 – 20 = – 1
Let S, denotes the number logs.
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{n}{2}\) [2 (20) + (n – 1) (-1)]
∴ Sn = \(\frac{n}{2}\) [40 – n + 1]
= \(\frac{n}{2}\) [41 – n]
According to question,
\(\frac{n}{2}\) [41 – n] = 200
or 41 – n2 = 400
or – n2 + 41n – 400 = 0
or n2 – 41n + 400 = 0
S = – 41, P = 400
or n2 – 16n – 25n + 400 = 0
or n (n – 16) – 25 (n – 16)=0
or (n – 16) (n – 25) = 0
Either n – 16 = 0 or n – 25 = 0
Either n = 16 or n = 25
∴ n = 16, 25.
Case I:
When n = 25
T25 = a + (n – 1) d
= 20 + (25 – 1)(- 1)
= 20 – 24 = – 4;
which is impossible
∴ n = 25 rejected.

Case II. When n = 16
T16 = a + (n – 1) d
= 20 + (16 – 1)(- 1)
= 20 – 15 = 5
Hence, there are 16 row and 5 logs are in the top row.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 20.
In a potato race a bucket ¡s placed at the starting point which Ls 5 m from the first potato, and the other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line (see Fig.)

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 4

Each competitor starts from the bucket, picks up the nearest potato, runs back with It, drops It in the bucket, runs back to pick up the next potato, runs to the bucket to drop it In, and the continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
(Hint : To pick up the first potato and second potato, the distance run is [2 × 5 + 2 × (5 + 3)] m)
Solution:
Distance covered to pick up the Ist potato = 2(5) m = 10 m
Distance between successive potato = 3 m
distance covered to pick up the 2nd potato = 2(5 + 3) m = 16 m
Distance covered to pick up the 3rd potato = 2 (5 + 3 + 3) m = 22 m
and this process go on. h is clear that this situation becomes an A.P. as 10 m, 16 m, 22 m, 28 m, …
Here a = T1 = 10; T2 = 16; T3 = 22, …
d = T2 – T1 = 16 – 10 = 6 and n = 10
∴ Total distance the competitor has to run = S10
= \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{10}{2}\) [2(10) + (10 – 1) 6]
= 5 [20 + 54]
= 5 × 74 = 370
Hence, 370 m is the total distance run by a competitor.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.2

Q.uestion 1.
Find the co-ordinates of the point which divides the join (- 1, 7) and (4, – 3) in the ratio 2 : 3.
Solution:
Let required point be P (x, y) which divides the join of given points A (- 1, 7)
and B (4, – 3) in the ratio of 2 : 3.
(-1, 7) (x, y) (4, – 3)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 1

∴ x = \(\frac{2 \times 4+3 \times-1}{2+3}=\frac{8-3}{5}=\frac{5}{5}=1\)

and y = \(\frac{2 \times-3+3 \times 7}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3\)
Hence, required point be (1, 3).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 2.
Find the co-ordinates of the points of trisection of the line segment joining (4, – 1) and (2, – 3).
Solution:
Let P (x1, y1) and Q (x2, y2) be the required points which trisect the line segment joining A (4, – 1)and B (- 2, – 3) i.e., P(x1, y1) divides AB in ratio 1: 2 and Q divides AB in ratio 2 : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 2

∴ x1 = \(\frac{1 \times-2+2 \times 4}{1+2}=\frac{-2+8}{3}=\frac{6}{3}=2\)

and y1 = \(\frac{1 \times-3+2 \times-1}{1+2}=\frac{-3-2}{3}=-\frac{5}{3}\)
∴ P(x1, y1) be (2, \(-\frac{5}{3}\))

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 3

Now, x2 = \(\frac{2 \times-2+1 \times 4}{2+1}\)
= \(\frac{-4+4}{3}\) = 0

y2 = \(\frac{2 \times-3+1 \times-1}{2+1}=\frac{-6-1}{3}=-\frac{7}{3}\)

∴ Q(x2, y2) be (0, \(-\frac{7}{3}\))
Hence, required points be (2, \(-\frac{5}{3}\)) and (0, \(-\frac{7}{3}\)).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 3.
To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1m from each other along AD, as shown in fig. Niharika runs \(\frac{1}{4}\) th the distance AD on the 2nd line and posts a green flag.

Preet runs \(\frac{1}{5}\) th the distance AD on the eighth line and posts a red flag. What is the distance betweenboth the flags? If Rashmi has to post a blue flag exactly half way between the line (segment) joining the two flags, where should she post her flag?

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 4

Solution:
In the given figure, we take A as origin. Taking x-axis along AB and y-axis along AD.
Position of green flag = distance covered by Niharika
= Niharika runs \(\frac{1}{4}\)th distance AD on the 2nd line
= \(\frac{1}{4}\) × 100 = 25 m
∴ Co-ordinates of the green flag are (2, 25)
Now, position of red flag = distance covered by Preet = Preet runs \(\frac{1}{5}\)th the distance AD on the 8th line
= \(\frac{1}{5}\) × 100 = 20 m.
Co-ordinates of red flag are (8, 20)
∴ distance between Green and Red flags = \(\sqrt{(8-2)^{2}+(20-25)^{2}}\)
= \(\sqrt{36+25}=\sqrt{61}\) m.
Position of blue flag = mid point of green flag and red flag
= \(\left(\frac{2+8}{2}, \frac{25+20}{2}\right)\)
= (5, 22.5).
Hence, blue flag is in the 5th line and at a distance of 22.5 m along AD.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 4.
Find the ratio in which (he segment joining the points (- 3, 10) and (6, – 8) is divided by (- 1, 6).
Solution:
Let point P (- 1, 6) divides the line segment joining the points A (- 3, 10) and B (6, – 8) the ratio K : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 5

∴ -1 = \(\frac{6 \times \mathrm{K}-3 \times 1}{\mathrm{~K}+1}\)
or – K – 1 = 6K – 3
or – K – 6K = – 3 + 1
or – 7K = – 2
K : 1 = \(\frac{2}{7}\) : 1 = 2 : 7
Hence, required ratio is 2 : 7.

Question 5.
Find the ratio in which the line segment joining A (1, – 5) and B (- 4, 5) is divided by the x-axis. Also find the co
ordinates of the point of division.
Solution:
Let required point on x-axis is P (x, 0) which divides the line segment joining the points A (1, – 5) and B (- 4, 5) in the
ratio K : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 6

Consider, y co-ordinates of P ¡s:
0 = \(\frac{5 \times \mathrm{K}+(-5) \times 1}{\mathrm{~K}+1}\)

or 0 = \(\frac{5 \mathrm{~K}-5}{\mathrm{~K}+1}\)
or 5K – 5 = 0
or 5K = 5
or K = \(\frac{5}{5}\) = 1
∴ Required ratio is K : 1 = 1 : 1.
Now, x co-ordinate of P is:
x = \(\frac{-4 \times K+1 \times 1}{K+1}\)
Putting the value of K = 1, we get:
x = \(\frac{-4 \times 1+1 \times 1}{1+1}=\frac{-4+1}{2}\)
x = \(-\frac{3}{2}\)
Hence, required point be (\(-\frac{3}{2}\), 0).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 6.
If (1, 2); (4, y); (x, 6) and (3, 5)are the vertices of a parallelogram taken in order, find x and y.
Solution:
Let points of parallelogram ABCD are A (1, 2) (4, y) ; C (x, 6) and D (3, 5)
But diagonals of a || gm bisect each other.
Case I. When E is the mid point of A (1, 2) and C (x, 6)
∴ Co-ordinates of E are:
E = \(\left(\frac{x+1}{2}, \frac{6+2}{2}\right)\)
E = (\(\frac{x+1}{2}\), 4) …………..(1)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 7

Case II. When E is the mid point B (4, y) and D (3, 5)
∴ Co-ordinates of E are:

E = \(\left(\frac{3+4}{2}, \frac{5+y}{2}\right)\)

E = \(\left(\frac{7}{2}, \frac{5+y}{2}\right)\) …………….(2)
But values of E in (1) and (2) are same, so comparing the coordinates, we get
\(\frac{x+1}{2}=\frac{7}{2}\)
or x + 1 = 7
or x = 6.

and 4 = \(\frac{5+y}{2}\)
or 8 = 5 + y
or y = 3
Hence, values of x and y are 6 and 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 7.
Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, – 3) and B is (1, 4).
Solution:
Let, coordinates of A be (x, y). But, centre is the’ niij ioint of the vertices of the diameter.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 8

∴ O is the mid point of A(x, y) and B(1, 4)
∴ \(\left(\frac{x+1}{2}, \frac{y+4}{2}\right)\) = (2, -3)
On comparing, we get
\(\frac{x+1}{2}\)
or x + 1 = 4
or x = 3

and \(\frac{y+4}{2}\) = – 3
or y + 4 = – 6
or y = – 10
Hence, required point A be (3, – 10).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 8.
If A and B are (- 2, – 2) and (2, – 4) respectively, find the coordinates of P such that AP = AB and P lies ¡n the line segment AB.
Solution:
Let required point P be (x, y)
Also AP = \(\frac{3}{7}\) AB …(Given)
But, PB = AB – AP
= AB – \(\frac{3}{7}\) AB = \(\frac{7-3}{7}\) AB
PB = \(\frac{4}{7}\) AB
∴ \(\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\frac{3}{7} \mathrm{AB}}{\frac{4}{7} \mathrm{AB}}=\frac{3}{4}\).

∴ P divides given points A and B in ratio 3 : 4.
Now,
x = \(\frac{3 \times 2+4 \times-2}{3+4}\)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 9

or x = \(\frac{6-8}{7}=-\frac{2}{7}\)

and y = \(\frac{3 \times-4+4 \times-2}{3+4}\)
= \(\frac{-12-8}{7}=-\frac{20}{7}\)

Hence, coordinates of P be (\(-\frac{2}{7}\), \(-\frac{20}{7}\)).

Question 9.
Find the coordinates of the points which divides the line segment joining A (- 2, 2) and B (2, 8) into four equal parts.
Solution:
Let required points are C, D and E which divide the line segment joming the points A (- 2, 2) and B (2, 8) into four equal parts. Then D is mid point of A and B ; C is the mid point of A and D ; E is the mid point of D and B such that
AC = CD = DE = EB

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 10

Now, mid point of A and B (i.e., Coordinates of D)
= \(\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)\) = (0, 5)

Mid point of A and D (i.e., Coordinates of C)
= \(\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(-1, \frac{7}{2}\right)\)

Mid point of D and B (i.e., Coordinates of E)
= \(\left(\frac{2+0}{2}, \frac{8+5}{2}\right)=\left(1, \frac{13}{2}\right)\)

Hence, requned points be (0, 5), (-1, \(\frac{7}{2}\)), (1, \(\frac{13}{2}\)).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 10.
Find the area of a rhombus if the vertices are (3, 0); (4, 5); (- 1, 4) and(- 2, – 1) taken in order.
[Hint: Areas of a rhombus = \(\frac{1}{2}\) (Product of its diagonals)]
Solution:
Let coordinates of rhombus ABCD are A (3, 0); B(4, 5); C(-1, 4) and D(- 2, – 1).
Diagonal, AC = \(\sqrt{(-1-3)^{2}+(4-0)^{2}}\)
= \(\sqrt{16+16}=\sqrt{32}=\sqrt{16 \times 2}\) = 4√2

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 11

and diagonal BD
BD = \(\sqrt{(-2-4)^{2}+(-1-5)^{2}}\)
= \(\sqrt{36+36}=\sqrt{72}=\sqrt{36 \times 2}\) = 6√2.

∴ Area of rhombus ABCD = \(\frac{1}{2}\) × AC × BD
ABCD = [\(\frac{1}{2}\) × 4√2 × 6√2] sq. units
(\(\frac{1}{2}\) × 24 × 2) sq. units
= 24 sq. units
Hence, area of rhombus is 24 sq. units.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1

Question 1.
Find the distance between the following pairs of points:
(i) (2, 3); (4, 1)
(ii)(-5, 7); (-1, 3)
(iii) (a, b); (-a, -b).
Solution:
(i) Given points are: (2, 3); (4, 1)
Required distance = \(\sqrt{(4-2)^{2}+(1-3)^{2}}\)
\(\sqrt{4+4}=\sqrt{8}=\sqrt{4 \times 2}\)
= 2√2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points are: (-5, 7); (-1, 3)
Required distance = \(\sqrt{(-1+5)^{2}+(3-7)^{2}}\)
\(\sqrt{16+16}=\sqrt{32}\)
= \(\sqrt{16 \times 2}\)
= 4√2.

(iii) Given points are: (a, b); (-a, -b)
Required distance = \(\sqrt{(-a-a)^{2}+(-b-b)^{2}}\)
= \(\sqrt{(-2 a)^{2}+(-2 b)^{2}}\)
= \(\sqrt{4 a^{2}+4 b^{2}}\)
= √4 \(\sqrt{a^{2}+b^{2}}\)
= \(2 \sqrt{a^{2}+b^{2}}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 2.
Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B
discussed in section 7.2.
Solution:
Given points are: A (0, 0) and B (36, 15)
Distance, AB = \(\sqrt{(0-36)^{2}+(0-15)^{2}}\)
\(\sqrt{1296+225}=\sqrt{1521}\) = 39.
According to Section 7.2
Draw the distinct points A (0, 0) and B (36, 15) as shown in figure.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 1

Draw BC ⊥ on X-axis.
Now, In rt. ∠d ∆ACB,
AB = \(\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}\)
= \(\sqrt{(36)^{2}+(15)^{2}}\)
= \(\sqrt{1296+225}=\sqrt{1521}\)
= 39.
Hence, required distance between points is 39.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 3.
Determine if the points (1, 5), (2, 3) and (- 2, – 11) are collinear.
Solution:
Given point are : A (1. 5); B (2.3) and C (- 2, – 11).
AB = \(\sqrt{(2-1)^{2}+(3-5)^{2}}\)
= \(\sqrt{1+4}=\sqrt{5}\)

BC = \(\sqrt{(-2-2)^{2}+(-11-3)^{2}}\)
= \(\sqrt{16+196}=\sqrt{212}\)

CA = \(\sqrt{(1+2)^{2}+(5+11)^{2}}\)
= \(\sqrt{9+256}=\sqrt{265}\)
From above distances, it is clear that sum of any two is not equal to third one.
Hence, given points are not collinear

Question 4.
Check whether (5, – 2); (6, 4) and (7, – 2) are the Vertices of an isosceles triangle.
Solution:
Given points be A (5, – 2); B (6, 4) and C (7, – 2).
AB = \(\sqrt{(5-6)^{2}+(-2-4)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

BC = \(\sqrt{(6-7)^{2}+(4+2)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

CA = \(\sqrt{(7-5)^{2}+(-2+2)^{2}}\)
= \(\sqrt{4+0}=2\)
From above discussion, it is clear that AB = BC = √37.
Given points are vertices of an isosceles triangle.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 5.
In a classroom, 4 friends are seated at the points A, B, C and D as shown in fig. Champa and Charnel walk into the class and after observing for a few minutes Champa asks Chameli, “Don’t you think ABCD is a square”? Chameli disagrees. Using distance formula, find which of them is correct, and why?

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 2

Solution:
In the given diagram, the vertices of given points are : A (3, 4); B (6, 7); C (9, 4) and D (6, 1).
Now,
AB = \(\sqrt{(6-3)^{2}+(7-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

BC = \(\sqrt{(9-6)^{2}+(4-7)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

CD = \(\sqrt{(6-9)^{2}+(1-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

DA=\(\sqrt{(3-6)^{2}+(4-1)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

AC = \(\sqrt{(9-3)^{2}+(4-4)^{2}}\)
= \(\sqrt{36+0}=6\)

BD = \(\sqrt{(6-6)^{2}+(1-7)^{2}}\)
= \(\sqrt{0+36}\) = 6
From above discussion, it is clear that
AB = BC = CD = DA = √18 and AC = BD = 6.
ABCD formed a square and Champa is correct about her thinking.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 6.
Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
(i) ( 1,- 2), (1, 0),(- 1, 2), (- 3, 0)
(ii) ( 3, 5), (3, 1), (0, 3), (- 1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2).
Solution:
(i) Given points be A (- 1, – 2); B(1, 0); C(- 1, 2) and D(- 3, 0).
AB = \(\sqrt{(1+1)^{2}+(0+2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

BC = \(\sqrt{(-1-1)^{2}+(2-0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

CD = \(\sqrt{(-3+1)^{2}+(0-2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

DA = \(\sqrt{(-1+3)^{2}+(-2+0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

AC = \(\sqrt{(-1+1)^{2}+(2+2)^{2}}\)
= \(\sqrt{0+16}=4\)

BD = \(\sqrt{(-3-1)^{2}+(0-0)^{2}}\)
= \(\sqrt{16+0}=4\)

From above discussion, it is clear that
AB = BC = CD = DA = √8 and AC = BD = 4.
Hence, given quadrilateral ABCD is a square.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points be A (- 3, 5); B (3, 1); C (0, 3) and D (- 1,- 4)
AB = \(\sqrt{(-3-3)^{2}+(5-1)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}=\sqrt{4 \times 13}\)
= 2√13

BC = \(\sqrt{(3-0)^{2}+(1-3)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)

CA = \(\sqrt{(0+3)^{2}+(3-5)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)
Now, BC + CA = \(\sqrt{13}+\sqrt{13}\) = 2√13 = AB
∴A, B and C are collinear then A, B, C and D do not form any quadrilateral.

(iii) Given points are A (4, 5); B (7, 6); C (4, 3) and D (1, 2)
AB = \(\sqrt{(7-4)^{2}+(6-5)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

BC = \(\sqrt{(4-7)^{2}+(3-6)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

CD = \(\sqrt{(1-4)^{2}+(2-3)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

DA = \(\sqrt{(4-1)^{2}+(5-2)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

AC = \(\sqrt{(4-4)^{2}+(3-5)^{2}}\)
= \(\sqrt{0+4}\) = 2

BD = \(\sqrt{(1-7)^{2}+(2-6)^{2}}\)
= \(\)

From above discussion, it is clear that AB = CD and BC = DA. and AC ≠ BD.
i.e., opposite sides are equal but their diagonals are not equal.
Hence, given quadrilateral ABCD is a parallelogram.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 7.
Find the points on the x-axis which is equidistant from (2, – 5) and (- 2, 9).
Solution:
Let required point be P (x, 0) and given points be A (2, – 5) and B (- 2, 9).
According to question,
PA = PB
(PA)2 = (PB)2
or (2 – x)2 + (- 5- 0)2 = (- 2 – x)2 + (9 – 0)2
or 4 + x2 – 4x + 25 = 4 + x2+ 4x + 81
-8x = 56
x = \(\frac{4}{4}\) = – 7
Hence, required point be (- 7, 0).

Question 8.
Find the values of y for which the distance between the points P (2, – 3) and Q (10, y) is 10 units.
Solution:
Given points are P (2, – 3) and Q (10, y)
PQ = \(\sqrt{(10-2)^{2}+(y+3)^{2}}\)
= \(\sqrt{64+y^{2}+9+6 y}\)
= \(\sqrt{y^{2}+6 y+73}\)
According to question,
PQ = 10
or \(\sqrt{y^{2}+6 y+73}\) = 10
Squaring
or y2 + 6y + 73 = 100
or y2 + 6y – 27 = 0
or y2 + 9y – 3y – 27 = 0
S = 6 P = – 27
or y (y + 9) – 3 (y + 9) = 0
or (y + 9) (y – 3) = 0
Either y + 9 = 0 or y – 3 = 0
y = – 9 or y = 3
Hence, y = – 9 and 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 9.
If Q (0, 1) is equidistant from P (5, – 3) and R (x, 6), find the values of x. Also find the distances QR and PR.
Solution:
Given points Q (0, 1); P (5, – 3) and R (x, 6)
QP = \(\sqrt{(5-0)^{2}+(-3-1)^{2}}\)
= \(\sqrt{25+16}=\sqrt{41}\)

and QR = \(\sqrt{(x-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{x^{2}+25}\)

According to question,
QP = QR
or \(\sqrt{41}=\sqrt{x^{2}+25}\)
Squaring
or 41 = x2 + 25
or x2 = 16
or x = ± √16 = ± √4.

When x = 4 then R (4, 6).
QR = \(\sqrt{(4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{1+81}=\sqrt{82}\)

When x = – 4 then R (- 4, 6).
QR = \(\sqrt{(-4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(-4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{81+81}=\sqrt{162}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 10.
Find a relation between x and y such that the point (x, y) is equidistant from the point (3, 6) and (- 3, 4).
Solution:
Let required points be P (x, y) and given points are A (3, 6) and B (- 3, 4)
PA = \(\sqrt{(3-x)^{2}+(6-y)^{2}}\)
= \(\sqrt{9+x^{2}-6 x+36+y^{2}-12 y}\)
= \(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\)

and PB = \(\sqrt{(-3-x)^{2}+(4-y)^{2}}\)
= \(\sqrt{9+x^{2}+6 x+16+y^{2}-8 y}\)
= \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)

According to question,
PA = PB
\(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\) = \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)
sq,. both sides, we have,
or x2 + y2 – 6x – 12y + 45 = x2 + y2 + 6x – 8y – 25
or -12x – 4y + 20 = 0
or 3x + y – 5 = 0 is the required relation.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1

Question 1.
In which of the following situations, does the list of numbers involved make an arithmetic progression, and why ?
(i) The taxi fare after each km when the fare is 15 for the first km and 8 for each additional km.

(ii) The amount of air present in a cylinder when a vacuum pump removes of the air remaining in the cylinder at a time.

(iii) The cost of digging a well after every metre of digging, when it costs 150 for the first metre and rises by 50 for each msubsequent metre.

(iv) The amount of money in the account every year when 10000 is deposited at compound interest at 8% per annum.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Solution:
(i) Let Tn denotes the taxi fare in nth km.
According to question,
T1 = 15 km;
T2 = 15 + 8 = 23;
T3 = 23 + 8 = 31
Now, T3 – T2 = 31 – 23 = 8
T2 – T1 = 23 – 15 = 8
Here, T3 – T2 = T2 – T1 = 8
∴ given situation form an AP.

(ii) Let Tn denotes amount of air present in a cylinder.
According to question,
T1 = x;
T2 = x – \(\frac{1}{4}\)x
= \(\frac{4-1}{4}\)x = \(\frac{3}{4}\)x
T3 = \(\frac{3}{4} x-\frac{1}{4}\left[\frac{3}{4} x\right]=\frac{3}{4} x-\frac{3}{16} x\)

= \(\left(\frac{12-3}{16}\right) x=\frac{9}{16}\)x and so on
Now, T3 – T2 = \(\frac{9}{16}\)x – \(\frac{3}{4}\)x
= \(\left(\frac{9-12}{16}\right) x=-\frac{3}{16}\)x

T2 – T1 = \(\frac{3}{4}\)x – x
= \(\left(\frac{3-4}{4}\right) x=-\frac{1}{4}\)x
Here, T3 – T2 ≠ T2 – T1
∴ given situation donot form an AP.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Let Tn denotes cost of digging a well for the nth metre,
According to question,
T1 = ₹ 150; T2 = (150 + 50) = ₹ 200;
T3 = ₹ (200 + 5o) = 250 and so on
Now, T3 – T2 = ₹ (250 – 200) = 50
T2 – T1 = ₹ (200 – 150) = 50
Here, T3 – T2 = T2– T1 = 50
∴ given situation form an A.P.

(iv) Let Tn denotes amount of money in the nth year.
According to question
T1 = ₹ 10,000
T2 = ₹ 10,000 + ₹ \(\left[\frac{10,000 \times 8 \times 1}{100}\right]\)
= ₹ 10,000 + ₹ 800 = ₹ 10,800
T3 = ₹ 10,800 + ₹ \(\left[\frac{10,800 \times 8 \times 1}{100}\right]\)
= ₹ 10,800 + ₹ 864
= ₹ 11,640 and so on.
Now, T3 – T2 = ₹ (11,640 – 10,800) = ₹ 840
T2 – T1 = ₹ (10,800 – 10,000) = ₹ 800
Here, T3 – T2 ≠ T2 – T1
∴ given situation do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Question 2.
Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(1) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = -3
(iv) a = -1, d = \(\frac{1}{2}\)
(w) a = -1.25, d = -0.25
Solution:
(i) Given that first term = a = 10
and common difference = d = 10
∴ T1 = a = 10;
T2 = a + d = 10 + 10 = 20;
T3 = a + 2d
= 10 + 2 × 10 = 10 + 20 = 30;
T4 = a + 3d = 10 + 3 × 10
= 10 + 30 = 40
Hence, first four terms of an A.P. are 10, 20, 30, 40………….

(ii) Given that first term = a = -2
and common iifference = d = 0
∴ T1 = a = -2;
T2 = a + d = -2 + 0 = -2
T3 = a + 2d = -2 + 2 × 0 = -2
T4 = a + 3d = -2 + 3 × 0 = -2
Hence, first four terms of an A.P. are -2, -2, -2, -2,…………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Given that first term = a = 4
and common difference = d = -3
∴ T1 = a = 4;
T2= a + d = 4 – 3 = 1
T3 = a + 2d = 4 + 2(-3) = 4 – 6 = -2
T4 = a + 3d = 4 + 3(-3) = 4 – 9 = -5
Hence, first four terms of an A.P. are 4, 1, -2, -5, ……….

(iv) Given that first term = a = -1
and common difference = d = \(\frac{1}{2}\)
∴ T1 = a = -1; T2 = a + d
= -1 + \(\frac{1}{2}\) = \(-\frac{1}{2}\)
T3 = a + 2d = -1 + 2(\(\frac{1}{2}\))
= -1 + 1 = 0
T4 = a + 3d = -1 + 3(\(\frac{1}{2}\))
= \(\frac{-2+3}{2}=\frac{1}{2}\)
Hence, first four terms of an AP are -1, –\(\frac{1}{2}\), 0, \(\frac{1}{2}\), …………..

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(v) Given that first term = a = – 1.25
and common difference = d = – 0.25
∴ T1 = a = – 1.25;
T2 = a + d = – 1.25 – 0.25 = -1.50
T3 = a + 2d = – 1.25 + 2(- 0.25)
= – 1.25 – 0.50 = – 1.75
T4 = a + 3d = – 1.25 + 3(- 0.25)
= – 1.25 – 0.75 = – 2
Hence, first four terms of an A.P. are – 1.25, – 1.50, – 1.75, – 2, ……………..

Question 3.
For the following APs, wilte the first term and the common difference:
(i) 3, 1, -1, -3, …………
(ii) 5, -1, 3, 7, ………….
(iii) \(\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}\), …………..
(iv) 0.6, 1.7, 2.8, 3.9, ………..
Solution:
(i) Given A.P., is 3, 1, -1, -3, ………
Here T1 = 3, T2 = 1,
T3 = -1, T4 = -3
First term = T1 = 3
Now, T2 – T1 = 1 – 3 = – 2
T3 – T2 = – 1 – 1 = -2
T4 – T3 = -3 + 1 = -2
∴ T2 – T1 = T3 – T2 = T4 – T3 = – 2
Hence, common difference = – 2 and first term = 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(ii) Given A.P. is – 5, – 1, 3, 7, ………….
Here T1 = – 5, T2 = – 1,
T3 = 3, T4 = 7
First term T1 = -5
Now, T2 – T1 = -1 + 5 = 4
T3– T2 = 3 + 1 = 4
T4 – T3 = 7 – 3 = 4
∴ T2 – T1 = T3 – T2 = T4 – T3 = 4
Hence, common difference = 4 and first term = – 5.

(iii) Given AP. is:
\(\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots\)
Here T1 = \(\frac{1}{3}\), T2 = \(\frac{5}{3}\),
T3 = \(\frac{9}{3}\), T4 = \(\frac{13}{3}\)
First term = T1 = \(\frac{1}{3}\)
Now, T2 – T1 = \(\frac{5}{3}-\frac{1}{3}=\frac{5-1}{3}=\frac{4}{3}\)
T3 – T2 = \(\frac{9}{3}-\frac{5}{3}=\frac{9-5}{3}=\frac{4}{3}\)
T4 – T3 = \(\frac{13}{3}-\frac{9}{3}=\frac{13-9}{3}=\frac{4}{3}\)
∴ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{4}{3}\)

Hence, common difference = \(\frac{4}{3}\) and first term = \(\frac{1}{3}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iv) Given A.P. is 0.6, 1.7, 2.8, 3.9,…
Here, T1 = 0.6, T2 = 1.7, T3 = 2.8, T4 = 3.9
First term = T1 = 0.6
Now, T2 – T1 = 1.7 – 0.6 = 1.1
T3 – T2 = 2.8 – 1.7 = 1.1
T4 – T3 = 3.9 – 2.8 = 1.1
Hence, common difference = 1.1 and first term = 0.6.

Question 4.
WhIch of the following are APs? If they form an AP, find the common difference d and write three more terms.
(i) 2, 4, 8, 16
(ii) 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), ………
(iii) – 1.2, – 3.2, – 5.2, – 7.2, ………….
(iv) – 10, – 6, – 2, 2, ………….
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2, ……….
(vi) 0.2, 0.22, 0.222, 0.2222, ………….
(vii) 0, -4, -8, -12, …………..
(viii) \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ………..
(ix) 1, 3, 9, 27 …………….
(x) a, 2a, 3a, 4a, ………………
(xi) a, a2, a3, a4, ……………….
(xii) √2, √8, √18, √32, …………
(xiii) √3, √6, √9, √12, ……………..
(xiv) 12, 32, 52, 72, ………..
(xv) 12, 52, 72, 73, ………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1
Solution:
(i) Given terms are 2, 4, 8, 16 ………………
Here T1 = 2, T2 = 4, T3 = 8, T4 = 16
T2 – T1 = 4 – 2 = 2
T3 – T2 = 8 – 4 = 4
∵ T2 – T1 ≠ T3 – T2
Hence, given terms do not form an A.P.

(ii) Given terms are 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), ………
Here T1 = 2, T2 = 4, T3 = 3, T4 = 16
T2 – T1 = \(\frac{4}{4}\) – 2 = \(\frac{5-4}{2}\) = \(\frac{1}{2}\)
T3 – T2 = 3 – \(\frac{5}{2}\) = \(\frac{6-5}{2}=\frac{1}{2}\)
T4 – T3 = \(\frac{7}{2}-3=\frac{7-6}{2}=\frac{1}{2}\)
∵ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{1}{2}\)
∴ Common difference = d = \(\frac{1}{2}\)
Now, T5 = a + 4d = 2 + 4\(\frac{1}{2}\) = 4

T6 = a + 5d = 2 + 5(\(\frac{1}{2}\)) = \(\frac{4+5}{2}=\frac{9}{2}\)

T7 = a + 6d = 2 + 6(\(\frac{1}{2}\)) = 2 + 3 = 5.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Given terms are – 1.2, – 3.2, – 5.2, – 7.2, …………
Here T1 = – 1.2, T2 = – 3.2,
T3 = – 5.2, T4 = – 7.2
T2 – T1 = – 3.2 + 1.2 = – 2
T3 – T2 = – 5.2 + 3.2 = – 2
T 4 – T3 = – 7.2 + 5.2 = – 2
∵ T2 – T1 = T3 – T2 = T4 – T3 = – 2
∴ Common difference = d = – 2
Now, T5 = a + 4d = – 1.2 + 4(-2) = – 1.2 – 8 = – 9.2
T6 = a + 5d = – 1.2 + 5(-2) = – 1.2 – 10 = – 11.2
T7 = a + 6d = – 1.2 + 6(-2) = -1.2 – 12 = – 13.2

(iv) Given terms are – 10, – 6, – 2, 2, ………..
Here T1 = – 10,T2 = – 6
T3 = – 2, T4=2 .
T2 – T1 = – 6 + 10 = 4
T3 – T2 = – 2 + 6 =4
T4 – T3 = 2 + 2 = 4
∵ T2 – T1=T3 – T2 = T4 – T3 = 4 .
∴ Common difference = d = 4
Now, T5 = a + 4d = – 10 + 4(4) = – 10 + 16 = 6
T6 = a + 5d = – 10 + 5(4) = – 10 + 20 = 10
T7 = a + 6d = – 10 + 6(4) = – 10 + 24 = 14.

(v) Given terms are 3, 3 + √2, 3 + 2√2, 3 + 3√2, …………
Here T1 = 3, T2 = 3 + √2,
T3 = 3 + 2√2, T4= 3 + 3√2
T2 – T1 = 3 + √2 – 3 = √2
T3 – T2 = 3 + 2√2 – (3 + √2)
= 3 + 2√2 – 3 – √2 = √2
T4 – T3 = 3 + 3√2 – (3 + 2√2)
= 3 + 3√2 – 3 – 2√2 = √2
∵ T2 -T1 = T3 – T2 = T4 – T3 = √2
∴ Common difference = d = √2
Now, T5 = a + 4d = 3 + 4(√2) = 3 + 4√2
T6 = a + 5d = 3 + 5√2
T7 = a + 6d = 3 + 6√2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(vi) Given terms are 0.2, 0.22, 0.222, 0.2222, …………..
Here Here T1 = 0.2, T2 = 0.22,
T3 = 0.222, T4 = 0.2222.
T2 – T1 = 0.22 – 0.2 = 0.02
T3 – T2 = 0.222 – 0.22 = 0.002
∵ T2 – T1 ≠ T3 – T2
∴ given terms do not form an A.P.

(vii) Given terms are 0, -4, -8, -12
Here T1 = 0, T2 = -4,
T3 = -8, T4 = -12
T2 – T1 = – 4 – 0 = -4
T3 – T2= – 8 + 4 = -4
T4 – T3= – 12 + 8 = -4.
T2 – T1 = T3 – T2 = T4 – T3
∴ Common difference = d = -4
Now, T5= a + 4d = 0 + 4(-4) = -16
T6 = a + 5d = 0 + 5(-4) = -20
T7 = a + 6d = 0 + 6(-4) = -24.

(viii) Given terms are \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ……….
Here T1 = \(-\frac{1}{2}\), T2 = –\(\frac{1}{2}\)
T3 = \(-\frac{1}{2}\), T4 = \(-\frac{1}{2}\)
T2 – T1 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
T3 – T2 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
∵ T2 – T1 = T3 – T2 = 0
∴ Common difference = d = 0
Now, T5 = T6 = T7 = –\(\frac{1}{2}\)
[∵ a = –\(\frac{1}{2}\), d = 0]

(ix) Given terms are 1, 3, 9, 27
T1 = 1, T2 = 3, T3 = 9, T4 = 27
T2 – T1 = 3 1 = 2
T3 – T2 = 9 – 3 = 6.
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(x) Given terms are a, 2a, 3a, 4a, …
T1 = a, T2 = 2a, T3 = 3a, T4 = 4a
T2 – T1 = 2a – a = a
T3 – T2 = 3a – 2a = a
T4 – T3 = 4a – 3a = a
∵ T2 – T1 = T3 – T2 = T4 – T3 = a
∴ Common difference = d = a
Now T5 = a + 4d = a + 4(a) = a + 4a = 5a
T6 = a + 5d = a + 5a = 6a
T7 = a + 6d = a + 6a = 7a

(xi) Given terms are a, a2, a3, a4, …………
T1 = a, T2 = a2, T3 = a3, T4 = a4
T2 – T1 = a2 – a
T3 – T2 = a3 – a2
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(xii) Given terms are √2, √8, √18, √32, …………
T1 = √2, T2 = √8, T3 = √18, T4 = √32
or T1 = √2, T2 = 2√2 T3 = 3√2, T4 = 4√2
T2 – T1 = 2√2 – √2 = √2
T3 – T = 3√2 – 2√2 = √2
T4 – T3 = 4√2 – 3√2 = √2
∵ T2 – T1 = T3 – T2 = T4 – T3= √2
∴ Common difference = d = √2
Now, T5 = a + 4d = √2 + 4√2 = 5√2
T6 = a + 5d = √2 + 5√2 = 6√2
T7 = a + 6d = √2 + 6√2 = 7√2

(xiii) Given terms are √3, √6, √9, √12, ……………..
T1 = √3, T2= √6, T3= √9, T4= √12
or T1 = √3, T2 = √6, T3 = 3, T4 = 2√3
T4 – T1 = √6 – √3
T3 – T2 = 3 – √6
∵ T2 – T1 ≠ T3 – T2
∴Given terms do not form an A.P.

(xiv) Given terms are 12, 32, 52, 72, ………..
T1 = 12, T2 = 32, T3 = 52, T4 = 72
or T1 = 1, T2 = 9, T3 = 25, T4 = 49
T4 – T1 = 9 – 1 = 8
T3 – T2 = 25 – 9 = 16
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(xv) Given terms are 12, 52, 72, 73
T1 = 12, T2 = 52, T3 = 72, T4 = 73
or T1 = 1, T2 = 25, T3 = 49, T4 = 73
T2 – T1 = 25 – 1 = 24
T3 – T2 =49 – 24= 24
T4 – T3 = 73 – 49 = 24
∵ T2 – T1 = T3 – T2 = T4 – T3 = 24
∴ Common difference = d = 24
T5 = a + 4d = 1 + 4(24) = 1 + 96 = 97
T6 = a + 5d = 1 + 5(24) = 1 + 120 = 121
T7 = a + 6d = 1 +6(24) = 1 + 144 = 145

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2

Question 1
Fill in the blanks in the following table, given that a is the first term, d the common difference and a the nth term of the
AP:

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 1

Solution:
(i) Here a = 7, d = 3, n = 8
∵ an = a + (n – 1)d
∴ a8 = 7 + (8 – 1)3
= 7 + 21 = 28.

(ii) Here a = – 18, n = 10, an = 0
∵ an = a + (n – 1)d
∴ a10 = – 18 + (10 – 1)d
or 0 = – 18 + 9d .
or 9d = 18
d = \(\frac{18}{2}\) = 2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(iii) Here d = – 3, n = 18, an = – 5
∵ an = a + (n – 1)d
∴ a18 = a + (18 – 1)(-3)
or -5 = a – 51
or a = – 5 + 51 = 46.

(iv) Here a = – 18.9, d = 2.5 an = 3.6
∵ an = a + (n – 1)d
∴ 3.6 = – 18.9 + (n – 1) 2.5
or 3.6 + 18.9 = (n – 1) 2.5
or (n – 1) 2.5 = 22.5
or n – 1 = \(\frac{22.5}{2.5}\)
or n = 9 + 1 = 10.

(v) Here a = 3.5, d = 0, n = 105
∵ an = a + (n – 1) d
∴ an = 3.5 + (105 – 1) 0
an = 3.5 + 0 = 3.5.

Question 2.
Choose the correct choice in the following and justify:
(i) 30th term of the AP: 10, 7, 4, …………….. is
(A) 97 (B) 77 (C) – 77 (D) – 87

(ii) 11th term of the AP: – 3, – \(\frac{1}{2}\), 2, ………. is
(A) 28 (B) 22 (C) – 38 (D) – 48\(\frac{1}{2}\)

Solution:
(i) Given A.P. is 10, 7, 4 ……………
T1 = 10, T2 = 7, T3 = 4
T2 – T1 = 7 – 10 = – 3
T3 – T2 = 4 – 7 = – 3
∵ T2 – T1 = T3 – T2 = – 3 = d(say)
∵ Tn = a + (n – 1) d
Now, T30 = 10 + (30 – 1)(-3)
= 10 – 87 = – 77
∴ Correct choice is (C).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A.P. is – 3, –\(\frac{1}{2}\), 2, ……….
T1 = – 3 T2 = –\(\frac{1}{2}\), T3 = 2, …………..
T2 – T1 = –\(\frac{1}{2}\) + 3 = \(\frac{-1+6}{2}=\frac{5}{2}\)
T3 – T2 = 2 + \(\frac{1}{2}\) = \(\frac{4+1}{2}=\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{5}{2}\) = d(say)
∵ Tn = a + (n – 1) d
Now, T11 = -3 + (11 – 1) \(\frac{5}{2}\)
= -3 + 10 × \(\frac{5}{2}\) = – 3 + 25 = 22
∴ Correct choice is (B).

Question 3.
In the following APs, find the missing terms in the boxes:
(i) 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 26
(ii)PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 13, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 3
(iii) 5,PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 9
(iv) – 4, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 6
(v) PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 38, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, – 22
Solution:
Let a be the first term and ‘d’ be the common difference of given A.P.
(i) Here T1 = a = 2
and T3 = a + 2d = 26
or 2 + 2d = 26
or 2d = 26 – 2 = 24
or d = 12
∴ Missing term = T2 = a + d = 2 + 12 = 14.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Here, T2 = a + d = 13 ……………(1)
and T4 = a + 3d = 3 …………….(3)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 3

Substitute this value of d in (1), we get
a – 5 = 13
a = 13 + 5 = 18.
∴ T1 = a = 18
T3 = a + 2d = 18 + 2(-5)
= 18 – 10 = 8.

(iii)Here T1 = a = 5
and T4 = a + 3d = 9
or a + 3d = \(\frac{19}{2}\)
or 5 + 3d = \(\frac{19}{2}\)
or 3d = \(\frac{19}{2}\) – 5
or 3d = \(\frac{19-10}{2}=\frac{9}{2}\)
or d = \(\frac{9}{2} \times \frac{1}{3}=\frac{3}{2}\)
T2 = a + d = 5 + \(\frac{3}{2}\)
= \(\frac{10+3}{2}=\frac{13}{2}\)
T3 = a + 2d = 5 + 2(\(\frac{3}{2}\)) = 5 + 3 = 8.

(iv) Here T1 = a = —
T6 = a + 5d = 6
or -4 + 5d = 6
or 5d = 6 + 4
or 5d = 10
or d = \(\frac{10}{2}\) = 2
Now, T2 = a + d = -4 + 2 = -2
T3 = a + 2d = – 4 + 2(2)
= – 4 + 4 = 0
T4 = a + 3d = – 4 + 3(2)
= – 4 + 6 = 2
T5 = a + 4d = – 4 + 4(2)
= – 4 + 8 = 4

(v) Here T2 = a + d = 38 ………….(1)
and T6 = a + 5d = -22 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 4.

Substitute this value of d in (1), we get
a + (-15) = 38
a = 38 + 15 = 53
∴ T1 = a = 53
T3 = a + 2d = 53 + 2(-15) = 53 – 30 = 23.
T4 = a + 3d = 53 + 3(-15) = 53 – 45 = 8
T5 = a + 4d = 53 + 4(-15) = 53 – 60 = – 7.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 4
Which term of the A.P. 3, 8, 13, 18, …………… is 78?
Solution:
Given A.P. is 3, 8, 13, 18, ………….
T1 = 3, T2 = 8, T3 = 13, T4 = 18
T2 – T1 =8 – 3=5
T3 – T2= 13 – 8=5
T2 – T1 = T3 – T,= 5 = d (say)
Using, Tn = a + (n – I) d
or 78 = 3 + (n – 1) 5
or 5(n – 1) = 78 – 3 = 75
or n – 1 = 15
or n = 15 + 1 = 16
Hence, 16th term of given AP. is 78.

Question 5.
Find the number of terms in each of the following APs:
(i) 7, 13, 19,…, 205
(ii) 18, 15\(\frac{1}{2}\), 13, ………….., – 47
Solution:
(i) Given A.P. is 7, 13, 19, …………..
T1 = 7, T2 = 13, T3 = 19
T2 – T1 = 13 – 7 = 6
T3 – T2 = 19 – 13 = 6
T2 – T1 = T3 – T2 = 6 = d(say)
Using formula, Tn = a + (n – 1) d
205 = 7 + (n – 1) 6
or (n – 1) 6 = 205 – 7 = 198
or (n – 1) = \(\frac{198}{6}\)
or n – 1 = 33
n = 33 + 1 = 34
Hence, 34th term of an AP. is 205.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A P. is 18, 15\(\frac{1}{2}\), 13, …………..
T1 = 18, T2 = 15\(\frac{1}{2}\) = \(\frac{31}{2}\), T3 = 13
T2 – T1 = \(\frac{31}{2}\) – 18 = \(\frac{31-36}{2}=-\frac{5}{2}\)
T3 – T2 = 13 – \(\frac{31}{2}\) = \(\frac{26-31}{2}=-\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{-5}{2}\) = d (say)
Using formula. Tn = a + (n – 1) d
– 47 = 18 + (n – 1) \(\frac{-5}{2}\)
or (n – 1) (\(\frac{-5}{2}\)) = – 47 – 18
or (n – 1) (\(\frac{-5}{2}\)) = – 65
or n – 1 = – 65 × – \(\frac{2}{5}\)
or n – 1 = 26
or n = 26 + 1 = 27
Hence, 27th term of an A.P. is – 47.

Question 6.
Is – 150 a term of 11, 8, 5, 2….? why?
Solution:
Given sequence is 11, 8, 5, 2, ………..
T1 = 11, T2 = 8, T3 = 5, T4 = 2
T2 – T1 = 8 – 11 = – 3
T3 – T2 = 5 – 8 = – 3
T4 – T3 = 2 – 5 = – 3
T2 – T1 = T3 – T2 = T4 – T3 = – 3 = d (say).
Let – 150 be any term of given A.P.
then Tn = – 150
a+(n – 1)d = – 150
or 11 +(n – 1)(- 3) = – 150
or (n – 1)( – 3) = – 150 – 11 = – 161
or n – 1 = \(\frac{161}{3}\)
or n = \(\frac{161}{3}\) + 1 = \(\frac{161+3}{3}\)
n = \(\frac{164}{3}\) = 54\(\frac{2}{3}\),
which is not a natural number.
Hence, – 150 cannot be a term of given A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 7.
Find the 31st term of an AP whose 11th term is 38 and 16th term is 73.
Solution:
Let ‘a’ and 4d’ be the first term and common difference of given A.P.
Given that T11 = 38
a +(11 – 1) d = 38
[∵ Tn = a + (n – 1) d]
a + 10 d = 38
and T16 = 73
a + (16 – 1) d = 73
[∵ Tn = a + (n – 1) d]
a + 15 d = 73
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 5

Substitute this value of d in (1), we get
a + 10 (7) = 38
or a + 70 = 38
or a = 38 – 70 = – 32
Now, T31 = a + (31 – 1) d
= – 32 + 30 (7) = – 32 + 210 = 178.

Question 8.
An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 291h term.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that, T3 = 12
a + (3 – 1) d = 12
∵ Tn = a + (n – 1) d
or a + 2d = 12 ………………(1)
and Last term = T50 = 106
a + (50 – 1) d = 106
∵ Tn = a + (n – 1) d
a + 49 d = 106 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 6

Substitute this value of d in (1), we get
a + 2(2) = 12
or a + 4 = 12
or a + 12 – 4 = 8
Now, T29 = a + (29 – 1) d
= 8 + 28 (2) = 8 + 56 = 64.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 9.
If the 3rd and 9th tenus of an A.P. are 4 and – 8 respectively, which term of this A.P. is zero.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given AP.
Given that: T3 = 4
a + (3 – 1) d = 4
∵ Tn = a + (n – 1) d
a + 2d = 4 …………..(1)
and T9 = – 8
a + (9 – 1) d = 8
and T9 = – 8
a + (9 – 1)d = 8
∵ Tn = a + (n – 1) d
or a + 8d = – 8
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 7

Substitute this value of d in (1), we get
a + 2(- 2) = 4
or a – 4 = 4
or a = 4 + 4 = 8
Now, Tn = 0 (Given)
a + (n – 1) d = 0
or 8 + (n – 1)(- 2)=0
or -2 (n – 1) = – 8
or n – 1 = 4
or n = 4 + 1 = 5
Hence, 5th term of an AP. is zero.

Question 10.
The 17th term of an A.P. exceeds its 10th term by 7. Find the common difference.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Now, T17 = a + (17 – 1) d = a + 16 d
and T10 = a + (10 – 1) d = a + 9 d
According to question
T17 – T10 = 7
(a + 16 d) – (a + 9 d) = 7
or a + 16 d – a – 9 d = 7
7 d = 7
or d = \(\frac{7}{7}\) = 1
Hence, common difference is 1.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 11.
Which term of the A.P. 3, 15, 27, 39, …………. will be 132 more than its 54th term?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given A.P. is 3, 15, 27, 39, …
T1 = 3, T2 = 15, T3 = 27, T4 = 39
T2 – T1 = 15 – 3 = 12
T3 – T2 = 27 – 15 = 12
:. d=T2 – T1 = T3 – T2 =12
Now, T54 = a + (54 – 1) d
= 3 + 53 (12) = 3 + 636 = 639
According to question
T = T54 + 132
a + (n – 1)d = 639 + 132
3 + (n – 1)(12) = 771
(n – 1) 12 = 771 – 3 = 768
or n – 1 = \(\frac{768}{12}\) = 64
or n = 64 + 1 = 65
Hence, 65th term of A.P. is 132 more than its 54th term.

Question 12.
Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of first AP.
Also, ‘A’ and ‘d’ be the first term and common difference of second A.P.
According to question
[T100 of second A.P.] – [T100 of first A.P.] = 100
or[A +(100 – 1)d] – [a +(100 – 1)d] = 100
or A + 99d – a – 99d = 100
or A – a = 100
Now, [T1000 of second A.P.] – [T1000 of first A.P.]
= [A + (1000 – 1) d) – (a + (1000 – 1) d]
= A + 999 d – a – 999 d
= A – a = 100 [Using (I)].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 13.
How many three-digits numbers are divisible by 7?
Solution:
Three digits numbers which divisible by 7 are 105, 112, 119 , 994
Here a = T1 = 105, T2 = 112, T3 = 119 and Tn = 994
T2 – T1 = 112 – 105=7
T3 – T2 = 119 – 112=7
∴ d = T2 – T1 = T3 – T2 = 7
Given that, Tn = 994
a + (n – 1) d = 994
or 105 + (n – 1) 7 = 994
or (n – 1) 7 = 994 – 105
or (n – 1) 7 = 889
or n – 1 = \(\frac{889}{7}\) = 127
or n = 127 + 1 = 128.
Hence, 128 terms of three digit number are divisible by 7.

Question 14.
How many multiples of 411e between 10 and 250?
Solution:
Multiples of 4 lie between 10 and 250 are 12, 16, 20, 24, … 248
Here a = T1 = 12, T2 = 16, T3 = 20 and Tn = 248
T2 – T1 = 16 – 12 = 4
T3 – T2 = 20 – 16 = 4
∴ d = T2 – T1 = T3 – T2 = 4
Given that, Tn = 248
a + (n – 1) d = 248
or 12 + (n – 1)4 = 248
or 4(n – 1) = 248 – 12 = 236
or n – 1 = \(\frac{236}{4}\) = 59
or n = 59 + 1 = 60
Hence, there are 60 terms which are multiples of 4 lies between 10 and 250.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 15.
For what value of n, are the n terms of two A.P.s 63, 65, 67, …………. and 3, 10, 17, …………….. equal?
Solution:
Given A.P. is 63, 65, 67, ……………..
Here a = T1 = 63, T2 = 65, T3 = 67
T2 – T1 = 65 – 63 = 2
T3 – T2 = 67 – 65 = 2
∴ d = T2 – T1 = T3 – T2 = 2
and second A.P. is 3, 10, 17, …
Here a = T1 = 3, T2 = 10, T3 = 17
T2 – T1 = 10 – 3 = 7
T3 – T2 = 17 – 10 = 7
According to question.
[nth term of first A.P.] = [nth term of second A.P.]
63 + (n – 1)2 = 3 + (n – 1) 7
or 63 + 2n – 2 = 3 + 7n – 7
or 61 + 2n = 7n – 4
or 2n – 7n = – 4 – 61
– 5n = – 65
n = \(\frac{65}{5}\) = 13.

Question 16.
Determine the AP. whose third term is 16 and 7 term exceeds the by 12.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that T3 = 16
a + (3 – 1) d = 16
a + 2d = 16
According to question
T7 – T5 = 12
[a + (7 – 1) d] – [a + (5 -1) d] = 12
a + 6 d – a – 44 = 12
2d = 12
d = \(\frac{12}{2}\) = 6
Substitute this value of d in (1), we get
a + 2(6) = 16
a = 16 – 12 = 4 .
Hence, given A.P. are 4, 10, 16, 22, 28, ………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 17.
Find the 20th term from the last term of the AP: 3, 8, 13, ………., 253.
Solution:
Given A.P. is 3, 8, 13, …………., 253
Here, a = T1 = 3, T2 = 8, T3 =13 and Tn = 253
T2 – T1 = 8 – 3 = 5
T3 – T2 = 13 – 8 = 5
∴ d = T2 – T1 = T3 – T1 = 5
Now, Tn = 253
3 + (n – 1)5 = 253
∵ Tn = a + (n – 1) d
(n – 1) 5 = 250
n-1 = \(\frac{250}{5}\) = 50
n = 50 + 1 = 51
20th term from the end of AP = (Total number of terms) – 20 + 1
= 51 – 20 + 1 = 32nd term
∴ 20th term from the end of AP
= 32nd term from the starting
= 3 + (32 – 1)5
∵ Tn = a + (n – 1)d
= 3 + 31 × 5
= 3 + 155 = 158.

Question 18.
The sum of the 4th and 8th term of an AP is 24 and the sum of the 6’ and 10th terms is 44. FInd the first three terms of the A.P.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
According to 1st condition
T4 + T8 = 24
a + (4 – 1) d + a + (8 – 1) d = 24
∵ Tn = a + (n – 1) d
or 2a + 3d + 7d = 24
2a + 10d = 24
a + 5d = 12 …………(1)
According to 2nd condition
T6 + T10 = 44
a + (6 – 1) d + a +(10 – 1) d = 44
∵ Tn = a + (n – 1) d
2a + 5d + 9d = 44
2a + 14d = 44
a + 7d = 22
Now (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 8

Substitute this value of d in (I). we get
a + 5(5) = 12
a + 25 = 12
a = 12 – 25 = -13
T1 = a = -13
T2 = a + d = 13 + 5 = -8
T2 = a + 2d = – 13 + 2(5) = – 13 + 10 = -3
Hence, given A.P. is -13, -8, -3, ……………

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 19.
Subba Rao started work in 1995 at an annual salary of ₹ 5000 and received an increment of ₹ 200 each year. In which year did his income reach ₹ 7000?
Solution:
Subba Rao’s starting salary = ₹ 5000
Annual increment = ₹ 200
Let ‘n’ denotes number of years.
∴ first term = a = ₹ 5000
Common diflerence = d = ₹ 200
and Tn = ₹ 7000
5000 + (n – 1) 200 = 7000
∵ Tn = a + (n – 1) d
(n – 1) 200 = 7000 – 5000
or (n – 1) 200 = 2000
or n – 1 = \(\frac{2000}{200}\) = 10
or n = 10 + 1 = 11
Now, in case of year the sequence are 1995. 1996, 1997, 1998, ……………
Here a = 1995, d = 1 and n = 11
Let Tn denotes the required year.
∴ Tn = 1995 + (11 – 1) 1
= 1995 + 10 = 2005
Hence, in 2005, Subba Rao’s salary becomes 7000.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 20.
Ramkali saved ₹ 5 in the first week of a year and then increased her weekly saving by ₹ 1.75. If in the nth week, her weekly saving becomes ₹ 20.75, find n.
Solution:
Amount saved in first week = ₹ 5
Increment in saving every week = ₹ 1.75
It is clear that, it form an A.P. whose terms are
T1 = 5, d = 1.75
∴ T2 = 5 + 1.75 = 6.75
T3 = 6.75 + 1.75 = 8.50
Also. Tn = 20. 75 (Given)
5 + (n – 1) 1.75 = 20.75
∵ Tn = a + (n – 1) d
or (n – 1) 1.75 = 20.75 – 5
or (n – 1) 1.75 = 15.75
or (n – 1) = \(\frac{1575}{100} \times \frac{100}{175}\)
or n – 1 = 9
or n = 9 + 1 = 10
Hence, in 10th week, Ramkali’s saving becomes ₹ 20.75.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

Question1.
A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of it.
Solution:
Radius of cone = Radius of hemisphere = 1 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 1

R = 1 cm
Height of cone (H) = 1 cm
Volume of solid = volume of cone + volume of hemisphere
= \(\frac{1}{3}\) πR2H + \(\frac{2}{3}\) πR3
= \(\frac{1}{3}\) πR22 [H + 2R]
= \(\frac{1}{3}\) π × 1 × 1 [1 + 2 × 1]
= \(\frac{1}{3}\) π × 3 = π cm3
Hence, Volume of solid = π cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 2.
Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is 3 cm and its length is 12 cm. If each cone has a height of 2 cm, find the volume of air contained in the model the Rachel made. (Assume the outer and inner dimensions of the model to be nearly the same.)
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 2

Radius of cone = Radius of cylinder (R) = \(\frac{3}{2}\) cm
∴ R = 1.5 cm
Height of eah cone (h) = 2 cm
∴ Height of cylinder = 12 – 2 – 2 = 8 cm
Volume of air in cylinder = volume of cylinder + 2 (volume of cone)

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 3

Volume of air in cylinder = \(\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3}\)
= 22 × 3 = 66 cm3

Hence, Volume of air in cylinder =66 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 3.
A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 4

Solution:
Gulab Jamun is in the shape of cylinder
Diameter of cylinder = Diameter of hemisphere = 2.8 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 11

Radius of cylinder = Radius of hemisphere (R)
= \(\frac{28.2}{2}\) = 1.4 cm
R = 1.4 cm
Height of cylindrical part = 5 – 1.4 – 1.4
= (5 – 2.8) cm = 2.2 cm.
Volume of one gulab Jamun = Volume of cylinder + 2 [Volume of hemisphere]
= πR2H + 2 \(\frac{2}{3}\) πR3

= πR2 H + \(\frac{4}{3}\) R

= \(\frac{4}{4}\) × 1.4 × 1.4 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{14}{10}\) × \(\frac{14}{10}\) 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{196}{100}\) [2.2 + 1.86]

= \(\frac{22 \times 28}{100}\) [4.06]

Volume of one gulab Jamun = 25.05 cm3
Now volume of 45 gulab Jamuns = 45 × 25.05 cm3 = 1127.25 cm3
Volume of sugar syrup = 30% volume of 45 gulab Jamuns
= \(\frac{30 \times 1127.25}{100}\) = 338.175 cm3
Hence, Approximately sugar syrup = 338 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 4.
A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are 15 cm by 10 cm by 3.5 cm. The radius of each of the depressions is 0.5 cm and the depth is 1.4 cm. Find the volume of wood in the entire stand.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 5

Solution. Length of cuboid (L) = 15 cm
Width of cuboid (B) = 10 cm
Height of cuboid (H) = 3.5 cm
Radius of conical cavity (r) = 0.5 cm
Height of conical cavity (h) = 1.4 cm
Volume of wood in Pen stand = volume of cuboid – 4 [volume of cone]
= LBH – 4 \(\frac{1}{3}\) πr2h

= 15 × 10 × 3.5 – \(\frac{4}{3}\) × \(\frac{22}{7}\) × 0.5 × 0.5 × 1.4

= \(\frac{15 \times 10 \times 35}{10}-\frac{4}{3} \times \frac{22}{7} \times \frac{5}{10} \times \frac{5}{10} \times \frac{14}{10}\)

= \(15 \times 35-\frac{22}{3 \times 5}\)
= 525 – 1.466 = 523.534 cm3
Hence, Volume of wood in Pen stand = 523.53 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 5.
A vessel is in the form of an inverted cone. Its height ¡s 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 6

Radius of cone (R) = 5 cm
Height of cone (H) = 8 cm
Radius of each spherical lead shot (r) = 0.5 cm
Let number of shot put into the cone = N
According to Question,
N [Volume of one lead shot] = \(\frac{1}{4}\) Volume of water in cone

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 7

= 10 × 10 = 100
Hence, Number of lead shots = 100.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 6.
A solid iron pole consists of a cylinder of height 220 cfi and base diameter 24 cm, which is surmounted by another cylinder of height 60 cm and radius 8 cm. Find the mass of the pole, given that 1 cm3 of Iron has approximately 8 g mass. (Use n = 3.14)
Solution:
Diameter of lower cylinder = 24 cm
Radius of lower cylinder (R) = 12 cm
Height of lower cylinder (H) = 220 cm
Radius of upper cylinder (r) = 8 cm
Height of upper cylinder (h) = 60 cm
Volume of pole = Volume of Lower cylinder + volume of upper cylinder
= πR2H + πr2h
= 3.14 × 12 × 12 × 220 + 3.14 × 8 × 8 × 60
= 99475.2 + 12057.6

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 8

Volume of pole = 111532.8 cm3
Mass of 1 cm3 = 8 gm
Mass of 111532.8 cm3 = 8 × 111532.8 = 892262.4 gm
= \(\frac{892262.4}{1000}\) kg = 892.2624 kg
Hence, Mass of Pole = 892.2624 kg.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 7.
A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm.
Solution:
Radius of cone = Radius of hemisphere = Radius of cylinder

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 9

Height of cone (h) = 120 cm
Height of cylinder (H) = 180 cm
Volume of cylindrical vessel = πR2H
= \(\frac{22}{7}\) × 60 × 60 × 180 = 2036571.4 cm3
Volume of solid inserted in cylinder = Volume of hemisphere + Volume of cone
= \(\frac{2}{3}\) πR3 + \(\frac{1}{3}\) πR2h

= \(\frac{1}{3}\) πR2 [2R + h]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 60 × 60 [2 × 60 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 [120 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 × 240 = 905142.86 cm3
Volume of water flows out = 90514186 cm3
∴ Volume of water left in cylinder = Volume of cylinder – Volume of solid inserted in th’e vessel
= (2036571.4 – 905142.86) cm3 = 1131428.5 cm3
= \(\frac{1131428.5}{100 \times 100 \times 100}\) m3 = 1.131 m3
Hence, Volume of water left in cylinder = 1.131 m3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 8.
A spherical glass vessel has a cylindrical neck 8 cm long, 2 cm in diameter; the diameter of the spherical part is 8.5 cm. By measuring the amount of water it holds, a child finds its volume to be 345 cm3. Check whether she is correct, taking the above as the inside measurements, and π = 3.14.
Solution:
Diameter of neck (cylindrical Portion) = 2 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 10

Radius of neck (r) = 1 cm
Height of cylindrical portion (H) = 8 cm
Diameter of spherical portion = 8.5 cm
Radius of spherical portion (R) = \(\frac{8.5}{2}\) cm = 4.25 cm
Volume of water in vessel = Volume of sphere + Volume of cylinder
= \(\frac{4}{3}\) πR3 + πR2h
= \(\frac{4}{3}\) × 3.14 × 4.25 × 4.25 × 4.25 × 3.14 × 1 × 1 × 8
= 321.39 + 25.12 = 346.51 cm3
Hence, Volume of water in vessel = 346.51 cm3 and She is wrong.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes Ex 13.1

Question 1.
2 cubes each of volume 64 cm3 are joined end to end. Find the surface area of the resulting cuboid.
Solution:
Let side of cube = x cm
Volume of cube = 64 cm3
[volume of cube = (side)3]
x3 = 64
x = \(\sqrt[3]{4 \times 4 \times 4}\)
x = 4 cm
∴ side of cube = 4 cm.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 1

When cubes are joined end to end and cuboid is formed
whose Length = 2x cm = 2(4) = 8 cm
Width = x cm = 4 cm
Height = x cm = 4 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 2

Surface area of cuboid = 2[LB + Bh + hL]
= 2 [8 × 4 + 4 × 4 + 4 × 8]
= 2 [32 + 16 + 32]
= 2 [80]
∴ Surface area of cuboid = 160 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 2.
A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere ¡s 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel.
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 3

Diameter of hemisphere = Diameter of cylinder
= 14 cm
2R = 14 cm
Radius of hemisphere (R) = 7 cm
Total height of vessel = 13 cm
∴ Height of cylinder = (13 – 7) = 6 cm
Inner surface area of vessel = inner surface area of cylinder + Inner surface area of hemisphere
= 2πRH + 2πR2
= 2πR [H + R]
= 2 × \(\frac{22}{7}\) × 7(16 + 7)
= 44 × 13 = 572 cm2
Hence, Inner surface area of vessel = 572 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 3.
A toy is ¡n the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.
Solution:
Radius of cone = Radius of hemisphere (R) = 3.5 cm
Total height of toy = 15.5 cm
∴ Height of cone (H) = (15.5 – 3.5) = 12 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 4

Slant height of cone = \(\sqrt{\mathrm{R}^{2}+\mathrm{H}^{2}}\)

= \(\sqrt{(3.5)^{2}+(12)^{2}}\)

= \(\sqrt{12.25+144}\) = \(\sqrt{156.25}\)
Slain height conk (l) = 12.5 cm
Total surface area of toy = Surface area of cone + Surface area of hemisphere
= πRL + 2πR2
= πR[L + 2R]
= \(\frac{22}{7}\) × 3.5 [12.5 + 2 (3.5)1 cm2
= \(\frac{22}{7}\) × 3.5 [19.5] cm2
= \(\frac{1501.5}{7}\) = 214.5 cm2
∴ Total surface area of toy = 214.5 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 4.
A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have?
Find the surface area of the solid.
Solution:
Side of cubical box = 7 cm
Diameter of hemisphere = Side of cubical box = 7 cm
2R = 7
R = \(\frac{7}{2}\) cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 5

Surface area of solid = (surface area of the cube) – (area of base of hemisphere) + curved surface area of hemisphere)
= 6l2 – πR2 + 2πR2
= 6l2 + πR2
= 6(7)2 + \(\frac{22}{7}\) \(\frac{7}{2}\)2
= [6 × 49 + 11 × \(\frac{7}{2}\)]cm2
= 294 + 38.5 = 332.5 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 5.
A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter l of (he hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.
Solution:
Let each side of cube = a
∴ Diameter of hemisphere = Side of cube
2R = a
R = \(\frac{a}{2}\)

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 6

Surface area of remaining solid = Total surface area of euboid – Area of the top of cube + Inner curved Surface area of hemisphere
= 6 (side)2 – πR2 + 2πR2
= 6(a)2 + πR2
= 6(a)2 + π \(\frac{a}{2}\)2
= 6a2 + π \(\frac{a^{2}}{4}\)
= a2 6 + \(\frac{\pi}{4}\) cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 6.
A medicine capsule is ¡n the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm. Find its surface area.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 7

Solution:
Diameter of capsule = Diameter of hemisphere = Diameter of cylinder = 5 mm
∴ 2R = 5 mm
R = \(\frac{5}{2}\) mm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 8

Length of entire capsule = 14 mm
Height of cylinderical part = (14 – \(\frac{5}{2}\) – \(\frac{5}{2}\)) mm
= (14 – 5) mm
H = 9 mm
Surface area of capsule = Surface area of cylinder + 2 Surface area of hemisphere
= 2πRH + 2 (2πR2)
= 2πRH + 4πR2
= 2πR [H + 2R]
= 2 × \(\frac{22}{7} \times \frac{5}{2}\left[9+2\left(\frac{5}{2}\right)\right]\)
= 2 × \(\frac{22}{7}\) × \(\frac{5}{2}\) [9 + 5]
= \(\frac{22}{7}\) × 5 × 14
= 220 mm2
Hence, Surface area of capsule = 220 mm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 7.
A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m, find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of 500 per (Note that the base of the tent will not be
covered with canvas.)
Solution:
Diameter of cone = Diameter of cylinder
2R = 4
R = 2 m

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 9

Radius of cone = Radius of cylinder
Height of cylinder (H) = 2.1 in
Slant height of cone (L) = 2.8 m
Curved surface area of tent = Curved surface of cylinder + Curved surface of conical part
= 2πRH + πRL
= πR [2H + L]
= \(\frac{22}{7}\) × 2[2(2.1) + 2.8]
= \(\frac{22}{7}\) × 2[4.2 + 2.8]
= \(\frac{22}{7}\) × 2 × 7
= 44 m2
∴ Curved surface area of tent = 44 m2
Cost of 1m2 canvas = ₹ 500
Cost of 44 m2 canvas = 44 × 500 = ₹ 22000
Hence, Total cost of canvas = ₹ 22000.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 8.
From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2.
Solution:
Diameter of cylinder (D) = 1.4 cm = Diameter of cone
∴ Radius of cylinder = Radius of cone (R) = 0.7 cm
Height of cylinder (H) = 2.4 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 10

As we know, L2 = R2 + H2 + (2.4)2
L = \(\sqrt{(0.7)^{2}+(2.4)^{2}}\)
= \(\sqrt{0.49+5.76}\) = \(\sqrt{6.25}\)
L = 2.5 cm
Total surface area of remaining solid = curved surface area of cylinder + Area of base of cylinder + Surface area of cone
= 2πRH + πR2 + πRL
= πR [2R +R + L]
= \(\frac{22}{7}\) × 0.7 [2(2.4) + 0.7 + 2.5]

=\(\frac{22}{7}\) × \(\frac{7}{10}\) [4.8 + 3.2]

= \(\frac{22}{10}\) [8]

= \(\frac{176}{10}\) = 17.6 cm2

Hence, Total surface area remaining solid to nearest cm2 = 18 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 9.
A wooden article was made by scooping out a hemisphere form each end of a solid cylinder, as shown in Fig.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 11

If the height of the cylinder is 10 cm, and its base ¡s of radius 3.5 cm, find the total surface area of the article.
Solution:
Height of cylinder (H) = 10 cm
Radius of cylinder = Radius of hemisphere (R) = 3.5 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 12

Surface area of article = curved surface area of cylinder + 2 curved surface area of hemisphere
= 2πRH + 2 (2πR2)
= 2πR [H + 2R]
= 2 × \(\frac{22}{7}\) × 3.5 [10 + 2(3.5)]
= \(\frac{44}{7}\) × \(\frac{35}{10}\) [10 + 7]
= 44 × \(\frac{5}{10}\) × 17
= 44 × \(\frac{1}{2}\) × 17
= 22 × 17 = 374 cm2
Hence, total surface area of article = 374 cm2.