PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 9 Ray Optics and Optical Instruments Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 9 Ray Optics and Optical Instruments

PSEB 12th Class Physics Guide Ray Optics and Optical Instruments Textbook Questions and Answers

Question 1.
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?
Answer:
Size of the candle, h = 2.5 cm
Image size = h’
Object distance, u = -27 cm
Radius of curvature of the concave mirror, R = -36 cm
Focal length of the concave mirror, f = \(\frac{R}{2}=\frac{-36}{2}\) = -18 cm
Image distance = v

The image distance can be obtained using the mirror formula
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 1

The negative sign shows that the image is formed in front of the mirror i.e., on the side of the object itself. Thus the screen must be placed at a distance of 54 cm in front of the mirror.
The magnification of the image is given as

The height of the candle’s image is 5 cm. The negative sign indicates that the image is inverted and virtual.
If the candle is moved closer to the mirror, then the screen will have to be moved away from the mirror in order to obtain the image.

Question 2.
A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.
Answer:
Given u = -12 cm, f = +15 cm. (convex mirror)
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 3

That is image is formed at a distance of 6.67 cm behind the mirror.
Magnification m = \(-\frac{v}{u}=-\frac{\frac{20}{3}}{-12} \) = \(\frac{5}{9}\)
Size of image I = mO = \(\frac{5}{9}\) x 4.5 = 2.5 cm
The image is erect, virtual and has a size 2.5 cm.

Its position is 6.67 cm behind the mirror when needle is moved farther, the image moves towards the focus and its size goes on decreasing.

Question 3.
A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?
Answer:
Case I:
When tank is filled with water Actual depth of the needle in water, h1 = 12.5cm
Apparent depth of the needle in water, h2 =9.4cm
Refractive index of water = μ
The value μ can be obtained as follows
μ = \(\frac{\text { Actual depth }}{\text { Apparent depth }}\)
= \(\frac{h_{1}}{h_{2}}=\frac{12.5}{9.4}\) ≈ 1.33
Hence, the refractive index of water is about 1.33

Case II: When tank is filled with liquid
Water is replaced by a liquid of refractive index, μ’ = 1.63
The actual depth of the needle remains the same, but its apparent depth changes.
Let y be the new apparent depth of the needle. Hence, we can write the relation
μ’ = \(\frac{h_{1}}{y}\)
y = \(\frac{h_{1}}{\mu^{\prime}}=\frac{12.5}{1.63}\) = 7.67 cm
Hence, the new apparent depth of the needle is 7.67cm. It is less than h2 Therefore, to focus the needle again, the microscope should be moved up. Distance by which the microscope should be moved up =9.4-7.67 = 1.73 cm.

Question 4.
Figures 9.34 (a) and (b) show refraction of a ray in air incident at 60° with the normal to a glass air and water-air interface, respectively. Predict the angle of refraction in glass when the angle of incidence in water is 45° with the normal to a water-glass interface [Fig. 9.34 (c)]
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 4
Answer:
As per the given figure, for the glass-air interface
Angle of incidence, i = 60°
Angle of refraction, r = 35°
The relative refractive index of glass with respect to air is given by Snell’s law as
aμg = \( \frac{\sin i}{\sin r}\)
= \(\frac{\sin 60^{\circ}}{\sin 35^{\circ}}=\frac{0.8660}{0.5736}\) = 1.51 …………………….. (1)
As per the given figure, for the air-water interface
Angle of incidence, j = 600
Angle of refraction, r = 470
The relative refractive index of water with respect to air is given by Snell’s law as
wμw = \( \frac{\sin i}{\sin r}\)
= \(\frac{\sin 60^{\circ}}{\sin 47^{\circ}}=\frac{0.8660}{0.7314}\) = 1.184 …………………………… (2)

Using equations (1) and (2), the relative refractive index of glass with respect to water can be obtained as
wμg = \(\frac{a_{g}}{a_{w_{w}}}\)
= \( \frac{1.51}{1.184} \) = 1.275

The following figure shows the situation involving the glass-water interface
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 5
Angle of incidence, i = 45
Angle of reflection = r
From Snell’s law, r can be calculated as, \(\frac{\sin i}{\sin r}\) = wμg
\(\frac{\sin 45^{\circ}}{\sin r}\) = 1.275
sin r = \(\frac{\frac{1}{\sqrt{2}}}{1.275}=\frac{0.707}{1.275}\) = 0.5546
r = sin-1(0.5546) = 38.68°
Hence, the angle of refraction at the water-glass interface is 38.68°

Question 5.
A small bulb is placed at the bottom of a tank containirg water to a depth of 80 cm. What is the area of the surface of water through which light from the bulb can emerge out? Refractive index of water is 1.33 (Consider the bulb to be a point source.)
Answer:
Actual depth of the bulb in water, d1 = 80 cm = 0.8 m
Refractive index of water, μ = 1.33
The given situation is shown in the following figure
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 6
where,
i = Angle of Incidence
r = Angle of Refraction = 90°
Since the bulb is a point source, the emergent light can be considered as a circle of radius,
R = \(\frac{A C}{2}\) = AO = OC
Using Snell’s law, we can write the relation for the refractive index of water as
μ = \(\frac{\sin r}{\sin i}\)
1.33 = \(\frac{\sin 90^{\circ}}{\sin i}\)
i = sin-1\(\left(\frac{1}{1.33}\right)\) = 48.75°

Using the given figure, we have the relation
tan i = \(\frac{O C}{O B}=\frac{R}{d_{1}}\)
∴R = tan 48.75° x 0.8 = 0.91 m
∴ Area of the surface of water = πR2
= π(0.91)2
= 2.61 m2
Hence, the area of the surface of water through which the light from the bulb can emerge is approximately 2.61 m2.

Question 6.
A prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is measured to be 40°. What is the refractive index of the material of the prism? The refracting angle of the prism is 60°. If the prism is placed in water (refractive index 1.33), predict the new angle of minimum deviation of a parallel beam of light.
Answer:
Angle of minimum deviation, δm = 40 °
Refracting angle of the prism, A = 60°
Refractive index of water, μ = 1.33
Let μ’ be the refractive index of the material of the prism.
The angle of deviation and refracting angle of the prism are related to refractive index (μ’) as
μ’ = \(\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)} \)
= \(\frac{\sin \left(\frac{60^{\circ}+40^{\circ}}{2}\right)}{\sin \left(\frac{60^{\circ}}{2}\right)}=\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{0.766}{0.5}\)
= 1.532
Hence, the refractive index of the material of the prism is 1.532.
Since the prism is placed in water, let 8 ^ be the new angle of minimum deviation for the same prism.

The refractive index of glass with respect to water is given by the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 8
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 9
Hence, the new minimum angle of deviation is 10.32°.

Question 7.
Double-convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm?
Answer:
Lens maker formula is
\(\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\) …………………………………… (1)
If R is radius of curvature of double convex lens, then,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 10
∴ R = 2(n-1)f
Here, n =1.55, f = +20 cm
∴ R = 2 (1.55 -1) x 20 = 22 cm

Question 8.
A beam of light converges at a point P. Now a lens is placed in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is (a) a convex lens of focal length 20 cm, and (b) a concave lens of focal length 16 cm?
Answer:
In the given situation, the object is virtual and the image formed is real.
Object distance, u = +12cm
(a) Focal length of the convex lens, f = 20 cm
Image distance = v
According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 11
∴ v = \(\frac{60}{8}\) = 7.5cm
Hence, the image is formed 7.5cm away from the lens, toward its right.

(b) Focal length of the concave lens, f = -16 cm
Image distance = v
According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 12
∴ v = 48 cm
Hence, the image is formed 48 cm away from the lens, toward its right.

Question 9.
An object of size 3.0 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?
Answer:
Size of object O = 3.0 cm
u = -14 cm, f = -21 cm (concave lens)
∴ Formula \(\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\)
⇒ \(\frac{1}{v}=\frac{1}{f}+\frac{1}{u}\)
or \(\frac{1}{v}=\frac{1}{-21}+\frac{1}{-14}=-\frac{2+3}{42}\)
or v = \(-\frac{42}{5}\) = -8.4 cm
Size of image I = \(\frac{v}{u}\) O
= \(\frac{-8.4}{-14}\) x 3.0 cm = 1.8 cm

That is, image is formed at a distance of 8.4 cm in front of lens. The image is virtual, erect and of size 1.8 cm. As the object is moved farther from the lens, the image goes on shifting towards focus and its size goes on decreasing. The image is never formed beyond the focus of the concave lens.

Question 10.
What is the focal length of a convex lens of focal length 30 cm in contact with a concave lens of focal length 20 cm? Is the system
a converging or a diverging lens? Ignore thickness of the lenses.
Answer:
Given f1 = +30 cm, f2 = -20 cm
The focal length (F) of combination is given by
\(\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\)
⇒ F = \(\frac{f_{1} f_{2}}{f_{1}+f_{2}}\)
= \(\frac{30 \times(-20)}{30-20}\) = -60 cm
That is, the focal length of combination is 60 cm and it acts like a diverging lens.

Question 11.
A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at (a) the least distance of distinct vision (25cm), and (b) at infinity? What is the magnifying power of the microscope in each case?
Answer:
Focal length of the objective lens, f0 = 2.0 cm
Focal length of the eyepiece, fe = 6.25cm
Distance between the objective lens and the eyepiece, d = 15cm
(a) Least distance of distinct vision, d’ = 25cm
∴ Image distance for the eyepiece, ve = -25cm
Object distance for the eyepiece = ue
According to the lens formula, we have the relation
\(\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}\)
or \(\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}\)
= \(\frac{1}{-25}-\frac{1}{6.25}=\frac{-1-4}{25}=\frac{-5}{25}\)
∴ ue = -5cm
Image distance for the objective lens, v0 = d + ue =15-5 = 10 cm
Object distance for the objective lens = u0
According to the lens formula, we have the relation
\(\frac{1}{v_{o}}-\frac{1}{u_{o}}=\frac{1}{f_{o}}\)
\(\frac{1}{u_{0}}=\frac{1}{v_{0}}-\frac{1}{f_{0}}=\frac{1}{10}-\frac{1}{2}=\frac{1-5}{10}=\frac{-4}{10}\)
∴ u0=-2.5cm
Magnitude of the object distance, |u0| = 2.5 cm
The magnifying power of a compound microscope is given by the relation
m = \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d^{\prime}}{f_{e}}\right)\)
= \(\frac{10}{2.5}\left(1+\frac{25}{6.25}\right)\) = 4(1+4) = 20
Hence, the magnifying power of the microscope is 20.

(b) The final image is formed at infinity.
∴ Image distance for the eyepiece, ve = ∞
Object distance for the eyepiece = ue
According to the lens formula, we have the relation
\(\frac{1}{v_{o}}-\frac{1}{u_{o}}=\frac{1}{f_{o}}\)
\(\frac{1}{u_{o}}=\frac{1}{v_{o}}-\frac{1}{f_{o}}=\frac{1}{8.75}-\frac{1}{2.0}=\frac{2-8.75}{17.5}\)
∴ u0 = \(\frac{17.5}{6.75}\) = -2.59 cm
Magnitude of the object distance, |u0| = 2.59 cm
The magnifying power of a compound microscope is given by the relation
m = \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d^{\prime}}{f_{e}}\right)\)
= \(\frac{8.75}{2.59} \times\left(1+\frac{25}{6.25}\right)\) = 13.51
Hence, the magnifying power of the microscope is 13.51.

Question 12.
A person with a normal near point (25cm) using a compound microscope with objective of focal length 8.0 mm and an eyepiece of focal length 2.5 cm can bring an object placed at 9.0 mm from the objective in sharp focus. What is the separation between the two lenses? Calculate the magnifying power of the microscope.
Answer:
Focal length of the objective lens, f0= 8 mm = 0.8cm
Focal length of the eyepiece, fe = 2.5 cm
Object distance for the objective lens, u0 = -9.0 mm = -0.9 cm
Least distance of distant vision, d = 25 cm
Image distance for the eyepiece, ve = -d = -25 cm
Object distance for the eyepiece = ue

Using the lens formula, we can obtain the value of ue as
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 13
∴ ue = \(-\frac{25}{11}\) = -2.27 cm
We can also obtain the value of the image distance for the objective lens (v0) using the lens formula.
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 14
∴ v0 = 7.2 cm
The distance between the objective lens and the eyepiece = |ue|+v0
= 2.27+ 7.2 = 9.47cm
The magnifying power of the microscope is calculated as \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d}{f_{e}}\right)\)
= \(\frac{7.2}{0.9}\left(1+\frac{25}{2.5}\right)\)
= 8(1 +10) = 88
Hence, the magnifying power of the microscope is 88.

Question 13.
A small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length 6.0cm. What is the magnifying power of the telescope? What is the separation between the objective and the eyepiece?
Answer:
Focal length of the objective lens, f0 = 144 cm
Focal length of the eyepiece, fe = 6.0 cm
The magnifying power of the telescope is given as, m = \(\frac{f_{o}}{f_{e}}=\frac{144}{6}\) = 24
The separation between the objective lens and the eyepiece is calculated as
= fo + fe
= 144 + 6 = 150 cm
Hence, the magnifying power of the telescope is 24 and the separation between the objective lens and the eyepiece is 150 cm.

Question 14.
(a) A giant refracting telescope at an observatory has an objective lens of focal length 15 m. If an eyepiece of focal length 1.0 cm is used, what is the angular magnification of the telescope?
(b) If this telescope is used to view the moon, what is the diameter of the image of the moon formed by the objective lens? The diameter of the moon is 3.48 x 106 m, and the radius of lunar orbit is 3.8 x 108 m.
Answer:
(a) Given f0 = 15 m,
fe = 1.0 cm = 1.0 x 10-2 m
Angular magnification of telescope,
m = \(-\frac{f_{o}}{f_{e}}=-\frac{15}{1.0 \times 10^{-2}}\) = -1500
Negative sign shows that the final image is inverted.
(b) Let D be diameter of moon, d diameter of image of moon formed by objective and r be the distance of moon from objective lens, then
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 15

Question 15.
Use the mirror equation to deduce that:
(a) an object placed between f and 2f of a concave mirror produces a real image beyond 2f.
(b) a convex mirror always produces a virtual image independent of the location of the object.
(c) the virtual image produced by a convex mirror is always diminished In size and is located between the focus and the
pole.
(d) an object placed between the pole and focus of a concave mirror produces a virtual and enlarged image.
[Note: This exercise helps you deduce algebraically properties of images that one obtains from explicit ray diagrams.]
Answer:
(a) For a concave mirror, the focal length (f) is negative
∴ f<o
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u<O
For image distance v, we can write the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\) …………………………………… (1)
The object lies between f and 2f.
∴ 2f < u < f (∵ u and f are negative) ∴ \(\frac{1}{2 f}>\frac{1}{u}>\frac{1}{f}\)
\(-\frac{1}{2 f}<-\frac{1}{u}<-\frac{1}{f}\)
\(\frac{1}{f}-\frac{1}{2 f}<\frac{1}{f}-\frac{1}{u}<0\) ………………………………… (2)
Using equation (1), we get
\(\frac{1}{2 f}<\frac{1}{v}<0\)

∴ \(\frac{1}{v}\) is negative, i.e., v is negative.
\(\frac{1}{2 f}<\frac{1}{v}\) 2f > v
-v > -2 f
Therefore, the image lies beyond 2f.

(b) For a convex mirror, the focal length (f) is positive.
∴ f>o
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u<O
For image distance y, we have the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
Using equation (2), we can conclude that
\(\frac{1}{\nu}\) < 0 v v> 0
Thus, the image is formed on the back side of the mirror.
Hence, a convex mirror always produces a virtual image, regardless of the object distance.

(c) For a convex mirror, the focal length (f) is positive.
∴ f> 0
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u< 0
For image distance v, we have the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
But we have u < 0 ∴ \(\frac{1}{v}>\frac{1}{f}\)
v < f
Hence, the image formed is diminished and is located between the focus (f) and the pole.

(d) For a concave mirror, the focal length (f) is negative.
∴ f< 0
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u< 0 It is placed between the focus (f) and the pole. ∴f > u > 0
\(\frac{1}{f}<\frac{1}{u}\) < 0 \(\frac{1}{f}-\frac{1}{u}\) > 0
For image distance v, we have the mirror formula
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 16
The image is formed on the right side of the mirror. Hence, it is a virtual image.
For u < 0 and v > 0, we can write
\(\frac{1}{u}>\frac{1}{v}\)
v > u
Magnification, m = \(\frac{v}{u}\) > 1 u
Hence, the formed image is enlarged.

Question 16.
A small pin fixed on a tabletop is viewed from above from a distance of 50 cm. By what distance would the pin appear to be raised if it is viewed from the same point through a 15 cm thick glass slab held parallel to the table? Refractive index of glass = 1.5. Does the answer depend on the location of the slab?
Answer:
Actual depth of the pin, d = 15cm
Apparent depth of the pin = d’
Refractive index of glass, µ = 1.5

Ratio of actual depth to the apparent depth is equal to the refractive index of glass, i.e.
µ = \(\frac{d}{d^{\prime}}\)
∴ d’ = \(\frac{d}{\mu}\)
= \(\frac{15}{1.5}\) = 10 cm
The distance at which the pin appears to be raised = d-d’=15-10 = 5 cm
For a small angle of incidence, this distance does not depend upon the location of the slab.

Question 17.
(a) Figure 9.35 shows a cross-section of a ‘light pipe’ made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for which total reflections inside the pipe take place, as shown in the figure.
(b) What is the answer if there is no outer covering of the pipe?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 17
Answer:
(a) Refractive index of the glass fibre, µ2 = 1.68
Refractive index of the outer covering of the pipe, µ1 =1.44
Angle of incidence = i
Angle of refraction = r
Angle of incidence at the interface = i’

The refractive index (µ) of the inner core-outer core interface is given as
µ = \(\frac{\mu_{2}}{\mu_{1}}=\frac{1}{\sin i^{\prime}}\)
sin i’ = \(\frac{\mu_{1}}{\mu_{2}}=\frac{1.44}{1.68}\) = 0.8571
∴ i’ = 59°

For the critical angle, total internal reflection (TIR) takes place only when i > i’. i.e., i > 59°
Maximum angle of reflection, rmax = 90°-i’ = 90°-59°= 31°
Let, imax be the maximum angle of incidence.
The refractive index at the air – glass interface, µ2 =1.68
µ2 = \(\frac{\sin i_{\max }}{\sin r_{\max }}\)
sin imax = µ2 sin rmax = 1.68 sin31°
= 1.68 x 0.5150
= 0.8652
∴imax = sin-1 (0.8652) ≈ 60°
Thus, all the rays incident at angles lying in the range 0 < i < 60° will suffer total internal reflection.

(b) If the outer covering of the pipe is not present, then
Refractive index of the outer pipe, µ1 = Refractive index of air = 1
For the angle of incidence i =90°, we can write Snell’s law at the air-pipe interface as
\(\frac{\sin i}{\sin r}\) = µ2 = 1.68
sin r = \(\frac{\sin 90^{\circ}}{1.68}=\frac{1}{1.68}\)
r = sin-1(0.5952)
∴ i’ = 90°-36.5°= 53.5°
Since i’ > r, all incident rays will suffer total internal reflection.

Question 18.
Answer the following questions:
(a) You have learnt that plane and convex mirrors produce virtual images of objects. Can they produce real images under some circumstances? Explain.
(b) A virtual image, we always say, cannot be caught on a screen. Yet when we ‘see’ a virtual image, we are obviously bringing it onto the ‘screen’(i.e., the retina) of our eye. Is there a contradiction?
(c) A diver underwater, looks obliquely at a fisherman standing on the bank of a lake. Would the fisherman look taller or shorter to the diver than what he actually is?
(d) Does the apparent depth of a tank of water change if viewed obliquely? If so, does the apparent depth increase or decrease?
(e) The refractive index of diamond is much greater than that – of ordinary glass. Is this fact of some use to a diamond cutter?
Answer:
(a) Yes, they produce real images under some circumstances. If the object is virtual, i.e., if the light rays converging at a point behind a plane mirror (or a convex mirror) are reflected to a point on a screen placed in front of the mirror, then a real image will be formed.

(b) No, there is no contradiction. A virtual image is formed when light rays diverge. The convex lens of the eye causes these divergent rays to converge at the retina. In this case, the virtual image serves as an object for the lens to produce a real image.

(c) The diver is in the water and the fisherman is on land (i.e., in the air). Water is a denser medium than air. It is given that the diver is viewing the fisherman. This indicates that the light rays are traveling from a denser medium to a rarer medium. Hence, the refracted rays will move away from the normal. As a result, the fisherman will appear to be taller.

(d) Yes, the apparent depth of a tank of water changes when viewed obliquely. This is because light bends on traveling from one medium to another. The apparent depth of the tank, when viewed obliquely, is less than the near-normal viewing.

(e) Yes, the refractive index of diamond (2.42) is more than that of ordinary glass (1.5). The critical angle for diamond is less than that for glass. A diamond cutter uses a large angle of incidence to ensure that the light entering the diamond is totally reflected from its faces. This is the reason for the sparkling effect of a diamond.

Question 19.
The image of a small electric bulb on the wall of a room is to be obtained on the opposite wall 3 m away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose? ’’
Answer:
Here, u + v = 3 m, :.v = 3 -u
From lens formula,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 18
or u = \(\frac{3 \pm \sqrt{3^{2}-4.3 f}}{2}\)
For real solution, 9 -12, f should be positive.
It., 9 -12f > 0
or 9 >12f.
or f < \(\frac{9}{12}\) < \(\frac{3}{4}\) m
∴ The maximum focal length of the lens required for the purpose is \(\frac{3}{4}\) m
i.e, fmax = 0.7 m

Question 20.
A screen is placed 90 cm from an object. The image of the object on the screen is formed by a convex lens at two different locations separated by 20 cm. Determine the focal length of the lens.
Answer:
Here, O is a position of object and I is position of image (screen).
Distance OI = 90 cm
L1 and L2 are the two positions of the lens.
∴ Distance between L1 and L2 = O1 O2 = 20 cm
For Position L1 of the Lens: Let x be the distance of the object from the lens.
∴ u1 = -x
∴ Distance of the image from the lens, v1 = +(90 – x)
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 19
If f be the focal length of the lens, then using lens formula,
\(-\frac{1}{u}+\frac{1}{v}=\frac{1}{f}\) we get
\(-\frac{1}{-x}+\frac{1}{90-x}=\frac{1}{f}\)
or \(\frac{1}{f}=\frac{1}{x}+\frac{1}{90-x}\) ……………………………….. (1)
For Position L2 of the Lens : Let u2 and v2 be the distances of the object and image from the lens in this position.
∴ u2=-(X + 20),
v2 = +[90-(x+20)] = +(70-x)
∴ Using lens formula,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 20
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 21

Question 21.
(a) Determine the ‘effective focal length’ of the combination of the two lenses in Exercise 9.10, if they are placed 8.0 cm apart with their principal axes coincident. Does the answer depend on which side of the combination a beam of parallel light is incident? Is the notion of effective focal length of this system useful at all?

(b) An object 1.5 cm in size is placed on the side of the convex lens in the arrangement (a) above. The distance between the object and the convex lens is 40 cm. Determine the magnification produced by the two-lens system and the size of the image.
Answer:
Focal length of the convex lens, f1 = 30 cm
Focal length of the concave lens,f2 = -20 cm
Distance between the two lenses, d = 8.0 cm

(a)
(i) When the parallel beam of light is incident on the convex lens first.
According to the lens formula, we have
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, μ1 = Object distance = ∞, v1 = Image distance = ?
\(\frac{1}{v_{1}}=\frac{1}{30}-\frac{1}{\infty}=\frac{1}{30}\)
∴ v1 = 30 cm
The image will act as a virtual object for the concave lens. Applying lens formula to the concave lens, we have
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
where, u2 = Object distance = (30 – d) = 30 – 8 = 22 cm,
v2 = Image distance=?
\(\frac{1}{v_{2}}=\frac{1}{22}-\frac{1}{20}=\frac{10-11}{220}=\frac{-1}{220}\)
∴ v2 = -220 cm
The parallel incident beam appears to diverge from a point that is \(\left(220-\frac{d}{2}=220-\frac{8}{2}=220-4=216 \mathrm{~cm}\right)\) from the centre of the combination of the two lenses.

(ii) When the parallel beam of light is incident, on the concave lens first. According to the lens formula, we have
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
\(\frac{1}{v_{2}}=\frac{1}{f_{2}}+\frac{1}{u_{2}}\)
where, u2 = Object distance = -∞, v2 = Image distance = ?
\(\frac{1}{v_{2}}=\frac{1}{-20}+\frac{1}{-\infty}=-\frac{1}{20}\)
∴ v2 = -20 cm
The image will act as a real object for the .convex lens.
Applying lens formula to the convex lens, we have
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, u1 = Object distance = -(20 + d) = -(20 + 8) = -28 cm v1 = Image distance = ?
\(\frac{1}{v_{1}}=\frac{1}{30}+\frac{1}{-28}=\frac{14-15}{420}=\frac{-1}{420}\)
∴ v1 = -420 cm
Hence, the parallel incident beam appear to diverge from a point that is (420 – 4 = 416 cm) from the left of the centre of the combination of the two lenses. The answer depends on the side of the combination at which the parallel beam of light is incident. The notion of effective focal length does not seem to be useful for this combination.

(b) Height of the object, h1 =1.5 cm
Object distance from the side of the convex lens, u1 = -40 cm
|ui| = 40 cm

According to the lens formula
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, v1 = Image distance =?
\(\frac{1}{v_{1}}=\frac{1}{30}+\frac{1}{-40}=\frac{4-3}{120}=\frac{1}{120}\)
∴ v1 = 120 cm
Magnification, m= \(\frac{v_{1}}{\left|u_{1}\right|}=\frac{120}{40}\) = 3

Hence, the magnification due to the convex lens is 3.
The image formed by the convex lens acts as an object for the concave lens.
According to the lens formula
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
where,
u2 = Object distance = +(120 —8)=112 cm
v2= Image distance =?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 22
Magnification, m’ = \(\left|\frac{v_{2}}{u_{2}}\right|=\frac{2240}{92} \times \frac{1}{112}=\frac{20}{92}\)
Hence, the magnification due to the concave lens is \(\frac{20}{92}\)
The magnification produced by the combination of the two lenses is calculated as m x m’ = \(3 \times \frac{20}{92}=\frac{60}{92}\) = 0.652
The magnification of the combination is given as
\(\frac{h_{2}}{h_{1}}\) = 0.652
h2 = 0.652 x h1
where, h1 = Object size = 1.5 cm,
h2 = Size of the image
∴ h2 = 0.652 x 1.5 = 0.98 cm
Hence, the height of the image is 0.98 cm.

Question 22.
At what angle should a ray of light be incident on the face of a prism of refracting angle 60° so that it just suffers total internal reflection at the other face? The refractive index of the material of the prism is 1.524.
Answer:
The incident, refracted, and emergent rays associated with a glass prism ABC are shown in the given figure
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 23
Angle of prism, A = 60°
Refractive index of the prism, μ = 1.524
i1 = Incident angle
r2 = Refracted angle
r2 = Angle of incidence at the face
AC = e = Emergent angle = 90°

According to Snell’s law, for face AC, we can have sine
\(\frac{\sin e}{\sin r_{2}}\) = μ
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 24
It is clear from the figure that angle A = r1 + r2
According to Snell’s law, we have the relation
μ = \(\frac{\sin i_{1}}{\sin r_{1}} \)
sin i1 = μ sin r1
= 1.524 x sin19°= 0.496
∴ i1= 29.75°
Hence, the angle of incidence is 29.75°.

Question 23.
You are given prisms made of crown glass and flint glass with a wide variety of angles. Suggest a combination of prisms which will
(a) deviate a pencil of white light without much dispersion,
(b) disperse (and displace) a pencil of white light without much deviation.
Answer:
(a) Place the two prisms beside each other. Make sure that their bases are on the opposite sides of the incident white light, with their faces touching each other. When the white light is incident on the first prism, it will get dispersed. When this dispersed light is incident on the second prism, it will recombine and white light will emerge from the combination of the two prisms.

(b) Take the system of the two prisms as suggested in answer (a). Adjust (increase) the angle of the flint-glass-prism so that the deviations due to the combination of the prisms become equal. This combination will disperse the pencil of white light without much deviation.

Question 24.
For a normal eye, the far point is at infinity and the near point of distinct vision is about 25 cm in front of the eye. The cornea of . the eye provides a converging power of about 40 dioptres, and the least converging power of the eye-lens behind the cornea is about 20 dioptres. From this rough data estimate the range of accommodation (i.e., the range of converging power of the eye-lens) of a normal eye.
Answer:
Least distance of distinct vision, d = 25 cm
Far point of a normal eye, d’ = ∞
Converging power of the cornea, Pc = 40 D
Least converging power of the eye- lens, Pe = 20 D
To see the objects at infinity, the eye uses its least converging power.
Power of the eye-lens, P = Pc + Pe =40+20 = 60 D
Power of the eye-lens is given as
P = \(\frac{1}{\text { Focal length of the eye lens }(f)} \)
f = \(=\frac{1}{P}=\frac{1}{60 D}=\frac{100}{60}=\frac{5}{3}\) cm

To focus an object at the near point, object distance (u) = -d = -25 cm
Focal length of the eye-lens = Distance between the cornea and the retina = Image distance
Hence, image distance, v = \( \frac{5}{3}\) cm
According to the lens formula, we can write
\(\frac{1}{f^{\prime}}=\frac{1}{v}-\frac{1}{u}\)
Where f’ = Focal length
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 25
Power of the eye-lens = 64-40 = 24 D
Hence, the range of accommodation of the eye-lens is from 20 D to24D.

Question 25.
Does short-sightedness (myopia) or long-sightedness (hypermetropia) imply necessarily that the eye has partially lost its ability of accommodation? If not, what might cause these defects of vision?
Answer:
A myopic or hypermetropic person can also possess the normal ability of accommodation of the eye-lens. Myopia occurs when the eyeballs get elongated from front to back. Hypermetropia occurs when the eye-balls get shortened.
When the eye-lens loses its ability of accommodation, the defect is called presbyopia.

Question 26.
A myopic person has been using spectacles of power -1.0 dioptre for distant vision. During old age he also needs to use separate reading glass of power +2.0 dioptres. Explain what may have happened.
Answer:
The power of the spectacles used by the myopic person, P = -1.0 D
Focal length of the spectacles, f = \(\frac{1}{P}=\frac{1}{-1 \times 10^{-2}}\) = -100 cm
Hence, the far point of the person is 100 cm. He might have a normal near point of 25 cm. When he uses the spectacles, the objects placed at infinity produce virtual images at 100 cm.
He uses the ability of accommodation of the eye-lens to see the objects placed between 100 cm and 25 cm.
During old age, the person uses reading glasses of power, P’ = +2D The ability of accommodation is lost in old age.
This defect is called presbyopia. As a result, he is unable to see clearly the objects placed at 25 cm.

Question 27.
A person looking at a person wearing a shirt with a pattern comprising vertical and horizontal lines is able to see the vertical lines more distinctly than the horizontal ones. What is this defect due to? How is such a defect of vision corrected?
Answer:
In the given case, the person is able to see vertical lines more distinctly than horizontal lines. This means that the refracting system (cornea and eye-lens) of the eye is not working in the same way in different planes. This defect is tailed astigmatism. The person’s eye has enough curvature in the vertical plane. However, the curvature in the horizontal plane is insufficient. Hence, sharp images of the vertical lines are formed on the retina, but horizontal lines appear blurred. This defect can be corrected by using cylindrical lenses.

Question 28.
A man with normal near point (25cm) reads a book with small print using a magnifying glass: a thin convex lens of focal length 5 cm.
(a) What is the closest and the farthest distance at which he should keep the lens from the page so that he can read the book when viewing through the magnifying glass?
(b) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?
Answer:
(a) Focal length of the magnifying glass, f = 5 cm
Least distance of distinct vision, d = 25 cm
Closest object distance = u
Image distance, v = -d = -25 cm
According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 26
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 27
Hence, the closest distance at which the person can read the book is 4.167 cm.
For the object at the farthest distance (u’), the image distance (v’) = ∞

According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 28
∴ u’ = -5 cm
Hence, the farthest distance at which the person can read the book is 5 cm.
(b) Maximum angular magnification is given by the relation
αmax= \(\frac{d}{|u|}=\frac{25}{\frac{25}{6}} \) = 6
Minimum angular magnification is given by the relation
αmin = \(\frac{d}{\left|u^{\prime}\right|}=\frac{25}{5} \) = 5.

Question 29.
A card sheet divided into squares each of size 1 mm2 is being viewed at a distance of 9 cm through a magnifying glass (a converging lens of focal length 10 cm) held close to the eye.
(a) What is the magnification produced by the lens? How much is the area of each square in the virtual image?
(b) What is the angular magnification (magnifying power) of the lens?
(c) Is the magnification in (a) equal to the magnifying power in (b)?
Explain.
Answer:
(a) Area of each square, A = 1 mm2
Object distance, u = -9 cm
Focal length of the converging lens, f = 10 cm
For image distance v, the lens formula can be written as
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 29
∴ v = -90 cm
Magnification, m = \(=\frac{v}{u}=\frac{-90}{-9}\) =10
∴ Area of each square in the virtual image = (10)2A
= 102 x 1 =100 mm2 = 1 cm2
(b) Magnifying power of the lens = \(\frac{d}{|u|}=\frac{25}{9}\) = 2.8
(c) The magnification in (a) is not the same as the magnifying power in(b).
The magnification magnitude is \(\left(\left|\frac{v}{u}\right|\right)\) and the magnifying power is \(\left(\frac{d}{|u|}\right) \) .
The two quantities will be equal when the image is formed at the near point (25 cm).

Question 30.
(a) At what distance should the lens be held from the figure in Exercise 9.29 in order to view the squares distinctly with the maximum possible magnifying power?
(b) What is the magnification in this case?
(c) Is the magnification equal to the magnifying power in this case? Explain.
Answer:
(a) The maximum possible magnification is obtained when the image is formed at the near point (d = 25cm).
Image distance, v = -d = -25 cm
Focal length, f = 10 cm
Object distance = u
According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 30
∴ u = \(-\frac{50}{7}\) = -7.14 cm
Hence, to view the squares distinctly, the, lens should be kept 7.14 cm away from them. .
(b) Magnifying = \(\left|\frac{v}{u}\right|=\frac{25}{50}\) =3.5
(c) Magnifying power = \(\frac{d}{u}=\frac{25}{\frac{50}{7}}\) = 3.5
Since the image is formed at the near point (25 cm), the magnifying power is equal to the magnitude of magnification.

Question 31.
What should be the distance between the object in Exercise 9.30 and the magnifying glass if the virtual image of each square in the figure is to have an area of 6.25 mm2. Would you be able to see the squares distinctly with your eyes very close to the magnifier? [Note: Exercises 9.29 to 9.31 will help you clearly understand the difference between magnification in absolute size and the angular magnification (or magnifying power) of an instrument.]
Answer:
Area of the virtual image of each square, A = 6.25 mm
Area of each square, A0 = 1 mm2
Hence, the linear magnification of the object can be calculated as
m = \(\sqrt{\frac{A}{A_{0}}}=\sqrt{\frac{6.25}{1}} \) = 2.5
But m = \(\frac{\text { Image distance }(v)}{\text { Object distance }(u)} \)
∴ v = mu = 2.5 u
Focal length of the magnifying glass, f = 10 cm

According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 31
∴ u = \(-\frac{1.5 \times 10}{2.5}\) = -6 cm
and v = 2.5 u = 2.5 x 6 = -15 cm
The virtual image is formed at a distance of 15 cm, which is less than the near point (i.e., 25 cm) of a normal eye. Hence, it cannot be seen by the eyes distinctly.

Question 32.
Answer the following questions:
(a) The angle subtended at the eye by an object is equal to the angle subtended at the eye by the virtual image produced by a magnifying glass. In what sense then does a magnifying glass provide angular magnification?
(b) In viewing through a magnifying glass, one usually positions one’s eyes very close to the lens. Does angular magnification change if the eye is moved back?
(c) Magnifying power of a simple microscope is inversely proportional to the focal length of the lens. What then stops us from using a convex lens of smaller and smaller focal length and achieving greater and greater magnifying power?
(d) Why must both the objective and the eyepiece of a compound microscope have short focal lengths?
(e) When viewing through a compound microscope, our eyes should be positioned not on the eyepiece but a short distance away from it for best viewing. Why? How much should be that short distance between the eye and eyepiece?
Answer:
(a) Though the image size is bigger than the object, the angular size of the image is equal to the angular size of the object. A magnifying glass helps one see the objects placed closer than the least distance of distinct vision (i.e., 25 cm). A closer object causes a larger angular size. A magnifying glass provides angular magnification. Without magnification, the object cannot be placed closer to the eye. With magnification, the object can be placed much closer to the eye.

(b) Yes, the angular magnification changes when the distance between the eye and a magnifying glass is increased, the angular magnification decreases a little. This is because the angle subtended at the eye is slightly less than the angle subtended at the lens. Image distance does not have any effect on angular magnification.

(c) The focal length of a convex lens cannot be decreased by a greater amount. This is because making lenses having very small focal lengths is not easy. Spherical and chromatic aberrations are produced by a convex lens having a very small focal length.

(d) The ang lar magificarin produced by’the eyepiece of a compound microscope is \(\left[\left(\frac{25}{f_{e}}\right)+1\right]\)
Where fe = Focal length of the eyepiece
It can be inferred that fe is small, then angular magnification of the eyepiece will be large.
The angular magnification of the objective lens of a compound microscope is given as
\(\frac{1}{\left(\left|u_{o}\right| f_{o}\right)}\)
Where, u0 = Object distance for the objective lens, f0 = Focal length of the objective
The magnification is large when u0> f0 . In the case of a microscope, the object is kept close to the objective lens. Hence, the object distance is very little.
Since u0 is small, f0 will be even smaller. Therefore, fe and f0 are both small in the given condition.

(e) When we place our eyes too close to the eyepiece of a compound microscope, we are unable to collect much-refracted light. As a result, the field of view decreases substantially. Hence, the clarity of the image gets blurred.
The best position of the eye for viewing through a compound microscope is at the eye-ring attached to the eyepiece. The precise location of the eye depends on the separation between the objective lens and the eyepiece.

Question 33.
An angular magnification (magnifying power) of 30X is desired using an objective of focal length 1.25 cm and an eyepiece of focal length 5 cm. How will you set up the compound microscope?
Answer:
Focal length of the objective lens, f0 = 1.25 cm
Focal length of the eyepiece, fe = 5 cm
Least distance of distinct vision, d = 25 cm

Angular magnification of the compound microscope = 30X
Total magnifying power of the compound microscope, m = 30
The angular magnification of the eyepiece is given by the relation
me = \(\left(1+\frac{d}{f_{e}}\right)=\left(1+\frac{25}{5}\right)\) = 1+5 = 6
The angular magnification of the objective lens (m0) is related to me as
mome=m
or m0 = \(\frac{m}{m_{e}}=\frac{30}{6}\) = 5

We also have the relation
m = \( \frac{\text { Image distance for the objective lens }\left(v_{o}\right)}{\text { Object distance for the objective lens }\left(-u_{0}\right)}\)
5 = \(\frac{v_{o}}{-u_{o}}\)
∴ v0 = -5u0 …………………………….. (1)
Applying the lens formula for the objective lens
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 32
and v0 = -5u0
= -5 x (-1.5) = 7.5 cm
The object should be placed 1.5 cm away from the objective lens to obtain the desired magnification.
Applying the lens formula for the eyepiece
\(\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}\)
where,
ve = Image distance for the eyepiece = -d = -25 cm
ue = Object distance for the eyepiece
\(\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}=\frac{-1}{25}-\frac{1}{5}=-\frac{6}{25}\)
ue =-4.17 cm
Separation between the objective lens and the eyepiece = \(\left|u_{e}\right|+\left|v_{o}\right|\)
= 4.17 + 7.5 = 11.67 cm
Therefore, the separation between the objective lens and the eyepiece should be 11.67 cm.

Question 34.
A small telescope has an objective lens of focal length 140 cm and an eyepiece of focal length 5.0 cm. What is the magnifying power of the telescope for viewing distant objects when
(a) the telescope is in normal adjustment (i.e., when the final image is at infinity)?
(b) the final image is formed at the least distance of distinct vision (25 cm)?
Answer:
Focal length of the objective lens, f0 =140 cm
Focal length of the eyepiece, fe = 5 cm
Least distance of distinct vision, d = 25 cm
(a) When the telescope is in normal adjustment, its magnifying power is given as
m = \(\frac{f_{o}}{f_{e}}=\frac{140}{5} \) = 28
(b) When the final image is formed at d, the magnifying power of the telescope is given as
\(\frac{f_{o}}{f_{e}}\left[1+\frac{f_{e}}{d}\right]=\frac{140}{5}\left[1+\frac{5}{25}\right]\)
= 28[1 +0.2] = 28×1.2 = 33.6

Question 35.
(a) For the telescope described in Exercise 9.34 (a), what is the separation between the objective lens and the eyepiece?
(b) If this telescope is used to view a 100 m tall tower 3 km away, what is the height of the image of the tower formed by the objective lens?
(c) What is the height of the final image of the tower if it is formed at 25 cm?
Answer:
Focal length of the objective lens, f0 =140 cm
Focal length of the eyepiece, fe= 5 cm
(a) In normal adjustment, the separation between the objective lens and the eyepiece = f0 + fe = 140 + 5 = 145 cm
(b) Height of the tower, h1 = 100 m
Distance of the tower (object) from the telescope, u = 3 km = 3000 m
The angle subtended by the tower at the telescope is given as
θ’ = \(\frac{h_{2}}{f_{o}}=\frac{h_{2}}{140}\) rad
where,
h2 = Height of the image of the tower formed by the objective lens
\(\frac{1}{30}=\frac{h_{2}}{140}\) (∵θ=θ’)
∴ h2 = \(\frac{140}{30}\) = 4.7 cm
Therefore, the objective lens forms a 4.7 cm tall image of the tower.

(c) Image is formed at a distance, d = 25 cm
The magnification of the eyepiece is given by the relation
m = 1 + \(\frac{d}{f_{e}}\)
= 1+ \(\frac{25}{5}\) =1 + 5 = 6
Height of the final image = mh2 = 6 x 4.7 = 28.2 cm
Hence, the height of the final image of the tower is 28.2 cm.

Question 36.
A Cassegrain telescope uses two mirrors as shown in Fig. 9.33. Such a telescope is built with the mirrors 20 mm apart.
If the radius of curvature of the large mirror is 220 mm and the small mirror is 140 mm, where will the final image of an object at infinity be?
Answer:
Given, r1 = 220 mm, f1 = \(\frac{r_{1}}{2}\) = 110 mm = 11 cm
r2 = 140 mm, f2 = \(\frac{r_{2}}{2}\) = 70 mm = 7.0 cm
Distance between mirrors, d = 20 mm = 2.0 cm
The parallel incident rays coming from distant objects fall on the concave mirror and try to be focused at the principal focus of concave lens, i. e., v1 = -f1 = -11 cm
But in the path of rays reflected from concave mirror, a convex mirror is placed. Therefore the image formed by the concave mirror acts as a virtual object for convex mirror.
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 33
For convex mirror f2 = -7.0 cm, u2 = -(11 -2) = -9 cm
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 34
v2 = \(-\frac{63}{2}\) cm = -31.5 cm
This is the distance of the final image formed by the convex mirror. Thus, the final image is formed at a distance of 31.5 cm from the smaller (convex) mirror behind the bigger mirror.

Question 37.
Light incident normally on a plane mirror attached to a galvanometer coil retraces backward as shown in Fig. 9.36. A current in the coil produces a deflection of 3.5° of the mirror. What is the displacement of the reflected spot of light on a screen placed 1.5 m away?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 35
Answer:
Angle of deflection, θ = 3.5°
Distance of the screen from the mirror, D = 1.5 m
The reflected rays get deflected by an amount twice the angle of deflection i.e., 2θ = 2 x 3.5 = 7.0°
The displacement (d) of the reflected spot of light on the screen is given as
tan 2θ = \(\frac{d}{1.5}\) d =1.5 x tan7°= 0.184 m = 18.4 cm
Hence, the displacement of the reflected spot of light is 18.4 cm.

Question 38.
Figure 9.37 shows an biconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror.
A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0 cm. The liquid is removed and the experiment is repeated. The new distance is measured to he 30.0 cm. What is the refractive index of the liquid?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 36
Answer:
Focal length of the convex lens, f1 = 30 cm
The liquid acts as a mirror. Focal length of the liquid = f2
Focal length of the system (convex lens + liquid), f = 45 cm
For a pair of optical systems placed in contact, the equivalent focal length is given as
\(\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\)
\(\frac{1}{f_{2}}=\frac{1}{f}-\frac{1}{f_{1}}\)
= \(\frac{1}{45}-\frac{1}{30}=-\frac{1}{90}\)
∴ f2 = -90 cm
Let the refractive index of the lens be μ1 and the radius of curvature of one surface be R. Hence, the radius of curvature of the other surface is R.
R can be obtained using the relation \(\frac{1}{f_{1}}=\left(\mu_{1}-1\right)\left(\frac{1}{R}+\frac{1}{-R}\right)\)
\(\frac{1}{30}=(1.5-1)\left(\frac{2}{R}\right)\)
∴ R = \(\frac{30}{0.5 \times 2}\) = 30 cm

Let μ2 be the refractive index of the liquid.
Radius of curvature of the liquid on the side of the plane minor = ∞
Radius of curvature of the liquid on the side of the lens, R = -30 cm
The value of μ2, can be calculated using the relation
\(\frac{1}{f_{2}}=\left(\mu_{2}-1\right)\left[\frac{1}{-R}-\frac{1}{\infty}\right]\)
\(\frac{-1}{90}=\left(\mu_{2}-1\right)\left[\frac{1}{+30}-0\right]\)
μ2 – 1 = \(\frac{1}{3} \)
∴ μ2 = \(\frac{4}{3} \) = 133
Hence, the refractive index of the liquid is 1.33.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 9 Coordination Compounds Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 9 Coordination Compounds

PSEB 12th Class Chemistry Guide Coordination Compounds InText Questions and Answers

Question 1.
Explain the bonding in coordination compounds in terms of Werner’s postulates.
Answer:
(i) The primary valencies are satisfied by negative ions and equal-to the oxidation state of the metal.

(ii) The secondary valencies can be satisfied by neutral or negative ions. It is equal to the coordination number of the central metal atom and is fixed.

(iii) The ions bound to the central metal ion to secondary linkages have definite spatial arrangements and give geometry to the complex. While primary valency is non-directional.

Question 2.
FeSO4 solution mixed with (NH4)2SO4 solution in 1 : 1 molar ratio gives the test of Fe2+ ion but CuSO4 solution mixed with aqueous ammonia in 1 : 4 molar ratio does not give the test of Cu2+ ion. Explain why?
Answer:
FeSO4 solution mixed with (NH4)2SO4 solution in 1 : 1 molar ratio forms double salt, FeSO4∙(NH4)2SO4∙6H2O which ionises in the solution to give Fe2+ ions. Hence, it gives the test of Fe2+ ions.

CuSO4 solution mixed with aqueous ammonia in 1 : 4 molar ratio forms a complex, with the formula [Cu(NH3)4]SO4. The complex ion, [CU(NH3)]2+ does not ionise to give Cu2+ ions. Hence, it does not give the test of Cu2+ ion.

Question 3.
Explain with two examples each of the following: Coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic.
Answer:
Coordination entity: A coordination entity constitutes usually a central metal atom or ion, to which a fixed number of other atoms or ions or groups are attached by coordinate bonds. A coordination entity may be neutral, positively or negatively charged. For examples : [Ni(CO)4], [CoCl3(NH3)3], [Co(NH3)6]3+.

Ligand : A ligand is an ion or a small molecule having at least one lone pair of electrons and capable of forming a coordinate bond with central atom or ion in the coordination entity. For example: Cl, OH, CN, CO, NH3, H2O etc.

Coordination number : The coordination number of the central atom or ion is determined by the number of a bonds between the ligands and the central atom or ion. n bonds are not consider for the determination of coordination number. The a bonding electrons may be indicated by a pair of dots (:). For example, [Co(:NH3)6]3+ and [Fe(:CN)6]3-.

Coordination polyhedron : The spatial arrangement of the ligands which are directly attached to the central atom or ion called coordination polyhedron.
For example: [Co(NH3)6]3+ is octahedral, [Ni(CO)4] is tetrahedral and [PtCl4 ]2- is square planar.

Homoleptic and heteroleptic : Complexes in which a metal is bound to only one type of donor groups are known as homoleptic.
For example : [Co(NH3)6]3+, [PtCl6]2- .
Complexes in which a metal is bound to more than one kind of donor groups are known as heteroleptic. ‘
For example : [Co(NH3)4Cl2]+, [PdI2(ONO)2 (H2O)2],

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 4.
What is meant by unidentate, didentate and ambidentate ligands? Give two examples for each.
Answer:
A molecule or an ion which has only one donor atom to form one coordinate bond with the central metal atoms is called unidentate ligand, e.g., Cl and NH3.

A molecule or an ion which contains two donor atoms and hence forms two coordinate bonds with the central metal atoms is called a didentate ligand, e.g., NH2—CH2—CH2—NH2 and OOC — COO.
A molecule or an ion which contains two donor atoms but only one of them forms a coordinate bond at a time with the central metal atom is called ambidentate ligand, e.g., CNor NC and \(\) or : ONO.

Question 5.
Specify the oxidation numbers of the metals in the following coordination entities:
(i) [Co(H2O)(CN)(en)2]2+
(ii) [CoBr2(en)2]+
(iii) [PtCl2]2-
(iv) K3Fe(CN)6]
(v) [Cr(NH3)2Cl3]
Answer:
(i) x + (-1) + (0) + (0) = + 2 so x = +3 (III)
(ii) x + 2(-1) + 0 = +1 so x = +3 (III)
(iii) x + 4(-1) = -2 so x = +2(11)
(iv) x + 6(-1) = -3 so x = +3 (III)
(v) x + 3(-1) + 0 = 0 so x = +3 (III)

Question 6.
Using IUPAC norms write the formulas for the following:
(i) Tetrahydroxozincate(II)
(ii) Potassium tetrachloridopalladate(II)
(iii) Diamminedichloridoplatinum(II)
(iv) Potassium tetracyanonickelate(II)
(v) Pentaamminenitrito-O-cobalt(III)
(vi) Hexaamminecobalt(III) sulphate
(vii) Potassium tri(oxalato)chromate(III)
(viii) Hexaammineplatinum(IV)
(ix) Tetrabromidocuprate(Il)
(x) Pentaamminenitrito-N-cobalt(lll)
Answer:
(i) [Zn(OH)4]2-
(ii) K2[PdCl4]
(iii) pt(NH3)2Cl2]
(iv) K2[Ni(CN)4]
(v) [Co(ONO) (NH3)5]2+
(vi) [CO(NH3)6]2 (SO4)3
(vii) K3[Cr(C2O4)3]
(viii) [Pt(NH3)6]4+
(ix) [Cu(Br)4]2-
(x) [Co (NO2) (NH3)5]2+

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 7.
Using IUPAC norms write the systematic names of the following:
(i) [CO(NH3)6]Cl3
(ii) [Pt(NH3)2Cl(NH2CH3)]Cl
(iii) [Ti(H2O)6]3+
(iv) [CO(NH3)4Cl(NO2)]CI
(v) [Mn(H2O)6]2+
(vi) [NiCl4]2-
(vii) [Ni(NH3)6]Cl2
(viii) [Co(en)3]3+
(ix) [Ni(CO)4]
Answer:
(i) Hexaamminecobalt(III) chloride
(ii) Diamminechlorido(methylamine) platinum(II) chloride
(iii) Hexaquatitanium(III) ion
(iv) Tetraamminechloridonitrito-N-Cobalt(III) chloride
(v) Hexaquamanganese(II) ion
(vi) Tetrachloridonickelate(II) ion
(vii) Hexamminenickel(II) chloride
(viii) Tris(ethane-1, 2-diamine) cobalt(III) ion
(ix) Tetracarbonylnickel(O)

Question 8.
List various types of isomerism possible for coordination compounds giving an example of each.
Answer:
Two principal types of isomerism are known among coordination compounds :
(A) Sterioisomerism,
(B) Structural isomerism.
Each of which can be further sub-divided as :
(A) Stereoisomerism
(i) Geometrical isomerism : It arises in heteroleptic complexes due to different possible geometric arrangements of the ligands.
Example: Pt[(NH3)2Cl2]
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 1

(ii) Optical isomerism : It is common in octahedral complexes involving didentate ligands.
Example : [Pt Cl2(en) 2]2+
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 2
Optical isomers (d and l) of cis-[PtCl2(en)2]2+

(B) Structural isomerism
(i) Linkage isomerism.
Example: [Co(NH3)5 (NO2)]Cl2
(ii) Coordination isomerism.
Example: [Co(NH3)6] [Cr(CN)6]
(iii) Ionisation isomerism.
Example: [Co(NH3)5SO4]Br and [CO(NH3)5 Br]SO4
(iv) Solvate isomerism.
Example : [Cr(H2O)6] Cl3 (violet) its solvate isomer
[Cr(H2O)5Cl]Cl2. H2O (grey-green)

Question 9.
How many geometrical isomers are possible in the following coordination entities? ’
(i) [Cr(C2O4)3]3-
(ii) [Co(NH3)3Cl3]
Answer:
(i) [Cr(C2O4)3]3-,
No geometric isomer is possible as it is a bidentate ligand.
(ii) [CO(NH3)3Cl3] .
Two geometrical isomers are possible.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 3

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 10.
Draw the structures of optical isomers of:
(i) [Cr(C2O4)3]3-
(ii) [PtCl2(en)2]2+
(iii) [Cr(NH3)2 Cl2 (en)]+
Answer:
(i) [Cr(C2O4)3]3-
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 4
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 5

Question 11.
Draw all the isomers (geometrical and optical) of:
(i) [CoCl2 (en)2]+
(ii) [Co(NH3)Cl(en)2]2+
(iii) [Co(NH3)2Cl2(en)]+
Answer:
(i) [CoCl2 (en)2]+
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 6
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 7

Question 12.
Write all the geometrical isomers of [Pt(NH3)(Br)(Cl)(py)] and how many of these will exhibit optical isomers?
Answer:
Three isomers are possible as follows :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 8
Isomers of this type do not show any optical isomerism. Optical isomerism rarely occurs in square planar or tetrahedral complexes and that too when they contain unsymmetrical chelating ligand.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 13.
Aqueous copper sulphate solution (blue in colour) gives :
(i) a green precipitate with aqueous potassium fluoride, and
(ii) a bright green solution with aqueous potassium chloride. Explain these experimental results.
Answer:
Aqueous copper sulphate exists as [Cu(H2O)4]SO4. It is a labile complex. The blue colour of the solution is due to [Cu(H2O)4]2+ ions,

(i) When KF is added, the weak H2O ligands are replaced by F ligands forming [CuF4]2- ions, which is a green precipitate.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 9

(ii) When KCl is added, Cl ligands replace the weak H2O ligands forming [CuCl4]2- ion, which has bright green colour.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 10

Question 14.
What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution of copper sulphate? Why is it that no precipitate of copper sulphide is obtained when H2S (g) is passed through this solution?
Answer:
K2[Cu(CN)4] is formed when excess of aqueous KCN is added to an aqueous solution of CuSO4.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 11
As CNions are strong ligands the complex is very stable. It is not replaced by S2- ions when H2S gas is passed through the solution and thus no precipitate of CuS is obtained.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 15.
Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory:
(i) [Fe(CN)6]4-
(ii) [FeFe6]3-
(iii) [Co(C2O4)3]3-
(iv) [CoF6]3-
Answer:
(i) [Fe(CN)6]4-
In the above coordination complex, iron exists in the +2 oxidation state.
Fe = [Ar] 3d6 4s2
Outer configuration of Fe2+ = 3d6 4s0
Orbitals of Fe2+ ion:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 12
As CN is a strong field ligand, it causes the pairing of the unpaired 3d electrons.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 13
Since, there are six ligands around the central metal ion, the most feasible hybridisation is d2sp3. d2sp3 hybridised orbitals of Fe2+ are :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 14
6 electron pairs from CN ions occupy the six hybrid d2sp3 orbitals.
Then,
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 15
Hence, the geometry of the complex is octahedral and the complex is diamagnetic (as there are no unpaired electrons).

(ii) [FeF6]3-
In this complex, the oxidation state of Fe is + 3.
Fe3+ = 3d5 4s0
Orbitals of Fe3+ ion:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 16
There are 6F ions. Thus, it will undergo d2sp3 or sp3d2 hybridisation. As F is a weak field ligand, it does not cause the pairing of the electrons in the 3d orbital. Hence, the most feasible hybridisation is sp3d2. sp3d2 hybridised orbitals of Fe are:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 17
Hence, the geometry of the complex is found to be octahedral.

(iii) [Co(C2O4)3]3-
Cobalt exists in the + 3 oxidation state in the given complex.
Outer configuration of Co = 3d7 4s2
Co3+ = 3d64s0
Orbitals of Co3+ ion:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 18
Oxalate is a weak field ligand. Therefore, it cannot cause the pairing of the 3d electrons. As there are 6 ligands, hybridisation has to be either sp3d2 or d2sp3 hybridisation. sp3d2 hybridisation of Co3+.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 19
The 6 electron pairs from the 3 oxalate ions (oxalate anion is a bidentate ligand) occupy these sp3d2 orbitals.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 20
Hence, the geometry of the complex is found to be octahedral.

(iv) [CoF2]3-
Cobalt exists in the + 3 oxidation state.
Orbitals of Co3+ ion:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 21
Again, fluoride ion is a weak field ligand. It cannot cause the pairing of the 3d electrons. As a result, the Co3+ ion will undergo sp3d2 hybridisation.
sp3d2 hybridised orbitals of Co3+ ion are :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 22
Hence, the geometry of complex is octahedral, 6 electron pants.

Question 16.
Draw figure to show the splitting of d-orbitals in an octahedral crystal field.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 23

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 17.
What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.
Answer:
The arrangement of ligands in order of their increasing field strengths, i.e., increasing crystal field splitting energy (CFSE) values is called spectrochemical series.

The ligands with a small value of CFSE (△0) are called weak field ligands whereas those with a large value of CFSE are called strong field ligands.

Question 18.
What is crystal field splitting energy? How does the magnitude of △0 decide the actual configuration of d-orbitals in a coordi-nation entity?
Answer:
When ligands approach a transition metal ion, the d-orbitals split into two sets, one with lower energy and the other with higher energy. The difference of energy between the two sets of orbitals is called crystal field splitting energy (△0) in case of octahedral field.

If △0 < P, (pairing energy), the 4th electron enters one of the eg orbitals giving the configuration \(t_{2 g}^{3} e_{g}^{1}\), thereby forming high spin complexes.

Such ligands for which A 0 < P are called weak field ligands.
If △0 > P, the 4th electron pairs up in one of the t2g orbitals giving the configuration \(t_{2 g}^{4} e_{g}^{0}\), thus forming low spin complexes. Such ligands for which △0 > P are called strong field ligands.

Question 19.
[Cr(NH3)6]3+ is paramagnetic while [Ni(CN)4]2- is diamagnetic. Explain why?
Answer:
Cr is in the +3 oxidation state i.e., d3 configuration. Also, NH3 is a weak field ligand that does not cause the pairing of the electrons in the orbital.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 24
Therefore, it undergoes d2sp3 hybridisation and the electrons in the 3d orbitals remain unpaired. Hence, it is paramagnetic in nature.
In [Ni(CN)4]2-, Ni exists in the + 2 oxidation state i. e., d8 configuration.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 25
CN is a strong field ligand. It causes the pairing of the 3d electrons. Then, Ni2+ undergoes dsp2 hybridisation.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 26
As there are no unpaired electrons, it is diamagnetic.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 20.
A solution of [Ni(H2O)6]2+ is green but a solution of [Ni(CN)4]2- is colourless. Explain.
Answer:
In [Ni(H2O)6]2+, \(\mathrm{H}_{2} \ddot{\mathrm{O}}\) is a weak field ligand. Therefore, there are unpaired electrons in Ni2+. In this complex, the d electrons from the lower energy level can be excited to the higher energy level i. e., the possibility of d-d transition is present. Hence, [Ni(H2O)6]2+ is coloured.

In [Ni(CN)4]2+, the electrons are all paired as CN is a strong field ligand. Therefore, d-d transition is not possible in [Ni(CN)4]2-. Hence, it is colourless.

Question 21.
[Fe(CN)6]4- and [Fe(H2O)6]2+ are of different colours in dilute solutions. Why?
Answer:
In both the complex compounds, Fe is in +2 oxidation state with configuration 3d6, i.e., it has four unpaired electrons. In the presence of weak H2O ligands, the unpaired electrons do not pair up. But in the presence of strong ligand CN they get paired up. Then no unpaired electron is left. Due to this, difference in the number of unpaired electrons, both complex ions have different colours.

Question 22.
Discuss the nature of bonding in metal carbonyls.
Answer:
The metal carbon in metal carbonyls possesses both CT and π character. The ligand to metal is CT bond and metal to ligand is π bond. The effect of CT bond strengthens the rcbond and vice-versa. This is called synergic effect. This unique synergic provides stability to metal carbonyls.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 23.
Give the oxidation state, d-orbital occupation and coordination number of the central metal ion in the following complexes:
(i) K3[CO(C2O4)3]
(ii) cis-[Cr(en)2Cl2]Cl
(iii) (NH4)2[CoF4]
(iv) [Mn(H2O)6]S04
Solution:
(i) K3[CO(C2O4)3]
The central metal ion is Co.
The oxidation state can be given as :
(+1) × 3 + × + (- 2) × 3 = 0
x – 6 = -3 ⇒ x = + 3
The d orbital occupation for Co3+ is \(t_{2 g}^{6} e g^{0}\).
(as \(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\) is strong field ligand)
Coordination number of Co = 3 × denticity of C2O4
= 3 × 2 (as \(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\) is a bidentate ligand) = 6

(ii) cis-[Cr(en)2Cl2]Cl
The central metal ion is Cr.
The oxidation state can be given as:
x + 2(0) + 2(-1) + (-1) = 0
x – 2 – 1 = 0
x = + 3
The d orbital occupation for Cr3+ is \(t_{2 g}^{3}\).
Coordination number of Cr
= 2 × denticity of en + 2
= 2 × 2 + 2 = 6

(iii) (NH4)2[CoF4]
The central metal ion is Co.
The oxidation state can be given as:
(+1) × 2 + × + (-1) × 4 = 0
x – 4 = -2
x = + 2
The d orbital occupation for Co2+ is d7 or \(t_{2 g}^{5} e_{g}^{2}\). (as F is a weak ligand)
Coordination number of Co = 4

(iv) [Mn(H2O)6]S04
The central metal ion is Mn.
The oxidation state can be given as:
x + (0) × 6 + (- 2) = 0
x = + 2
The d orbital occupation for Mn is d5 or [latext_{2 g}^{3} e_{g}^{2}][/latex].
Coordination number of Mn = 6

Question 24.
Write down the IUPAC name for each of the following complexes and indicate the oxidation state, electronic configuration and coordination number. Also give stereochemistry and magnetic moment of the complex:
(i) K[Cr(H2O)2(C2O4)2] 3H2O
(ii) [Co(NH3)5Cl]Cl2
(iii) CrCl3(py)3
(iv) Cs[FeCl4]
(v) K4[Mn(CN)6]
Answer:
(i) K[Cr(H2O)2 (C2O4)2 ] ∙ 3H2O
IUPAC name : Potassium diaquadioxalatochromate (III) hydrate.
Oxidation state of chromium
+1 + x + (0) × 2 + (- 2) × 2 + 3(0) = 0
+ 1 + x – 4 = 0
x = + 3
Electronic configuration of Cr+3= 3d3 = (\(t_{2 g}^{3} e_{g}^{0}\))
Coordination number = 6
Shape : Octahedral
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 27
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 28
Magnetic moment (μ) = \(\sqrt{n(n+2)}\)
= \(\sqrt{3(3+2)}\)
= \(\sqrt{15}\) = 3.87 BM

(ii) [Co(NH3)5Cl]Cl2
IUPAC name : Pentaammine chlorido cobalt(III) chloride
Oxidation state of Co
x + (0)5 + (-1) + (-1) × 2 = 0
x – 3 =0
x = + 3
Coordination number = 6
Shape: Octahedral.
Electronic configuration of Co3+ = 3d6 = \(t_{2 g}^{6} e_{g}^{0}\)
The complex does not exhibit geometrical as well as optical isomerism.
Magnetic Moment (μ) = \(\sqrt{n(n+2)}\)BM = \(\sqrt{0(0+2)}\) BM = 0 BM

(iii) CrCl3(py)3
IUPAC name : Trichlorido tripyridine chromium (III) Oxidation state of Cr
x + (-1) × 3 + (0)3 = 0
x = + 3
Electronic configuration of Cr = 3d3 = (\(t_{2 g}^{3} e_{g}^{0}\))
Coordination number = 6
Shape : Octahedral
Stereochemistry
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 29
Both isomers are optically active. Therefore, a total of 4 isomers exist.
Magnetic moment (μ) = \(\sqrt{n(n+2)}\) = \(\sqrt{3(3+2)}\)
= \(\sqrt{15}\) = 3.87 BM

(iv) Cs[FeCl4]
IUPAC name : Caesium tetrachlorido ferrate (III)
Oxidation state of Fe
+ 1 + x + (-1) × 4= 0
x – 3 = 0
x = + 3
Electronic configuration of Fe = 3d5(\(t_{2 g}^{3} e_{g}^{2}\))
Coordination number = 4
Shape : Tetrahedral
The complex does not exhibit geometrical or optical isomerism, (stereo isomerism).
Magnetic moment (μ) = \(\sqrt{n(n+2)}\)
= \(\sqrt{5(5+2)}\)
= \(\sqrt{35}\) = 5.92 BM

(v) K4[Mn(CN)6]
IUPAC name : Potassium hexacyanomanganate(II)
Oxidation state of Mn
(+1) × 4 + x + (-1) × 6 = 0
x – 2 = 0
x = + 2
Electronic configuration of Mn = 3d5 (\(t_{2 g}^{5} e_{g}^{0}\))
Coordination number = 6
Shape : Octahedral.
The complex does not exhibit stereo isomerism.
Magnetic moment (μ) = \(\sqrt{n(n+2)}\)
= \(\sqrt{1(1+2)}\)
= \(\sqrt{3}\)
= 1.732 BM

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 25.
What is meant by stability of a coordination compound in solution? State the factors which govern the stability of complexes.
Answer:
The stability of a coordination compound in solution refers to the degree of association between the two species involved in the state of equilibrium. The stability of the coordination compound is measured in term of magnitude of stability or formation of equilibrium constant.
M + 4L → ML4
K = \(\frac{\left[\mathrm{ML}_{4}\right]}{[\mathrm{M}][\mathrm{L}]^{4}}\)
Larger the stability constant, the higher is the proportion of ML4 that exists in solution.

Factors on which stability of the complex depends are as follows :

  1. Charge on the central metal ion : Greater the charge on the central metal ion, greater is the stability of the complex.
  2. Nature of the metal ion : Groups 3 to 6 and inner transition element form stable complexes when donor atoms of the ligands are N, O and F. The element after group 6 of the transition metals which have d-orbitals (e.g., Rh, Pd, Ag, Au, Hg, etc.) form stable complexes when the donor atoms of the ligands are heavier members of N, O and F family.
  3. Basic nature of the ligand : Greater the basic strength of the ligand, greater is the stability of the complex.
  4. Chelate effect: Presence of chelate rings in the complex increases its stability. It is called chelate effect. It is maximum for the 5- and 6- membered rings.
  5. Effect of multidentate cyclic ligands : If the ligands happen to be multidentate and cyclic without any steric effect, the stability of the complex is further increased.

Question 26.
What is meant by chelate effect? Give an example.
Answer:
When a didentate or a polydentate ligand contains donor atoms positioned in such a way that when they coordinate with the central metal ion, a five or a six-membered ring is formed, the effect is called chelate effect. Example, [PtCl2(en)].
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 30

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 27.
Discuss briefly giving an example in each case the role of coordination compounds in:
(i) biological systems
(ii) medicinal chemistry
(iii) analytical chemistry
(iv) extraction/metallurgy of metals
Answer:
(i) Role of coordination compounds in biological systems :

  • Haemoglobin, the oxygen carrier in blood, is a complex of Fe2+ with porphyrin.
  • The pigment chlorophyll in plants, responsible for photosynthesis, is a complex of Mg2+ with porphyrin.
  • Vitamin B12 (cyanocobalamine) the antipemicious anaemia factor, is a complex of cobalt.

(ii) Role of coordination compounds in medicinal chemistry :

  • The platinum complex cis-[Pt(NH3)2Cl2] (cis-platin) is used in the treatment of cancer.
  • EDTA complex of calcium is used in the treatment of lead poisoning. Ca-EDTA is a weak complex; when it is administered, calcium in the complex is replaced by the lead present in the body and is eliminated in the urine.
  • The excess of copper and iron present in animal system are removed by the chelating ligands D-penicillamine and desferroxime B via the formation of complexes.

(iii) Role of coordination compounds in analytical chemistry :
Complex formation is frequently encountered in qualitative and quantitative chemical analysis.
(a) Qualitative analysis
I. Detection of Cu2+ is based on the formation of a blue tetraammine copper (II) ion.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 31

II. Ni2+ is detected by the formation of a red complex with dimethyl glyoxime (DMG).
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 32

III. The separation of Ag+ and Hg2+ in group I is based on the fact that while AgCl dissolves in NH3, forming a soluble complex, Hg2Cl2 forms an insoluble black substance.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 32

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 33

(b) Quantitative analysis : Gravimetric estimation of Ni2+ is carried out by precipitating Ni2+ as red nickel dimethyl glyoxime complex in the presence of ammonia.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 34
EDTA is used in the complexometric determination of several metal ions such as Ca2+, Zn2+, Fe2+, Co2+, Ni2+ etc.

(iv) Role of coordination compounds in extraction/metallurgy of metals : Extraction of various metals from their ore involves complex formation. For example, silver and gold are extracted from their ore by forming cyanide complex.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 35
Purification of some metals can be achieved through complex formation. For example in Mond process, impure nickel is converted into [Ni(CO)4] which is decomposed to yield pure nickel.

Question 28.
How many ions are produced from the complex Co(NH3)6 Cl2 in solution?
(i) 6
(ii) 4
(iii) 3
(iv) 2
Answer:
The correct option is (iii)
Coordination number of cobalt = 6. It ionises in the solution as
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 36
Hence, 3 ion are produced.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 29.
Amongst the following ions, which one has the highest magnetic moment value?
(i)[Cr(H2O)6]3+
(ii)[Fe(H2O)6]2+
(iii) [Zn(H2O)6]2+
Answer:
The oxidation state are: Cr (III), Fe (II) and Zn (II).
Electronic configuration of Cr3+ = 3d3, unpaired electrons = 3
Electronic configuration of Fe2+ = 3d6, unpaired electrons = 4
Electronic configuration of Z2+ = 3d10, unpaired electrons = 0
As μ = \(\sqrt{n(n+2)}\), therefore, (ii) has the highest magnetic moment.

Question 30.
The oxidation number of cobalt in K[Co(CO)4] is
(i) +1
(ii) +3
(iii) -1
(iv) -3
Solution:
Oxidation number of Co : K[Co(CO)4]
x+ (4 × 0) = -1; x = -1
Thus, correct answer is (iii).

Question 31.
Amongst the following, the most stable complex is
(i) [Fe(H2O)6]3+
(ii) [Fe(NH3)6]3+
(iii) [Fe(C2O4)3]3-
(iv) [FeCl6]3-
Answer:
In all these complexes, Fe is in +3 oxidation state. However, the complex (iii) is a chelate because three \(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\) ions acts as the chelating ligands. Thus, the most stable complex is [Fe(C2O4)3]3-. Thus, correct answer is (iii).

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 32.
What will be the correct order for the wavelengths of absorption in the visible region of the following:
[Ni(NO2)6]4-, [Ni(NH3)6]2+, [Ni(H2O)6]2+
Answer:
As metal ion is fixed, the increasing CFSE values of the ligands from the spectrochemical series are in the order :
H2O < NH3 < \(\mathrm{NO}_{2}^{-}\)
Hence, the energies absorbed for excitation will be in the order :
[Ni(H2O)6]2+ < [Ni(NH3)6]2+ < [Ni(NO2)6]4-
As E = \(\frac{h c}{\lambda}\), therefore, the wavelengths absorbed will be in the opposite order,
[Ni(NO2)6]4- < [Ni(NH3)6]2+ < [Ni(H2O)6]2+

Chemistry Guide for Class 12 PSEB Coordination Compounds Textbook Questions and Answers

Question 1.
Write the formulas for the following coordination compounds :
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassiumtetracyanidonickelate(II)
(iii) Tris(ethane-l,2-diammine)chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-l,2-diammine) platinum (IV) nitrate
(vi) Iron(III)hexacyanidoferrate(II).
Answer:
(i) [Co(NH3)4(H2O)2]Cl3
(ii) K2[Ni(CN)4
(iii) (Cr(en)3]Cl3
(iv) [Pt(NH3)BrCl(NO2)]
(v) [PtCl2(en)2] (NO3)2
(vi) Fe4[Fe(CN)6]3

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 2.
Write the IUPAC names of the following coordination compounds:
(i) [CO(NH3)6]Cl3
(ii) [CO(NH3)5Cl]Cl2
(iii) K3[Fe(CN)6]
(iv) K3[Fe(C2O4)3]
(v) K2[PdCl4]
(vi) [Pt(NH3)2Cl(NH2CH3)]Cl
Answer:
(i) Hexaamminecobalt(III)chloride
(ii) Pentaamminechloridocobalt(III)chloride
(iii) Potassiumhexacyanoferrate(III)
(iv) Potassiumtrioxalatoferrate (III)
(v) Potassiumtetrachloridopalladate (II)
(vi) Diamminechloridomethylamine platinum(II) chloride.

Question 3.
Indicate the types of isomerism exhibited by the following complexes and draw the structures of these isomers :
(i) K[Cr(H2O)2](C2O4)2]
(ii) [Co(en)3]Cl3
(iii) [CO(NH3)5(NO2)](NO3)2
(iv) [Pt(NH3)(H2O)Cl2]
Answer:
(i) (a) Both geometrical isomer (cis and traits):
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 37

(b) Cis-isomer of this compound can exist as pair of optical is :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 38

(ii) Complex will exist as optical isomers:
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 39
The compound will show ionisation as well as linkage isomerism.

(iii) Ionisation isomer :
[Co(NH3)5(NO2)](NO3)2,
[Co(NH3)5 (NO)3] (NO2) (NO3)
Linkage isomers :
[Co(NH3)5 (NO2)](NO3)2;
[CO(NH3)5 (ONO)](NO3)2

(iv) Geometrical isomerism (cis and trans) :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 40

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 4.
Give evidence that [Co(NH3)5Cl]SO4 and [Co(NH3)5SO4]Cl are ionisation isomers.
Answer:
When they are dissolved in water, they give different ions in the solution which can be tested by adding AgNO3 solution and BaCl2 solution. If Cl dons are the counter ions, a white precipitate will be obtained with AgNO3 solution. If \(\mathrm{SO}_{4}^{2-}\) ions are the counter ions, a white precipitate will be obtained with BaCl2 solution.

Question 5.
Explain on the basis of valence bond theory that [Ni(CN)4]2- ion with square planar structure is diamagnetic and the [Ni(Cl)24]2- ion with tetrahedral geometry is paramagnetic.
Answer:
Nickel in [Ni(CN)4]2- is in the +2 oxidation state. The formation of [[Ni(CN)4]2- may be explained through hybridisation as follows :
Ni atom in the ground state
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 41
Since no unpaired electrons is present, the square planar complex is diamagnetic. In [Ni(CN)4]2-, Cl is a weak field ligand. It is, therefore, unable to pair up the unpaired electrons of the 3d orbital. Hence, the hybridisation involved is sp3 and the shape is tetrahedral. Since all the electrons are unpaired, it is paramagnetic

Question 6.
[Ni(CN)4]2- is paramagnetic while [Ni(CO)4] is diamagnetic though both are tetrahedral. Why?
Answer:
In [Ni(CO)4] Ni is in zero oxidation state whereas in [NiCl4]2-, it is in
+ 2 oxidation state. In the presence of strong ligand, CO ligand, the unpaired d electrons of Ni pair up but Cl being a weak ligand is unable to pair up the unpaired electrons.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 7.
[Fe(H2O)6]3+ is strongly paramagnetic whereas [Fe(CN)6]3- is weakly paramagnetic. Explain.
Answer:
In presence of CN (a strong ligand), the 3d5 electrons pair up leaving only one unpaired electron. The hybridisation is d2sp3 forming an inner orbital complex. In the presence of H2O (a weak ligand), 3d electrons do not pair up. The hybridisation is sp3d2 forming an outer orbital complex containing five unpaired electrons. Hence, it is strongly paramagnetic.

Question 8.
Explain [Co(NH3)6]3+ is an inner orbital complex whereas [Ni(NH3)6]2+ is an outer orbital complex.
Answer:
In [CO(NH3)6]3+, CO is in +3 oxidation state and has d6 electrons. In the presence of NH3, the 3d electrons pair up leaving two d-orbitals empty to be involved in d2sp3 hybridisation forming inner orbital complex. In [Ni(NH3)6]2+, Ni is in +2 oxidation state and has d8 configuration. The hybridisation involved is sp3d2, forming the outer orbital complex.

Question 9.
Predict the number of unpaired electrons in the square planar [Pt(CN)4]2- ion.
Answer:
78Pt lies in group 10 with the configuration 5d96s1. Thus Pt2+ has the configuration :
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 42
For square planar shape, the hybridisation is dsp2. Hence, the unpaired electrons in 5d orbital pair up to make one d orbital empty for dsp2 hybridisation.
Thus there is no unpaired electron.

PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds

Question 10.
The hexaquomanganese(II) ion contains five impaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using crystal field theory.
Answer:
Mn in the + 2 oxidation state has the configuration 3d5. In the presence of H2O a weak ligand, the distribution of these five electrons is \(t_{2 g}^{3} e_{g}^{2}\)
i.e., all the electrons remain unpaired
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 43
However, in the presence of CN the distribution of these electrons is \(\), i.e., two t2g orbitals contain paired electrons while the third t2g orbital contains one unpaired electron.
PSEB 12th Class Chemistry Solutions Chapter 9 Coordination Compounds 44

Question 11.
Calculate the overall complex dissociation equilibrium constant for the \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) ion, given that β4 for this complex is 2. 1 × 1013.
Solution:
The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant, β4.
∴ \(\frac{1}{\beta_{4}}\) = \(\frac{1}{2.1 \times 10^{13}}\)
∴ = 4.7 × 10-14

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

Punjab State Board PSEB 12th Class Physical Education Book Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physical Education Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

Physical Education Guide for Class 12 PSEB ਖੇਡ ਸਿਖਲਾਈ Textbook Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਗਰਮਾਉਣ ਦੀਆਂ ਕਿੰਨੀਆਂ ਕਿਸਮਾਂ ਹੁੰਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਗਰਮਾਉਣ ਦੀਆਂ ਦੋ ਕਿਸਮਾਂ ਹੁੰਦੀਆਂ ਹਨ-

  1. ਸਰੀਰਕ ਗਰਮਾਉਣ ਅਤੇ
  2. ਮਾਨਸਿਕ ਗਰਮਾਉਣਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਅੰਤਰਾਲ ਸਿਖਲਾਈ ਵਿਧੀ ਦਾ ਕੋਈ ਇੱਕ ਲਾਭ ਲਿਖੋ ।
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਉਪਕਰਣਾਂ ਦੀ ਜ਼ਰੂਰਤ ਘੱਟ ਹੁੰਦੀ ਹੈ ਜਿਸ ਕਰਕੇ ਘੱਟ ਸਮੇਂ ਵਿਚ ਵੱਧ ਤੋਂ ਵੱਧ ਖਿਡਾਰੀਆਂ ਨੂੰ ਟਰੇਨਿੰਗ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਖੇਡਾਂ ਵਿੱਚ ਸਿਖਲਾਈ ਜਾਂ ਟ੍ਰੇਨਿੰਗ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਕਿਸ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਖੇਡ ਸਿਖਲਾਈ ਜਾਂ ਟ੍ਰੇਨਿੰਗ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ-
ਇਹ ਉਹ ਸਾਧਨ ਹੈ ਜਿਸ ਦੁਆਰਾ ਖਿਡਾਰੀ ਸਰੀਰਕ, ਮਾਨਸਿਕ, ਤਕਨੀਕੀ, ਬੋਧਿਕ, ਕਾਰਜਕੁਸ਼ਲਤਾ ਵਿਚ ਸੁਧਾਰ ਕਰਨ ਤੋਂ ਹੈ ।

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 4.
ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਅਰਥ ਲਿਖੋ ।
ਉੱਤਰ-
ਖੇਡ ਸਿਖਲਾਈ ਖੇਡਾਂ ਵਿੱਚ ਆਮ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਸ਼ਬਦ ਹੈ ਪਰ ਵਿਸ਼ਾਲ ਤੌਰ ਤੇ ਇਹ ਇਕ ਸੰਗਠਿਤ ਅਤੇ ਵਿਵਸਥਿਤ ਤੇ ਅਰਥਪੂਰਨ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਦਾ ਉਦੇਸ਼ ਵਿਅਕਤੀਗਤ, ਮਾਨਸਿਕ ਅਤੇ ਬੌਧਿਕ ਕਾਰਜਕੁਸ਼ਲਤਾ ਵਿਚ ਸੁਧਾਰ ਲਿਆਉਣਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਕੋਈ ਇੱਕ ਉਦੇਸ਼ ਲਿਖੋ ।
ਉੱਤਰ-
ਸਮੁੱਚੀ ਸ਼ਖ਼ਸੀਅਤ ਤੋਂ ਭਾਵ ਆਦਤਾਂ, ਸਵੈ-ਮਾਣ, ਸਮਾਜਿਕ ਕੁਸ਼ਲਤਾ, ਵਿਹਾਰ, ਲੀਡਰਸ਼ਿਪ, ਲਚਕਤਾ, ਕਦਰਾਂ-ਕੀਮਤਾਂ, ਟੀਮਾਂ ਦਾ ਨਿਰਮਾਣ ਆਦਿ ਲੋੜਾਂ ਤੋਂ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 6.
ਸਰੀਰਕ ਬਣਤਰ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ-
ਸਰੀਰਕ ਬਣਤਰ ਤੋਂ ਭਾਵ ਸਰੀਰਕ ਬਣਾਵਟ, ਉਸਦੀ ਕਾਰਜਕੁਸ਼ਲਤਾ ਤੋਂ ਹੈ । ਸਰੀਰਕ ਬਣਤਰ ਦਾ ਖੇਡਾਂ ਵਿਚ ਅਹਿਮ ਰੋਲ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਬਣਾਵਟ ਅਤੇ ਹੱਡੀਆਂ ਦੇ ਢਾਂਚੇ ਤੋਂ ਮੈਡੀਕਲ ਟੈਸਟ ਦੁਆਰਾ ਕਿਸੇ ਵੀ ਖੇਡ ਦੀ ਸਫਲਤਾ ਦਾ ਪਤਾ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਮਾਤਾ-ਪਿਤਾ ਅਤੇ ਬਜ਼ੁਰਗਾਂ ਦੇ ਜੱਦੀ ਗੁਣਾਂ ਦਾ ਆਪਣਾ ਮਹੱਤਵ ਹੁੰਦਾ ਹੈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇਕ ‘ਤੇ ਨੋਟ ਲਿਖੋ ।
(ਉ) ਸਰੀਰਕ ਯੋਗਤਾ
(ਅ) ਤਕਨੀਕੀ ਮੁਹਾਰਤ
(ਬ) ਤਕਨੀਕੀ ਕੁਸ਼ਲਤਾ
(ਸ) ਸਮੁੱਚੀ ਸ਼ਖ਼ਸੀਅਤ ਦਾ ਵਿਕਾਸ ।
ਉੱਤਰ-
(ਉ) ਸਰੀਰਕ ਯੋਗਤਾ (Physical Fitness) – ਸਰੀਰਕ ਲਿੰਗ ਦਾ ਮਤਲਬ ਹੈ-ਵਿਅਕਤੀ ਕੋਲ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਭਾਵ ਤਾਕਤ, ਸਪੀਡ, ਸਟੈਮਿਨਾ, ਧੀਰਜ, ਚੁਸਤੀ, ਸੰਤੁਲਨ ਅਤੇ ਪਾਵਰ ਆਦਿ ਤੱਤਾਂ ਦਾ ਹੋਣਾ । ਇਹ ਅੰਗ ਨਿਯਮਿਤ ਸਰੀਰਕ ਟ੍ਰੇਨਿੰਗ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਇਹ ਖੇਡਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਲੋੜਵੰਦ ਹੁੰਦੇ ਹਨ । ਇਹ ਭੌਤਿਕ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ) ਅੰਗ ਹਰ ਖੇਡ ਵਿਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਕੁਝ ਖੇਡਾਂ ਵਿਚ ਸਹਿਣਸ਼ੀਲਤਾ ਤੇ ਤਾਕਤ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਤੇ ਕੁਝ ਵਿਚ ਚੁਸਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।
ਸਰੀਰਕ ਸਿਖਲਾਈ ਦੀ ਯੋਜਨਾ ਜਿਵੇਂ ਕਿ ਛੋਟੀ ਮਿਆਦ (Short term), ਲੰਬੀ ਮਿਆਦ (Long term) ਆਮ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਭਾਗ ਲੈਣ ਨਾਲ ਇਨ੍ਹਾਂ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

(ਅ) ਤਕਨੀਕੀ ਮੁਹਾਰਤ (Technical Skilly – ਤਕਨੀਕੀ ਸਿਖਲਾਈ, ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਇਕ ਬੁਨਿਆਦੀ ਹਿੱਸਾ ਹੈ । ਇਹ ਉੱਚ-ਕੋਟੀ ਦੀ ਮੁਹਾਰਤ (Performance) ਨੂੰ ਹਾਸਿਲ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਅਭਿਆਸ ਸੈਟ (Repeat training) ਅਤੇ ਮੁਹਾਰਤਾਂ (Skills) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ । ਤਕਨੀਕੀ ਸਿਖਲਾਈ ਕੁਸ਼ਲਤਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਦੁਹਰਾਏ, ਐਥਲੀਟ ਦੀ ਸ਼ੁਰੂਆਤੀ ਟ੍ਰੇਨਿੰਗ, ਮੋਟਰ ਸਮਰੱਥਾ (Motor abilities) ਸੰਵੇਦੀ ਯੋਗਤਾਵਾਂ (Sensory abilities) ਗੁੰਝਲਦਾਰ ਸਥਿਤੀ ਨੂੰ ਸਮਝਣ ਦਾ ਪੱਧਰ ਆਦਿ ਨੂੰ ਮਿਲਾ ਕੇ ਬਣਦੀ ਹੈ । ਇਹ ਸਭ ਉੱਪਰ ਦਿੱਤੇ ਬੁਨਿਆਦੀ ਤੱਤ ਅਭਿਆਸ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ । ਇਸਦੇ ਲਈ ਤਕਨੀਕੀ ਸਿਖਲਾਈ ਨੂੰ ਵੱਖ-ਵੱਖ ਪੜਾਵਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਐਥਲੀਟ ਆਪਣੇ ਆਪ ਨੂੰ ਸਰੀਰਕ ਫਿੱਟਨੈਸ ਲਈ ਤਿਆਰ ਕਰੇ, ਹੁਨਰ ਸੁਧਾਰ ਦੀ ਸਿਖਲਾਈ ਆਦਿ ਦੀ ਤਿਆਰੀ ਕਰਨਾ ਨਹੀਂ ਤਾਂ ਕਈ ਵਾਰ ਅਣਉਚਿਤ ਪੱਧਰ ਤੇ ਅਭਿਆਸ ਕਰਨ ਨਾਲ ਮਾੜੀ ਤਕਨੀਕ ਦਾ ਵਿਕਾਸ ਹੋ
ਜਾਂਦਾ ਹੈ ।

(ਬ) ਵਿਹਾਰਕ ਸਿਖਲਾਈ/ਤਕਨੀਕੀ-ਕੁਸ਼ਲਤਾ ਸਿਖਲਾਈ (Tactical Training) – ਸਹੀ ਰਣਨੀਤੀਆਂ ਦਾ ਇਸਤੇਮਾਲ ਖਿਡਾਰੀ ਨੂੰ ਸਰੀਰਕ ਅਤੇ ਮਨੋਵਿਗਿਆਨਿਕ ਸਮਰੱਥਾ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ । ਇਹ ਵਿਰੋਧੀ ਖਿਡਾਰੀਆਂ ਦੀ ਤਾਕਤ ਅਤੇ ਕਮਜ਼ੋਰੀ ਨੂੰ ਸਮਝਣ ਵਿਚ ਮੱਦਦ ਕਰਦਾ ਹੈ । ਇਹ ਮੁਕਾਬਲਿਆਂ ਦੇ ਦੌਰਾਨ ਸਹੀ ਸਥਿਤੀ ਨੂੰ ਸਮਝਣ ਅਤੇ ਕਈ ਅਜੀਬ ਹਾਲਤਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਪੈਦਾ ਕਰਦਾ ਹੈ । ਹੌਲੀ-ਹੌਲੀ ਤਕਨੀਕੀ ਕੁਸ਼ਲਤਾ ਦੇ ਅਭਿਆਸ ਵੱਧਣ ਨਾਲ ਖਿਡਾਰੀ ਉੱਚ-ਕੋਟੀ ਦੇ ਮੁਕਾਬਲੇ ਜਿੱਤਣ ਵਿਚ ਸਹਾਇਕ ਹੋ ਜਾਂਦਾ ਹੈ ।

(ਸ) ਸਮੁੱਚੀ ਸ਼ਖ਼ਸੀਅਤ ਦਾ ਵਿਕਾਸ (Development of Personality) – ਸਮੁੱਚੀ ਸ਼ਖ਼ਸੀਅਤ ਤੋਂ ਭਾਵ ਆਦਤਾਂ, ਸਵੈ-ਮਾਣ, ਸਮਾਜਿਕ ਕੁਸ਼ਲਤਾ, ਵਿਹਾਰ, ਲੀਡਰਸ਼ਿਪ, ਲਚਕਤਾ, ਕਦਰਾਂ-ਕੀਮਤਾਂ, ਟੀਮਾਂ ਦਾ ਨਿਰਮਾਣ ਆਦਿ ਲੋੜਾਂ ਤੋਂ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਇਹ ਉਹ ਸ਼ਖ਼ਸੀਅਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਹਨ ਜੋ ਖੇਡਾਂ ਜਾਂ ਖੇਡ ਸਿਖਲਾਈ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਂ ਸੁਧਾਰੇ ਜਾ ਸਕਦੇ ਹਨ । ਖੇਡਾਂ ਦੀ ਸਿਖਲਾਈ ਸ਼ਖ਼ਸੀਅਤ ਵਿਕਾਸ ਵਿਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ । ਸਾਰੀਆਂ ਖੇਡਾਂ ਨਿਸ਼ਚਿਤ ਰੂਪ ਨਾਲ ਮਨ ਅਤੇ ਸਰੀਰ ਨੂੰ ਲਾਭ ਪਹੁੰਚਾਉਂਦੇ ਹਨ । ਇਹ ਅਨੁਸ਼ਾਸਨ, ਟੀਮ-ਨਿਰਮਾਣ, ਵਿਸ਼ਵਾਸ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ, ਤਾਕਤ, ਰਫ਼ਤਾਰ, ਲਚਕਤਾ ਅਤੇ ਸਵੈ-ਮਾਣ ਨੂੰ ਵਧਾਉਂਦੀਆਂ ਹਨ । ਖੇਡਾਂ ਵਿਚ ਉੱਚ ਪੱਧਰੀ ਖੇਡਾਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਇਹ ਸ਼ਖ਼ਸੀਅਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਖੇਡਾਂ ਵਿੱਚ ਸਿਖਲਾਈ ਦੀ ਮੱਦਦ ਨਾਲ ਵਿਕਸਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਗਰਮਾਉਣਾ ਕੀ ਹੈ ? ਮਨੋਵਿਗਿਆਨਿਕ ਗਰਮਾਉਣ ਅਤੇ ਸਰੀਰਕ ਗਰਮਾਉਣ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?
ਉੱਤਰ-
ਕਿਸੇ ਵੀ ਸਰੀਰਕ ਕ੍ਰਿਆ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਗਰਮਾਉਣਾ ਦੀਆਂ ਕਸਰਤਾਂ ਦੁਆਰਾ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਟੋਨ ਅਪ (Tone up) ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਗਰਮਾਉਣਾ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਕੁਝ ਖਾਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਕਸਰਤਾਂ ਦੁਆਰਾ ਸਰੀਰ ਨੂੰ ਕੰਮ ਜਾਂ ਕ੍ਰਿਆ ਕਰਨ ਲਈ ਤਿਆਰ ਕਰਨਾ ।

ਸਰੀਰਿਕ ਤੌਰ ਤੇ ਗਰਮਾਉਣਾ (Physiological Warming-up) – ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਦ ਹਲਕੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਅਭਿਆਸ ਕੂਮ ਵਿਚ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਤਾਪਮਾਨ ਵਧਾਉਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸੁੰਗੜਨ ਸ਼ਕਤੀ ਦੇ ਲਾਭ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

ਮਾਨਸਿਕ ਜਾਂ ਮਨੋਵਿਗਿਆਨਿਕ ਗਰਮਾਉਣਾ (Psychological Warming-up) – ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਗਰਮਾਉਣ ਤੋਂ ਭਾਵ ਆਪਣੇ ਆਪ ਨੂੰ ਤਿਆਰ ਕਰਨਾ ਹੁੰਦਾ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਕਰਦੇ ਸਮੇਂ ਆਪਣੇ ਆਪ ਨੂੰ ਮਾਨਸਿਕ ਰੂਪ ਨਾਲ ਮੁਕਾਬਲੇ ਲਈ ਤਿਆਰ ਕਰ ਲੈਂਦਾ ਹੈ । ਮਨੋਵਿਗਿਆਨਿਕ ਰੂਪ ਨਾਲ ਗਰਮਾਉਣ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਦਾ ਇਸਤੇਮਾਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ-

  1. ਸਮੂਹ ਜਾਂ ਟੀਮ ਦੇ ਖਿਡਾਰੀਆਂ ਨਾਲ ਗੱਲਬਾਤ ਸਾਂਝਾ ਕਰਨਾ ।
  2. ਪ੍ਰੇਰਕ ਵਿਧੀ ।
  3. ਧਿਆਨ ਲਗਾਉਣ ਵਰਗੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 9.
ਇਕਸਾਰਤਾ ਅਤੇ ਵਖਰੇਵੇਂ ਦਾ ਸਿਧਾਂਤ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕੋਈ ਵੀ ਦੋ ਵਿਅਕਤੀ ਇੱਕੋ ਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ ਹਨ । ਉਨ੍ਹਾਂ ਦੀ ਭੌਤਿਕ ਬਣਤਰ, ਮਨੋਵਿਗਿਆਨਿਕ ਸੋਚ, ਕਿਸੇ ਚੀਜ਼ ਵਿਚ ਦਿਲਚਸਪੀ, ਸਮਰੱਥਾ ਅਤੇ ਕਾਬਲੀਅਤ ਵੱਖਰੀ-ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਿਕ ਸਿੱਖਿਆ ਦੇ ਪ੍ਰੋਗਰਾਮ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਇਨ੍ਹਾਂ ਵਿਅਕਤੀਗਤ ਭਿੰਨਤਾਵਾਂ ਨੂੰ ਧਿਆਨ ਵਿਚ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 10.
ਚੱਕਰ ਸਿਖਲਾਈ ਵਿਧੀ ਕੀ ਹੈ ? ਇਸ ਦੇ ਲਾਭ ਵੀ ਲਿਖੋ ।
ਉੱਤਰ-
ਸਰਕਟ ਵਿਧੀ ਦਾ ਵਿਕਾਸ ਆਰ.ਈ. ਮੋਰਗਨ (R.E. Morgan) ਅਤੇ ਜੀ.ਟੀ. ਐਂਡਰਸਨ (G.T. Anderson) ਨੇ 1953 ਵਿਚ ਯੂਨੀਵਰਸਿਟੀ ਆਫ ਲੀਡਸ ਵਿਚ ਕੀਤਾ ਸੀ । ਇਸ ਵਿਧੀ ਵਿਚ ਸਿਖਲਾਈ ਦੇ ਹਰੇਕ, ਤੱਤ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਗਿਆ ਹੈ । ਸਰਕਟ ਵਿਧੀ ਨੂੰ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਸਾਰੇ ਅੰਗ ਜਿਵੇਂ ਕਿ ਤਾਕਤ, ਸ਼ਕਤੀ, ਮਾਸਪੇਸ਼ੀ, ਸਹਿਣਸ਼ੀਲਤਾ, ਰਫ਼ਤਾਰ, ਫੁਰਤੀ, ਨਿਊਰੋਮਸਕੂਲਰ ਤਾਲਮੇਲ, ਲਚਕਤਾ ਅਤੇ ਕਾਰਡੀਓਵਸਕੂਲਰ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਧਿਆਨ ਵਿਚ ਰੱਖ ਕੇ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ ।

ਸਰਕਟ ਵਿਧੀ ਇਕ ਰਸਮੀ (Formal) ਵਿਧੀ ਹੈ ਜਿਸ ਵਿਚ ਕਸਰਤਾਂ ਨੂੰ ਇਕ ਚੱਕਰ ਵਿਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਸਰਕਟ ਵਿਧੀ ਦੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਕਿਸੇ ਵੀ ਸਥਾਨ ਜਿਵੇਂ ਕਿ ਜਿਮਨਾਸਟਿਕ ਹਾਲ, ਕਮਰੇ ਜਾਂ ਮੈਦਾਨ ਵਿਚ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਆਮ ਤੌਰ ਤੇ ਸਰਕਟ ਵਿਧੀ ਵਿਚ 6 ਤੋਂ 10 ਸਟੇਸ਼ਨ ਰੱਖੇ ਜਾਂਦੇ ਹਨ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਇਕ ਕਸਰਤ ਨੂੰ ਕਰਨ ਤੋਂ ਬਾਅਦ ਦੂਜੀ ਕਸਰਤ ਵੱਲ ਵੱਧ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਰਕਲ ਵਿਚ ਨਿਰਧਾਰਿਤ ਸਾਰੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਵਾਰੀ-ਵਾਰੀ ਮਿੱਥੇ ਸਮੇਂ ਵਿਚ ਪੂਰਾ ਕਰਦਾ ਹੈ ।

ਸਰਕਟ ਵਿਧੀ ਦੇ ਫਾਈਦੇ (Advantages of Circuit Training – ਸਰਕਟ ਵਿਧੀ ਦੇ ਅਨੇਕਾਂ ਹੀ ਫਾਇਦੇ ਹਨ ਜੋ ਕਿ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹਨ

  1. ਇਸ ਵਿਚ ਸਮੇਂ ਦੀ ਬੱਚਤ ਹੁੰਦੀ ਹੈ ।
  2. ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਖਿਡਾਰੀਆਂ ਨੂੰ ਇੱਕੋ ਸਮੇਂ ਵਿਚ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।
  3. ਸਿਖਲਾਈ ਵਿਚ ਤੇਜ਼ੀ ਆਉਂਦੀ ਹੈ ।
  4. ਸਿਖਲਾਈ ਵਿਚ ਮਨ ਪਰਚਾਵਾ ਆ ਜਾਂਦਾ ਹੈ ।
  5. ਵਿਅਕਤੀ ਦੀਆਂ ਵਿਅਕਤੀਗਤ ਯੋਗਤਾਵਾਂ ਦਾ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ ।
  6. ਔਰਤਾਂ ਅਤੇ ਆਦਮੀਆਂ ਲਈ ਅਲੱਗ-ਅਲੱਗ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰੋਗਰਾਮ ਬਣਾਉਣਾ ਆਸਾਨ ਹੁੰਦਾ ਹੈ ।
  7. ਇਸ ਵਿਧੀ ਵਿਚ ਸਿਖਲਾਈ ਦੇ ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
  8. ਇਸ ਵਿਧੀ ਵਿਚ ਸਿਖਲਾਈ ਢੰਗ ਨੂੰ ਦਿਲਚਸਪ ਵਾਤਾਵਰਣ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਿ ਖਿਡਾਰੀ ਲਗਾਤਾਰ ਆਪਣੀ ਟ੍ਰੇਨਿੰਗ ਵਿਚ ਸੁਧਾਰ ਕਰਦਾ ਰਹੇ ।
  9. ਸਰਕਟ ਵਿਧੀ ਨੂੰ ਸਮੂਹ· ਜਾਂ ਇਕ ਵਿਅਕਤੀ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਅਨੁਸਾਰ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
  10. ਸਰਕਟ ਵਿਧੀ ਨੂੰ ਵਿਅਕਤੀਗਤ ਸਮੇਂ ਦੀ ਘਾਟ ਅਨੁਸਾਰ ਵੀ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।
  11. ਇਸ ਵਿਧੀ ਨੂੰ ਘੱਟ ਖ਼ਰਚੇ ਵਿਚ ਵੱਡੇ ਸਮੂਹ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।
  12. ਸਰਕਟ ਵਿਧੀ ਪ੍ਰੋਗਰਾਮ ਵਿਚ ਸਾਰੀਆਂ ਗਤੀਵਿਧੀਆਂ ਦੇ ਵਿਕਾਸ ਨੂੰ ਵਿਸ਼ਵਾਸ਼ਯੋਗ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ 1
ਸਰਕਟ ਵਿਧੀ ਵਿਚ ਕਸਰਤਾਂ ਦੀ ਯੋਜਨਾ (Planning of Circuit Training Exercises) – ਸਰਕਟ ਵਿਧੀ ਦੀਆਂ ਕਸਰਤਾਂ ਸ਼ੁਰੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਐਥਲੀਟ ਨੂੰ ਜੌਗਿੰਗ ਅਤੇ ਸਟਰਿੰਗਸ ਕਸਰਤਾਂ ਨਾਲ ਸਰੀਰ ਨੂੰ ਗਰਮਾ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ । ਸਰਕਟ ਵਿਧੀ ਦੀਆਂ ਕਸਰਤਾਂ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-
ਬਾਂਹਵਾਂ – ਪ੍ਰੈਸ ਅਪ (Press Up), ਬੈਂਚ ਪ੍ਰੈਸ (Bench Press), ਡਿਪਸ (Dips), ਪੁਲਅਪਸ (Pullups) ।
ਪੇਟ – ਸਟ ਅਪ (Sit up), ਸਟੋਮਚ ਕਰੰਚ (Stomach Crunch) ।
ਪਿੱਠ -ਸਕੈਟ ਜੰਪ (Squat Jump) ।
ਲੱਤਾਂ – ਅਸਟਰਾਈਡ ਜੰਪ (Astride Jumps), ਸਟੈਪ ਅਪਸ (Step Ups), ਕੰਪਾਸ ਜੰਪ (Compass Jump) ।
ਬਾਂਹਾਂ ਅਤੇ ਲੱਤਾਂ – ਬਰਪੀਸ (Burpees), ਟੈਡਮਿਲ (Treadmill) ਸਕੈਟ ਥਰੱਸਟ (Squat Thrust), ਸਕਿਪਿੰਗ (Skipping)

ਸਰਕਟ ਵਿਧੀ ਵਿਚ ਸਮਾਂ (Duration of Circuit Training)-
30 ਸੈਕਿੰਡ ਦੀਆਂ ਕਸਰਤਾਂ ਹਰ ਸਟੇਸ਼ਨ ਅਤੇ 30 ਸੈਕਿੰਡ ਵਿਚ ਆਰਾਮ ।
3 ਸੈੱਟਾਂ ਵਿਚ 2 ਮਿੰਟ ਦਾ ਆਰਾਮ ॥

ਪ੍ਰਸ਼ਨ 11.
ਠੰਡਾ ਕਰਨ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਠੰਡਾ ਕਰਨ ਦੇ ਸਰੀਰ ਉੱਪਰ ਪ੍ਰਭਾਵ ਦਾ ਵਰਣਨ ਕਰੋ ।
ਉੱਡਰ-
ਮੁਕਾਬਲੇ ਜਾਂ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਜਾਂ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਇਹ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਕ੍ਰਿਆ ਹੈ । ਇਹ ਉਹ ਕਸਰਤਾਂ ਹਨ ਜੋ ਕਿ ਕਠੋਰ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਸਰੀਰ ਅਰਾਮ ਦੀ ਅਵਸਥਾ ਵਿਚ ਆ ਜਾਵੇ | ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕੰਮ ਦੀ ਤੀਬਰਤਾ ਨੂੰ ਘਟਾਉਣ ਲਈ ਜੋ ਸਚਿੰਗ ਕਸਰਤਾਂ ਜਾਂ ਗਹਿਰੀ ਸਾਹ ਲਈ ਜਾਂਦੀ ਹੈ ਉਸ ਨੂੰ ਠੰਡਾ ਕਰਨਾ ਕਹਿੰਦੇ ਹਨ । ਠੰਡਾ ਕਰਨ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਰੀਰ ਨੂੰ ਕਸਰਤਾਂ ਨਾਲ ਆਰਾਮ ਦੀ ਪੱਧਰ ਵਾਲੇ ਹਾਲਤ ਵਿੱਚ ਲੈ ਕੇ ਆਉਣਾ ।

ਠੰਡਾ ਕਰਨਾ ਇੱਕ ਪ੍ਰਕ੍ਰਿਆ ਹੈ ਜੋ ਹਰ ਕਠੋਰਤਾ ਦੇ ਕੰਮ ਜਾਂ ਅਭਿਆਸ ਦੇ ਅੰਤ ਵਿਚ ਕੀਤੀ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ । ਸਿਖਲਾਈ ਦੀ ਮਿਆਦ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਕੁਝ ਸਮਾਂ ਲੱਗਦਾ ਹੈ ਇਸ ਸਮੇਂ ਦੌਰਾਨ ਸਰੀਰ ਵਿਚ ਕਈ ਸਰਗਰਮੀਆਂ ਚਲ ਰਹੀਆਂ ਹੁੰਦੀਆਂ ਹਨ | ਪ੍ਰਭਾਵਿਤ ਮਾਸਪੇਸ਼ੀਆਂ ਅਤੇ ਜੋੜਾਂ ਵਿਚਕਾਰ ਲਹੂ
ਗੇੜ ਤੇਜ਼ੀ ਨਾਲ ਹੋਣ ਲੱਗ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਹੌਲੀ-ਹੌਲੀ ਠੰਡਾ ਹੁੰਦਾ ਹੈ । ਹੌਲੀ ਕਸਰਤਾਂ ਅਤੇ ਗਹਿਰੇ ਸਾਹ ਲੈ ਕੇ ਪਹਿਲਾਂ ਸਰੀਰ ਨੂੰ ਠੰਡਾ ਕਰਨਾ ਚਾਹੀਦਾ ਕਿਉਂਕਿ ਇਕ-ਦਮ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਰੁਕਣਾ ਜਾਂ ਅਚਾਨਕ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਜਾਣਾ, ਮਾਸਪੇਸ਼ੀਆਂ ਅਤੇ ਜੋੜਾਂ ਨੂੰ ਨੁਕਸਾਨ ਪੁਚਾਉਂਦਾ ਹੈ ।

ਠੰਡਾ ਕਰਨ ਦੇ ਢੰਗ (Methods of Cooling Down) – ਠੰਡਾ ਕਰਨ ਦੇ ਹੇਠ ਲਿਖੇ ਮਹੱਤਵ ਹਨ-

  1. ਮਨੋਰੰਜਨ ਕ੍ਰਿਆ ਜਾਂ ਮੂਡ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਕਰਨ ਵਾਲੇ ਖੇਡ ਖੇਡਣਾ ।
  2. ਤੁਰਨਾ (Walking) ।
  3. 5-10 ਮਿੰਟ ਜੌਗਿੰਗ ।
  4. 5-10 ਮਿੰਟ ਤੱਕ ਸਥਾਈ ਅਭਿਆਸ ॥
  5. 10-30 ਮਿੰਟ ਖਿੱਚਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਕਰਨਾ ।
  6. ਗਰਮ ਪਾਣੀ ਨਾਲ ਨਹਾਉਣਾ ।
  7. ਯੋਗਿਕ ਆਸਣ ਕਰਨਾ ਜਿਵੇਂ ਕਿ ਸਵ-ਆਸਣ ।
  8. ਸਖ਼ਤ ਮਿਹਨਤ ਤੋਂ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਤੋਂ ਬਚਾਉਣ ਲਈ ਮਾਲਿਸ਼ ਕਰਨਾ ।
  9. ਅਰਾਮ ਕਰਨ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਕਰਨਾ |

ਠੰਡਾ ਕਰਨ ਦੇ ਪ੍ਰਭਾਵ (Effects of Cooling Down) – ਠੰਡਾ ਕਰਨ ਦੇ ਹੇਠ ਲਿਖੇ ਮਹੱਤਵ ਹਨ-

  1. ਕਸਰਤਾਂ ਜਾਂ ਅਭਿਆਸ ਤੋਂ ਹੋਣ ਵਾਲੇ ਕਠੋਰਤਾ ਅਤੇ ਮਾਸਪੇਸ਼ੀ ਦੇ ਦਰਦ ਘਟਾਉਣ ਵਿਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ ।
  2. ਸੱਟ ਲੱਗਣ ਦੇ ਜ਼ੋਖ਼ਮ ਨੂੰ ਘਟਾਉਣ ਵਿਚ ਇਹ ਮੱਦਦਗਾਰ ਹੁੰਦਾ ਹੈ ।
  3. ਸਰੀਰ ਦੇ ਤਾਪਮਾਨ ਨੂੰ ਆਮ (Normal) ਕਰਦਾ ਹੈ ।
  4. ਇਹ ਬੇਹੋਸ਼ੀ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  5. ਇਹ ਆਕਸੀਜਨ ਦੀ ਚੰਗੀ ਮਾਤਰਾ ਦੀ ਸਪਲਾਈ ਕਰਦਾ ਹੈ ।
  6. ਇਹ ਖੂਨ ਵਿਚ ਐਡੀਨੀਲ ਦੇ ਪੱਧਰ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  7. ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਆਰਾਮ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ।
  8. ਇਹ ਦਿਲ ਦੀ ਧੜਕਣ ਨੂੰ ਸ਼ੁਰੂਆਤੀ ਪੜਾਅ ਵਿਚ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ।
  9. ਇਹ ਤਨਾਅ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  10. ਇਹ ਸਰੀਰ ਨੂੰ ਨੁਕਸਾਨਦੇਹ ਅਸਰ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ ।
  11. ਇਹ ਮਾਨਸਿਕ ਸਥਿਤੀ ਨੂੰ ਸ਼ਾਂਤ ਕਰਦਾ ਹੈ ।
  12. ਇਹ ਮਾਸਪੇਸ਼ੀ ਤੋਂ ਅਣਚਾਹੇ ਤਰਲ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  13. ਇਹ ਸਰੀਰ ਨੂੰ ਹੋਣ ਵਾਲੇ ਅਸਰ ਲਈ ਤਿਆਰ ਕਰਦਾ ਹੈ ।
  14. ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਕੰਮਕਾਜ ਵਿਚ ਰੁਕਾਵਟ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ !
  15. ਇਹ ਹੋਰਨਾਂ ਅਭਿਆਸਾਂ ਲਈ ਸਰੀਰ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 12.
ਅੰਤਰਾਲ ਸਿਖਲਾਈ ਵਿਧੀ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਧੀ ਸਪ੍ਰਿੰਟ ਅਤੇ ਹੋਰ ਖਿਡਾਰੀਆਂ ਦੇ ਸਟੈਮਿਨਾ ਅਤੇ ਯੋਗਤਾਵਾਂ ਨੂੰ ਵਧਾਉਣ ਲਈ ਬਹੁਤ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ । ਇਹ ਸਿਖਲਾਈ ਵਿਧੀ ਜਰਮਨ ਕੋਚ ਡਾ: ਵੋਲਡਮਰ ਰਾਰਸ਼ਲਰ (Dr. Woldemar Gerschler) ਅਤੇ ਡਾ: ਹਰਬਰਟ ਰੈਣਡੇਲ (Dr. Herbert Reindel) ਦੁਆਰਾ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ ਸੀ | ਅੰਤਰਾਲ ਵਿਚ ਦੂਰੀ, ਸਪੀਡ, ਟਾਈਮ ਅਤੇ ਅਰਾਮ ਨੂੰ ਮਹੱਤਵ ਦਿੰਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ, ਤਾਕਤ ਅਤੇ ਦਿਲ ਲਈ ਸਹੀ ਖੂਨ ਸੰਚਾਰ ਨੂੰ ਵਿਕਸਿਤ ਕਰਦੀ ਹੈ | ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਇਕ-ਦਮ ਗਤੀ ਨਾਲ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਤੱਕ ਦੌੜਦਾ ਹੈ ਅਤੇ ਫਿਰ ਇਕ ਚੌਥਾਈ ਚੌਗਿੰਗ ਕਰਦਾ ਹੈ ਤਾਂ ਕਿ ਤਾਕਤ ਵਾਪਿਸ ਹਾਸਿਲ ਕਰ ਸਕੇ । ਉਹ ਇਸ ਪੈਟਰਨ ਨੂੰ ਕਈ ਵਾਰ ਦੁਹਰਾਉਂਦਾ ਹੈ । ਜਿਵੇਂ-ਜਿਵੇਂ ਖਿਡਾਰੀ ਸਟੈਮਿਨਾ ਹਾਸਿਲ ਕਰ ਲੈਂਦਾ ਹੈ, ਆਰਾਮ ਦਾ ਸਮਾਂ ਘਟਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਭੱਜਣ ਵਿਚ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ | ਅਭਿਆਸ ਦੇ ਇਸ ਦ੍ਰਿਸ਼ ਨੂੰ ਤਦ ਤਕ ਦੁਹਰਾਇਆ ਜਾਂਦਾ ਹੈ ਜਦ ਤੱਕ ਖਿਡਾਰੀ ਸਟੈਮਿਨਾ ਦੀ ਚਰਮ ਸੀਮਾ ਨੂੰ ਨਹੀਂ ਪਾ ਲੈਂਦਾ ।

ਅੰਤਰਾਲ ਵਿਧੀ ਦੇ ਢੰਗ (Methods of Internal Training)-
1. ਗਹਿਣ ਵਿਧੀ (Fast or Intensive Internal Method) – ਇਸ ਨੂੰ ਉੱਚ ਤੀਬਰ ਅੰਤਰਾਲ ਵਿਧੀ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਵਿਚ ਤੇਜ਼ ਤੀਬਰ ਗਤੀਵਿਧੀਆਂ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਘੱਟ ਦੂਰੀ ਵਿਚ ਤੇਜ਼ ਗਤੀ ਜਾਂ ਵੇਗ ਨਾਲ ਪੂਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਵਿਚ ਅਰਾਮ ਦਾ ਸਮਾਂ ਘੱਟ ਹੁੰਦਾ ਹੈ । ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਉੱਚ ਤੀਬਰ ਗਤੀਵਿਧੀਆਂ ਵਿਚ ਖਿਡਾਰੀ ਥਕਾਵਟ ਦੀ ਹਾਲਤ ਵਿਚ ਵੀ ਗਤੀ ਵਿਧੀ ਕਰਦਾ ਰਹਿੰਦਾ ਹੈ ਜਿਸ ਵਿਚ 80% ਤੋਂ 100% ਤੱਕ ਆਪਣੀ ਯੋਗਤਾ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ ਅਤੇ ਇਹਨਾਂ ਕ੍ਰਿਆਵਾਂ ਦੇ ਦੌਰਾਨ ਦਿਲ ਦੀ ਧੜਕਣ 170 ਤੋਂ 200 ਪ੍ਰਤੀ ਮਿੰਟ ਦੀ ਦਰ ਨਾਲ ਧੜਕਦੀ ਹੈ ।

2. ਵਿਸਥਾਰ ਵਿਧੀ (Slow or Extensive Interval Method – ਵਿਸਥਾਰ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਦੀ ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ । ਇਸ ਵਿਚ ਗਹਿਣ (Fast Interval) ਵਿਧੀ ਦੇ ਉਲਟ ਦੂਰੀ ਜ਼ਿਆਦਾ ਰੱਖੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਰਫਤਾਰ ਜਾਂ ਵੇਗ ਨੂੰ ਮੱਧ ਦਰਜੇ ਤੱਕ ਸੀਮਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।ਵਿਸਥਾਰ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਯੋਗਤਾ ਦਾ 60% ਅਤੇ 80% ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ ਅਤੇ ਖਿਡਾਰੀ ਦੀ ਦਿਲ ਦੀ ਧੜਕਣ 140-180 ਪ੍ਰਤੀ ਮਿੰਟ ਦੀ ਦਰ ਨਾਲ ਧੜਕਦੀ ਹੈ ।

ਅੰਤਰਾਲ ਵਿਧੀ ਦੇ ਫਾਇਦੇ (Advantages of Interval Training)-
1. ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਉਰਜਾ ਪੈਦਾ ਕਰਨ ਵਾਲੀਆਂ ਦੋ ਪ੍ਰਣਾਲੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦੀ ਹੈ । ਇਹ ਪ੍ਰਣਾਲੀ ਐਰੋਬਿਕ ਅਤੇ ਐਨਰੋਬਿਕ ਊਰਜਾ ਪ੍ਰਣਾਲੀ ਹਨ । ਐਰੋਬਿਕ ਇਕ ਅਜਿਹੀ ਪ੍ਰਣਾਲੀ ਹੈ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਊਰਜਾ ਸਰੋਤਿਆਂ ਨੂੰ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਵਿਚ ਤਬਦੀਲ ਕਰਕੇ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨਾ ਹੈ । ਇਸਦੇ ਉਲਟ ਐਨਾਬੋਰਿਕ ਪ੍ਰਣਾਲੀ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਮੌਜੂਦ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਕੇ ਛੋਟੀ ਤੇ ਫੱਟਣ ਯੋਗ ਗਤੀਵਿਧੀਆਂ ਵਿਚ ਵਰਤੋਂ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਸਪਰਿੰਟ, ਜੰਪ, ਭਾਰੀ ਚੀਜ਼ ਨੂੰ ਚੁੱਕਣਾ ਆਦਿ ।

2. ਇਹ ਖੂਨ ਸੰਚਾਰ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਸੁਧਾਰਦਾ ਹੈ ।

3. ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਇੱਕੋ ਸਮੇਂ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਐਥਲੀਟ ਨੂੰ ਅਭਿਆਸ ਕਰਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।

4. ਇਸ ਵਿਚ ਸਮੇਂ ਦੀ ਬੱਚਤ ਹੁੰਦੀ ਹੈ ।

PSEB 12th Class Physical Education Guide ਖੇਡ ਸਿਖਲਾਈ Important Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ । (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਗਰਮਾਉਣ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਕਿਹੜੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਸਰੀਰਿਕ ਗਰਮਾਉਣਾ ਅਤੇ ਮਨੋਵਿਗਿਆਨਿਕ ਗਰਮਾਉਣਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਠੰਡਾ ਹੋਣ ਦਾ ਸਰੀਰ ‘ ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਰੀਰ ਅਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਆ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 3.
ਸਾਨੂੰ ਸਰੀਰ ਕਦੋਂ ਗਰਮਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਾਨੂੰ ਕਿਸੇ ਵੀ ਖੇਡ ਜਾਂ ਗਤੀਵਿਧੀ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਸਰੀਰ ਨੂੰ ਗਰਮਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?

ਪ੍ਰਸ਼ਨ 4,
ਠੰਡਾ ਕਰਨ ਨੂੰ ਹੋਰ ਕਿਸ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਲੀਬਰਿੰਗ ਡਾਉਨ ।

ਪ੍ਰਸ਼ਨ 5.
ਸਰਕਟ ਟਰੇਨਿੰਗ ਵਿਧੀ ਕਿਸ ਨੇ ਤਿਆਰ ਕੀਤੀ ਸੀ ?
ਉੱਤਰ-
ਆਰ.ਈ. ਮੋਰਗਨ ਅਤੇ ਜੀ.ਟੀ. ਐਂਡਰਸਨ ਨੇ ।

ਪ੍ਰਸ਼ਨ 6.
ਅੰਤਰਾਲ ਵਿਧੀ ਕਿਸ ਨੇ ਵਿਕਸਿਤ ਕੀਤੀ ਸੀ ?
ਉੱਤਰ-
ਜਰਮਨ ਕੋਚ ਡਾ: ਵੋਲਡਮਰ ਗਰਲਰ, ਡਾ: ਹਰਬਰਟ ਰੈਣਡੇਲ ।

ਪ੍ਰਸ਼ਨ 7.
ਅੰਤਰਾਲ ਵਿਧੀ ਦੇ ਢੰਗ ਕਿਹੜੇ-ਕਿਹੜੇ ਹਨ ?
ਉੱਤਰ-

  1. ਗਹਿਣ ਵਿਧੀ ।
  2. ਵਿਸਥਾਰ ਵਿਧੀ ।

ਪ੍ਰਸ਼ਨ 8.
ਕਿਸ ਸਾਲ ਵਿਚ ਸਰਕਟ ਟਰੇਨਿੰਗ ਵਿਧੀ ਨੂੰ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ ਸੀ ?
ਉੱਤਰ-
ਸਾਲ 1953 ਵਿਚ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 9.
ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਦੀ ਸੂਚੀ ਦਿਓ ।
ਉੱਤਰ-
ਜੋਗ, ਸਟਰਾਈਡ, ਖਿੱਚਣਾ, ਰੋਟੇਸ਼ਿਨ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 10.
ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਕੋਈ ਦੋ ਸਿਧਾਂਤ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਇਕਸਾਰਤਾ ਦਾ ਸਿਧਾਂਤ ।
  2. ਨਿਰੰਤਰਤਾ ਦਾ ਸਿਧਾਂਤ !

ਪ੍ਰਸ਼ਨ 11.
‘‘ਸਰਕਟ’’ ਸ਼ਬਦ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਇਕ ਰਸਮੀ ਵਿਧੀ ਹੈ ਜਿਸ ਵਿਚ ਕਸਰਤਾਂ ਚੱਕਰ ਬਣਾ ਕੇ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 12.
ਸਰੀਰ ਗਰਮਾਉਣਾ ਦੀਆਂ ਕਿਸਮਾਂ ਦੱਸੋ !
ਉੱਤਰ-

  1. ਸਕਰਮਕ ਗਰਮਾਉਣਾ
  2. ਨਿਸਕਿਆ ਗਰਮਾਉਣਾ ।

ਪ੍ਰਸ਼ਨ 13.
ਸਕਰਮਕ ਗਰਮਾਉਣਾ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ ਪ੍ਰਕਾਰ ਦਾ ।

ਪ੍ਰਸ਼ਨ 14.
ਖਾਸ ਗਰਮਾਉਣਾ ਕਿਸ ਪ੍ਰਕਾਰ ਦੇ ਗਰਮਾਉਣ ਦਾ ਭਾਗ ਹੈ ?
ਉੱਤਰ-
ਸਕਰਮਕ ਗਰਮਾਉਣ ਦਾ ।

ਪ੍ਰਸ਼ਨ 15.
ਅੰਤਰਾਲ ਵਿਧੀ ਕਿਸ ਗੁਣ ਨੂੰ ਮਹੱਤਵ ਦਿੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਧੀ ਦੂਰੀ, ਰਫ਼ਤਾਰ, ਟਾਈਮ ਅਤੇ ਅਰਾਮ ਵਰਗੇ ਗੁਣਾਂ ਨੂੰ ਮਹੱਤਵ ਦਿੰਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 16.
ਅੰਤਰਾਲ ਵਿਧੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਕਿਹੜੇ ਗੁਣਾਂ ਨੂੰ ਵਿਕਸਿਤ ਕਰਦੀ ਹੈ ?
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਧੀ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਵਿਕਸਿਤ ਕਰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 17.
ਸਰਕਟ ਵਿਧੀ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਵਿਚ ਕਸਰਤਾਂ ਨੂੰ ਚੱਕਰ ਵਿਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 18.
ਸਰਕਟ ਵਿਧੀ ਵਿਚ ਕਿਹੜੇ ਤੱਤ ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਹਨ ।
ਉੱਤਰ-
ਸਰਕਟ ਵਿਧੀ ਵਿਚ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਸਾਰੇ ਤੱਤ ਜਿਵੇਂ ਕਿ ਤਾਕਤ, ਸ਼ਕਤੀ, ਮਾਸਪੇਸ਼ੀ ਸਹਿਣਸ਼ੀਲਤਾ, ਰਫ਼ਤਾਰ, ਫੁਰਤੀ, ਲਚਕਤਾ ਅਤੇ ਨਿਊਰਸਕੂਲਰ ਤਾਲਮੇਲ ਤੱਤ ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 19.
ਸਰਕਟ ਵਿਧੀ ਵਿਚ ਕਿੰਨੇ ਸਟੇਸ਼ਨ ਰੱਖੇ ਜਾ ਸਕਦੇ ਹਨ ?
ਉੱਤਰ-
6 ਤੋਂ 10 ਸਟੇਸ਼ਨ ।

ਪ੍ਰਸ਼ਨ 20.
ਗਹਿਣ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਯੋਗਤਾ ਦਾ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ ?
ਉੱਤਰ-
80% ਤੋਂ 100% ਤੱਕ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪਸ਼ਨ 21.
ਗਹਿਣ ਵਿਧੀ ਵਿਚ ਦਿਲ ਦੀ ਧੜਕਣ ਦੀ ਦਰ ਕਿੰਨੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
170 ਤੋਂ 200 ਪ੍ਰਤੀ ਮਿੰਟ ।

ਪ੍ਰਸ਼ਨ 22.
ਗਹਿਣ ਵਿਧੀ ਵਿਚ ਕਸਰਤਾਂ ਕਿਸ ਵੇਗ ਨਾਲ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਇਸ ਵਿਧੀ ਵਿਚ ਤੇਜ਼ ਤੀਬਰ ਗਤੀਵਿਧੀਆਂ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਘੱਟ ਦੂਰੀ ਵਿਚ ਤੇਜ਼ ਗਤੀ ਜਾਂ ਵੇਗ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 23.
ਵਿਸਥਾਰ ਵਿਧੀ ਵਿਚ ਕਸਰਤਾਂ ਕਿਸ ਗਤੀ ਨਾਲ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਇਸ ਵਿਧੀ ਵਿਚ ਗਤੀ ਨੂੰ ਮੱਧ ਦਰਜੇ ਦਾ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 24.
ਵਿਸਥਾਰ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਯੋਗਤਾ ਦਾ ਕਿੰਨਾ ਪ੍ਰਤੀਸ਼ਤ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ ?
ਉੱਤਰ-
60% ਤੋਂ 80% ਤੱਕ ।

ਪ੍ਰਸ਼ਨ 25.
ਵਿਸਥਾਰ ਵਿਧੀ ਵਿਚ ਦਿਲ ਦੀ ਧੜਕਣ ਦੀ ਦਰ ਕਿੰਨੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
140 ਤੋਂ 180 ਪ੍ਰਤੀ ਮਿੰਟ |

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਖੇਡ ਸਿਖਲਾਈ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਖੇਡ ਸਿਖਲਾਈ ਖੇਡਾਂ ਵਿੱਚ ਆਮ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਸ਼ਬਦ ਹੈ ਪਰ ਵਿਸ਼ਾਲ ਤੌਰ ਤੇ ਇਹ ਇਕ ਸੰਗਠਿਤ ਅਤੇ ਵਿਵਸਥਿਤ ਤੇ ਅਰਥਪੂਰਨ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਦਾ ਉਦੇਸ਼ ਵਿਅਕਤੀਗਤ, ਮਾਨਸਿਕ ਅਤੇ ਬੌਧਿਕ ਕਾਰਜਕੁਸ਼ਲਤਾ ਵਿਚ ਸੁਧਾਰ ਲਿਆਉਣਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਕਾਰਗੁਜ਼ਾਰੀ ਸਮਰੱਥਾ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਪ੍ਰਦਰਸ਼ਨ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਮੁੱਖ ਤੌਰ ‘ਤੇ ਅਭਿਆਸ ਦੀ ਦਰ, ਮੁਕਾਬਲੇ ਅਤੇ ਸਿਖਲਾਈ ਦੀ ਮਾਤਰਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਹ ਅਭਿਆਸ ਦੇ ਦੌਰਾਨ ਸਿਖਲਾਈ ਦੀ ਮਿਆਦ, ਸਾਜੋ-ਸਮਾਨ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਵਾਧੂ ਭਾਰ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਕਾਰਗੁਜ਼ਾਰੀ ਸਮਰੱਥਾ ਇਕ ਦਿਨ ਵਿਚ ਹਾਸਿਲ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ।

ਪ੍ਰਸ਼ਨ 3.
ਗਰਮਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਅਤੇ ਮਹੱਤਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-

  1. ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਤਾਪਮਾਨ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ ।
  2. ਇਸ ਨਾਲ ਦਿਲ ਦੀ ਧੜਕਣ ਅਤੇ ਖੂਨ ਸੰਚਾਰ ਦਾ ਪ੍ਰਵਾਹ ਵੱਧਦਾ ਹੈ ।
  3. ਇਹ ਤਾਲਮੇਲ ਅਤੇ ਮੋਟਰ ਸਮਰੱਥਾ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ ।
  4. ਇਹ ਪਾਚਕ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਊਰਜਾ ਦਰ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 4.
ਗਰਮਾਉਣ ਦੇ ਤਰੀਕਿਆਂ ਬਾਰੇ ਲਿਖੋ ?
ਉੱਤਰ-
1. ਸਰੀਰਕ ਗਰਮਾਉਣਾ (Physiological Warming-up) – ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਦ ਹਲਕੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਅਭਿਆਸ ਕੂਮ ਵਿਚ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਤਾਪਮਾਨ ਵਧਾਉਣਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸੁੰਗੜਨ ਸ਼ਕਤੀ ਦੇ ਲਾਭ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

2. ਮਨੋਵਿਗਿਆਨਿਕ ਗਰੰਮਾਉਣਾ (Psychological Warming-up) – ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਗਰਮਾਉਣ ਤੋਂ ਭਾਵ ਆਪਣੇ ਆਪ ਨੂੰ ਤਿਆਰ ਕਰਨਾ ਹੁੰਦਾ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਕਰਦੇ ਸਮੇਂ ਆਪਣੇ ਆਪ ਨੂੰ ਮਾਨਸਿਕ ਰੂਪ ਨਾਲ ਮੁਕਾਬਲੇ ਲਈ ਤਿਆਰ ਕਰ ਲੈਂਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਆਪਣੇ ਸਹਿਯੋਗੀ ਖਿਡਾਰੀਆਂ ਨਾਲ ਗੱਲਬਾਤ ਕਰਨਾ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 5.
ਠੰਡਾ ਕਰਨ ਦੀ ਪਰਿਭਾਸ਼ਾ ਲਿਖੋ ।
ਉੱਤਰ-
ਮੁਕਾਬਲੇ ਜਾਂ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਜਾਂ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਇਹ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਕ੍ਰਿਆ ਹੈ । ਇਹ ਉਹ ਕਸਰਤਾਂ ਹਨ ਜੋ ਕਿ ਕਠੋਰ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਸਰੀਰ ਅਰਾਮ ਦੀ ਅਵਸਥਾ ਵਿਚ ਆ ਜਾਵੇ | ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕੰਮ ਦੀ ਤੀਬਰਤਾ ਨੂੰ ਘਟਾਉਣ | ਲਈ ਜੋ ਸਟੇਚਿੰਗ ਕਸਰਤਾਂ ਜਾਂ ਗਹਿਰੀ, ਸਾਹ ਲਈ ਜਾਂਦੀ ਹੈ ਉਸ ਨੂੰ ਠੰਡਾ ਕਰਨਾ ਕਹਿੰਦੇ ਹਨ । ਠੰਡਾ ਕਰਨ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਰੀਰ ਨੂੰ ਕਸਰਤਾਂ ਨਾਲ ਆਰਾਮ ਦੀ ਪੱਧਰ ਵਾਲੇ ਹਾਲਤ ਵਿੱਚ ਲੈ ਕੇ ਆਉਣਾ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 6.
ਠੰਡਾ ਕਰਨ ਦੇ ਦੋ ਫ਼ਾਇਦਿਆਂ ਨੂੰ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਕਸਰਤਾਂ ਜਾਂ ਅਭਿਆਸ ਤੋਂ ਹੋਣ ਵਾਲੇ ਕਠੋਰਤਾ ਅਤੇ ਮਾਸਪੇਸ਼ੀ ਦੇ ਦਰਦ ਘਟਾਉਣ ਵਿਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ ।
  2. ਸੱਟ ਲੱਗਣ ਦੇ ਜ਼ੋਖ਼ਮ ਨੂੰ ਘਟਾਉਣ ਵਿਚ ਇਹ ਮੱਦਦਗਾਰ ਹੁੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਖੇਡ ਸਿਖਲਾਈ ਵਿਚ ‘ਆਰਾਮ ਦੇ ਸਿਧਾਂਤ’’ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਭਾਰੀ ਤੇ ਸਖ਼ਤ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਆਰਾਮ ਅਤੇ ਰਿਕਵਰੀ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਤਾਂ ਕਿ ਵਿਅਕਤੀ ਵਾਧੂ ਭਾਰ ਦੇ ਅਭਿਆਸ ਤੋਂ ਪਹਿਲਾਂ ਤਰੋ-ਤਾਜ਼ਾ ਮਹਿਸੂਸ ਕਰੇ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਿਅਕਤੀ ਨੂੰ ਆਰਾਮ ਅਤੇ ਲੋਡ ਤੋਂ ਇਲਾਵਾ ਚੰਗੀ ਨੀਂਦ ਅਤੇ ਖ਼ੁਰਾਕ ਵੀ ਲੈਣੀ ਜ਼ਰੂਰੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਅੰਤਰਾਲ ਵਿਧੀ ਦੇ ਦੋ ਫ਼ਾਇਦੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਇਹ ਖੂਨ ਸੰਚਾਰ ਵਿਚ ਸੁਧਾਰ ਕਰਦਾ ਹੈ ।
  2. ਮੋਟਰ ਹੁਨਰ ਦੀ ਪ੍ਰਾਪਤੀ ।
  3. ਇਸ ਵਿਚ ਸਮੇਂ ਦੀ ਬੱਚਤ ਹੁੰਦੀ ਹੈ ।

ਸ਼ਨ 9.
ਸਰਕਟ ਟਰੇਨਿੰਗ ਵਿਧੀ ਨੂੰ ਕਿਸਨੇ ਵਿਕਸਿਤ ਕੀਤਾ ਸੀ ?
ਉੱਤਰ-
ਸਰਕਟ ਵਿਧੀ ਦਾ ਵਿਕਾਸ ਆਰ.ਈ. ਮੋਰਗਨ (R.E. Morgan) ਅਤੇ ਜੀ.ਟੀ. ਐਂਡਰਸਨ (G.T. Anderson) ਨੇ 1953 ਵਿਚ ਯੂਨੀਵਰਸਿਟੀ ਆਫ ਲੀਡਸ ਵਿਚ ਕੀਤਾ ਸੀ ।

ਪ੍ਰਸ਼ਨ 10.
ਅੰਤਰਾਲ ਟਰੇਨਿੰਗ ਵਿਧੀ ਦਾ ਮਕਸਦ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਚ ਦੂਰੀ, ਸਪੀਡ, ਟਾਈਮ ਅਤੇ ਆਰਾਮ ਨੂੰ ਮਹੱਤਵ ਦਿੰਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ, ਤਾਕਤ ਅਤੇ ਦਿਲ ਲਈ ਸਹੀ ਖੂਨ ਸੰਚਾਰ ਨੂੰ ਵਿਕਸਿਤ ਕਰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 11.
ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਉਦੇਸ਼ ਕੀ ਹੈ ?
ਉੱਤਰ-

  1. ਕਾਰਗੁਜ਼ਾਰੀ ਸਮਰੱਥਾ ਵਿਚ ਵਾਧਾ ।
  2. ਸਮੁੱਚੀ ਸ਼ਖ਼ਸੀਅਤ ਦਾ ਵਿਕਾਸ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 12.
ਫੁੱਟਬਾਲ ਖੇਡ ਦੀਆਂ ਖਾਸ ਗਰਮਾਉਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਦੇ ਉਦਾਹਰਣ ਦਿਓ ।
ਉੱਤਰ-
ਲੋਂਜ ਵਾਕ, ਸਾਈਡ ਸਟੈਪ, ਬੱਟ ਕਿੱਕਸ ਅਤੇ ਚਿਸਟ ਹੱਗਜ਼ ।

ਪ੍ਰਸ਼ਨ 13.
ਸਟਿਕ ਰੋਟੇਸ਼ਨ, ਡਰਿਬਲਿੰਗ, ਰੈਪਿਗ, ਹਿੰਟਿੰਗ ਆਦਿ ਖਾਸ ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਕਿਸ ਖੇਡ ਲਈ ਜ਼ਰੂਰੀ ਹਨ ?
ਉੱਤਰ-
ਹਾਕੀ ਲਈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਸੇ ਇੱਕ ਉੱਤੇ ਨੋਟ-
(ਉ) ਸਰੀਰਕ ਸਿਖਲਾਈ
(ਆ) ਤਕਨੀਕੀ ਮੁਹਾਰਤ।
ਉੱਤਰ-
(ਉ) ਸਰੀਰਕ ਸਿਖਲਾਈ (Physical Training) – ਸਰੀਰਕ ਟ੍ਰੇਨਿੰਗ ਦਾ ਮਤਲਬ ਹੈ-ਵਿਅਕਤੀ ਕੋਲ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਭਾਵ ਤਾਕਤ, ਸਪੀਡ, ਸਟੈਮਿਨਾ, ਧੀਰਜ, ਚੁਸਤੀ, ਸੰਤੁਲਨ ਅਤੇ ਪਾਵਰ ਆਦਿ ਤੱਤਾਂ ਦਾ ਹੋਣਾ । ਇਹ ਅੰਗ ਨਿਯਮਿਤ ਸਰੀਰਕ ਨਿੰਗ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਇਹ ਖੇਡਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਲੋੜਵੰਦ ਹੁੰਦੇ ਹਨ । ਇਹ ਭੌਤਿਕ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ) ਅੰਗ ਹਰ ਖੇਡ ਵਿਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਕੁਝ ਖੇਡਾਂ ਵਿਚ ਸਹਿਣਸ਼ੀਲਤਾ ਤੇ ਤਾਕਤ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਤੇ ਕੁਝ ਵਿਚ ਚੁਸਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।

(ਆਂ) ਤਕਨੀਕੀ ਮੁਹਾਰਤ (Technical Skill) – ਤਕਨੀਕੀ ਸਿਖਲਾਈ, ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਇਕ ਬੁਨਿਆਦੀ ਹਿੱਸਾ ਹੈ । ਇਹ ਉੱਚ-ਕੋਟੀ ਦੀ ਮੁਹਾਰਤ (Performance) ਨੂੰ ਹਾਸਿਲ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਅਭਿਆਸ ਸੈਟ (Repeat training) ਅਤੇ ਮੁਹਾਰਤਾਂ (Skills) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ : ਤਕਨੀਕੀ ਸਿਖਲਾਈ ਕੁਸ਼ਲਤਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਦੁਹਰਾਏ, ਐਥਲੀਟ ਦੀ ਸ਼ੁਰੂਆਤੀ ਟ੍ਰੇਨਿੰਗ ਮੋਟਰ ਸਮਰੱਥਾ (Motor abilities) ਸੰਵੇਦੀ ਯੋਗਤਾਵਾਂ (Sensory abilities) ਗੁੰਝਲਦਾਰ ਸਥਿਤੀ ਨੂੰ ਸਮਝਣ ਦਾ ਪੱਧਰ ਆਦਿ ਨੂੰ ਮਿਲਾ ਕੇ ਬਣਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਨਿਰੰਤਰਤਾ ਅਤੇ ਇਕਸਾਰਤਾ ਦੇ ਸਿਧਾਂਤਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
1. ਨਿਰੰਤਰਤਾ ਦਾ ਸਿਧਾਂਤ (Principle of Continuity) – ਖੇਡ ਵਿਚ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਹੁਨਰ ਦੀ ਵਰਤੋਂ ਅਤੇ ਨਾ ਵਰਤੋਂ ਦਾ ਹੈ । ਨਿਯਮਿਤ ਸਿਖਲਾਈ ਜਾਂ ਅਭਿਆਸ ਕਿਸੇ ਵੀ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਹੈ । ਨਿਰੰਤਰ ਅਭਿਆਸ ਜਾਂ ਵਰਤੋਂ ਦੇ ਬਿਨਾਂ ਸਿੱਖਿਅਤ ਹੁਨਰ ਇੱਕੋ ਪੱਧਰ ਤੇ ਰੱਖਣਾ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ । ਇਸ ਲਈ ਨਿਰੰਤਰ ਅਭਿਆਸ ਹਰ ਖੇਡ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ।

2. ਇਕਸਾਰਤਾ ਦਾ ਸਿਧਾਂਤ (Principle of Uniformity) – ਕੋਈ ਵੀ ਦੋ ਵਿਅਕਤੀ ਇੱਕੋ ਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਦੀ ਭੌਤਿਕ ਬਣਤਰ, ਮਨੋਵਿਗਿਆਨਿਕ ਸੋਚ, ਦਿਲਚਸਪੀ, ਸਮਰੱਥਾ ਅਤੇ ਕਾਬਲੀਅਤ ਵੱਖਰੀ-ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਕ ਸਿੱਖਿਆ ਦੇ ਪ੍ਰੋਗਰਾਮ ਤਿਆਰ ਕਰਦੇ ਵਕਤ ਵਿਅਕਤਿਤਵ ਭਿੰਨਤਾਵਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ . ਜ਼ਰੂਰੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਜੌਗਿੰਗ (Jogging)
  2. ਸਟਰਾਈਡ (Strides)
  3. ਖਿੱਚਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ (Stretching Exercises)
  4. ਰੋਟੇਸ਼ਨ ਗਤੀ ਵਾਲੀਆਂ ਕਸਰਤਾਂ (Rotation Exercises)
  5. ਵਿੰਡ ਸਪਰਿਟ (Wind Sprit)
  6. ਵਾਕਿੰਗ ਲੰਜ (Walking lunge)
  7.  ਬੱਟ ਕਿੱਕਸ (Butt Kicks)
  8. ਗੋਡੇ ਨੂੰ ਉੱਚਾ ਖਿੱਚਣਾ (High Knee Pulls)
  9. ਪਿੱਛੇ ਵੱਲ ਕਦਮ (Backward Step Over)
  10. ਜੰਪਿੰਗ ਜੈਕ (Jumping Jacks) ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 4.
ਕਿਰਿਆਸ਼ੀਲ ਭਾਗੀਦਾਰੀ ਦੇ ਸਿਧਾਂਤ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਰਗਰਮੀਆਂ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਵਿਦਿਆਰਥੀ ਦੀ ਇੱਛਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ । ਹਰ ਇਕ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸਿਖਲਾਈ ਤਦ ਹੀ ਫਾਇਦੇਮੰਦ ਹੋ ਸਕਦੀ ਹੈ, ਜੇਕਰ ਵਿਦਿਆਰਥੀ ਆਪਣੀ ਇੱਛਾ ਨਾਲ ਉਸ ਵਿਚ ਭਾਗ ਲੈਂਦਾ ਹੈ । ਇਸ ਲਈ ਇਹ ਸਿਖਲਾਈ ਦਾ ਸਭ ਤੋਂ ਕੀਮਤੀ ਅਸੂਲ ਹੈ ਕਿ ਵਿਅਕਤੀ ਆਪਣੀ ਇੱਛਾ, ਸਰੀਰਕ ਸਮਰੱਥਾ ਅਤੇ ਯੋਗਤਾ ਅਨੁਸਾਰ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮਾਂ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਤਿਆਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
“ਆਰਾਮ ਅਤੇ ਰਿਕਵਰੀ” ਦੇ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਕਰੋ ।
ਉੱਤਰ-
ਮੁਕਾਬਲੇ ਜਾਂ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਜਾਂ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਇਹ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਕ੍ਰਿਆ ਹੈ । ਇਹ ਉਹ ਕਸਰਤਾਂ ਹਨ ਜੋ ਕਿ ਕਠੋਰ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਸਰੀਰ ਆਰਾਮ ਦੀ ਅਵਸਥਾ ਵਿਚ ਆ ਜਾਵੇ ।

ਪ੍ਰਸ਼ਨ 6.
“ਅਨੁਕੂਲਤਾ” ਦੇ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਕਰੋ । ਉੱਤਰ-ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਵਾਧੂ ਭਾਰ ਦੀ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਉਸ ਭਾਰ ਨੂੰ ਸਹਿਣ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਿਖਲਾਈ ਵਿਚ ਸਰੀਰਕ ਮੰਗ ਨੂੰ ਵਧਾਇਆ ਜਾਂ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਕ ਪ੍ਰੋਗਰਾਮ ਇਸ ਤਰ੍ਹਾਂ ਤਿਆਰ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਪੁਰਾਣੇ ਸਿਖਲਾਈ ਪੱਧਰ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਣ ਤੋਂ ਬਾਅਦ ਨਵੇਂ ਰੁਟੀਨ ਵਿਚ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾ ਸਕੇ ।

ਪ੍ਰਸ਼ਨ 7.
ਸਰਕਟ ਟਰੇਨਿੰਗ ਵਿਧੀ ਦੇ ਫ਼ਾਇਦਿਆਂ ਬਾਰੇ ਦੱਸੋ ।
ਉੱਤਰ-

  1. ਇਸ ਵਿਚ ਸਮੇਂ ਦੀ ਬੱਚਤ ਹੁੰਦੀ ਹੈ ।
  2. ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਖਿਡਾਰੀਆਂ ਨੂੰ ਇੱਕੋ ਸਮੇਂ ਵਿਚ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।
  3. ਸਿਖਲਾਈ ਵਿਚ ਤੇਜ਼ੀ ਆਉਂਦੀ ਹੈ ।
  4. ਸਿਖਲਾਈ ਵਿਚ ਮਨ ਪਰਚਾਵਾ ਆ ਜਾਂਦਾ ਹੈ ।
  5. ਵਿਅਕਤੀ ਦੀਆਂ ਵਿਅਕਤੀਗਤ ਯੋਗਤਾਵਾਂ ਦਾ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ ।

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਠੰਡਾ ਹੋਣ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਇਸ ਤੋਂ ਸਰੀਰ ਤੇ ਹੋਣ ਵਾਲੇ ਪ੍ਰਭਾਵਾਂ ਬਾਰੇ ਸਮਝਾਓ ।
ਉੱਤਰ-
ਮੁਕਾਬਲੇ ਜਾਂ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਜਾਂ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਇਹ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਕ੍ਰਿਆ ਹੈ । ਇਹ ਉਹ ਕਸਰਤਾਂ ਹਨ ਜੋ ਕਿ ਕਠੋਰ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਸਰੀਰ ਅਰਾਮ ਦੀ ਅਵਸਥਾ ਵਿਚ ਆ ਜਾਵੇ : ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕੰਮ ਦੀ ਤੀਬਰਤਾ ਨੂੰ ਘਟਾਉਣ ਲਈ ਜੋ ਸਟੇਚਿੰਗ ਕਸਰਤਾਂ ਜਾਂ ਗਹਿਰੀ ਸਾਹ ਲਈ ਜਾਂਦੀ ਹੈ ਉਸ ਨੂੰ ਠੰਡਾ ਕਰਨਾ ਕਹਿੰਦੇ ਹਨ । ਠੰਡਾ ਕਰਨ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਰੀਰ ਨੂੰ ਕਸਰਤਾਂ ਨਾਲ ਆਰਾਮ ਦੀ ਪੱਧਰ ਵਾਲੇ ਹਾਲਤ ਵਿੱਚ ਲੈ ਕੇ ਆਉਣਾ |

ਠੰਡਾ ਕਰਨਾ ਇੱਕ ਪ੍ਰਕ੍ਰਿਆ ਹੈ ਜੋ ਹਰ ਕਠੋਰਤਾ ਦੇ ਕੰਮ ਜਾਂ ਅਭਿਆਸ ਦੇ ਅੰਤ ਵਿਚ ਕੀਤੀ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ । ਸਿਖਲਾਈ ਦੀ ਮਿਆਦ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਨੂੰ ਆਮ ਸਥਿਤੀ ਵਿਚ ਲਿਆਉਣ ਲਈ ਕੁਝ ਸਮਾਂ ਲੱਗਦਾ ਹੈ। ਇਸ ਸਮੇਂ ਦੌਰਾਨ ਸਰੀਰ ਵਿਚ ਕਈ ਸਰਗਰਮੀਆਂ ਚਲ ਰਹੀਆਂ ਹੁੰਦੀਆਂ ਹਨ । ਪ੍ਰਭਾਵਿਤ ਮਾਸਪੇਸ਼ੀਆਂ ਅਤੇ ਜੋੜਾਂ ਵਿਚਕਾਰ ਲਹੂ ਗੇੜ ਤੇਜ਼ੀ ਨਾਲ ਹੋਣ ਲੱਗ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਹੌਲੀ-ਹੌਲੀ ਠੰਡਾ ਹੁੰਦਾ ਹੈ । ਹੌਲੀ ਕਸਰਤਾਂ ਅਤੇ ਗਹਿਰੇ ਸਾਹ ਲੈ ਕੇ ਪਹਿਲਾਂ ਸਰੀਰ ਨੂੰ ਠੰਡਾ ਕਰਨਾ ਚਾਹੀਦਾ ਕਿਉਂਕਿ ਇਕ-ਦਮ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਰੁਕਣਾ ਜਾਂ ਅਚਾਨਕ ਆਰਾਮ ਦੀ ਸਥਿਤੀ ਵਿਚ ਜਾਣਾ, ਮਾਸਪੇਸ਼ੀਆਂ ਅਤੇ ਜੋੜਾਂ ਨੂੰ ਨੁਕਸਾਨ ਪੁਚਾਉਂਦਾ ਹੈ ।

ਠੰਡਾ ਕਰਨ ਦਾ ਮਹੱਤਵ ਜਾਂ ਫਾਇਦੇ (Importance of Cooling Down) – ਠੰਡਾ ਕਰਨ ਦੇ ਹੇਠ ਲਿਖੇ ਮਹੱਤਵ ਹਨ-

  1. ਕਸਰਤਾਂ ਜਾਂ ਅਭਿਆਸ ਤੋਂ ਹੋਣ ਵਾਲੇ ਕਠੋਰਤਾ ਅਤੇ ਮਾਸਪੇਸ਼ੀ ਦੇ ਦਰਦ ਘਟਾਉਣ ਵਿਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ ।
  2. ਸੱਟ ਲੱਗਣ ਦੇ ਜ਼ੋਖ਼ਮ ਨੂੰ ਘਟਾਉਣ ਵਿਚ ਇਹ ਮੱਦਦਗਾਰ ਹੁੰਦਾ ਹੈ ।
  3. ਸਰੀਰ ਦੇ ਤਾਪਮਾਨ ਨੂੰ ਆਮ (Normal) ਕਰਦਾ ਹੈ ।
  4. ਇਹ ਬੇਹੋਸ਼ੀ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  5. ਇਹ ਆਕਸੀਜਨ ਦੀ ਚੰਗੀ ਮਾਤਰਾ ਦੀ ਸਪਲਾਈ ਕਰਦਾ ਹੈ ।
  6. ਇਹ ਖੂਨ ਵਿਚ ਐਡੀਨੀਲ ਦੇ ਪੱਧਰ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  7. ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਆਰਾਮ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ।
  8. ਇਹ ਦਿਲ ਦੀ ਧੜਕਣ ਨੂੰ ਸ਼ੁਰੂਆਤੀ ਪੜਾਅ ਵਿਚ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ।
  9. ਇਹ ਤਨਾਅ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  10. ਇਹ ਸਰੀਰ ਨੂੰ ਨੁਕਸਾਨਦੇਹ ਅਸਰ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ ।
  11. ਇਹ ਮਾਨਸਿਕ ਸਥਿਤੀ ਨੂੰ ਸ਼ਾਂਤ ਕਰਦਾ ਹੈ ।
  12. ਇਹ ਮਾਸਪੇਸ਼ੀ ਤੋਂ ਅਣਚਾਹੇ ਤਰਲ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  13. ਇਹ ਸਰੀਰ ਨੂੰ ਹੋਣ ਵਾਲੇ ਅਸਰ ਲਈ ਤਿਆਰ ਕਰਦਾ ਹੈ ।
  14. ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਕੰਮਕਾਜ ਵਿਚ ਰੁਕਾਵਟ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ।
  15. ਇਹ ਹੋਰਨਾਂ ਅਭਿਆਸਾਂ ਲਈ ਸਰੀਰ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 2.
ਗਰਮਾਉਣ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਸਰੀਰ ਨੂੰ ਕਿਵੇਂ ਗਰਮਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ? ਗਰਮਾਉਣ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਕਿਸੇ ਵੀ ਸਰੀਰਕ ਕ੍ਰਿਆ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਗਰਮਾਉਣਾ ਦੀਆਂ ਕਸਰਤਾਂ ਦੁਆਰਾ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਟੋਨ ਅਪ (Tone up) ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਗਰਮਾਉਣਾ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਕੁਝ ਖਾਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਕਸਰਤਾਂ ਦੁਆਰਾ ਸਰੀਰ ਨੂੰ ਕੰਮ ਜਾਂ ਕ੍ਰਿਆ ਕਰਨ ਲਈ ਤਿਆਰ ਕਰਨਾ । ਇਹ ਦੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਕਰਨ ਤੋਂ ਬਿਨਾਂ, ਕਠੋਰ ਜ਼ੋਰਦਾਰ ਕਸਰਤਾਂ ਸ਼ੁਰੂ ਕਰ ਦਿੱਤੀਆਂ ਜਾਣ ਤਾਂ ਸੰਬੰਧਿਤ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਨੁਕਸਾਨ ਹੋ ਸਕਦਾ ਹੈ ਜਾਂ ਫਿਰ ਬੁਰਾ ਪ੍ਰਭਾਵ ਪੈ ਸਕਦਾ ਹੈ ਅਤੇ ਕਈ ਵਾਰ ਗਹਿਰੀ ਸੱਟ ਵੀ ਲੱਗ ਸਕਦੀ ਹੈ । ਹੁਨਰ ਦੇ ਚੰਗੇ ਪ੍ਰਦਰਸ਼ਨ ਲਈ ਸਰੀਰ ਨੂੰ ਤਿਆਰ ਕਰਨ ਲਈ ਗਰਮਾਉਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਇਹ ਕਸਰਤਾਂ ਖਿਡਾਰੀ ਨੂੰ ਮਾਨਸਿਕ ਅਤੇ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤਿਆਰ ਕਰ ਦਿੰਦੀਆਂ ਹਨ ।

ਅਸੀਂ ਇਹ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਗਰਮਾਉਣਾ ਉਹ ਕਿਰਿਆਂ ਹੈ ਜਿਸ ਨਾਲ ਮੁਕਾਬਲੇ ਦੇ ਬੋਝ ਹੇਠ ਦੱਬੇ ਹੋਏ ਅਤੇ ਮੁਕਾਬਲੇ ਦੀ ਮੰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਖੇਡ ਮੁਕਾਬਲੇ ਵਿੱਚ ਹਿੱਸਾ ਲੈਣ ਵਾਲੇ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਮਨੋਵਿਗਿਆਨਿਕ ਤੌਰ ਤੇ ਨਾਲ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ | ਸਰੀਰ ਰੂਪ ਤੋਂ ਇਸ਼ਦਾ ਭਾਵ ਸਰੀਰ ਦਾ ਤਾਪਮਾਨ ਵੱਧਣਾ, ਨਾੜੀ ਗਤੀ ਦਾ ਵੱਧਣਾ ਅਤੇ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਅੰਗਾਂ ਵਿਚ ਲਹੂ ਦਾ ਦੌਰਾ ਤੇਜ਼ ਹੋਣ ਤੋਂ ਹੈ ।

ਗਰਮਾਉਣ ਨੂੰ ਅਸੀਂ ਹੇਠਾਂ ਲਿਖੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡ ਸਕਦੇ ਹਾਂ-

  1. ਮਾਨਸਿਕ ਜਾਂ ਮਨੋਵਿਗਿਆਨਿਕ ਗਰਮਾਉਣਾ ।
  2. ਸਰੀਰਿਕ ਗਰਮਾਉਣਾ ।

ਇਹ ਵਿਸਥਾਰ ਸਹਿਤ ਹੇਠਾਂ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-
1. ਮਾਨਸਿਕ ਜਾਂ ਮਨੋਵਿਗਿਆਨਿਕ ਗਰਮਾਉਣਾ (Psychological Warming-up) – ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਗਰਮਾਉਣ ਤੋਂ ਭਾਵ ਆਪਣੇ ਆਪ ਨੂੰ ਤਿਆਰ ਕਰਨਾ ਹੁੰਦਾ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਗਰਮਾਉਣ ਦੀਆਂ ਕਸਰਤਾਂ ਕਰਦੇ ਸਮੇਂ ਆਪਣੇ ਆਪ ਨੂੰ ਮਾਨਸਿਕ ਰੂਪ ਨਾਲ ਮੁਕਾਬਲੇ ਲਈ ਤਿਆਰ ਕਰ ਲੈਂਦਾ ਹੈ ।

2. ਸਰੀਰਿਕ ਤੌਰ ਤੇ ਗਰਮਾਉਣਾ (Physiological Warming-up) – ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਦ ਹਲਕੀਆਂ ਕਸਰਤਾਂ ਨੂੰ ਅਭਿਆਸ ਕੂਮ ਵਿਚ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਤਾਪਮਾਨ ਵਧਾਉਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸੁੰਗੜਨ ਸ਼ਕਤੀ ਦੇ ਲਾਭ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਸਰੀਰਕ ਤੌਰ ਤੇ ਗਰਮਾਉਣ ਨੂੰ ਹੇਠ ਲਿਖੇ ਦੋ ਭਾਗਾਂ ਵਿਚ
ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

  1. ਸਕਰਮਕ ਗਰਮਾਉਣਾ (Active Warming-up)
  2. ਨਿਸ਼ਕ੍ਰਿਆ ਗਰਮਾਉਣਾ (Passive Warming-up)

‘‘ਗਰਮਾਉਣਾ ਮੁੱਢਲੀਆਂ ਕਸਰਤਾਂ ਹਨ ਜੋ ਕਿ ਖਿਡਾਰੀ ਨੂੰ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤੌਰ ਤੋਂ ਸਖ਼ਤ ਮਿਹਨਤ ਕਰਨ ਲਈ ਤਿਆਰ ਕਰਦੀ ਹੈ ।”
‘‘ਗਰਮਾਉਣਾ, ਕਿਰਿਆ ਤੋਂ ਪਹਿਲਾਂ ਦੌੜਨਾ ਅਤੇ ਪੂਰੇ ਸਰੀਰ ਨੂੰ ਗਰਮ ਕਰਨ ਦੀ ਵਿਧੀ ਹੈ ।” .
‘‘ਗਰਮਾਉਣਾ ਇਕ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿੱਥੇ ਮਾਨਵ ਰੂਪੀ ਮਸ਼ੀਨ ਨੂੰ ਉਸ ਪੱਧਰ ਤੇ ਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿੱਥੇ ਉਹ ਤੇਜ਼ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਨਾੜੀ ਸੰਵਦਨਾ ਦੇ ਪ੍ਰਤੀ ਸੁਰੱਖਿਅਤ ਢੰਗ ਨਾਲ ਦਬਾਵ ਦੇਵੇ ।”
‘ਗਰਮਾਉਣਾ ਆਉਣ ਵਾਲੀਆਂ ਕਿਰਿਆ ਲਈ ਸਰੀਰ ਨੂੰ ਗਰਮ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ |”
‘‘ਗਰਮਾਉਣਾ ਕਿਸੇ ਵੀ ਮੁਕਾਬਲੇ ਤੋਂ ਪਹਿਲਾਂ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ਨਹੀਂ ਤਾਂ ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ਜੋ ਕਿ ਖੇਡਾਂ ਵਿਚ ਅਪਾਹਜਤਾ ਜਾਂ ਖੇਡਾਂ ਵਿਚ ਅਕੁਸ਼ਲਤਾ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ।”
PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ 2
ਸਰੀਰ ਨੂੰ ਗਰਮਾਉਣ ਦਾ ਤਰੀਕਾ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ ।
ਆਮ ਗਰਮਾਉਣਾ-ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਗਰਮਾਉਣ ਵਿਚ ਖਿਡਾਰੀ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਾਰ ਦੀਆਂ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ । ਇਹ ਆਮ ਤੌਰ ਤੇ ਅੱਠ ਤੋਂ ਦਸ ਮਿੰਟ ਦੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਹਲਕੀ ਜੌਗਿੰਗ ਜਾਂ ਤੁਰਨਾ, ਭੱਜਣਾ ਜਾਂ ਸਾਧਾਰਨ ਕਸਰਤਾਂ ਸ਼ਾਮਿਲ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਦਿਲ ਦੀ ਧੜਕਣ ਨੂੰ ਵਧਾਉਣ ਲਈ ਸਹਾਇਕ ਹੁੰਦੀਆਂ ਹਨ । ਇਹ ਜੋੜਾਂ ਵਿਚ ਤਾਲਮੇਲ ਅਤੇ ਲਚਕਤਾ ਨੂੰ ਵੀ ਸੁਧਾਰਦੀਆਂ ਹਨ ।

ਆਮ ਗਰਮਾਉਣ ਲਈ ਕੋਈ ਖਾਸ ਮਾਪਦੰਡ ਨਹੀਂ ਹੁੰਦਾ ਹਨ ਪਰ ਕੁਝ ਕਸਰਤਾਂ ਜੋ ਕਿ ਸਰੀਰ ਦੇ ਤਾਪਮਾਨ ਨੂੰ ਵਧਾ ਸਕਣ ਉਹ ਲਾਜ਼ਮੀ ਹਨ । ਆਮ ਗਰਮਾਉਣ ਵਿਚ ਕੁਝ ਹੇਠ ਲਿਖੀਆਂ ਕਸਰਤਾਂ ਆਉਂਦੀਆਂ ਹਨ- .

  1. ਜੌਗਿੰਗ (Jogging)
  2. ਸਟਰਾਈਡ (Strides)
  3. ਖਿੱਚਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ (Stretching Exercises)
  4. ਰੋਟੇਸ਼ਨ ਗਤੀ ਵਾਲੀਆਂ ਕਸਰਤਾਂ (Rotation Exercises)
  5. ਵਿੰਡ ਸਪਰਿੰਟ (Wind Sprit)
  6. ਵਾਕਿੰਗ ਲੰਜ (Walking lunge)
  7. ਬਿੱਟ ਕਿੱਕਸ (Bitt Kicks)
  8. ਗੋਡੇ ਨੂੰ ਉੱਚਾ ਖਿੱਚਣਾ (High Knee Pulls)
  9. ਪਿੱਛੇ ਵੱਲ ਕਦਮ (Backward Step Over)
  10. ਜੰਪਿੰਗ ਜੈਕ (Jumping Jacks)
  11. ਅੱਗੇ, ਪਿੱਛੇ ਅਤੇ ਸਾਈਡ ਵੱਲ ਦੌੜਨਾ (Run Forward, Backward and Side)
  12. ਹੱਥ, ਬਾਂਹਵਾਂ, ਕੰਧੇ, ਗਰਦਨ, ਗੋਡੇ ਅਤੇ ਲੱਤਾਂ ਦੀਆਂ ਕਸਰਤਾਂ (Exercise for hands, arms, shoulder, neck, knees and legs)
  13. ਕੈਲਮਥੈਨਿਕ ਕਸਰਤ !
  14. ਇਨ੍ਹਾਂ ਨਾਲ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਲੈਅ ਆਉਂਦੀ ਹੈ ਅਤੇ ਜੋੜਾਂ ਵਿਚ ਲਚਕਤਾ, ਜੋ ਕਿ ਸਰੀਰ ਨੂੰ ਅਣਚਾਹੀਆਂ ਸੱਟਾਂ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 3.
ਅੰਤਰਾਲ ਵਿਧੀ ਕੀ ਹੈ ? ਅੰਤਰਾਲ ਵਿਧੀ ਤੋਂ ਹੋਣ ਵਾਲਿਆਂ ਫ਼ਾਇਦਿਆਂ ਅਤੇ ਉਦੇਸ਼ਾਂ ਬਾਰੇ ਸੰਖੇਪ ਜਾਣਕਾਰੀ ਦਿਓ ।
ਉੱਤਰ-
ਅੰਤਰਾਲ ਵਿਧੀ ਸਪ੍ਰਿੰਟ ਅਤੇ ਹੋਰ ਖਿਡਾਰੀਆਂ ਦੇ ਸਟੈਮਿਨਾ ਅਤੇ ਯੋਗਤਾਵਾਂ ਨੂੰ ਵਧਾਉਣ ਲਈ ਬਹੁਤ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ । ਇਹ ਸਿਖਲਾਈ ਵਿਧੀ ਜਰਮਨ ਕੋਚ ਵੋਲਡਮਰ ਗੁਰਸ਼ਲਰ (Woldemar Gerschler) ਅਤੇ ਡਾ: ਹਰਬਰਟ ਰੈਣਡੇਲ (Dr. Herbert Reindel) ਦੁਆਰਾ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ ਸੀ । ਅੰਤਰਾਲ ਵਿਚ ਦੂਰੀ, ਸਪੀਡ, ਟਾਈਮ ਅਤੇ ਅਰਾਮ ਨੂੰ ਮਹੱਤਵ ਦਿੰਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ, ਤਾਕਤ ਅਤੇ ਦਿਲ ਲਈ ਸਹੀ ਖੂਨ ਸੰਚਾਰ ਨੂੰ ਵਿਕਸਿਤ ਕਰਦੀ ਹੈ । ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਖਿਡਾਰੀ ਇਕ-ਦਮ ਗਤੀ ਨਾਲ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਤੱਕ ਦੌੜਦਾ ਹੈ ਅਤੇ ਫਿਰ ਇਕ ਚੌਥਾਈ ਚੌਗਿੰਗ ਕਰਦਾ ਹੈ ਤਾਂ ਕਿ ਤਾਕਤ ਵਾਪਿਸ ਹਾਸਿਲ ਕਰ ਸਕੇ । ਉਹ ਇਸ ਪੈਟਰਨ ਨੂੰ ਕਈ ਵਾਰ ਦੁਹਰਾਉਂਦਾ ਹੈ । ਜਿਵੇਂ-ਜਿਵੇਂ ਖਿਡਾਰੀ ਸਟੈਮਿਨਾ ਹਾਸਿਲ ਕਰ ਲੈਂਦਾ ਹੈ, ਆਰਾਮ ਦਾ ਸਮਾਂ ਘਟਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਭੱਜਣ ਵਿਚ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ । ਅਭਿਆਸ ਦੇ ਇਸ ਦ੍ਰਿਸ਼ ਨੂੰ ਤਦ ਤਕ ਦੁਹਰਾਇਆ ਜਾਂਦਾ ਹੈ ਜਦ ਤੱਕ ਖਿਡਾਰੀ ਸਟੈਮਿਨਾ ਦੀ ਚਰਮ ਸੀਮਾ ਨੂੰ ਨਹੀਂ ਪਾ ਲੈਂਦਾ ।

ਅੰਤਰਾਲ ਵਿਧੀ ਦੇ ਫਾਇਦੇ (Advantages of Interval Training)-
1. ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਊਰਜਾ ਪੈਦਾ ਕਰਨ ਵਾਲੀਆਂ ਦੋ ਪ੍ਰਣਾਲੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦੀ ਹੈ । ਇਹ ਪ੍ਰਣਾਲੀ ਐਰੋਬਿਕ ਅਤੇ ਐਨਰੋਬਿਕ ਊਰਜਾ ਪ੍ਰਣਾਲੀ ਹਨ | ਐਰੋਬਿਕ ਇਕ ਅਜਿਹੀ ਪ੍ਰਣਾਲੀ ਹੈ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਊਰਜਾ ਸਰੋਤਿਆਂ ਨੂੰ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਵਿਚ ਤਬਦੀਲ ਕਰਕੇ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨਾ ਹੈ । ਇਸਦੇ ਉਲਟ ਐਨਾਬੋਰਿਕ ਪ੍ਰਣਾਲੀ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਮੌਜੂਦ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਕੇ ਛੋਟੀ ਤੇ ਫੱਟਣ ਯੋਗ ਗਤੀਵਿਧੀਆਂ ਵਿਚ ਵਰਤੋਂ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਸਪਰਿੰਟ, ਜੰਪ, ਭਾਰੀ ਚੀਜ਼ ਨੂੰ ਚੁੱਕਣਾ ਆਦਿ ।

2. ਇਹ ਖੂਨ ਸੰਚਾਰ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਸੁਧਾਰਦਾ ਹੈ ।

3. ਅੰਤਰਾਲ ਵਿਧੀ ਵਿਚ ਇੱਕੋ ਸਮੇਂ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਐਥਲੀਟ ਨੂੰ ਅਭਿਆਸ ਕਰਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।

4. ਇਸ ਵਿਚ ਸਮੇਂ ਦੀ ਬੱਚਤ ਹੁੰਦੀ ਹੈ ।

ਅੰਤਰਾਲ ਵਿਧੀ ਦਾ ਉਦੇਸ਼ (Purpose of the Interval Training) –

  1. ਇਹ ਐਰੋਬਿਕ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਸੁਧਾਰ ਕਰਦਾ ਹੈ ।
  2. ਸਰੀਰ ਨੂੰ ਤੇਜ਼ ਗਤੀ ਵਿਚ ਢਾਲਣਾ ਜਿਸ ਵਿਚ ਅਭਿਆਸ ਨਾਲ ਵਧੇ ਲੈਕਿਟ ਐਸਿਡ (Lectate Acid) ਤੇ ਕਾਬੂ | ਪਾਉਣਾ ਹੈ ।
  3. ਲਗਾਤਾਰ ਦੌੜਦੇ ਹੋਏ ਘੱਟ ਸਰੀਰਕ ਤਨਾਵ ਵਿਚ ਸਾਰੇ ਕੰਮ ਨੂੰ ਪੂਰਾ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 4.
ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਵੱਖ-ਵੱਖ ਸਿਧਾਂਤਾਂ ਨੂੰ ਉਜਾਗਰ ਕਰੋ ।
ਉੱਤਰ-
ਖੇਡਾਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਸੁਧਾਰ ਲਈ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਵਿਸ਼ਵ ਵਿਆਪੀ ਵਿਗਿਆਨਿਕ ਸਿਖਲਾਈ ਸਿਧਾਂਤ ਦਿੱਤੇ ਗਏ ਹਨ ਜੋ ਕਿ ਹੇਠਾਂ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-
1. ਵਿਅਕਤੀਗਤ ਭਿੰਨਤਾਵਾਂ ਦਾ ਸਿਧਾਂਤ (Principle of Individual Differences) – ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕੋਈ ਵੀ ਦੋ ਵਿਅਕਤੀ ਇਕੋ ਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ ਹਨ । ਉਨ੍ਹਾਂ ਦੀ ਭੌਤਿਕ ਬਣਤਰ, ਮਨੋਵਿਗਿਆਨਿਕ ਸੋਚ, | ਕਿਸੇ ਚੀਜ਼ ਵਿਚ ਦਿਲਚਸਪੀ, ਸਮਰੱਥਾ, ਅਤੇ ਕਾਬਲੀਅਤ ਵੱਖਰੀ-ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਿਕ
ਸਿੱਖਿਆ ਦੇ ਪ੍ਰੋਗਰਾਮ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਇਨ੍ਹਾਂ ਵਿਅਕਤੀਗਤ ਭਿੰਨਤਾਵਾਂ ਨੂੰ ਧਿਆਨ ਵਿਚ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

2. ਵਰਤੋਂ ਜਾਂ ਨਾ ਵਰਤੋਂ ਦਾ ਸਿਧਾਂਤ (Principle of Use and Disuse) – ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਦੂਜਾ ਸਿਧਾਂਤ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਹੁਨਰ ਦੀ ਵਰਤੋਂ ਅਤੇ ਨਾ ਵਰਤੋਂ ਦਾ ਹੈ । ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਨਿਯਮਿਤ ਸਿਖਲਾਈ ਜਾਂ ਅਭਿਆਸ ਕਿਸੇ ਵੀ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮਾਂ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦਾ ਹੈ । ਨਿਯਮਿਤ ਅਭਿਆਸ ਜਾਂ ਵਰਤੋਂ ਦੇ ਬਿਨਾਂ ਸਿੱਖਿਅਤ ਹੁਨਰ ਸਿਖਲਾਈ ਜਾਂ ਤੰਦਰੁਸਤੀ ਦਾ ਪੱਧਰ ਇਕੋ ਪੱਧਰ ਤੇ ਕਾਇਮ ਰੱਖਣਾ ਸੰਭਵ ਨਹੀਂ ਹੋ ਸਕਦਾ । ਇਸ ਲਈ ਸਿੱਖੇ ਹੋਏ ਹੁਨਰ ਦੀ ਨਿਯਮਿਤ ਵਰਤੋਂ ਜ਼ਰੂਰੀ ਹੈ ।

3. ਵਾਧੂ ਭਾਰ ਦਾ ਸਿਧਾਂਤ (Principle of load and Overload) – ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬੇਹਤਰ ਬਣਾਉਣ ਲਈ ਵਾਧੂ ਭਾਰ ਜਿਵੇਂ ਕਿ ਸਧਾਰਣ ਤਣਾਅ ਤੋਂ ਵੱਧ ਭਾਰ ਸਹੀ ਢੰਗ ਨਾਲ ਦਿੱਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਵਾਧੂ ਭਾਰ ਨੂੰ ਵਿਵਸਥਿਤ ਤਰੀਕੇ ਨਾਲ ਹੌਲੀ-ਹੌਲੀ ਵਧਾਇਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ।

4. ਸੁਰੱਖਿਆ ਅਤੇ ਰੋਕਥਾਮ ਦਾ ਸਿਧਾਂਤ, (Principle of Safety and Prevention) – ਸੁਰੱਖਿਆ ਅਤੇ ਰੋਕਥਾਮ ਦੇ ਹਰ ਪਹਿਲੂ ਦੀ ਸੰਭਾਲ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਾਜੋ-ਸਮਾਨ ਦੀ ਸਪੈਸੀਫਿਕੈਸ਼ਨ, ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਵਰਗੀਕਰਨ, ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਤੋਂ ਬਚਣ ਲਈ ਸਰੀਰ ਨੂੰ ਗਰਮਾਉਣਾ, ਸੁਰੱਖਿਆ ਉਪਕਰਨਾਂ ਦਾ ਇਸਤੇਮਾਲ ਕਰਨਾ ਆਦਿ | ਜਿਵੇਂ ਕਿ ਸਭ ਨੂੰ ਪਤਾ ਹੈ ਕਿ ਸਾਵਧਾਨੀ ਇਲਾਜ ਤੋਂ ਬੇਹਤਰ ਹੈ । ਇਸ ਲਈ ਸਿਖਲਾਈ ਦੇ ਦੌਰਾਨ ਇਨ੍ਹਾਂ ਪਹਿਲੂਆਂ ਨੂੰ ਵਿਚਾਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

5. ਵਿਭਿੰਨਤਾ ਦਾ ਸਿਧਾਂਤ (Principlé of Variety) – ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਜੋਸ਼ ਅਤੇ ਦਿਲਚਸਪੀ ਨੂੰ ਕਾਇਮ ਰੱਖਣ ਲਈ ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਤਿੰਨ-ਤਿੰਨ ਤਰੀਕਿਆਂ ਦਾ ਇਸਤੇਮਾਲ ਜ਼ਰੂਰੀ ਹੈ । ਇਕੋ ਜਿਹੇ ਤਰੀਕੇ ਨਾਲ ਸਿਖਲਾਈ ਕਰਨ ਨਾਲ ਬੋਰੀਅਤ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਸਿਖਲਾਈ ਵਿਚ ਦਿਲਚਸਪੀ ਨਹੀਂ ਰਹਿੰਦੀ । ਇਸ ਲਈ
ਖੇਡ ਸਿਖਲਾਈ ਵਿਧੀ ਨੂੰ ਬਦਲਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

6. ਮਿਆਦ ਦਾ ਸਿਧਾਂਤ (Principle of Periodization) – ਮਿਆਦ ਸ਼ਬਦ ਨੂੰ ਅਸੀਂ ਸਿਖਲਾਈ ਸਮੇਂ ਦੇ ਵਿਭਾਜਨ ਦੇ ਤੌਰ ਤੇ ਲੈਂਦੇ ਹਾਂ । ਇਹ ਇਕ ਵਿਗਿਆਨਿਕ ਅਧਾਰ ਹੈ ਜਿਸ ਨੂੰ ਸਰਵ-ਸ਼ੇਸ਼ਠ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਮਹਾਰਤਾਂ ਦੁਆਰਾ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਮੋਟੇ ਤੌਰ ਤੇ ਮਿਆਦ ਤੋਂ ਤਾਵ ਤਿਆਰੀ ਦਾ ਸਮਾਂ, ਮੁਕਾਬਲੇ ਦਾ ਸਮਾਂ ਅਤੇ ਰਿਕਵਰੀ ਪੜਾਅ ਤੋਂ ਹੈ ।

7. ਪ੍ਰਗਤੀ ਦਾ ਸਿਧਾਂਤ (Principle of Progression) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਿਖਲਾਈ ਹਮੇਸ਼ਾ ਆਸਾਨ ਤੇ ਗੁੰਝਲਦਾਰ (Simple complex) ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ; ਜਿਵੇਂ ਕਿ ਬਾਸਕੇਟਬਾਲ ਵਿਚ ਲੇ-ਆਪ ਸ਼ੱਟ ਸਿੱਖਣ ਤੋਂ ਪਹਿਲਾਂ ਡਬਲਿੰਗ Dribbling) ਦਾ ਹੁਨਰ ਸਿੱਖਣਾ ਚਾਹੀਦਾ ਹੈ । ਸਿਖਲਾਈ ਨੂੰ ਮਜਬੂਤ ਬਣਾਉਣ ਲਈ ਬੁਨਿਆਦੀ ਸਿਧਾਂਤ ਪਹਿਲਾਂ ਸਿੱਖਣੇ ਚਾਹੀਦੇ ਹਨ | ਇਸ ਦੇ ਨਾਲ ਹੀ ਵਧੀਆ ਕਾਰਗੁਜ਼ਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਹੌਲੀ-ਹੌਲੀ ਅੱਗੇ ਵੱਧਣਾ ਚਾਹੀਦਾ ਹੈ ।

8. ਆਰਾਮ ਦਾ ਸਿਧਾਂਤ (Principle of Rest/Recovery) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਭਾਰੀ ‘ਤੇ ਸਖ਼ਤ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਆਰਾਮ ਅਤੇ ਰਿਕਵਰੀ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਤਾਂ ਕਿ ਵਿਅਕਤੀ ਵਾਧੂ ਭਾਰ ਦੇ ਅਭਿਆਸ ਤੋਂ ਪਹਿਲਾਂ ਤਰੋ-ਤਾਜ਼ਾ ਮਹਿਸੂਸ ਕਰੇ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਿਅਕਤੀ ਆਰਾਮ ਅਤੇ ਲੋਡ ਤੋਂ ਇਲਾਵਾ ਚੰਗੀ ਨੀਂਦ ਅਤੇ ਖ਼ੁਰਾਕ ਵੀ ਲੈਣੀ ਜ਼ਰੂਰੀ ਹੈ ।

9. ਅਨੁਕੂਲਨ ਦਾ ਸਿਧਾਂਤ (Principle of Conditioning/Adaptation) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਵਾਧੂ ਭਾਰ ਦੀ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਉਸ ਭਾਰ ਨੂੰ ਸਹਿਣ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਂਦਾ ਹੈ । ਜਿਸ ਨਾਲ ਸਿਖਲਾਈ ਵਿਚ ਸਰੀਰਿਕ ਮੰਗ ਨੂੰ ਵਧਾਇਆ ਜਾਂ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਿਕ ਪ੍ਰੋਗਰਾਮ ਇਸ ਤਰ੍ਹਾਂ ਤਿਆਰ ਕੀਤੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ ਕਿ ਪੁਰਾਣੇ ਸਿਖਲਾਈ ਪੱਧਰ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਣ ਤੋਂ ਬਾਅਦ ਨਵੇਂ
ਰੁਟੀਨ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾ ਸਕੇ ।

10. ਕਿਰਿਆਸ਼ੀਲ ਭਾਗੀਦਾਰੀ ਦਾ ਸਿਧਾਂਤ (Principle of Active Participation) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਇਹ ਹੈ ਕਿ ਸਰਗਰਮੀਆਂ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਵਿਦਿਆਰਥੀ ਦੀ ਇੱਛਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ । ਹਰ ਇਕ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸਿਖਲਾਈ ਤਦ ਹੀ ਫ਼ਾਇਦੇਮੰਦ ਹੋ ਸਕਦੀ ਹੈ ਜੇਕਰ ਵਿਦਿਆਰਥੀ ਆਪਣੀ ਇੱਛਾ ਨਾਲ ਉਸ ਵਿਚ ਭਾਗ ਲਵੇ । ਇਸ ਲਈ ਇਹ ਸਿਖਲਾਈ ਦਾ ਸਭ ਤੋਂ ਕੀਮਤੀ ਅਸੂਲ ਹੈ ਕਿ ਵਿਅਕਤੀ ਆਪਣੀ ਇੱਛਾ, ਸਰੀਰਕ ਸਮਰੱਥਾ ਅਤੇ ਯੋਗਤਾ ਅਨੁਸਾਰ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਤਿਆਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 2 ਖੇਡ ਸਿਖਲਾਈ

ਪ੍ਰਸ਼ਨ 5.
ਖੇਡ ਸਿਖਲਾਈ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਸਪੋਟਰਸ ਟਰੇਨਿੰਗ ਦੇ ਵੱਖ-ਵੱਖ ਅਸੂਲਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ ।
ਉੱਤਰ-
ਖੇਡ ਸਿਖਲਾਈ ਖੇਡਾਂ ਵਿੱਚ ਆਮ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਸ਼ਬਦ ਹੈ ਪਰ ਵਿਸ਼ਾਲ ਤੌਰ ਤੇ ਇਹ ਇਕ ਸੰਗਠਿਤ ਅਤੇ ਵਿਵਸਥਿਤ ਤੇ ਅਰਥਪੂਰਨ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਦਾ ਉਦੇਸ਼ ਵਿਅਕਤੀਗਤ, ਮਾਨਸਿਕ ਅਤੇ ਬੌਧਿਕ ਕਾਰਜਕੁਸ਼ਲਤਾ ਵਿਚ ਸੁਧਾਰ ਲਿਆਉਣਾ ਹੈ ।

ਇਹ ਵੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਉਹ ਸਾਧਨ ਹਨ ਜਿਸ ਦੁਆਰਾ ਖਿਡਾਰੀ ਸਰੀਰਕ, ਤਕਨੀਕੀ, ਬੌਧਿਕ, ਮਨੋਵਿਗਿਆਨਿਕ ਅਤੇ ਨੈਤਿਕ ਤੌਰ ਤੇ ਤਿਆਰ ਹੁੰਦਾ ਹੈ, ਉਸ ਨੂੰ ਖੇਡ ਸਿਖਲਾਈ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

ਉਹ ਸਾਰੇ ਸਿੱਖਣ ਦੇ ਪ੍ਰਭਾਵ ਅਤੇ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਜੋ ਖੇਡਾਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਵਧਾਉਣ ਦੇ ਵਿਚ ਮੱਦਦਗਾਰ ਹੁੰਦੇ ਹਨ । ਉਹ ਸਭ ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਮਹੱਤਵਪੂਰਨ ਅੰਗ ਹਨ ।

ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਸਿਧਾਂਤ (Principles of Sports Training) – ਖੇਡਾਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਸੁਧਾਰ ਲਈ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਵਿਸ਼ਵ ਵਿਆਪੀ ਵਿਗਿਆਨਿਕ ਸਿਖਲਾਈ ਸਿਧਾਂਤ ਦਿੱਤੇ ਗਏ ਹਨ ਜੋ ਕਿ ਹੇਠਾਂ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-
1. ਇਕਸਾਰਤਾ ਦਾ ਸਿਧਾਂਤ ਤੇ ਵਖਰੇਵੇਂ ਸਿਧਾਂਤ (Principle of Uniformity and differentiation) – ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕੋਈ ਵੀ ਦੋ ਵਿਅਕਤੀ ਇਕੋ ਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ ਹਨ । ਉਨ੍ਹਾਂ ਦੀ ਭੌਤਿਕ ਬਣਤਰ, ਮਨੋਵਿਗਿਆਨਿਕ ਸੋਚ, ਕਿਸੇ ਚੀਜ਼ ਵਿਚ ਦਿਲਚਸਪੀ, ਸਮਰੱਥਾ ਅਤੇ ਕਾਬਲੀਅਤ ਵੱਖਰੀ-ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਿਕ ਸਿੱਖਿਆ ਦੇ ਪ੍ਰੋਗਰਾਮ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਇਨ੍ਹਾਂ ਵਿਅਕਤੀਗਤ ਭਿੰਨਤਾਵਾਂ ਨੂੰ ਧਿਆਨ ਵਿਚ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

2. ਨਿਰੰਤਰਤਾ ਦਾ ਸਿਧਾਂਤ (Principle of Continuity) – ਖੇਡ ਸਿਖਲਾਈ ਦਾ ਦੂਜਾ ਸਿਧਾਂਤ ਸਿਖਲਾਈ ‘ ਪ੍ਰਾਪਤ ਹੁਨਰ ਦੀ ਵਰਤੋਂ ਅਤੇ ਨਾ ਵਰਤੋਂ ਦਾ ਹੈ । ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਨਿਯਮਿਤ ਸਿਖਲਾਈ ਜਾਂ ਅਭਿਆਸ ਕਿਸੇ ਵੀ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮਾਂ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦਾ ਹੈ । ਨਿਯਮਿਤ ਅਭਿਆਸ ਜਾਂ ਵਰਤੋਂ ਦੇ ਬਿਨਾਂ ਸਿੱਖਿਅਤ ਹੁਨਰ ਸਿਖਲਾਈ ਜਾਂ ਤੰਦਰੁਸਤੀ ਦਾ ਪੱਧਰ ਇਕੋ ਪੱਧਰ ਤੇ ਕਾਇਮ ਰੱਖਣਾ ਸੰਭਵ ਨਹੀਂ ਹੋ ਸਕਦਾ । ਇਸ ਲਈ ਸਿੱਖੇ ਹੋਏ ਹੁਨਰ ਦੀ ਨਿਯਮਿਤ ਵਰਤੋਂ ਜ਼ਰੂਰੀ ਹੈ ।

3. ਵਾਧੂ ਭਾਰ ਦਾ ਸਿਧਾਂਤ (Principle of load and Overload) – ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬੇਹਤਰ ਬਣਾਉਣ ਲਈ ਵਾਧੂ ਭਾਰ ਜਿਵੇਂ ਕਿ ਸਧਾਰਣ ਤਣਾਅ ਤੋਂ ਵੱਧ ਭਾਰ ਸਹੀ ਢੰਗ ਨਾਲ ਦਿੱਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਵਾਧੂ ਭਾਰ ਨੂੰ ਵਿਵਸਥਿਤ ਤਰੀਕੇ ਨਾਲ ਹੌਲੀ-ਹੌਲੀ ਵਧਾਇਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ।

4. ਸੁਰੱਖਿਆ ਅਤੇ ਰੋਕਥਾਮ ਦਾ ਸਿਧਾਂਤ (Principle of Safety and Prevention) – ਸੁਰੱਖਿਆ ਅਤੇ ਰੋਕਥਾਮ ਦੇ ਹਰ ਪਹਿਲੂ ਦੀ ਸੰਭਾਲ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਾਜੋ-ਸਮਾਨ ਦੀ ਸਪੈਸੀਫਿਕੈਸ਼ਨ, ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਵਰਗੀਕਰਨ, ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਤੋਂ ਬਚਣ ਲਈ ਸਰੀਰ ਨੂੰ ਗਰਮਾਉਣਾ, ਸੁਰੱਖਿਆ ਉਪਕਰਨਾਂ ਦਾ ਇਸਤੇਮਾਲ ਕਰਨਾ ਆਦਿ। ਜਿਵੇਂ ਕਿ ਸਭ ਨੂੰ ਪਤਾ ਹੈ ਕਿ ਸਾਵਧਾਨੀ ਇਲਾਜ ਤੋਂ ਬੇਹਤਰ ਹੈ । ਇਸ ਲਈ ਸਿਖਲਾਈ ਦੇ ਦੌਰਾਨ ਇਨ੍ਹਾਂ ਪਹਿਲੂਆਂ ਨੂੰ ਵਿਚਾਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

5. ਵਿਭਿੰਨਤਾ ਦਾ ਸਿਧਾਂਤ (Principle of variety) – ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਜੋਸ਼ ਅਤੇ ਦਿਲਚਸਪੀ ਨੂੰ ਕਾਇਮ ਰੱਖਣ ਲਈ ਖੇਡ ਸਿਖਲਾਈ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਤਰੀਕਿਆਂ ਦਾ ਇਸਤੇਮਾਲ ਜ਼ਰੂਰੀ ਹੈ । ਇਕੋ ਜਿਹੇ ਤਰੀਕੇ ਨਾਲ ਸਿਖਲਾਈ ਕਰਨ ਨਾਲ ਬੋਰੀਅਤ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਸਿਖਲਾਈ ਵਿਚ ਦਿਲਚਸਪੀ ਨਹੀਂ ਰਹਿੰਦੀ । ਇਸ ਲਈ ਖੇਡ ਸਿਖਲਾਈ ਵਿਧੀ ਨੂੰ ਬਦਲਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

6. ਮਿਆਦ ਦਾ ਸਿਧਾਂਤ (Principle of Periodization) – ਮਿਆਦ ਸ਼ਬਦ ਨੂੰ ਅਸੀਂ ਸਿਖਲਾਈ ਸਮੇਂ ਦੇ ਵਿਭਾਜਨ ਦੇ ਤੌਰ ਤੇ ਲੈਂਦੇ ਹਾਂ । ਇਹ ਇਕ ਵਿਗਿਆਨਿਕ ਅਧਾਰ ਹੈ ਜਿਸ ਨੂੰ ਸਰਵ-ਸ਼ੇਸ਼ਠ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਮੁਹਾਰਤਾਂ ਦੁਆਰਾ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਮੋਟੇ ਤੌਰ ਤੇ ਮਿਆਦ ਤੋਂ ਭਾਵ ਤਿਆਰੀ ਦਾ ਸਮਾਂ, ਮੁਕਾਬਲੇ ਦਾ ਸਮਾਂ ਅਤੇ ਰਿਕਵਰੀ ਪੜਾਅ ਤੋਂ ਹੈ ।

7. ਪ੍ਰਤੀ ਦਾ ਸਿਧਾਂਤ (Principle of Progression) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਸਿਖਲਾਈ ਹਮੇਸ਼ਾ ਅਸਾਨ ਤੇ ਗੁੰਝਲਦਾਰ (Simple complex) ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ; ਜਿਵੇਂ ਕਿ ਬਾਸਕਟਬਾਲ ਵਿਚ ਲੇ-ਆਪ ਸ਼ੱਟ ਸਿੱਖਣ ਤੋਂ ਪਹਿਲਾਂ ਡਬਲਿੰਗ (Dribbling) ਦਾ ਹੁਨਰ ਸਿੱਖਣਾ ਚਾਹੀਦਾ ਹੈ । ਸਿਖਲਾਈ ਨੂੰ ਮਜਬੂਤ ਬਣਾਉਣ ਲਈ ਬੁਨਿਆਦੀ ਸਿਧਾਂਤ ਪਹਿਲਾਂ ਸਿੱਖਣੇ ਚਾਹੀਦੇ ਹਨ । ਇਸ ਦੇ ਨਾਲ ਹੀ ਵਧੀਆ ਕਾਰਗੁਜ਼ਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਹੌਲੀ-ਹੌਲੀ ਅੱਗੇ ਵੱਧਣਾ ਚਾਹੀਦਾ ਹੈ ।

8. ਅਰਾਮ ਦਾ ਸਿਧਾਂਤ (Principle of rest/Recovery) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਭਾਰੀ ਤੇ ਸਖ਼ਤ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਅਰਾਮ ਅਤੇ ਰਿਕਵਰੀ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਤਾਂ ਕਿ ਵਿਅਕਤੀ ਵਾਧੂ ਭਾਰ ਦੇ ਅਭਿਆਸ ਤੋਂ ਪਹਿਲਾਂ ਤਰੋਤਾਜ਼ਾ ਮਹਿਸੂਸ ਕਰੇ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਿਅਕਤੀ ਅਰਾਮ ਅਤੇ ਲੋਡ ਤੋਂ ਇਲਾਵਾ ਚੰਗੀ ਨੀਂਦ ਅਤੇ ਖੁਰਾਕ ਵੀ ਲੈਣੀ ਜ਼ਰੂਰੀ ਹੈ ।

9. ਅਨੁਕੂਲਨ ਦਾ ਸਿਧਾਂਤ (Principle of Conditioning/adaptation) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਵਾਧੂ ਭਾਰ ਦੀ ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ ਸ਼ਰੀਰ ਉਸ ਭਾਰ ਨੂੰ ਸਹਿਣ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਂਦਾ ਹੈ । ਜਿਸ ਨਾਲ ਸਿਖਲਾਈ ਵਿਚ ਸਰੀਰਿਕ ਮੰਗ ਨੂੰ ਵਧਾਇਆ ਜਾਂ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ । ਇਸ ਲਈ ਸਰੀਰਿਕ ਪ੍ਰੋਗਰਾਮ ਇਸ ਤਰ੍ਹਾਂ ਤਿਆਰ ਕੀਤੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ ਕਿ ਪੁਰਾਣੇ ਸਿਖਲਾਈ ਪੱਧਰ ਦੇ ਅਨੁਕੂਲ ਹੋ ਜਾਣ ਤੋਂ ਬਾਅਦ ਨਵੇਂ ਰੁਟੀਨ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾ ਸਕੇ ।

10. ਕਿਰਿਆਸ਼ੀਲ ਭਾਗੀਦਾਰੀ ਦਾ ਸਿਧਾਂਤ (Principle of Active Participation) – ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਭਾਵ ਇਹ ਹੈ ਕਿ ਸਰਗਰਮੀਆਂ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਵਿਦਿਆਰਥੀ ਦੀ ਇੱਛਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ । ਹਰ ਇਕ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸਿਖਲਾਈ ਤਦ ਹੀ ਫ਼ਾਇਦੇਮੰਦ ਹੋ ਸਕਦੀ ਹੈ ਜੇਕਰ ਵਿਦਿਆਰਥੀ ਆਪਣੀ ਇੱਛਾ ਨਾਲ ਉਸ ਵਿਚ ਭਾਗ ਲਵੇ । ਇਸ ਲਈ ਇਹ ਸਿਖਲਾਈ ਦਾ ਸਭ ਤੋਂ ਕੀਮਤੀ ਅਸੂਲ ਹੈ ਕਿ ਵਿਅਕਤੀ ਆਪਣੀ ਇੱਛਾ, ਸਰੀਰਿਕ ਸਮਰੱਥਾ ਅਤੇ ਯੋਗਤਾ ਅਨੁਸਾਰ ਸਿਖਲਾਈ ਪ੍ਰੋਗਰਾਮ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਤਿਆਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 10 Haloalkanes and Haloarenes Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 10 Haloalkanes and Haloarenes

PSEB 12th Class Chemistry Guide Haloalkanes and Haloarenes InText Questions and Answers

Question 1.
Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:
(i) (CH3)2CHCH(Cl)CH3
(ii) CH3CH2CH(CH3)CH(C2H5)Cl
(iii) CH3CH2C(CH3)2CH2I
(iv) (CH3)3CCH2CH(Br)C6H5
(v) CH3CH(CH3)CH(Br)CH3
(vi) CH3C(C2H5)2CH2Br
(vii) CH3C(Cl)(C2H5)CH2CH3
(viii) CH3CH=C(Cl)CH2CH(CH3)2
(ix) CH3CH=CHC(Br)(CH3)2
(x) p-ClC6H4CH2CH(CH3)2
(xi) m-ClCH2C6H4CH2C(CH3)3
(xii) o-Br-C6H4CH(CH3)CH2CH3
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 1
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 2

Question 2.
Give the IUPAC names of the following compounds:
(i) CH3CH(Cl)CH(Br)CH3
(ii) CHF2CBrClF
(iii) ClCH2C ☰ CCH2Br
(iv) (CCl3)3CCl
(v) CH3C(p-ClC6H4)2CH(Br)CH3
(vi) (CH3)3CCH=CClC6H4I-p
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 3

Question 3.
Write the structures of the following organic halogen compounds.
(i) 2-Chloro-3-methylpentane
(ii) p -Bromochlorobenzene
(iii) 1-Chloro-4-ethylcyclohexane
(iv) 2-(2-Chlorophenyl)-l-iodooctane
(v) 2 -Bromobutane
(vi) 4-terf-Butyl-3-iodoheptane
(vii) l-Bromo-4-sec-butyl-2-methylbenzene
(viii) 1,4-Dibromobut-2 -ene
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 4
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 5

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 4.
Which one of the following has the highest dipole moment?
(i) CH2Cl2
(ii) CHCl3
(iii) CCl4
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 6
1. CCl4 is a symmetrical molecule. Therefore, the dipole moments of all four C—Cl bonds cancel each other. Hence, its resultant dipole moment is zero.

2. As shown in the above figure, in CHCl3, the resultant of dipole moments of two C—Cl bonds is opposed by the resultant of dipole moments of one C—H bond and one C—Cl bond. Since the resultant of one C—H bond and one C—Cl bond dipole moments is smaller than two C—Cl bonds, the opposition is to a small extent. As a result, CHC13 has a small dipole moment of 1.08 D.

3. On the other hand, in case of CH2Cl2, the resultant of the dipole moments of two C—Cl bonds is strengthened by the resultant of the dipole moments of two C—H bonds. As a result, CH2C12 has a higher dipole moment of 1.60 D than CHCl3 i.e., CH2Cl2 has the highest dipole moment.
Hence, the given compounds can be arranged in the increasing order of their dipole moments as:
CCl4 < CHCl3 < CH2Cl2

Question 5.
A hydrocarbon C5H10 does not react with chlorine in dark but gives a single monochloro compound C5H9Cl in bright sunlight. Identify the hydrocarbon.
Answer:
CO The hydrocarbon with molecular formula C5H10 can be either a cycloalkane or an alkene.

Since, the hydrocarbon does not react with Cl2 in the dark, it cannot be an alkene but must be a cycloalkane.
As the cycloalkane reacts with Cl2 in the presence of bright sunlight, to give a single monochloro compound, C5H9Cl, therefore all the ten hydrogen atoms of the cycloalkane must be equivalent. Therefore, the cycloalkane is cyclopentane.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 7

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 6.
Write the isomers of the compound having formula C4H9Br.
Answer:
There are four isomers of the compound having the formula C4H9Br.
These isomers are given below:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 8

Question 7.
Write the equations for the preparation of 1-iodobutane from
(i) 1-butanol
(ii) 1-chlorobutane
(iii) but-l-ene.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 9

Question 8.
What are ambident nucleophiles? Explain with an example.
Answer:
Ambident nucleophiles are nucleophiles having two nucleophilic sites. Thus, ambident nucleophiles have two sites through which they can attack.
For example, nitrite ion is an ambident nucleophile.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 10
Nitrite ion can attack through oxygen resulting in the formation of alkyl nitrites. Also, it can attack through nitrogen resulting in the formation of nitroalkanes.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 11

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 9.
Which compound in each of the following pairs will react faster in Sn2 reaction with OH?
(i) CH3Br or CH3I
(ii) (CH3)3CCl or CH3Cl
Answer:
(i) Since I ion is a better leaving group than Br ion, hence CH3I reacts faster than CH3Br in SN2 reaction with OH ion.

(ii) On steric grounds, 1° alkyl halides are more reactive than tert-alkyl halides in SN 2 reactions. Hence, CH3Cl will react at a faster rate than (CH3)3 CCl in a SN2 reaction with OH ion.

Question 10.
Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:
(i) 1 -Bromo-1-methylcyclohexane
(ii) 2-Chloro-2-methylbutane
(iii) 2, 2, 3-Trimethyl-3-hromopentane.
Answer:
(i) In 1 -bromo-1 -methylcyclohexane, the β-hydrogens on either side of the Br atom are equivalent, therefore, only 1-alkene is formed.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 12

(ii) All p-hydrogens in 2-chloro-2-methylbutane are not equivalent, hence on treatment with C2H5ONa/C2H5OH, it gives two alkenes.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 13

(iii) 2, 2, 3-Trimethyl-3-bromopentane has two different sets of p-hydrogen and therefore, in principle, can give two alkenes (I and II). But according to Saytzeff rule, more highly substituted alkene (II), being more stable is the major product.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 14

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 11.
How will you bring about the following conversions?
(i) Ethanol to but-1-yne
(ii) Ethane to bromoethene
(iii) Propene to 1 -nitropropane
(iv) Toluene to benzyl alcohol
(v) Propene to propynt
(vi) Ethanol to ethyl fluoride
(vii) Bromomethane to propanone
(viii) But-l-ene to but-2-ene
(ix) 1-Chlorobutane to n-octane
(x) Benzene to biphenyl.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 15
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 16
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 17

Question 12.
Explain why
(i) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride ?
(ii) Alkyl halides, though polar are immiscible with water ?
(iii) Grignard reagents should be prepared under anhydrous conditions ?
Answer:
(i) Because of greater s-character, an sp2-hybrid carbon is more electronegative than an sp3-hybrid carbon. Thus, the sp2-hybrid carbon of C—Cl bond in chlorobenzene has less tendency to release electrons to Cl than an sp3-hybrid carbon of cyclohexyl chloride.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 18
Hence, the C—Cl bond in chlorobenzene is less polar than that in cyclohexyl chloride. In other words, the magnitude of negative charge is less on Cl atom of chlorobenzene than in cyclohexyl chloride. Now, due to delocalisation of lone pairs of electrons of the Cl atom over the benzene ring, C—Cl bond in chlorobenzene acquires some double character while the C—Cl bond in cyclohexyl chloride is a pure single bond. Thus, C—Cl bond in chlorobenzene is shorter than in cyclohexyl chloride.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 19
As dipole moment is a product of charge and distance, chlorobenzene has lower dipole moment than cyclohexyl chloride due to lower magnitude of negative charge on the Cl atom and shorter C—Cl distance.

(ii) Alkyl halides, though polar, are immiscible in water because they are unable to form hydrogen bonds with water molecules.

(iii) Grignard reagents are very reactive. They react with moisture present in the apparatus or the starting materials to give hydrocarbons.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 20
Hence, Grignard reagent must be prepared under anhydrous conditions.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 13.
Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.
Answer:
Uses of Freon-12(CCl2F2)

  1. It is used as a refrigerant in refrigerators and air conditioners.
  2. It is also used in aerosol spray propellants such as body sprays, hair sprays.

Uses of DDT (p, p’-dichlorodiphenyltrichloroethane)

  1. It is very effective against mosquitoes and lice.
  2. It is also used in many countries as insecticide for sugarcane and fodder crops. (But due to its harmful effects, its use has been banned in many contries including U.S.A.

Uses of Carbontetrachloride (CCl4)

  1. It is used for manufacturing refrigerants and propellants for aerosol cAnswer:
  2. It is used as feedstock in the synthesis of chlorofluorocarbons and other chemicals.
  3. It is used as a solvent in the manufacture of pharmaceutical products. Until the mid 1960’s, carbon tetrachloride was widely used as a cleaning fluid, a degreasing agent in industries, a spot reamer in homes, and a fire extinguisher.

Uses of Iodoform (CHI3)
Iodoform was used earlier as an antiseptic, but now it has been replaced by other formulations-containing iodine-due to its objectionable smell. The antiseptic property of iodoform is only due to the liberation of free iodine when it comes in contact with the skin.

Question 14.
Write the structure of the major organic product in each of the following reactions
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 21
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 22
(v) C6H5ONa + C2H6Cl →
(vi) CH3CH2CH2OH + SOCl2
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 23
(viii) CH3CH = C(CH3)2 + HBr →
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 24

Question 15.
Write the mechanism of the following reaction
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 25
Answer:
The given reaction is
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 26
The given reaction is an SN2 reaction. In this reaction, CN acts as the nucleophile and attacks the carbon atom to which Br is attached. CN ion is an ambident nucleophile and can attack through both C and N. In this case, it attacks through the C-atom.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 27

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 16.
Arrange the compounds of each set in order of reactivity towards SN2 displacement
(i) 2-Bromo-2-methylbutane, 1 -Bromopentane, 2-Bromopentane
(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 3-Bromo- 2-methylbutane
(iii) 1-Bromobutane, l-Bromo-2, 2-dimethylpropane, 1-Bromo -2-methylbutane, 1-Bromo-3-methylbutane.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 28

Question 17.
Out of C6H5CH2Cl and C6H5CHClC6H5, which is more easily hydrolysed by aqueous KOH?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 29
In SN1 reaction, reactivity depends upon the stability of carbocations. PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 30 carbocation is more stable as compared to PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 31. Therefore, C6H5CHClC6H5 gets hydrolysed more easily than C6H5CHCl.

Question 18.
p-Dichlorobenzene has higher m.p. and lower solubility than those of o- and m-isomers. Discuss.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 32
p-Dichlorobenzene is more symmetrical than o-and m-isomers. For this reason, it fits more closely than o-and m-isomers in the crystal lattice. Therefore, more energy is required to break the crystal lattice of p-dichlorobenzene. As a result, p-dichlorobenzene has a higher melting point and lower solubility than o-and m-isomers.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 19.
How the following conversions can be carried out?
(i) Propene to propan-l-ol
(ii) Ethanol to but-l-yne
(iii) 1-Bromopropane to 2-bromopropane
(iv) Toluene to benzyl alcohol
(v) Benzene to 4-bromonitrobenzene
(vi) Benzyl alcohol to 2-phenylethanoic acid
(vii) Ethanol to propanenitrile
(viii) Aniline to chlorobenzene
(ix) 2-Chlorobutane to 3, 4-dimethylhexane
(x) 2-Methyl- 1-propene to 2-chloro-2-methylpropane
(xi) Ethyl chloride to propanoic acid
(xii) But-l-ene to n-butyliodide
(xiii) 2-Chloropropane to 1-propanol
(xiv) Isopropyl alcohol to iodoform
(xv) Chlorobenzene to p-nitrophenol
(xvi) 2-Bromopropane to 1-bromopropane
(xvii) Chloroethane to butane
(xviii) Benzene to diphenyl
(xix) tert-Butyl bromide to isobutyl bromide
(xx) Aniline to phenylisocyanide
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 33
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 34
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 35
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 36
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 37
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 38
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 39

Question 20.
The treatment of alkyl chlorides with aqueous KOH leads to the formation of alcohols but in the presence of alcoholic KOH, alkenes are major products. Explain.
Answer:
In an aqueous solution, KOH almost completely ionises to give OH ions. OH ion is a strong nucleophile, which leads the alkyl chloride to undergo a substitution reaction to form alcohol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 40
On the other hand, an alcoholic solution of KOH contains alkoxide (RO) ion, which is a strong base. Thus, it can abstract a hydrogen from the p carbon of the alkyl chloride and form an alkene by eliminating a molecule of HCl.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 41
OH ion is a much weaker base than RO ion. Also, OH ion is highly solvated in an aqueous solution and as a result, the basic character of OH ion decreases. Therefore, it cannot abstract a hydrogen from the β carbon.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 21.
Primary alkyl halide C4H9Br (A) reacted with alcoholic KOH to give compound (B).Compound (B) is reacted with HBr to give (C) which is an isomer of (A). When (A) is reacted with sodium metal it gives compound (D), C8H18 which is different from the compound formed when n-butyl bromide is reacted with sodium. Give the structural formula of (A) and write the equations for all the reactions.
Answer:
There are two primary alkyl halides having the formula, C4H9Br. They are n-butyl bromide and isobutyl bromide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 42
Therefore, compound (A) is either n-butyl bromide or isobutyl bromide. Now, compound (A) reacts with Na metal to give compound (B) of molecular formula, C8H18 which is different from the compound formed when n-butyl bromide reacts with Na metal. Hence, compound (A) must be isobutyl bromide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 43

Question 22.
What happens when
(i) n-butyl chloride is treated with alcoholic KOH,
(ii) bromobenzene is treated with Mg in the presence of dry ether,
(iii) chlorobenzene is subjected to hydrolysis,
(iv) ethyl chloride is treated with aqueous KOH,
(v) methyl bromide is treated with sodium in the presence of dry ether
(vi) methyl chloride is treated with KCN.
Answer:
(i) When n-butyl chloride is treated with alcoholic KOH, the formation of but-l-ene takes place. This reaction is a dehydrohalogenation reaction.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 44

(ii) When bromobenzene is treated with Mg in the presence of dry ether, phenylmagnesium bromide is formed.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 45

(iii) Chlorobenzene does not undergo hydrolysis under normal conditions. However, it undergoes hydrolysis when heated in an aqueous sodium hydroxide solution at a temperature of 623 K and a pressure of 300 atm to form phenol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 59

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 46

(iv) When ethyl chloride is treated with aqueous KOH, it undergoes hydrolysis to form ethanol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 47

(v) When methyl bromide is treated with sodium in the presence of dry ether, ethane is formed. This reaction is known as the Wurtz reaction.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 48

(vi) When methyl chloride is treated with KCN, it undergoes a substitution reaction to give methyl cyanide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 49

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Chemistry Guide for Class 12 PSEB Haloalkanes and Haloarenes Textbook Questions and Answers

Question 1.
Write structures of the following compounds :
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert-butyl-3-iodoheptane
(iv) 1-4-Dibromobut-2-ene
(v) 1-Bromo-4-sec-butyl-2-methylbenzene
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 50

Question 2.
Why is sulphuric acid not used during the reaction of alcohols with KI?
Answer:
H2SO4 cannot be used along with KI in the conversion of an alcohol to an alkyl iodide as it converts KI to corresponding HI and then oxidises it to I2.

Question 3.
Write structures of different dihalogen derivatives of propane.
Answer:
(i) ClCH2CH2CH2Cl
(ii) ClCH2CHClCH3
(iii) Cl2CHCH2CH3
(iv) CH3CCl2CH3

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 4.
Among the isomeric alkanes of molecular formula C5H12 identify the one that on photochemical chlorination yields :
(i) A single monochloride
(ii) Three isomeric monochlorides
(iii) Four isomeric monochlorides
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 51
All the hydrogen atoms are equivalent and replacement of any hydrogen will give the same product.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 52
The equivalent hydrogens are grouped as a, b and c. The replacement of equivalent hydrogens will give the same product. Thus, three isomeric products are possible.

(iii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 53
The equivalent hydrogens are grouped as a, b, c and d. Thus, four isomeric products are possible.

Question 5.
Draw the structures of major monohalo products in each of the following reactions:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 54
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 55

Question 6.
Arrange each set of compounds in the order of increasing boiling points.
(i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.
(ii) 1-Chloropropane, Isopropyl chloride, 1 -Chlorobutane.
Answer:
(i) Chloromethane < Bromomethane < Dibromomethane < Bromoform. Boiling point increases with increase in molecular mass.

(ii) Isopropyl chloride < 1-Chloropropane < 1-Chlorobutane. Isopropyl chloride being branched has lower boiling point than 1-Chloropropane.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 7.
Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism ? Explain your answer.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 56
Answer:
(i) CH3CH2CH2CH2Br
Being primary halide, there won’t be any steric hindrance.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 57
Being a secondary halide, there will be less crowding around α-carbon than tertiary halide.

(iii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 58
The presence of methyl group closer to the halide group will increase the steric hindrance and decrease the rate.

Question 8.
In the following pairs of halogen compounds, which compound undergoes faster SN1 reaction ?
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 59
Answer:
(i) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 60
2-Chloro-2-methylpropane as the tertiary carbocation is more stable than secondary carbocation.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 61
2-Chloroheptane as the secondary carbocation is more stable than primary carbocation.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 9.
Identify A, B, C, D, E, R and R’ in the following:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 62
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 63

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 8 Electromagnetic Waves Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 8 Electromagnetic Waves

PSEB 12th Class Physics Guide Electromagnetic Waves Textbook Questions and Answers

Question 1.
Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15 A.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 1
(a) Calculate the capacitance and the rate of charge of potential difference between the plates.
(b) Obtain the displacement current across the plates.
(c) Is Kirchhoffs first rule (junction rule) valid at each plate of the capacitor? Explain.
Answer:
(a) Capacitance of capacitor is given by the relation
C = \(\frac{\varepsilon_{0} A}{d}\) = \(\frac{8.854 \times 10^{-12} \times \pi \times(0.12)^{2}}{5 \times 10^{-2}}\)
= 8.01F
Also \(\frac{d Q}{d t}\) = \(\frac{d V}{d t}\)
∴ \(\frac{d V}{d t}\) = \(\frac{0.15}{8.01 \times 10^{-12}}\)
= 1.87 × 1010V /s

(b) Displacement current Id = ε0 × \(\frac{d}{d t}\) (ΦE)
Again ΦE – EA across Hence,(negative end constant).
Hence, Id = ε0 A\(\frac{d E}{d t}\)
Again, E = \(\frac{Q}{\varepsilon_{0} A}\)
So, \(\frac{d E}{d t}=\frac{i}{\varepsilon_{0} A}\)
which corresponds id = i = 1.5A

(c) Yes, Kirchhoffs law is valid provided by current, we mean the sum of condition and displacement current.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 2.
A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s-1.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 2
(a) What is the rms value of the conduction current?
(b) Is the conduction current equal to the displacement current?
(c) Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
Answer:
(a) Irms = Vrms × Cω
= 230 × 100 × 1012 × 300
= 6.9 × 10-6 A = 6.9 μ A

(b) Yes, we know that the deviation is correct even if I is steady DC or AC (oscillating in time) can be proved as
Id = ε0\(\frac{d}{d t}\) (σ) = ε0\(\frac{d}{d t}\) (EA) (> σ = EA)
ε0A \(\frac{d E}{d t}\) = ε0A \(\frac{d}{d t}\) (\(\frac{\sigma}{\varepsilon_{0}}\))
ε0A \(\frac{d}{d t}\) (\(\frac{\sigma}{\varepsilon_{0} A}\)) (> σ = \(\frac{q}{A}\))
ε0A × \(\frac{1}{\varepsilon_{0} A} \cdot \frac{d q}{d t}\) = I
which is the required proof.

(c) The region formula for magnetic field
B = \(\frac{\mu_{0} r}{2 \pi R^{2}}\)id
even if Id is oscillating (and so magnetic field B): The formula is valid. ID oscillates in phase as i0 = i (peak value of current). Now, we have
B0 = \(\frac{\mu_{0} r}{2 \pi R^{2}}\)i0
where B0 and i0 are the amplitude of magnetic field and current respectively.
So, i0 = √2Irms = 6.96 × 1.414 μA = 9.76μA
Given, r = 3 cm, R = 6cm
B0 = \(\frac{\mu_{0} r i_{0}}{2 \pi R^{2}}\)
= \(\frac{10^{-7} \times 2 \times 3 \times 10^{-2} \times 9.76 \times 10^{-6}}{(6)^{2} \times\left(10^{-2}\right)^{2}}\)
= 1.633 × 10-11 T

Question 3.
What physical quantity is the same for X-rays of wavelength 10-10 m, red light of wavelength 6800 Å and radiowaves of wavelength 500 m?
Answer:
X-rays, red light and radiowaves all are the electromagnetic waves. They have different wavelengths and frequencies. But the physical quantity which is same for all of these is the velocity of light in vacuum which is denoted by c and is equal to 3 × 108 ms-1 W

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 4.
A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?
Answer:
In an electromagnetic wave’s propagation vector \(\vec{K}\), electric field vector \(\vec{E}\) and magnetic field vector \(\vec{K}\) form a right handed system. As the propagation vector is along Z-direction, electric field vector will be along X-direction and magnetic field vector will be along Y-direction.
Frequency v = 30 MHz = 30 × 106Hz
Speed of light c = 3 × 108 ms-1
Wavelength, λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{30 \times 10^{6}}\) = 10 m

Question 5.
A radio can tune in to any station in the 7.5 MHz to 12 MHz hand. What is the corresponding wavelength band?
Answer:
Speed of wave c = 3 × 108 ms-1
When frequency, V1 = 7.5MHz = 7.5 × 106 Hz
Wavelength, λ1 = \(\frac{c}{v_{1}}\) = \(\frac{3 \times 10^{8}}{7.5 \times 10^{6}}\) = 40m
When frequency, V2 12 MHZ = 12 × 106HZ
Wavelength, λ2 = \(\frac{c}{v_{2}}\) = \(\frac{3 \times 10^{8}}{12 \times 10^{6}}\) = 25m
Wavelength band is from 25 m to 40 m.

Question 6.
A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?
Answer:
According to Maxwell’s theory, an oscillating charged particle with a frequency v radiates electromagnetic waves of frequency v.
So, the frequency of electromagnetic waves produced by the oscillator is v = 109 Hz.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 7.
The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is B0 =510 nT. What is the amplitude of the electric field part of the wave?
The relation between magnitudes of magnetic and electric field vectors in vacuum is
\(\frac{E_{0}}{B_{0}}\) = c
⇒ E0 = B0C
Here, B0 = 510 × 10-9T, c = 3 × 108 ms-1
E0 = 510 × 10-9 × 3 × 108 = 153N/C

Question 8.
Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is v = 50.0 MHz. (a) Determine, B0, ω, k and λ. (b) Find expressions for E and B.
Answer:
Electric field amplitude, E0 = 120 N/C
Frequency of source, v = 50.0 MHz = 50 × 106 Hz
Speed of light, c = 3 × 108 m/s

(a) Magnitude of magnetic field strength is given as
B0 \(\frac{E_{0}}{\mathcal{C}}\) = \(\frac{120}{3 \times 10^{8}}\)
40 × 10-8T
= 400 × 10-9 T
= 400 nT
Angular frequency of source is given as
ω = 2πv = 2π × 50 × 106
= 3.14 × 108 rad/s
Propagation constant is given as
k = \(\frac{\omega}{c}\) = \(\frac{3.14 \times 10^{8}}{3 \times 10^{8}}\) = 1.05 rad /m
Wavelength of wave is given us
λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{50 \times 10^{6}}\) = 6.0m

(b) Suppose the wave is propagating in the positive x direction. Then, the electric field vector will be in the positive y direction and the magnetic field vector will be in the positive z direction. This is because all three vectors are mutually perpendicular.
Equation of electric field vector is given as
\(\vec{E}\) = E0sin (kx – ωt) ĵ
= 120 sin [1.05 x – 3.14 × 108t] ĵ
And, magnetic field vector is given as
\(\vec{B}\) = B0 sin (kx – ωt)k̂
\(\vec{B}\) = (4 × 10-7)sin[1.05 x – 3.14 × 108t]k̂

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 9.
The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E – hv (for energy of a quantum of radiation : photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Answer:
Energy of a photon is given as
E = hv = \(\frac{h c}{\lambda}\)
where,
h = Planck’s constant = 6.6 × 10-34 Js
c = Speed of light = 3 × 108 m/s
λ = Wavelength of radiation
∴ E = \(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}\) = \(\frac{19.8 \times 10^{-26}}{\lambda}\) = J
= \(\frac{19.8 \times 10^{-26}}{\lambda \times 1.6 \times 10^{-19}}\) = \(\frac{12.375 \times 10^{-7}}{\lambda}\) = eV
The given table lists the photon energies for different parts of an electromagnetic spectrum for different λ.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 3
The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source.

Question 10.
In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010Hz and amplitude 48 Vm-1.
(a) What is the wavelength of the wave?
(b) What is the amplitude of the oscillating magnetic field?
(c) Show that the average energy density of the E field equals the average energy density of the B field, [c = 3 × 108 ms-1]
Answer:
Frequency of the electromagnetic wave, v = 2.0 × 1010 Hz
Electric field amplitude, E0 = 48 V m-1
Speed of light, c = 3 × 108 m/s

(a) Wavelength of the wave is given as
λ = \(\frac{\mathcal{C}}{\mathrm{v}}\) = \(\frac{3 \times 10^{8}}{2 \times 10^{10}}\) 0.015 m

(b) Magnetic field strength is given as
B0 = \(\frac{E_{0}}{c}\)
= \(\frac{48}{3 \times 10^{8}}\) = 1.6 × 10-7 T

(c) Let UE and UB be the energy density of \(\) field and \(\) field respectively. Energy density of the electric field is given as
UE = \(\frac{1}{2}\) ε0E2
And, energy density of the magnetic field is given as
UB = \(\frac{1}{2 \mu_{0}}\)2
We have the relation connecting E and B as
E = cB ………….. (1)
where,
c = \(\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}\) ……………. (2)
Putting equation (2) in equation (1), we get
E = \(\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}\)B
Squaring both sides, we get
E2 = \(\frac{1}{\varepsilon_{0} \mu_{0}}\) B2
ε0E2 = \(\frac{B^{2}}{\mu_{0}}\)
\(\frac{1}{2}\)ε0E2 = \(\frac{1}{2} \frac{B^{2}}{\mu_{0}}\)
⇒ UE = EB

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 11.
Suppose that the electric field part of an electromagnetic wave in vacuum is
E = {(3.1 N/C) cos [(1.8 rad/m) y + (5.4 × 106 rad/s) t]}î
(a) What is the direction of propagation?
(b) What is the wavelength λ ?
(c) What is the frequency v?
(d) What is the amplitude of the magnetic field part of the wave?
(e) Write an expression for the magnetic field part of the wave.
Answer:
(a) Wave is propagating along negative y-axis.

(b) Standard equation of wave is \(\vec{E}\) = E0 cos(ky + cot)î
Comparing the given equation with standard equation, we have
E0 = 3.1 N/C, k = 1.8 rad/m, ω = 5.4 × 106 rad/s
Propagation constant k = \(\frac{2 \pi}{\lambda}\)
∴ λ = \(\frac{2 \pi}{k}\) = \(\frac{2 \times 3.14}{1.8}\) m = 3.49 m

(c) We have ω = 5.4 × 106 rad/s
Frequency, v = \(\frac{\omega}{2 \pi}\) = \(\frac{5.4 \times 10^{6}}{2 \times 3.14}\) Hz
= 8.6 × 105 Hz

(d) Amplitude of magnetic field,
B0 = \(\frac{E_{0}}{c}\) = \(\frac{3.1}{3 \times 10^{8}}\) = 1.03 × 10-8 T

(e) The magnetic field is vibrating along Z-axis because \(\vec{K}\),\(\vec{E}\),\(\vec{B}\) form a right handed system -ĵ × î = k̂
> Expression for magnetic field is
\(\vec{B}\) = B0 cos(ky+ ωt)k̂
= [1.03 × 10-8Tcos{(1.8rad / m) y +(5.4 × 6 rad/s)t}]k̂

Question 12.
About 5% of the power of a 100 W light bulb is converted to visible radiation. What is the average intensity of visible radiation
(a) at a distance of 1 m from the bulb?
(b) at a distance of 10 m?
Assume that the radiation is emitted isotropically and neglect reflection.
Answer:
Power in visible radiation, P = \(\frac{5}{100}\) × 100 = 5W
For a point source, intensity I = \(\frac{P}{4 \pi r^{2}}\), where r is distance from the source.

(a) When distance r = 1 m,
I = \(\frac{5}{4 \pi(1)^{2}}=\frac{5}{4 \times 3.14}\) = 0.4 W/m2

(b) When distance r = 10 m,
I = \(\frac{5}{4 \pi(10)^{2}}=\frac{5}{4 \times 3.14 \times 100}\)
= 0.004 W/m2

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 13.
Use the formula λm T = 0.29 cm K to obtain the characteristic temperature ranges for different parts of the electromagnetic spectrum. What do the numbers that you obtain tell you?
Answer:
A body at a particular temperature produces a continuous spectrum of wavelengths. In case of a black body, the wavelength corresponding to maximum intensity of radiation is given according to Planck’s law. It can be given by the relation,
λm = \(\frac{0.29}{T}\) cm K
where, λm = maximum wavelength
T = temperature
Thus, the temperature for different wavelengths can be obtained as
For λm = 10-4 cm; T = \(\frac{0.29}{10^{-4}}\) = 2900°K
For λm = 5 × 10-5 cm; T = \(\frac{0.29}{5 \times 10^{-5}}\) = 5800°K
For λm = 10-6 cm; T = \(\frac{0.29}{10^{-6}}\) = 290000 °K and so on.

The numbers obtained tell us that temperature ranges are required for obtaining radiations in different parts of an electromagnetic spectrum. As the wavelength decreases, the corresponding temperature increases.

Question 14.
Given below are some famous numbers associated with electromagnetic radiations in different contexts in physics. State the part of the electromagnetic spectrum to which each belongs.
(a) 21 cm (wavelength emitted by atomic hydrogen in interstellar space).

(b) 1057 MHz (frequency of radiation arising from two close energy levels in hydrogen; known as Lamb shift).

(c) 2.7 K (temperature associated with the isotropic radiation filling all space-thought to be a relic of the ‘big-bang’ origin of the universe).

(d) 5890 Å – 5896 Å (double lines of sodium).

(e) 14.4 keV [energy of a particular transition in 57 Fe nucleus associated with a famous high resolution spectroscopic method (Mossbauer spectroscopy)].
Answer:
(a) 21 cm belongs to short wavelength end of radiowaves (or Hertizan waves).

(b) Wavelength, λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{1057 \times 10^{6}}\) = 0.28 m = 28 cm.
This also belongs to short wavelength end of radiowaves.

(c) From relation λmT = 0.29 × 10-2 K,
λm = \(\frac{0.29 \times 10^{-2} \mathrm{~K}}{T}=\frac{0.29 \times 10^{2}}{2.7}\)
= 0.107 × 10-2m= 0.107 cm.
This corresponds to microwaves.

(d) Wavelength doublet 5890Å – 5896Å belongs to the visible region. These are emitted by sodium vapour lamp.

(e) From relation, E = \(\frac{h c}{\lambda}\)
we have λ = \(\frac{h c}{E}\)
λ = \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{14.4 \times 10^{3} \times 1.6 \times 10^{-19}} \mathrm{~m}\)
= 0.86 × 10-10 m = 0.86 Å
It belongs to the X-ray region of electromagnetic spectrum.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 15.
Answer the following questions :
(a) Long distance radio broadcasts use short-wave bands. Why?

(b) It is necessary to use satellites for long distance TV transmission. Why?

(c) Optical and radiotelescopes are built on the ground but X-ray astronomy is possible only from satellites orbiting the earth Why?

(d) The small ozone layer on top of the stratosphere is crucial for human survival. Why?

(e) If the earth did not have an atmosphere, would its average surface temperature be higher or lower than what it is now?

(f) Some scientists have predicted that a global nuclear war on the earth would be followed by a severe ‘nuclear winter’ with a devastating effect on life on earth. What might be the basis of this prediction?
Answer:
(a) Long distance radio broadcasts use short-wave bands because only these bands can be refracted by the ionosphere.

(b) Yes, it is necessary to use satellites for long distance TV transmissions because television signals are of high frequencies and high energies. Thus, these signals are not reflected by the ionosphere. Hence, satellites are helpful in reflecting TV signals. Also, they help in long distance TV transmissions.

(c) With reference to X-ray astronomy, X-rays are absorbed by the atmosphere. However, visible and radiowaves can penetrate it. Hence, optical and radiotelescopes are built on the ground, while X-ray astronomy is possible only with the help of satellites orbiting the Earth.

(d) The small ozone layer on the top of the stratosphere is crucial for human survival because it absorbs harmful ultraviolet radiations present in sunlight and prevents it from reaching the Earth’s surface.

(e) In the absence of an atmosphere, there would be no greenhouse effect on the surface of the Earth. As a result, the temperature of the Earth would decrease rapidly, making it chilly and difficult for human survival.

(f) A global nuclear war on the surface of the Earth would have disastrous consequences. Post nuclear war, the Earth will experience severe winter as the war will produce clouds of smoke -that would cover maximum parts of the sky, thereby preventing solar light form reaching the atmosphere. Also, it will lead to the depletion of the ozone layer.

PSEB 12th Class Sociology Book Solutions Guide in Punjabi English Medium

PSEB 12th Class Sociology Book Solutions

Punjab State Board Syllabus PSEB 12th Class Sociology Book Solutions Guide Pdf in English Medium and Punjabi Medium are part of PSEB Solutions for Class 12.

PSEB 12th Class Sociology Guide | Sociology Guide for Class 12 PSEB

Sociology Guide for Class 12 PSEB | PSEB 12th Class Sociology Book Solutions

PSEB 12th Class Sociology Book Solutions in English Medium

Unit 1 Tribal, Rural and Urban Society in India

Unit 2 Inequalities in Indian Society

Unit 3 Structural and Cultural Change in India

Unit 4 Social Problems in Indian Society

PSEB 12th Class Sociology Book Solutions in Hindi Medium

Unit-I भारत में जनजातीय, ग्रामीण तथा नगरीय समाज

Unit-II भारतीय समाज में असमानताएं

Unit-III भारत में संरचनात्मक तथा सांस्कृतिक परिवर्तन

Unit-IV भारतीय समाज में सामाजिक समस्याएं

PSEB 12th Class Sociology Syllabus

Unit I: Tribal, Rural and Urban Societies in India

1. Tribal Society: Meaning, Features; Classification of Tribes;
Marriage System; Issues- Deforestation and Displacement; Changes in Tribal Society.
2. Rural Society: Meaning, Features; Issues – Indebtedness, Impact of Green Revolution; Changes in Rural Society.
3. Urban Society: Meaning, Features; Issues of Housing and Slums.

Unit II: Inequalities in Indian Society

4. Caste Inequalities: Concept, Features; Caste and Social Stratification, Theories of Origin of Caste, Caste Inequality, and Indian Society.
5. Class Inequalities: Concept of class, Features of Class; Relations between caste, class, status Group and class Hierarchy, Views of Sociologists on class structure, Classes in Rural and Urban India.
6. Gender Inequalities: Concept, Gender Inequality, Theories of Feminism, Gender; Gender Discrimination: Meaning and Nature; Problems of Women, Role of Gender relation in Societal Development.

Unit III: Structural and Cultural Change in India

7. Westernisation and Sankritisation: Westernisation: Meaning, Carrier of process, Features, Impact: Sanskritisation: Meaning, Sanskritisation preferred as against Brahminisation, Dominant Caste, Impact.
8. Modernisation and Globalisation: Modernisation: Meaning, Characteristic, Process of Modernisation, Causes, Impact: Globalisation: Meaning, Characteristics, Process of globalization, Causes, Impact.
9. Social Movement: Meaning, Types, Stages, Caste Based Movements, Class-Based Movements, Women’s movements, environmental movements.

Unit IV: Social Problems in Indian Society

10. Social Problems: Alcoholism and Drug Addiction
11. Violence Against Women: Female Foeticide and Domestic Violence: Female Foeticide: Meaning, India Scenario, Causes, Consequences, Strategies to Combat Female Foeticide; Domestic Violence – Meaning, Forms, Factors, Causes, Effects, Remedies.
12. Social Issues: The Age and Disability: The Aged: Theories, Problems, Remedial Measures: Disability – Definition, Magnitude of Disability, Types, Causes, Social Model, Problems, Measures.

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

Punjab State Board PSEB 12th Class Physical Education Book Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physical Education Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

Physical Education Guide for Class 12 PSEB ਸਰੀਰਕ ਯੋਗਤਾ Textbook Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਤਾਕਤ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ? ਉੱਤਰ-ਤਾਕਤ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ-

  1. ਸਥਿਰ ਤਾਕਤ,
  2. ਗਤੀਸ਼ੀਲ ਤਾਕਤ !

ਪ੍ਰਸ਼ਨ 2.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਕਿੰਨੇ ਅੰਗ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ:
ਤਾਕਤ, ਸਹਿਣਸ਼ੀਲਤਾ, ਰਫਤਾਰ, ਲੱਚਕ, ਫੁਰਤੀ ਅਤੇ ਤਾਲਮੇਲ ਯੋਗਤਾ ।

ਪ੍ਰਸ਼ਨ 3.
ਛੋਟੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਦੱਸੋ ।
ਉੱਤਰ:
100 ਮੀ., 200 ਮੀ., 400 ਮੀ., 100 ਹਰਡਲ ਅਤੇ 110 ਮੀ. ਹਰਡਲ, 4 × 100 ਰਿਲੇਅ ਅਤੇ 4 × 200 ਰਿਲੇਅ ।

ਪ੍ਰਸ਼ਨ 4.
ਸੁਸਤ ਲਚਕ ਵੱਧ ਹੁੰਦੀ ਹੈ ਜਾਂ ਚੁਸਤ ਲਚਕ ?
ਉੱਤਰ:
ਸੁਸਤ ਲਚਕ ।

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 5.
ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਨਸ਼ੀਲਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ:
ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Middle Term Endurance)-ਇਸ ਦੀ ਜ਼ਰੂਰਤ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਪੈਂਦੀ ਹੈ ਜੋ ਕਿ 2 ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਮੱਧ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 6.
ਲੰਮੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ:
ਲੰਬੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Long Term Endurance) – ਇਸ ਕਿਸਮ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਐਰੋਬਿਕ ਊਰਜਾ ਪ੍ਰਣਾਲੀ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਲੰਬੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਵਿਕਾਸ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਕਿ 10 ਮਿੰਟ ਜਾਂ ਇਸ ਤੋਂ ਵੀ ਵੱਧ ਸਮੇਂ ਲਈ ਖੇਡੇ ਜਾਂਦੇ ਹਨ । ਜਿਵੇਂ ਕਿ ਮੈਰਾਥਨ, 5000 ਮੀਟਰ ਅਤੇ ‘ 10,000 ਮੀਟਰ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 7.
ਸੁਸਤ ਲਚਕ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ:
ਸੁਸਤ ਲਚਕ (Passive Flexibility) – ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਦੇ ਵੱਡੀ ਦਰ ਤੇ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਕਿਸੇ ਸਾਥੀ ਖਿਡਾਰੀ ਦੀ ਮਦਦ ਨਾਲ ਸਚਿੰਗ (Stretching) ਕਸਰਤਾਂ ਕਰਨਾ । ਇਹ ਚੁਸਤ ਲਚਕ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 8.
ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ ? ਇਹਨਾਂ ਬਾਰੇ ਵਿਸਥਾਰਪੂਰਵਕ ਜਾਣਕਾਰੀ ਦਿਉ ।
ਉੱਤਰ:
ਸਹਿਣਸ਼ੀਲਤਾ ਦੇ ਪ੍ਰਕਾਰ (Types of Endurance) – ਲੋੜਾਂ ਮੁਤਾਬਿਕ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਹੇਠ ਲਿਖੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ-
1. ਕਿਆ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ (As per Nature of the Activity)
(ਉ) ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Basic Endurance) – ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਮੁੱਖ ਤੌਰ ਤੇ ਐਰੋਬਿਕ ਸਹਿਣਸ਼ੀਲਤਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਐਰੋਬਿਕ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਪੂਰਤੀ ਕਸਰਤਾਂ ਅਤੇ ਅਭਿਆਸ ਨਾਲ ਮਿਲਦੀ ਰਹੇ । ਇਹ ਹੌਲੀ-ਹੌਲੀ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਿਸ ਵਿਚ ਸਰੀਰ ਦੇ ਸਾਰੇ ਮਸਲ ਗਰੁੱਪ ਭਾਗ ਲੈਂਦੇ ਹਨ ਜਾਂ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ । ਦੌੜਨਾ, ਜੋਗਿੰਗ, ਚੱਲਣਾ ਅਤੇ ਤੈਰਾਕੀ ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦੇ ਉਦਾਹਰਨ ਹਨ ।

(ਅ) ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ (General Endurance – ਇਹ ਐਰੋਬਿਕਸ ਅਤੇ ਐਨਰੋਬਿਕਸ ਦੋਵੇਂ ਕ੍ਰਿਆਵਾਂ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਹ ਹੌਲੀ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਦੋਵਾਂ ਪ੍ਰਕਾਰਾਂ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ ਖਿਡਾਰੀ ਨੂੰ ਬਿਨਾਂ ਥਕਾਵਟ ਦੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਕੰਮ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ ।

(ਬ) ਵਿਸ਼ੇਸ਼ ਸਹਿਣਸ਼ੀਲਤਾ (Specific Endurance) – ਵਿਸ਼ੇਸ਼ ਸਹਿਣਸ਼ੀਲਤਾ ਹਰ ਖੇਡ ਲਈ ਅਲੱਗ-ਅਲੱਗ ਹੁੰਦੀ ਹੈ । ਹਰ ਖੇਡ ਦੀ ਆਪਣੀ ਗਤੀ ਹੁੰਦੀ ਹੈ , ਜਿਵੇਂ ਕਿ ਮੈਰਾਥਨ ਦੌੜਾਕਾਂ ਨੂੰ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਕਿਰਿਆ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ:ਜਿਵੇਂ ਕਿ ਛੋਟੀਆਂ ਦੌੜਾਂ ; ਜਿਵੇਂ (ਸਪਰਿੰਟ) ਤੇ ਮੱਧ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਆਦਿ ਇਸ ਦੇ ਉਦਾਹਰਨ ਹਨ ।

(ਅ) ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Middle Term Endurance) – ਇਸ ਦੀ ਜ਼ਰੂਰਤ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਪੈਂਦੀ ਹੈ ਜੋ ਕਿ 2 ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਮੱਧ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ । ਇਸ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਐਨਰੋਬਿਕ ਸਹਿਣਸ਼ੀਲਤਾ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

(ਇ) ਲੰਬੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Long Term Endurance) – ਇਸ ਕਿਸਮ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਐਰੋਬਿਕ ਊਰਜਾ ਪ੍ਰਣਾਲੀ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਲੰਬੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਵਿਕਾਸ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਕਿ 10 ਮਿੰਟ ਜਾਂ ਇਸ ਤੋਂ ਵੀ ਵੱਧ ਸਮੇਂ ਲਈ ਖੇਡੇ ਜਾਂਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਮੈਰਾਥਨ, 5000 ਮੀਟਰ ਅਤੇ 10,000 ਮੀਟਰ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 9.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ‘ਤੇ ਨੋਟ ਲਿਖੋ । (ਉ) ਗਤੀ (ਅ) ਲਚਕ (ਬ) ਤਾਲਮੇਲ ਯੋਗਤਾ ।
ਉੱਤਰ:
(ੳ) ਗਤੀ (ਰਫਤਾਰ) (Speed)-ਗਤੀ ਇਕ ਅਧਿਕਤਮ ਦਰ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿਚ ਇਕ ਵਿਅਕਤੀ ਇਕ ਵਿਸ਼ੇਸ਼ ਦੂਰੀ ਨੂੰ ਤੈਅ ਕਰਨ ਲਈ ਆਪਣੇ ਸਰੀਰ ਵਿਚ ਗਤੀ ਲੈ ਕੇ ਆਉਂਦਾ ਹੈ । ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਰਫਤਾਰ ਘੱਟ ਤੋਂ ਘੱਟ ਮੁਸ਼ਕਿਲ ਸਮੇਂ ਵਿਚ ਇਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਤੇ ਪਹੁੰਚਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਹ ਯੋਗਤਾ ਜ਼ਿਆਦਾਤਰ ਜਨਮ-ਜਾਤ ਵਿਤੀ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਜਟਿਲ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਵੀ ਸਿਰਫ 20% ਗਤੀ ਹੀ ਵਿਕਸਿਤ ਕਰ ਸਕਦੇ ਹਾਂ | ਤਦ ਹੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਤੇਜ਼ ਦੌੜਾਕ ਜਨਮ ਲੈਂਦੇ ਹਨ, ਬਣਾਏ ਨਹੀਂ ਜਾਂਦੇ ।

ਰਫਤਾਰ ਦੇ ਪ੍ਰਕਾਰ (Types of Speed)
1. ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫਤਾਰ (Reaction Speed) – ਇਹ ਸਿਗਨਲ ਮਿਲਣ ਤੇ ਤੁਰੰਤ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਪ੍ਰਸਥਿਤੀ ਦੇ ਵਿਰੁੱਧ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਕੋਚ (Coach) ਦੀ ਸੀਟੀ ਵੱਜਣ ਤੇ ਅੱਗੇ ਵੱਲ, ਪਿੱਛੇ ਵੱਲ, ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜਾਣਾ ਆਦਿ ।

2. ਗਤੀ ਦੀ ਯੋਗਤਾ (Acceleration Ability) – ਇਹ ਸਥਿਰ (Stationary) ਅਵਸਥਾ ਤੋਂ ਵੱਧ ਤੋਂ ਵੱਧ (Maximum) ਰਫਤਾਰ ਵਿਚ ਇਕਦਮ ਜਾਣ ਦੀ ਯੋਗਤਾ ਹੈ : ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਸਪਰਿੰਟ (Sprint) ਛੋਟੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਵਿਚ ਦੇਖ ਸਕਦੇ ਹਾਂ ਜਿੱਥੇ ਇਕ ਵਿਸਫੋਟਕ ਤਾਕਤ, ਤਕਨੀਕ ਅਤੇ ਲਚਕ ਦੀ ਜ਼ਰੂਰਤ ਪੈਂਦੀ ਹੈ ।

3. ਲੋਕੋਮੋਟਰ ਜਾਂ ਗਮਨ ਦੀ ਯੋਗਤਾ ਜਾਂ ਇੰਜਣ ਯੋਗਤਾ (Locomotor Ability) – ਇਹ ਇਕਦਮ ਰਫਤਾਰ ਬਣਾ ਕੇ ਉਸਨੂੰ ਉਸੇ ਸਥਿਤੀ ਵਿਚ ਬਣਾਏ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਛੋਟੀ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ 100 ਮੀ: 200 ਮੀ: ਅਤੇ 400 ਮੀ: ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ ।

4. ਸੰਚਲਨ ਵੇਗ (Movement Speed) – ਇਹ ਉਹ ਯੋਗਤਾ ਜਿਸ ਵਿਚ ਘੱਟ ਤੋਂ ਘੱਟ ਸਮੇਂ ਵਿਚ ਵੱਧ ਤੋਂ ਵੱਧ | ਕ੍ਰਿਆ ਨੂੰ ਪੂਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

5. ਰਫ਼ਤਾਰ ਸਹਿਣਸ਼ੀਲਤਾ (Speed Endurance) – ਇਹ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਰਫ਼ਤਾਰ ਨੂੰ ਖੇਡ ਦੇ ਆਖਰੀ ਪੜਾਅ ਤਕ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ ।

(ਅ) ਲਚਕ (Flexibility) – ਲਚਕ ਗਤੀਸ਼ੀਲਤਾ ਦੀ ਉਹ ਦਰ ਜੋ ਕਿ ਜੋੜਾਂ ਤੇ ਸੰਭਵ ਹੁੰਦੀ ਹੈ | ਅਸੀਂ ਆਮ ਸ਼ਬਦਾਂ ਵਿਚ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਲਚਕ ਨੂੰ ਸੁਸਤ (Passive) ਕ੍ਰਿਆਵਾਂ ਦੇ ਦੌਰਾਨ, ਜੋੜਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਆਸਪਾਸ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ (Muscles) ਦੀ ਗਤੀ ਦੀ ਦਰ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ‘ ਲਚਕ ਹੋਰਨਾਂ ਸਰੀਰਕ ਗੁਣਾਂ ਵਾਂਗ ਇਕ ਬਹੁਮੁੱਲਾ ਗੁਣ ਹੈ ਅਤੇ ਸਰੀਰਕ ਸਿੱਖਿਆ ਅਤੇ ਖਿਡਾਰੀਆਂ ਵਿਚ ਇਸਦੀ ਆਪਣੀ ਮਹੱਤਤਾ ਹੈ ਕਿਉਂਕਿ ਲਚਕਦਾਰ ਖਿਡਾਰੀ ਮੈਦਾਨ ਵਿਚ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੱਟਾਂ ਤੋਂ ਬਚਿਆ ਰਹਿੰਦਾ ਹੈ । ਲਚਕ ਦੇ ਕਈ ਪ੍ਰਕਾਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦਾ ਵਰਗੀਕਰਨ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ-
ਸਥਿਰ ਲਚਕ (Static Flexibility) – ਇਹ ਸਥਿਰ ਲਚਕ ਸਰੀਰਕ ਜੋੜਾਂ ਨੂੰ ਸਥਿਰ ਸਥਿਤੀ ਵਿਚ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ ।

(i) ਸੁਸਤ ਲਚਕ (Passive Flexibility) – ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਦੇ ਵੱਡੀ ਦਰ ਤੇ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਕਿਸੇ ਸਾਥੀ ਖਿਡਾਰੀ ਦੀ ਮਦਦ ਨਾਲ ਸਚਿੰਗ (Stretching) ਕਸਰਤਾਂ ਕਰਨਾ । ਇਹ ਚੁਸਤ ਲਚਕ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ ।
(ii) ਚੁਸਤ ਲਚਕ (Active Flexibility – ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਤੋਂ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਦਰ ਦੀ ਯੋਗਤਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਲੱਤਾਂ ਨੂੰ ਝੂਲਾਉਣਾ ਆਦਿ ।
(iii) ਗਤੀਸ਼ੀਲ ਲਚਕ (Dynamic Flexibility) – ਇਹ ਉਹ ਲਚਕ ਹੁੰਦੀ ਹੈ ਜਦ ਸਰੀਰ ਗਤੀ ਵਿਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕ੍ਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਦੌੜਨਾ, ਤੈਰਨਾ ਜਾਂ ਸਮਰਸੱਲਟ (Samersault) ਆਦਿ ।

(ਇ) ਤਾਲਮੇਲ ਯੋਗਤਾ (Coordination Ability) – ਤਾਲਮੇਲ ਦੀ ਯੋਗਤਾ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਮੋਟਰ ਟਾਸਕ (Motor task) ਸਹਜ ਅਤੇ ਸਹੀ ਢੰਗ ਨਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਜਿਸ ਵਿਚ ਇੰਦਰੀਆਂ ਅਤੇ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਸੁੰਗੜਨ ਦਾ ਪਰਸਪਰ ਸੰਬੰਧ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੋ ਕਿ ਜੋੜਾਂ ਦੀ ਗਤੀ ਅਤੇ ਉਸਦੇ ਆਸ-ਪਾਸ ਦੇ ਅੰਗਾਂ ਅਤੇ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਤਾਲਮੇਲ ਸਨਾਯੁਤੰਤਰ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ । ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਤਾਲਮੇਲ ਦਾ ਅਹਿਮ ਰੋਲ ਹੈ ਜਿਸ ਤੋਂ ਬਿਨਾਂ ਕੋਈ ਵੀ ਖੇਡ ਜਾਂ ਕ੍ਰਿਆ ਸੰਭਵ ਹੀ ਨਹੀਂ ਹੈ ।

ਤਾਲਮੇਲ ਦੇ ਪ੍ਰਕਾਰ (Types of co-ordination) – ਖੇਡਾਂ ਦੀ ਦੁਨੀਆਂ ਵਿਚ ਮੁੱਖ ਤੌਰ ਤੇ ਸੱਤ (7) ਪ੍ਰਕਾਰ ਦੀ ਤਾਲਮੇਲ ਯੋਗਤਾ ਪਾਈ ਜਾਂਦੀ ਹੈ

1. ਹਿਣ ਯੋਗਤਾ (Orientation Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਜ਼ਰੂਰਤ ਅਨੁਸਾਰ ਸਥਾਨ ਅਤੇ ਸਮੇਂ ਤੇ ਆਪਣੇ ਸਰੀਰ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ ਪਰਿਵਰਤਨ ਕਰ ਲੈਂਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਜਿਮਨਾਸਟਿਕ ਵਿਚ ਖੇਡ ਪ੍ਰਦਰਸ਼ਨ ਮੁਤਾਬਿਕ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਨੂੰ ਬਦਲਣਾ, ਬਾਸਕਟਬਾਲ ਵਿਚ ਅਫੈਨਸ ਤੇ ਡੀਫੈਨਸ (Offense and defense) ਵਿਚ ਆਪਣੇ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਵਿਚ ਬਦਲਾਵ ਕਰ ਲੈਂਦਾ ਹੈ ।

2. ਸੰਯੋਜਨ ਦੀ ਯੋਗਤਾ (Coupling Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਨੂੰ ਗਤੀ ਵਿਚ ਅਰਥਪੂਰਨ ਢੰਗ ਨਾਲ ਸੰਯੋਜਨ ਕਰਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ , ਜਿਵੇਂ ਵਾਲੀਬਾਲ ਵਿਚ ਸਪਾਈਕਿੰਗ ਦੇ ਦੌਰਾਨ ਖਿਡਾਰੀ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜੰਪ ਕਰਦਾ ਹੈ | ਬਾਲ ਨੂੰ ਹਿੱਟ ਕਰਦਾ ਹੈ । ਇਸ ਸਮੇਂ
ਉਸ ਦੇ ਸਰੀਰ ਦੇ ਸਾਰੇ ਅੰਗਾਂ ਵਿਚ ਇਕਸਾਰਤਾ ਦਾ ਤਾਲਮੇਲ ਹੁੰਦਾ ਹੈ ।

3. ਅੰਤਰ ਯੋਗਤਾ (Differentiation Ability – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਖਿਡਾਰੀ ਮੋਟਰ ਐਕਸ਼ਨ (Motor action) ਦੇ ਦੌਰਾਨ ਸਰੀਰ ਦੇ ਅਲੱਗ-ਅਲੱਗ ਅੰਗਾਂ ਤੋਂ ਕਿਆ ਕਰਵਾਉਣ ਦੀ ਸਮਰੱਥਾ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਵਾਲੀਬਾਲ ਵਿਚ ਸਪਾਈਕਿੰਗ ਜੰਪ ਦੇ ਦੌਰਾਨ ਸਥਿਤੀ ਦੇ
ਅਨੁਸਾਰ ਬਾਲ ਨੂੰ ਸੁੱਟਣਾ (Drop) ।

4. ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ (Reaction Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਸਿੰਗਨਲ ਮਿਲਣ ਤੇ ਖਿਡਾਰੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ 100 ਮੀ: ਦੌੜ ਵਿਚ ਸਿੰਗਨਲ ਹੁੰਦੇ ਹੀ ਇਕ ਵੇ ਤੇ ਦਿਸ਼ਾ ਵੱਲ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਦੌੜਨਾ ।

5. ਸੰਤੁਲਨ ਯੋਗਤਾ (Balance Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਗਤੀ ਵਿਚ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਬਣਾਈ ਰੱਖਦਾ ਹੈ ਜਿਵੇਂ ਕਿ 400 ਮੀ: ਵਿਚ ਆਪਣੀ ਲਾਈਨ ਵਿਚ ਰਹਿ ਕੇ ਦੌੜਨਾ ਆਦਿ ।

6. ਲੈਅ ਦੀ ਯੋਗਤਾ (Rhythm Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਲੈਅ ਨੂੰ ਸਮਝਦੇ ਹੋਏ ਲੈਅ ਵਿਚ ਗਤੀ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਬਾਸਕਟ ਬਾਲ ਵਿਚ ਲੈ-ਅੱਪ (Lay-up) ਸਾਂਟ ਲਗਾਉਣਾ ।

7. ਹਿਣ ਯੋਗਤਾ (Adaptation Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਪ੍ਰਸਥਿਤੀ ਨੂੰ ਸਮਝ ਕੇ ਉਸ ਵਿੱਚ ਪ੍ਰਭਾਵੀ ਪਰਿਵਰਤਨ ਲੈ ਕੇ ਆਵੇ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਬਾਸਕਟ ਬਾਲ ਵਿਚ ਜੰਪ ਸਾਂਟ ਕਿਆ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਣਾ ਆਦਿ ।

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 10.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੀ ਮਹੱਤਤਾ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ? ਵਿਸਥਾਰਪੂਰਵਕ ਲਿਖੋ ।
ਉੱਤਰ:
ਉਹ ਵਿਅਕਤੀ ਜੋ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਹਨ ਉਹ ਆਪਣੇ ਜੀਵਨ ਦਾ ਆਨੰਦ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਉਠਾਉਣ ਦੇ ਯੋਗ ਹਨ | ਅੱਜ ਦੇ ਤਕਨੀਕੀ ਵਿਕਾਸ ਦੇ ਯੁੱਗ ਵਿਚ ਲੋਕਾਂ ਕੋਲੋਂ ਮੁਸ਼ਕਿਲ ਨਾਲ ਹੀ ਆਪਣੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਲਈ ਸਮਾਂ ਹੁੰਦਾ ਹੈ । ਹੁਣ ਪ੍ਰਸ਼ਨ ਇਹ ਉੱਠਦਾ ਹੈ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤ ਹੋਣਾ ਇੰਨਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ ? ਇਹਨਾਂ ਸਵਾਲਾਂ ਦਾ ਜਵਾਬ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੈ-
1. ਸੰਪੂਰਨ ਸਿਹਤ ਦਾ ਸੁਧਾਰ (Improves Overall Health) – ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਵਿਅਕਤੀ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਸਰੀਰਕ ਫਾਇਦਿਆਂ ਨੂੰ ਮਾਣਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਸਾਹ ਪ੍ਰਕ੍ਰਿਆ, ਲਹੂ ਸੰਚਾਰ ਪ੍ਰਣਾਲੀ ਅਤੇ ਸਰੀਰ ਦੀਆਂ ਸਮੁੱਚੀ ਪ੍ਰਣਾਲੀਆਂ ਦਾ ਠੀਕ ਢੰਗ ਨਾਲ ਕੰਮ ਕਰਨਾ ਅਤੇ ਸਰੀਰ ਦਾ ਕ੍ਰਿਆਤਮਕ ਰੂਪ ਵਿਚ ਤਿਆਰ ਰਹਿਣਾ ।ਉਹ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਜਿਵੇਂ ਡਾਈਬੀਟੀਜ਼ ਟਾਇਪ-2, ਦਿਲ ਦੀਆਂ ਬਿਮਾਰੀਆਂ, ਕੈਂਸਰ ਤੋਂ ਬਚਾਅ, ਆਦਿ ਤੋਂ ਬਚਿਆ ਰਹਿੰਦਾ ਹੈ ।

2. ਭਾਰ ਪ੍ਰਬੰਧਨ (Weight Management) – ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਾਧੂ ਵਜ਼ਨ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਿਹਤ ਸੰਬੰਧੀ ਸਮੱਸਿਆਵਾਂ : ਜਿਵੇਂ ਕਿ ਉੱਚਾ ਖੁਨ ਚਾਪ (High Blood Pressure), ਕੈਸਟਰੋਲ ਪੱਧਰ, ਡਾਇਬਟੀਜ਼ ਆਦਿ ਦੀ ਜੜ੍ਹ ਹੈ । ਇਸ ਲਈ ਉਹ ਵਿਅਕਤੀ ਜੋ ਸਰਗਰਮ ਅਤੇ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਹੁੰਦੇ ਹਨ, ਉਹਨਾਂ ਵਿੱਚ ਉਪਰੋਕਤ ਬਿਮਾਰੀਆਂ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ ।

3. ਤਨਾਵ ਪ੍ਰਬੰਧ ਵਿਚ ਮਹੱਤਵਪੂਰਨ (Importance as a stress Management) – ਇਕ ਵਿਅਕਤੀ ਤੰਦਰੁਸਤੀ ਅਤੇ ਤੰਦਰੁਸਤੀ ਪ੍ਰੋਗਰਾਮ ਦੇ ਜਰੀਏ ਤਣਾਅ ਨੂੰ ਬਰਦਾਸ਼ਤ ਕਰਨਾ, ਉਸ ਤੋਂ ਬਾਹਰ ਨਿਕਲਣਾ ਅਤੇ ਰੋਜ਼ਮਰਾ ਦੇ ਵਿਚਿਲਤ ਕਰਨ ਵਾਲੇ ਤਣਾਅ ਤੇ ਕਾਬੂ ਪਾਉਣਾ ਸਿੱਖ ਲੈਂਦਾ ਹੈ । ਇਸ ਲਈ ਇਹ ਜੀਵਨ ਵਿੱਚ ਸੰਤੁਲਨ ਅਤੇ ਸ਼ਾਤੀ ਬਣਾਏ ਰੱਖਣ ਵਿਚ ਮਦਦ ਕਰਦਾ ਹੈ । ਇਸ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਜੀਵਨ ਵਿਚ ਸ਼ਾਂਤੀ ਬਣਾਈ ਰੱਖਣ ਲਈ ਵਿਅਕਤੀ ਦਾ ਤੰਦਰੁਸਤ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

4. ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਘਟਾਉਣਾ (Reduce risk of Injuries) – ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਜੀਵਨ ਦੇ ਅਗਲੇ ਪੜਾਅ ਵਿਚ ਸੱਟਾਂ ਦੇ ਜ਼ੋਖ਼ਿਮ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ । ਇਸ ਦਾ ਕਾਰਨ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ, ਹੱਡੀਆਂ ਵਿਚਲੀ ਘਣਤਾ, ਲਚਕਤਾ ਅਤੇ ਸਥਿਰਤਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ ।

5. ਜੀਵਨ ਦੀ ਸੰਭਾਵਨਾ ਵਿਚ ਵਾਧਾ (Increases life Expectancy) – ਨਿਯਮਿਤ ਕਸਰਤਾਂ ਅਤੇ ਤੰਦਰੁਸਤੀ ਸੰਬੰਧਿਤ ਪ੍ਰੋਗਰਾਮ ਸਿਹਤ ਸੰਬੰਧਿਤ ਬਿਮਾਰੀਆਂ ਨੂੰ ਘਟਾਉਣ ਵਿਚ ਲਾਭਦਾਇਕ ਹੁੰਦੇ ਹਨ, ਜੋ ਕਿ ਉਮਰ ਦਰ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਵਧਾਉਂਦੀਆਂ ਹਨ ਅਤੇ ਸਮੇਂ ਤੋਂ ਪਹਿਲਾਂ ਹੋਣ ਵਾਲੀ ਮੌਤ ਦਰ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ । ਇਹ ਦੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਜੋ ਵਿਅਕਤੀ ਸਰੀਰਕ ਤੌਰ ਤੇ ਸਰਗਰਮ ਰਹਿੰਦੇ ਹਨ, ਉਹ ਸਵਸਥ ਅਤੇ ਲੰਬਾ ਜੀਵਨ ਗੁਜ਼ਾਰਦੇ ਹਨ ।

6. ਸਹੀ ਵਾਧਾ ਅਤੇ ਵਿਕਾਸ (Proper growth and Development) – ਤੰਦਰੁਸਤੀ ਅਤੇ ਤੰਦਰੁਸਤੀ ਪ੍ਰੋਗਰਾਮਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਬੱਚਿਆਂ ਵਿਚ ਵਧੀਆ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ । ਉਹਨਾਂ ਦੀ ਸਿਹਤ, ਉਚਾਈ, ਸਰੀਰਕ ਸੰਰਚਨਾ ਅਤੇ ਭਾਰ ਸਹੀ ਅਨੁਪਾਤ ਅਤੇ ਕੂਮ ਵਿਚ ਵੱਧਦੇ ਹਨ ।

7. ਕੰਮ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਵਿਚ ਵਾਧਾ (Improves work Efficiency) – ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਵਿਅਕਤੀ ਜੀਵਨ ਦੇ ਹਰ ਪਹਿਲੂ ਜਿਵੇਂ ਕੰਮ ਕਰਨ ਦੀ ਥਾਂ, ਪਰਿਵਾਰ ਅਤੇ ਦੋਸਤਾਂ ਵਿਚ ਸੰਤਲੁਨ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ । ਉਸ ਦੀ ਸਰਗਰਮ ਜੀਵਨ ਸ਼ੈਲੀ ਅਤੇ ਤੰਦਰੁਸਤੀ ਕਾਰਨ ਉਹ ਕੰਮ ਨੂੰ ਸਫਲਤਾ ਨਾਲ ਕਰਦਾ ਹੈ। ਅਤੇ ਆਪਣੇ ਸਮਾਜਿਕ ਸਮੂਹ ਦਾ ਵੀ ਉਤਸ਼ਾਹ ਨਾਲ ਆਨੰਦ ਮਾਣਦਾ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਉਪਰੋਕਤ ਤੱਥਾਂ ਤੋਂ ਇਹ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹਾਂ ਕਿ ਇਕ ਤੰਦਰੁਸਤ ਸਰੀਰ ਵਿਚ ਤੰਦਰੁਸਤ ਮਨ ਦਾ ਵਾਸ ਹੁੰਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 11.
ਸਰੀਰਿਕ ਯੋਗਤਾ ਦਾ ਅਰਥ ਅਤੇ ਇਸ ਦੀ ਪਰਿਭਾਸ਼ਾ ਲਿਖੋ ।
ਉੱਤਰ:
ਅੱਜ ਦੇ ਬਦਲਦੇ ਤਕਨੀਕੀ ਯੁੱਗ ਵਿਚ ਲੋਕਾਂ ਕੋਲ ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਅਤੇ ਸਰੀਰਿਕ ਸਿਹਤ ਦੇ ਲਈ ਲੋੜੀਂਦੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰਨ ਦਾ ਸਮਾਂ ਨਹੀਂ ਹੈ | ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਸ਼ਬਦ ਲੋਕਾਂ ਵਾਸਤੇ ਅਲੱਗ-ਅਲੱਗ ਭਾਗਾਂ ਵਿਚ ਅਲੱਗ-ਅਲੱਗ ਮਹੱਤਤਾ ਰੱਖਦਾ ਹੈ । ਇਕ ਆਮ ਇਨਸਾਨ ਲਈ ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਤੋਂ ਭਾਵ ਹੈ ਬਿਮਾਰੀ ਰਹਿਤ ਸਰੀਰ ਤੋਂ ਹੈ । ਡਾਕਟਰਾਂ ਦੇ ਅਨੁਸਾਰ ਜਿਸ ਵਿਅਕਤੀ ਨੂੰ ਕੋਈ ਬਿਮਾਰੀ ਨਹੀਂ ਹੈ ਉਹ ਸਰੀਰਿਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ | ਸਰੀਰਿਕ ਸਿੱਖਿਆ ਦੇ ਖੇਤਰ ਵਿਚ ਬਿਨਾਂ ਥੱਕੇ, ਤਨਾਓ ਮੁਕਤ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਨਾ ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਹੈ ।

ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਇਕ ਵਿਆਪਕ ਖੇਤਰ ਹੈ | ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਤੋਂ ਭਾਵ ਇਕ ਵਿਅਕਤੀ ਜੋ ਆਪਣੇ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ-ਕਾਜ ਬਿਨਾ ਥੱਕੇ ਕਰਦਾ ਹੈ ਅਤੇ ਉਸ ਤੋਂ ਬਾਅਦ ਵੀ ਉਸ ਵਿਚ ਵਿਆਪਕ ਸਰੀਰਿਕ ਊਰਜਾ ਹੋਰ ਮਨੋਰੰਜਕ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਨ ਲਈ ਰਹਿੰਦੀ ਹੈ ਜਾਂ ਬਚੀ ਰਹਿੰਦੀ ਹੈ, ਉਸਨੂੰ ਸਰੀਰਿਕ ਤੰਦਰੁਸਤੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਅਸੀਂ ਥੋੜੇ ਸ਼ਬਦਾਂ ਵਿਚ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੋ ਵਿਅਕਤੀ ਬਿਨਾਂ ਥੱਕੇ ਆਪਣੇ ਕੰਮ ਕਰਦਾ ਹੈ ਉਹ ਸਰੀਰਿਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਵਿਅਕਤੀ ਹੈ ।

ਸਰੀਰਕ ਯੋਗਤਾ ਦਾ ਅਰਥ ਅਤੇ ਧਾਰਣਾ-ਸਰੀਰਕ ਯੋਗਤਾ ਜੀਵਨ ਦੀਆਂ ਬੁਨਿਆਦੀ ਜ਼ਰੂਰਤਾਂ ਵਿਚੋਂ ਇਕ ਹੈ । ਇਹ ਬਿਨਾਂ ਥੱਕੇ ਹਰ ਰੋਜ਼ ਕੰਮ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਨੂੰ ਮਨੋਵਿਗਿਆਨ, ਸਰੀਰਕ ਕ੍ਰਿਆ ਵਿਗਿਆਨ ਅਤੇ ਸਰੀਰਕ ਸੰਰਚਨਾ ਦੇ ਰੂਪ ਵਿਚ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ ।

ਕਲਾਰਕ ਦੇ ਅਨੁਸਾਰ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ ਨੂੰ ਅਤਿਅੰਤ ਥਕਾਵਟ ਅਤੇ ਬਹੁਤ ਜ਼ਰੂਰਤ ਊਰਜਾ ਤੋਂ ਉਤਸ਼ਾਹ ਅਤੇ ਚੌਕਸੀ ਨਾਲ ਲੈ ਜਾਣ ਦੀ ਸਮਰੱਥਾ ਹੈ ਤਾਂ ਕਿ ਬਿਨਾਂ ਥੱਕੇ ਪੂਰੀ ਊਰਜਾ ਦੇ ਨਾਲ ਮਨੋਰੰਜਨ ਦੀਆਂ ਗਤੀਵਿਧੀਆਂ ਦਾ ਆਨੰਦ ਲੈਣ ਅਤੇ ਅਚਾਨਕ ਸੰਕਟਕਾਲੀਨ ਹਾਲਾਤਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ ।”

ਬੂਚਰ ਅਤੇ ਪ੍ਰੇਹਟਿਸ ਦੇ ਅਨੁਸਾਰ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਇਕ ਜੈਵਿਕ ਵਿਕਾਸ, ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ ਅਤੇ ਸਟੈਮਿਨਾ ਹੁੰਦੀ ਹੈ । ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੋਂ ਭਾਵ ਅਭਿਆਸ ਵਿਚ ਕੁਸ਼ਲਤਾਪੂਰਵਕ ਪ੍ਰਦਰਸ਼ਨ ਤੋਂ ਹੈ ।’’

ਥਾਮਸ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਅਕਤੀ ਨੂੰ ਦਿੱਤੀ ਗਈ ਕੁੱਲ ਬੁਨਿਆਦੀ ਸਮਰੱਥਾ ਹੈ ।”
ਮੈਥਿਊਜ਼ ਦੇ ਅਨੁਸਾਰ, “ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਅਭਿਆਸ ਲਈ ਦਿੱਤੇ ਗਏ ਭੌਤਿਕ ਕੰਮਾਂ ਨੂੰ ਕਰਨ ਲਈ ਵਿਅਕਤੀ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਕਹਿੰਦੇ ਹਨ ।
ਵਿਲਿਅਮ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਸਰੀਰਕ ਕੰਮ ਕਰਨ ਲਈ ਵਿਅਕਤੀ ਦੀ ਸਮਰੱਥਾ ਹੈ ।”
ਵਿਲਗੂਜ਼ ਦੇ ਅਨੁਸਾਰ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਇਕ ਗਤੀਵਿਧੀ ਦੀ ਸਮਰੱਥਾ ਹੈ ਜੋ ਕਿ ਦਿੱਤੇ ਗਏ ਕੰਮ ਨੂੰ ਕਰਨ ਲਈ ਕਾਫ਼ੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।”
ਹਾਰਬਰਟ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਸਰੀਰ ਦੀ ਯੋਗਤਾ ਨਾਲ ਸਾਰੇ ਕਿਸਮ ਦੇ ਦਬਾਅ ਨੂੰ ਬਰਦਾਸ਼ਤ ਕਰਨ ਅਤੇ ਪ੍ਰਗਟਾਵੇ ਨੂੰ ਬਰਕਰਾਰ ਰੱਖਣ ਦਾ ਸੰਕੇਤ ਹੈ।”

ਡੇਵਿਡ ਆਰ. ਲੈਂਬ ਦੇ ਅਨੁਸਾਰ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਜੀਵਨ ਦੇ ਮੌਜੂਦਾ ਅਤੇ ਸੰਭਾਵੀ ਭੌਤਿਕ ਚੁਣੌਤੀਆਂ ਨੂੰ ਸਫਲਤਾਪੂਰਵਕ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ ।”
ਵੇਬਸਟਰ ਵਿਸ਼ਵ ਕੋਸ਼ ਅਨੁਸਾਰ, “ਇਹ ਇਕ ਮਨੁੱਖ ਦੇ ਬਿਨਾਂ ਥੱਕੇ ਹੋਏ ਹਰ ਰੋਜ਼ ਦੈਨਿਕ ਕੰਮ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੈ । ਇਸ ਵਿਚ ਖੇਡ-ਕੁੱਦ ਵਿਚ ਭਾਗ ਲੈਣਾ ਅਤੇ ਫਿਰ ਵੀ ਅਚਾਨਕ ਘਟਨਾਵਾਂ ਦਾ ਸਾਹਮਣਾ ਕਰਨ ਲਈ ਊਰਜਾ ਬਚਾ ਕੇ ਰੱਖਣਾ ਹੈ ।”
ਡਾ: ਕਰੋਲਸ ਦੇ ਅਨੁਸਾਰ, “ਕਿਸੇ ਦੇ ਜਿਉਣ ਦੇ ਢੰਗ ਦੇ ਦਬਾਓ ਦਾ ਸਫਲ ਅਨੁਕੂਲਣ ਹੈ ।”
ਐਡਵਰਡ ਬੋਰਟਜ ਦੇ ਅਨੁਸਾਰ, ‘ਸਰੀਰਕ ਯੋਗਤਾ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਸਰੀਰਕ ਪ੍ਰਣਾਲੀਆਂ ਦੀਆਂ ਆਪਣੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਸਤੋਖਜਨਕ ਢੰਗ ਨਾਲ ਕਰਨ ਦੀ ਵਿਧੀ ਹੈ ।” ਤੋਂ ਬਰੂਸੇ ਬਾਲੇ ਦੇ ਅਨੁਸਾਰ, ”‘ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਗਤੀਸ਼ੀਲ ਸੰਭਾਵਨਾ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜੋ ਕਿ ਕ੍ਰਿਆਤਮਕ ਅਤੇ ਅੰਦਰੂਨੀ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਰਾਹੀਂ ਬਣਦੀ ਹੈ।” ,

ਇਕ ਆਮ ਐਥਲੈਟਿਕ ਸ਼ਬਦ ਵਿਚ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੀ ਧਾਰਣਾ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਜਿਸ ਵਿਚ ਉਹ ਥਕਾਵਟ ਭਰੀ ਅਵਸਥਾ ਨੂੰ ਘੱਟ ਕੀਤੇ ਬਿਨਾਂ, ਖੇਡ ਦੀਆਂ ਗਤੀਵਿਧੀਆਂ ਦੁਆਰਾ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਅਵਸਥਾ ਦੀਆਂ ਮੰਗਾਂ ਦੀ ਪੂਰਤੀ ਕਰੇ । ਥਕਾਵਟ ਦੀ ਅਵਸਥਾ ਤਦ ਹੁੰਦੀ ਹੈ ਜਦ ਵਿਅਕਤੀ ਗਤੀਵਿਧੀਆਂ ਨੂੰ ਸਹੀ ਢੰਗ ਅਤੇ ਸਫਲਤਾਪੂਰਵਕ ਨਾਲ ਨਾ ਨਿਭਾ ਸਕੇ ।

ਹਰ ਵਿਅਕਤੀ ਲਈ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਉਹ ਆਪਣੇ ਰੋਜ਼ਮਰਾ ਦੇ ਕੰਮਾਂ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਕਰਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਗਤੀਵਿਧੀਆਂ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਨਿਭਾਉਣ ਲਈ ਤੰਦਰੁਸਤ ਹੋਵੇ । ਹਰ ਇਕ ਵਿਅਕਤੀ ਨੂੰ ਸਰੀਰਕ ਗਤੀਵਿਧੀਆਂ ਵਿਚ ਭਾਗ ਲੈਣ ਲਈ ਪੁਸ਼ਟ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ ਤਾਂ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਵਿਭਿੰਨ-ਵਿਭਿੰਨ ਅੰਗਾਂ ਦਾ ਵਿਕਾਸ ਹੋ ਸਕੇ ।

ਪ੍ਰਸ਼ਨ 12.
ਸਰੀਰਿਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਤੱਤਾਂ ਦਾ ਵਿਸਥਾਰਪੂਰਵਕ ਵਰਣਨ ਕਰੋ ।
ਉੱਤਰ:
ਅਨੇਕਾਂ ਅਜਿਹੇ ਕਈ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਨਿਸ਼ਕ੍ਰਿਆ ਦੇ ਕਾਰਨ ਛੋਟੇ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਅਭਿਆਸ ਕਾਲ ਤੇ ਕਈ ਤਰੀਕਿਆਂ ਨਾਲ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ । ਇਹ ਕਾਰਕ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ, ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਾਰ ਹਨ-
1. ਸਰੀਰਕ ਢਾਂਚਾ (Anatomical Structure) – ਸਰੀਰਕ ਢਾਂਚਾ ਅਲੱਗ-ਅਲੱਗ ਅਕਾਰ ਅਤੇ ਰੂਪ ਵਿਚ ਹੁੰਦਾ ਹੈ | ਕਈ ਵਾਰ ਅਨੁਚਿਤ ਆਕਾਰ ਅਤੇ ਰੂਪ ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਵਿਚ ਉਲਝਣਾਂ ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਕਈ ਵਾਰ, ਕਮਜ਼ੋਰ ਅੰਗ ਵਿਅਕਤੀ ਦੇ ਕੰਮਾਂ ਜਾਂ ਕ੍ਰਿਆਵਾਂ ਨੂੰ ਘਟਾ ਦਿੰਦੇ ਹਨ ।

2. ਸਰੀਰਕ ਕਿਰਿਆ ਬਣਤਰ (Physiological Structures) – ਸਾਡੇ ਸਰੀਰ ਦੀਆਂ ਪ੍ਰਣਾਲੀਆਂ ਜਿਵੇਂ ਸਾਹ ਪ੍ਰਣਾਲੀ, ਲਹੂ ਸੰਚਾਰ ਪ੍ਰਣਾਲੀ, ਮਾਸਪੇਸ਼ੀ ਪ੍ਰਣਾਲੀ ਅਤੇ ਅਨੇਕਾਂ ਹੋਰ ਪ੍ਰਣਾਲੀਆਂ ਨੇ ਕੁਸ਼ਲਤਾਪੂਰਵਕ ਕੰਮ ਕਰਨਾ ਹੁੰਦਾ ਹੈ । ਸਰੀਰਕ ਪ੍ਰਣਾਲੀ ਵਿਚ ਖ਼ਰਾਬੀ ਸਰੀਰਕ ਕੰਮਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਸਾਹ ਲੈਣ ਵਿਚ ਔਖ ਹੋਣਾ ਜਾਂ ਫਿਰ ਦਿਲ ਦੀ ਬਿਮਾਰੀ ਆਦਿ । ਇਸ ਲਈ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਵਿਅਕਤੀ ਦਾ ਫਿਟ ਹੋਣਾ ਬੜਾ ਜ਼ਰੂਰੀ ਹੈ ।

3. ਮਨੋਵਿਗਿਆਨਿਕ ਕਾਰਨ (Psychological Factor) – ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਮਾਨਸਿਕ ਵਿਗਾੜ ਜੋ ਕਿ ਸਰੀਰਕ ਕੰਮਾਂ ਵਿਚ ਉਲਝਣਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਦਬਾਅ, ਤਨਾਵ, ਚਿੰਤਾਵਾਂ ਆਦਿ । ਇਹ ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਵਿਚ ਰੁਕਾਵਟ ਦਾ ਕਾਰਨ ਬਣਦੀਆਂ ਹਨ | ਮਾਨਸਿਕ ਰੂਪ ਨਾਲ ਮਜ਼ਬੂਤ ਅਤੇ ਤਨਾਅ-ਮੁਕਤ ਵਿਅਕਤੀ ਖੇਡਾਂ ਲਈ ਯੋਗ ਹੁੰਦਾ ਹੈ । ਦਬਾਅ ਅਤੇ ਤਨਾਅ ਹਮੇਸ਼ਾ ਹੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਘਟਾ ਦਿੰਦਾ ਹੈ ।

4. ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ (Heredity and Environment) – ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ ਦੋਵੇਂ ਹੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਮਨੁੱਖੀ ਸੈੱਲ 23 (ਜੋੜੇ) ਕੋਮੋਸੋਮਜ ਤੋਂ ਬਣਿਆ ਹੁੰਦਾ ਹੈ । ਜਿਸ ਵਿਚ 75% ਮਾਤਾ ਅਤੇ ਪਿਤਾ ਅਤੇ 25% ਬਾਕੀ ਖਾਨਦਾਨੀ ਜੀਨਸ ਦਾ ਸੰਚਾਰਣ ਹੁੰਦਾ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੱਦੀ ਗੁਣ ਜਿਵੇਂ ਕਿ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਔਗੁਣ, ਚਮੜੀ ਅਤੇ ਅੱਖਾਂ ਦਾ ਰੰਗ, ਸਰੀਰਕ ਬਣਾਵਟ ਆਦਿ ਮਨੁੱਖ ਨੂੰ ਜੱਦ ਵਿਚ ਮਿਲਦੀ ਹੈ ਅਤੇ ਇਹ ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ ਦੇ ਗੁਣ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ‘ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ।

5. ਚੰਗਾ ਸਰੀਰਕ ਆਸਣ (Good Posture) – ਸਰੀਰਕ ਤਰੁੱਟੀਆਂ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਹਮੇਸ਼ਾ ਹੀ ਮੁਸ਼ਕਿਲ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ , ਜਿਵੇਂ ਕਿ ਅਸੰਤੁਲਨ ਮਾਸਪੇਸ਼ੀਆਂ, ਕੁਪੋਸ਼ਣ, ਦਰਦ, ਲੋਰਡੋਸਿਸ (Lordosis), ਸਕੋਲਿਸਿਸ (Scoliosis), ਗੋਲ ਮੋਢੇ, ਗੋਡਿਆਂ ਦਾ ਟਕਰਾਉਣਾ ਆਦਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ
ਕਰਦੇ ਹਨ । ਸ .

6. ਅਹਾਰ (Diet) – ਸਰੀਰਕ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਅਹਾਰ ਪ੍ਰਮੁੱਖ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ ਅਤੇ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਸਤਰ ਨੂੰ ਬਣਾਏ ਰੱਖਣ ਵਿਚ ਬਹੁਤ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ । ਆਹਾਰ ਵਿਚ ਕੈਲਰੀ ਦੀ ਉਪਯੁਕਤ ਮਾਤਰਾ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸਰਵ-ਉੱਚ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਵਿਚ ਮਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਅਤੇ ਤਰਲ ਪਦਾਰਥਾਂ ਦੀ ਕਮੀ ਕਾਰਨ ਇਕ ਖਿਡਾਰੀ ਜਲਦੀ ਹੀ ਥਕਾਵਟ ਮਹਿਸੂਸ ਕਰਨ ਲੱਗ ਪੈਂਦਾ ਹੈ । ਮਾਸ਼ਪੇਸ਼ੀਆਂ ਦੇ ਪੁਨਰ-ਨਿਰਮਾਣ ਵਾਸਤੇ ਪ੍ਰੋਟੀਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਵਿਟਾਮਿਨ ਤੋਂ ਬਿਨਾਂ ਖਿਡਾਰੀ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ ਅਤੇ ਉਸਦੀ ਸਰੀਰਕ ਯੋਗਤਾ ਵੀ ਘੱਟ ਜਾਂਦੀ ਹੈ ।

7. ਜੀਵਨ ਸ਼ੈਲੀ (Life Style) – ਉਹ ਖਿਡਾਰੀ ਜੋ ਚੰਗੀ ਜੀਵਨ ਸ਼ੈਲੀ ਨੂੰ ਅਪਨਾਉਂਦੇ ਹਨ, ਉਹ ਹਮੇਸ਼ਾ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦੇ ਹਨ । ਜੀਵਨ ਸ਼ੈਲੀ ਤੋਂ ਭਾਵ ਸ਼ਾਨੋ-ਸ਼ੌਕਤ ਵਾਲਾ ਜੀਵਨ ਤੋਂ ਨਹੀਂ ਹੈ ਬਲਕਿ ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਚੰਗੀਆਂ ਆਦਤਾਂ ਵਾਲਾ ਜੀਵਨ ਜਿਉਣਾ । ਇਕ ਵਿਅਕਤੀ ਜੋ ਸਿਗਰੇਟ, ਸ਼ਰਾਬ ਜਾਂ ਨਸ਼ੇ ਆਦਿ ਦਾ ਆਦੀ ਹੁੰਦਾ ਹੈ ਉਹੀ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ । ਇਹ ਉਸਦੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ।

8. ਜਲਵਾਯੂ (Climate) – ਅਲੱਗ-ਅਲੱਗ ਤਰ੍ਹਾਂ ਦੀ ਜਲਵਾਯੂ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੀ ਹੈ । ਸਰਦੀ, ਗਰਮੀ ਅਤੇ ਨਮੀ ਵਰਗੇ ਭਿੰਨ-ਭਿੰਨ ਜਲਵਾਯੂ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਵਧੀਆ ਪ੍ਰਦਰਸ਼ਨ ਵਾਸਤੇ ਇਕ ਖਿਡਾਰੀ ਨੂੰ ਅਲੱਗ-ਅਲੱਗ ਜਲਵਾਯੂ ਪ੍ਰਸਿਥਤੀਆਂ ਵਿਚ ਰਹਿ ਕੇ ਅਭਿਆਸ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਜੇਕਰ ਖਿਡਾਰੀ ਗਰਮ ਜਾਂ ਮੈਦਾਨੀ ਇਲਾਕਿਆਂ ਦਾ ਰਹਿਣ ਵਾਲਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਠੰਡੇ ਇਲਾਕੇ ਵਿਚ ਜ਼ਰੂਰ ਅਭਿਆਸ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਉਸਦਾ ਪ੍ਰਦਰਸ਼ਨ ਵਧੀਆ ਹੋ ਸਕੇ । ਇਹਨਾਂ ਜਲਵਾਯੂ ਰੁਕਾਵਟਾਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦਾ ਤਰੀਕਾ ਇਹ ਹੀ ਹੈ ਕਿ ਅਲੱਗ-ਅਲੱਗ ਜਲਵਾਯੂ ਵਾਤਾਵਰਣ ਵਿਚ ਅਭਿਆਸ ਕੀਤਾ ਜਾਵੇ ।

9. ਨਿਸ਼ਕ੍ਰਿਆ (Inactivity) – ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਦੀ ਘਾਟ ਨਾਲ ਵਿਅਕਤੀ ਗਤੀਹੀਨ ਜੀਵਨ ਸ਼ੈਲੀ ਵੱਲ ਚਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਰੀਰਕ ਪ੍ਰਣਾਲੀਆਂ ਵਿਚ ਖ਼ਰਾਬੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ | ਸਰੀਰਕ ਗਤੀਵਿਧੀ ਸ਼ਬਦ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ ਨਾਲ ਖ਼ਰਚ ਹੋਣ ਵਾਲੀ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿਚ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਇਹ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ ਜਿਵੇਂ ਕਿ ਚੱਲਣਾ, ਦੌੜਨਾ, ਸਾਈਕਲ ਚਲਾਉਣਾ, ਤੈਰਨਾ, ਝਾੜੂ ਮਾਰਨਾ ਆਦਿ ਘਰੇਲੂ ਕੰਮ ਹੁੰਦੇ ਹਨ । ਨਿਸ਼ਕ੍ਰਿਆ ਦੇ ਕਾਰਨ ਸਰੀਰਕ ਪ੍ਰਣਾਲੀ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਕਈ ਸਿਹਤ ਨੂੰ ਲੈ ਕੇ ਮਸਲੇ ਖੜ੍ਹੇ ਹੋ
ਜਾਂਦੇ ਹਨ ਜੋ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ।

10. ਸੱਟਾਂ (Injuries) – ਸੱਟਾਂ ਲੱਗਣਾ ਖੇਡਾਂ ਦਾ ਹਿੱਸਾ ਹਨ । ਸੱਟਾਂ ਦੀ ਦੇਖਭਾਲ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ ਖੇਡ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਕਮੀ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਖਿਡਾਰੀ ਦੇ ਮਾਨਸਿਕ ਸੰਤੁਲਨ ‘ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ।

11. ਉਮਰ (Age) – ਉਮਰ ਵਿਚ ਅੰਤਰ ਹਮੇਸ਼ਾ ਹੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ । ਜਦ ਅਸੀਂ
ਛੋਟੇ ਬੱਚੇ ਹੁੰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਵੱਡੀ ਉਮਰ ਦੇ ਵਿਅਕਤੀ ਦੀ ਸਰੀਰਕ ਯੋਗਤਾ ਦੀ ਤੁਲਨਾ ਵਿਚ ਨਹੀਂ ਖੇਡ ਸਕਦੇ। ਇਸ ਤਰ੍ਹਾਂ ਜਦ ਅਸੀਂ ਬੁਢਾਪੇ ਵੱਲ ਵੱਧਦੇ ਹਾਂ ਤਾਂ ਸਾਡੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਸਰੀਰ ਉੱਤੇ ਚਰਬੀ ਵੱਧ ਜਾਂਦੀ ਹੈ ਜੋ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੀ ਹੈ ।

12. ਲਿੰਗ (Gender) – ਲਿੰਗ ਸਰੀਰਕ ਯੋਗਤਾ ਵਿਚ ਹਮੇਸ਼ਾਂ ਹੀ ਵਿਸ਼ੇਸ਼ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ । ਔਰਤ ਅਤੇ ਆਦਮੀ ਦੋਨਾਂ ਦੇ ਸਰੀਰ ਵਿਚ ਕਈ ਵਿਲੱਖਣਤਾਵਾਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਔਰਤਾਂ ਦੇ ਸਰੀਰ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ, ਆਦਮੀ ਨਾਲੋਂ ਘੱਟ ਮਜ਼ਬੂਤ ਹੁੰਦੀਆਂ ਹਨ, ਪਰ ਔਰਤਾਂ ਦੇ ਜੋੜਾਂ ਵਿਚ ਲਚਕਤਾ ਆਦਮੀ ਦੇ ਮੁਕਾਬਲੇ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਜਿਮਨਾਸਟਿਕ ਵਰਗੀਆਂ ਖੇਡਾਂ ਵਿਚ ਬਹੁਤ ਲਾਭ ਮਿਲਦਾ ਹੈ । ਉੱਥੇ ਹੀ ਆਦਮੀਆਂ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਮਜ਼ਬੂਤ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਦਿਲ ਦਾ ਆਕਾਰ ਵੱਡਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਖੇਡਾਂ ਵਿਚ ਸ਼ਕਤੀ, ਤਾਕਤ ਅਤੇ ਗਤੀ ਮਿਲਦੀ ਹੈ ।

13. ਸਿਹਤਮੰਦ ਵਾਤਾਵਰਣ (Healthy Envrionment) – ਸਕੂਲ, ਘਰ ਅਤੇ ਖੇਡਾਂ ਦਾ ਮੈਦਾਨ ਬੇਹਤਰ ਸਿੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨ ਵਿਚ ਮੱਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦਾ ਹੈ । ਇਸ ਨਾਲ ਖਿਡਾਰੀ ਨੂੰ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਲਈ ਉਤਸ਼ਾਹ ਮਿਲਦਾ ਹੈ । ਇਕ ਚੰਗਾ ਵਾਤਾਵਰਣ ਅਤੇ ਚੰਗੀ ਭਾਗਦਾਰੀ ਵਧੀਆ ਵਿਕਾਸ ਅਤੇ ਵਾਧੇ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਅਹਿਮ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

PSEB 12th Class Physical Education Guide ਸਰੀਰਕ ਯੋਗਤਾ Important Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਰਫ਼ਤਾਰ ਦੇ ਦੋ ਪ੍ਰਕਾਰਾਂ ਦੀ ਸੂਚੀ ਲਿਖੋ ।
ਉੱਤਰ:

  1. ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫ਼ਤਾਰ
  2. ਤੇਜ਼ ਰਫ਼ਤਾਰ ਦੀ ਯੋਗਤਾ/ਗਤੀ ਯੋਗਤਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ ਪ੍ਰਕਾਰ ।

ਪ੍ਰਸ਼ਨ 3.
ਤਾਕਤ ਕਿੰਨੀ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਤਾਕਤ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ

  1. ਗਤੀਸ਼ੀਲ ਤਾਕਤ
  2. ਸਥਿਰ ਤਾਕਤ ।

ਪ੍ਰਸ਼ਨ 4.
ਕਿਸ ਉਮਰ ਵਿਚ ਭਾਰ ਸਿਖਲਾਈ ਸ਼ੁਰੂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ?
ਉੱਤਰ-
18 ਸਾਲ ਤੋਂ ।

ਪ੍ਰਸ਼ਨ 5.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਕੋਈ ਦੋ ਮਹੱਤਵ ਲਿਖੋ ।
ਤਾਂ ,
ਉੱਤਰ-

  1. ਸੰਪੂਰਨ ਤੰਦਰੁਸਤੀ
  2. ਭਾਰ ਪ੍ਰਬੰਧਨ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 6.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਅੰਗ ਲਿਖੋ ।
ਉੱਤਰ-
ਤਾਕਤ, ਸਹਿਣਸ਼ੀਲਤਾ, ਫੁਰਤੀ, ਸੰਤੁਲਨ, ਲਚਕ ਅਤੇ ਤਾਲਮੇਲ ਯੋਗਤਾ |

ਪ੍ਰਸ਼ਨ 7.
ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਦਾ ਦੂਜਾ ਨਾਮ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਆਈਸੋਟੋਨਿਕ ।

ਪ੍ਰਸ਼ਨ 8.
ਸਥਿਰ ਤਾਕਤ ਨੂੰ ਹੋਰ ਕਿਸ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਆਈਸੋਮੀਟਰਿਕ ।

ਪ੍ਰਸ਼ਨ 9.
ਸੰਤੁਲਨ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਸਰੀਰ ਦੀ ਉਹ ਸਥਿਤੀ ਚਾਹੇ ਉਹ ਸਥਿਰ ਹੋਵੇ ਜਾਂ ਗਤੀ ਵਿਚ ‘ਤੇ ਕੰਟਰੋਲ ਰੱਖਣਾ ।

ਪ੍ਰਸ਼ਨ 10.
ਲਚਕ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਸਥਿਰ ਲਚਕ ਅਤੇ ਗਤੀਸ਼ੀਲ ਲਚਕ ।

ਪ੍ਰਸ਼ਨ 11.
ਤਾਲਮੇਲ ਯੋਗਤਾ ਦੇ ਕੋਈ ਦੋ ਨਾਮ ਦੱਸੋ ।
ਉੱਤਰ-
ਸਥਿਤੀ ਨਿਰਧਾਰਣ, ਸੰਯੋਜਨ ਦੀ ਯੋਗਤਾ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 12.
ਫੁਰਤੀ ਨੂੰ ਵਧਾਉਣ ਦੇ ਤਰੀਕੇ ਦੱਸੋ ।
ਉੱਤਰ-
ਫੁਰਤੀ ਨੂੰ ਸੈਟਲ ਰਨ, ਪੌੜੀ ਨੁਮਾ ਜੰਪ ਨਾਲ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 13.
ਵਿਲਿਅਮ ਸਰੀਰਕ ਯੋਗਤਾ ਪ੍ਰਤੀ ਆਪਣੇ ਵਿਚਾਰਾਂ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਗਟਾਉਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਵਿਲਿਅਮ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਸਰੀਰਕ ਕੰਮ ਕਰਨ ਲਈ ਵਿਅਕਤੀ ਦੀ ਸਮਰੱਥਾ ਹੈ ।”

ਪ੍ਰਸ਼ਨ 14.
ਤਾਕਤ ਕੀ ਹੈ ? ਉੱਤਰ-ਜਿੱਥੇ ਮਾਸਪੇਸ਼ੀ ਪ੍ਰਤੀਰੋਧ ਦੇ ਖਿਲਾਫ਼ ਬਲ ਪੈਦਾ ਕਰਦੀ ਹੈ ਉਸਨੂੰ ਤਾਕਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 15.
ਮੁਲਰ ਦੇ ਸ਼ਬਦਾਂ ਵਿਚ ਤਾਕਤ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਮੂਲਰ (Muller) ਦੇ ਅਨੁਸਾਰ, “ਤਾਕਤ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਉਹ ਬਲ ਜੋ ਕਿ ਮਾਸਪੇਸ਼ੀ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਲਗਾਉਦੀ ਹੈ । ਇਸ ਨੂੰ ਪਾਊਂਡ ਅਤੇ ਕਿਲੋਗ੍ਰਾਮ ਦੀ ਇਕਾਈ ਵਿਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ।”

ਪ੍ਰਸ਼ਨ 16.
ਮੈਥਿਊਜ਼ ਤਾਕਤ ਨੂੰ ਕਿਵੇਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ ?
ਉੱਤਰ-
ਮੈਥਿਊਜ਼ (Mathews) ਦੇ ਅਨੁਸਾਰ, “ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ ਉਹ ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਇਕ | ਮਾਸਪੇਸ਼ੀ ਅਤੇ ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਸਮੂਹ ਦੁਆਰਾ ਵੱਧ ਤੋਂ ਵੱਧ ਜਨਤਾ ਨਾਲ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਲਗਾਉਂਦਾ ਹੈ ।”

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 17.
ਸਥਿਰ ਤਾਕਤ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਲਈ ਮਾਸਪੇਸ਼ੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਮਾਸਪੇਸ਼ੀ ਆਪਣੀ ਲੰਬਾਈ ਬਦਲੇ ਬਿਨਾਂ ਹੀ ਤਨਾਵ ਦਾ ਵਿਕਾਸ ਕਰਦੀ ਹੈ , ਜਿਵੇਂ ਕੰਧ ਨੂੰ ਧੱਕਾ ਮਾਰਨਾ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 18.
ਵਿਸਫੋਟਕ ਤਾਕਤ ਬਾਰੇ ਦੱਸੋ ।
ਉੱਤਰ-
ਇਹ ਗਤੀ ਅਤੇ ਤਾਕਤ ਦਾ ਮਿਸ਼ਰਣ ਹੈ । ਇਹ ਗਤੀ ਦੇ ਵਿਰੋਧ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਕਾਬਲੀਅਤ ਹੁੰਦੀ ਹੈ । ਵਿਸਫੋਟਕ ਉੱਚ ਤਾਕਤ ਤੇਜ਼ ਗਤੀ ਦੀਆਂ ਦੌੜਾਂ, ਭਾਰ ਚੁੱਕਣਾ, ਹੈਮਰ ਥਰੋ, ਲੰਬੀ ਕੁੱਦ ਅਤੇ ਉੱਚੀ ਕੁੱਦ ਵਿਚ ਦੇਖੀ ਜਾ ਸਕਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 19.
ਤਾਕਤ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਬਿਆਨ ਕਰੋ ।
ਉੱਤਰ-
ਇਹ ਤਾਕਤ ਅਤੇ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦੀ ਹੈ । ਇਹ ਵਿਰੋਧ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਲੰਬੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ, ਤੈਰਾਕੀ ਅਤੇ ਸਾਈਕਲਿੰਗ ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 20.
ਕੀ ਸਥਿਰ ਤਾਕਤ ਵਿਚ ਮਾਸਪੇਸ਼ੀ ਆਪਣੀ ਲੰਬਾਈ ਬਦਲਦੀ ਹੈ ?
ਉੱਤਰ-
ਨਹੀਂ ।

ਪ੍ਰਸ਼ਨ 21.
ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਮੁੱਖ ਤੌਰ ਤੇ ਐਰੋਬਿਕ ਸਹਿਣਸ਼ੀਲਤਾ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਐਰੋਬਿਕ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਪੂਰਤੀ ਕਸਰਤਾਂ ਅਤੇ ਅਭਿਆਸ ਨਾਲ ਮਿਲਦੀ ਰਹੇ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 22.
ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਐਰੋਬਿਕਸ ਅਤੇ ਐਨਰੋਬਿਕਸ ਦੋਵੇਂ ਕ੍ਰਿਆਵਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਹ ਹੌਲੀ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਦੋਵਾਂ ਪ੍ਰਕਾਰਾਂ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ ਖਿਡਾਰੀ ਨੂੰ ਬਿਨਾਂ ਥਕਾਵਟ ਦੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਕੰਮ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 23.
ਆਮ ਸ਼ਹਿਣਸ਼ੀਲਤਾ, ਕਿਸ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਹਿੱਸਾ ਹੈ ?
ਉੱਤਰ-
ਕਿਰਿਆ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ ਦਾ ।

ਪ੍ਰਸ਼ਨ 24.
ਜੇਕਰ ਕਿਸੇ ਮੁੱਕੇਬਾਜ਼ ਨੂੰ ਤਿੰਨ ਮਿੰਟ ਵਿਚ ਆਪਣੀ ਬਾਊਟ ਖ਼ਤਮ ਕਰਨੀ ਹੈ ਤਾਂ ਉਸਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਵਿਸ਼ੇਸ਼ ਸਹਿਣਸ਼ੀਲਤਾ ਦੀ ।

ਪ੍ਰਸ਼ਨ 25.
ਐਰੋਬਿਕ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਐਰੋਬਿਕ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਪੂਰਤੀ ਕਸਰਤਾਂ ਅਤੇ ਅਭਿਆਸ ਦੌਰਾਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਰਹੇ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 26.
ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਆਪਣੇ ਸ਼ਬਦਾਂ ਵਿਚ ਬਿਆਨ ਕਰੋ ।
ਉੱਤਰ-
ਇਸ ਦੀ ਜ਼ਰੂਰਤ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਪੈਂਦੀ ਹੈ ਜੋ ਕਿ 2 ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ : ਜਿਵੇਂ ਕਿ ਮੱਧ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 27,
ਘੱਟ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਕਿਹੜੀਆਂ ਦੌੜਾਂ ਵਿਚ ਇਸਤੇਮਾਲ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਛੋਟੀ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਵਿਚ ਜਿਵੇਂ ਕਿ 100 ਮੀ., 200 ਮੀ. ਅਤੇ 400 ਮੀ. ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 28.
ਉਹ ਮੁਕਾਬਲੇ ਜੋ 2 ਮਿੰਟ ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ, ਉਹ ਕਿਹੜੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਪ੍ਰਤੀਕ ਹਨ ?
ਉੱਤਰ-
ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦੇ ।

ਪ੍ਰਸ਼ਨ 29.
5000 ਮੀਟਰ ਤੇ 10000 ਮੀਟਰ ਦੇ ਦੌੜਾਕਾਂ ਵਿਚ ਕਿਹੜੀ ਸਹਿਣਸ਼ੀਲਤਾ ਜ਼ਿਆਦਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਲੰਬੇ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ।

ਪ੍ਰਸ਼ਨ 30.
ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਕਿਸ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਹਿੱਸਾ ਹੈ ?
ਉੱਤਰ-
ਕਿਆ ਦੇ ਸਮੇਂ ਅਨੁਸਾਰ ਸਹਿਣਸ਼ੀਲਤਾ |

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 31.
ਜਟਿਲ ਅਭਿਆਸ ਤੋਂ ਬਾਅਦ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਰਫ਼ਤਾਰ ਵਿਕਸਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ?
ਉੱਤਰ-
20% ਤੱਕ ।

ਪ੍ਰਸ਼ਨ 32.
ਇੰਜਣ ਯੋਗਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਇਕਦਮ ਰਫਤਾਰ ਬਣਾ ਕੇ ਉਸਨੂੰ ਉਸੇ ਸਥਿਤੀ ਵਿਚ ਬਣਾਏ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਛੋਟੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ 100 ਮੀ: 200 ਮੀ: ਅਤੇ 400 ਮੀ: ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ।

ਪ੍ਰਸ਼ਨ 33.
ਰਫ਼ਤਾਰ ਸਹਿਣਸ਼ੀਲਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਰਫ਼ਤਾਰ ਨੂੰ ਖੇਡ ਦੇ ਆਖਰੀ ਪੜਾਅ ਤਕ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 34.
ਸ਼ੱਟਲ ਰਨ, ਪੋਮੀਟਿਕ ਜੰਪ ਅਤੇ ਟੈਕ ਜੰਪ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਕਿਹੜੇ ਅੰਗ ਦੇ ਸੁਧਾਰ ਲਈ ਕਰਵਾਏ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਫੁਰਤੀ ਲਈ ।

ਪ੍ਰਸ਼ਨ 35.
ਗ੍ਰਹਿਣ ਯੋਗਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਪ੍ਰਸਥਿਤੀ ਨੂੰ ਸਮਝ ਕੇ ਉਸ ਵਿਚ ਪ੍ਰਭਾਵੀ ਪਰਿਵਰਤਨ ਲੈ ਕੇ ਆਵੇ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਬਾਸਕਟ ਬਾਲ ਵਿਚ ਜੰਪ ਸਾਂਟ ਕਿਆ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਣਾ ਆਦਿ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਸਰੀਰਕ ਯੋਗਤਾ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਬੂਚਰ ਅਤੇ ਪ੍ਰੇਹਟਿਸ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਇਕ ਜੈਵਿਕ ਵਿਕਾਸ, ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ ਅਤੇ ਸਟੈਮਿਨਾ ਹੁੰਦੀ ਹੈ | ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੋਂ ਭਾਵ ਅਭਿਆਸ ਵਿਚ ਕੁਸ਼ਲਤਾਪੂਰਵਕ ਪ੍ਰਦਰਸ਼ਨ ਤੋਂ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਕੋਈ ਦੋ ਮਹੱਤਵ ਲਿਖੋ ।
ਉੱਤਰ-
1. ਸੰਪੂਰਨ ਸਿਹਤ ਦਾ ਸੁਧਾਰ-ਸਰੀਰਕ ਤੌਰ ‘ਤੇ ਤੰਦਰੁਸਤ ਵਿਅਕਤੀ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਸਰੀਰਕ ਫਾਇਦਿਆਂ ਨੂੰ ਮਾਣਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਸਾਹ ਕਿਰਿਆ, ਲਹੂ ਸੰਚਾਰ ਪ੍ਰਣਾਲੀ ਅਤੇ ਸਰੀਰ ਦੀਆਂ ਸਮੁੱਚੀ ਪ੍ਰਣਾਲੀਆਂ ਦਾ ਠੀਕ ਢੰਗ ਨਾਲ ਕੰਮ ਕਰਨਾ ਅਤੇ ਸਰੀਰ ਦਾ ਕ੍ਰਿਆਤਮਕ ਰੂਪ ਵਿਚ ਤਿਆਰ ਰਹਿਣਾ । ਉਹ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਬਿਮਾਰਿਆਂ ਜਿਵੇਂ ਕਿ ਸ਼ੂਗਰ, ਦਿਲ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਅਤੇ ਕੈਂਸਰ ਆਦਿ ਤੋਂ ਬਚਿਆ ਰਹਿੰਦਾ ਹੈ ।

2. ਭਾਰ ਪ੍ਰਬੰਧਨ-ਵਾਧੂ ਵਜ਼ਨ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਿਹਤ ਸੰਬੰਧੀ ਸਮੱਸਿਆਵਾਂ ਜਿਵੇਂ ਕਿ ਖੁਨ ਚਾਪ, ਕੈਸਟਰੋਲ ਪੱਧਰ, ਸ਼ੂਗਰ ਆਦਿ ਦੀ ਜੜ੍ਹ ਹੈ । ਜੋ ਵਿਅਕਤੀ ਸਰਗਰਮ ਅਤੇ ਸਰੀਰਕ ਤੌਰ ‘ਤੇ ਚੁਸਤ ਰਹਿੰਦੇ ਹਨ, ਉਹਨਾਂ ਨੂੰ ਉਪਰੋਕਤ ਬਿਮਾਰੀਆਂ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ ,

ਪ੍ਰਸ਼ਨ 3.
ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ।
ਉੱਤਰ-
ਬੈਰੋ ਅਤੇ ਮੈਕੇਜੀ (Barrow and McGee) ਦੇ ਅਨੁਸਾਰ ਸਹਿਣਸ਼ੀਲਤਾ, ਇਕ ਸਮੇਂ ਮਿਆਦ ਵਿਚ \ ਵਿਅਕਤੀ ਦੀ ਗਤੀ ਨੂੰ ਬਣਾਏ ਰੱਖਣ ਦੀ ਸਰੀਰਕ ਸਥਿਤੀ ਦੀ ਯੋਗਤਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 4.
ਵਿਸਫੋਟਕ ਤਾਕਤ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
ਉੱਤਰ-
ਇਹ ਗਤੀ ਅਤੇ ਤਾਕਤ ਦਾ ਮਿਸ਼ਰਣ ਹੈ । ਇਹ ਗਤੀ ਦੇ ਵਿਰੋਧ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਕਾਬਲੀਅਤ ਹੁੰਦੀ ਹੈ । ਵਿਸਫੋਟਕ ਉੱਚ ਤਾਕਤ ਤੇਜ਼ ਗਤੀ ਦੀਆਂ ਦੌੜਾਂ, ਭਾਰ ਚੁੱਕਣਾ, ਹੈਮਰ ਥਰੋ, ਲੰਬੀ ਕੁੱਦ ਅਤੇ ਉੱਚੀ ਕੁੱਦ ਵਿਚ ਦੇਖੀ ਜਾ ਸਕਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਸਰੀਰਕ ਢਾਂਚਾ
  2. ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ
  3. ਮਨੋਵਿਗਿਆਨਿਕ ਕਾਰਜ
  4. ਸਰੀਰਕ ਕਿਰਿਆ ਵਿਗਿਆਨ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 6.
ਰਫ਼ਤਾਰ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ।
ਉੱਤਰ-
ਜਾਨਸਨ ਅਤੇ ਨੇਲਸਨ (Johnson and Nelson) ਦੇ ਅਨੁਸਾਰ ਰਫਤਾਰ ਉਹ ਦਰ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਵਿਅਕਤੀ ਮੈਦਾਨ ਵਿਚ ਆਪਣੇ ਸਰੀਰ ਅਤੇ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਨੂੰ ਅੱਗੇ ਵਧਾਉਣ ਲਈ ਉਤਸ਼ਾਹਿਤ ਕਰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਤਾਕਤ ਸਹਿਣਸ਼ੀਲਤਾ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
ਉੱਤਰ-
ਇਹ ਤਾਕਤ ਅਤੇ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦੀ ਹੈ । ਇਹ ਵਿਰੋਧ ‘ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਲੰਬੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ, ਤੈਰਾਕੀ ਅਤੇ ਸਾਈਕਲਿੰਗ ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 8.
ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕੋਈ ਦੋ ਕਾਰਕ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਮਨੋਵਿਗਿਆਨਕ ਕਾਰਕ
  2. ਖੁਰਾਕ ।

ਪ੍ਰਸ਼ਨ 9.
ਸਰੀਰਕ ਯੋਗਤਾ ਦਾ ਪ੍ਰੋਗਰਾਮ ਬਣਾਉਂਦੇ ਸਮੇਂ ਕਿਹੜੀਆਂ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਰੀਰਕ ਯੋਗਤਾ ਪ੍ਰੋਗਰਾਮ ਬਣਾਉਂਦੇ ਸਮੇਂ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ।

  1. ਉਮਰ
  2. ਲਿੰਗ |

ਪ੍ਰਸ਼ਨ 10.
ਤਾਕਤ ਸਹਿਣਸ਼ੀਲਤਾ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
ਉੱਤਰ-
ਇਹ ਤਾਕਤ ਅਤੇ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦੀ ਹੈ । ਇਹ ਵਿਰੋਧ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਲੰਬੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ, ਤੈਰਾਕੀ ਅਤੇ ਸਾਈਕਲਿੰਗ ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 11.
ਗਤੀ ਅਤੇ ਤਾਕਤ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-ਗਤੀ (Speed)-ਗਤੀ ਤੋਂ ਭਾਵ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਵਿਚ ਤੇਜ਼ੀ ਲਿਆਉਣ ਤੋਂ ਹੈ । ਇਹ ਗਤੀ ਭਾਵੇਂ , ਦੌੜਾਕ ਦੀਆਂ ਲੱਤਾਂ ਵਿਚ ਹੋਵੇ ਜਾਂ ਫਿਰ ਸ਼ਾਟ ਪੁੱਟ ਲਗਾਉਣ ਵਾਲੇ ਦੀਆਂ ਬਾਂਹਾਂ ਦੀ ਹੋਵੇ ।
ਤਾਕਤ (Strength)-ਜਿੱਥੇ ਮਾਸਪੇਸ਼ੀ ਪ੍ਰਤੀਰੋਧ ਦੇ ਵਿਰੁੱਧ ਬਲ ਪੈਦਾ ਕਰਦੀ ਹੈ ਉਸਨੂੰ ਤਾਕਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 12.
ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕ ਕਿਹੜੇ ਹਨ ? .
ਉੱਤਰ-

  1. ਸਰੀਰਕ ਕ੍ਰਿਆ ਦੀ ਬਣਤਰ
  2. ਮਨੋਵਿਗਿਆਨਕ ਕਾਰਕ ।

ਪ੍ਰਸ਼ਨ 13.
ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫ਼ਤਾਰ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਸਿਗਨਲ ਮਿਲਣ ਤੇ ਤੁਰੰਤ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਪਰਿਸਥਿਤੀ ਦੇ ਵਿਰੁੱਧ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਕੱਚ ਦੀ ਸੀਟੀ ਵੱਜਣ ਤੇ ਅੱਗੇ ਵੱਲ, ਪਿੱਛੇ ਵੱਲ, ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜਾਣਾ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 14.
ਫੁਰਤੀ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਫੁਰਤੀ ਨਿਯੰਤਰਣ (Control) ਵਿਚ ਰਹਿ ਕੇ, ਤੇਜ਼ੀ ਅਤੇ ਪ੍ਰਭਾਵੀ ਢੰਗ ਨਾਲ ਸਰੀਰ ਦੀ ਦਿਸ਼ਾ ਵਿਚ ਪਰਿਵਰਤਨ ਲਿਆਉਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 15.
ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੀ ਕੋਈ ਇੱਕ ਪਰਿਭਾਸ਼ਾ ਲਿਖੋ ।
ਉੱਤਰ-
ਡੇਵਿਡ ਆਰ. ਲੈਂਬ ਦੇ ਅਨੁਸਾਰ, “ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਜੀਵਨ ਦੇ ਮੌਜੂਦਾ ਅਤੇ ਸੰਭਾਵੀ ਭੌਤਿਕ ਚੁਣੌਤੀਆਂ ਨੂੰ ਸਫਲਤਾਪੂਰਵਕ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ ।”

ਪ੍ਰਸ਼ਨ 16.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਕੋਈ ਦੋ ਅੰਗਾਂ ਦੇ ਨਾਮ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਤਾਕਤ
  2. ਫੁਰਤੀ ।

ਪ੍ਰਸ਼ਨ 17.
ਸਰੀਰਕ ਢਾਂਚੇ ਸ਼ਬਦ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਸਰੀਰਕ ਢਾਂਚਾ (Anatomical Structure) – ਸਰੀਰਕ ਢਾਂਚਾ ਅਲੱਗ-ਅਲੱਗ ਅਕਾਰ ਅਤੇ ਰੂਪ ਵਿਚ ਹੁੰਦਾ ਹੈ । ਕਈ ਵਾਰ ਅਨੁਚਿਤ ਆਕਾਰ ਅਤੇ ਰੂਪ ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਵਿਚ ਉਲਝਣਾਂ ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਕਈ ਵਾਰ ਕਮਜ਼ੋਰ ਅੰਗ ਵਿਅਕਤੀ ਦੇ ਕੰਮਾਂ ਜਾਂ ਕ੍ਰਿਆਵਾਂ ਨੂੰ ਘਟਾ ਦਿੰਦੇ ਹਨ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 18.
ਕੀ ਸੱਟਾਂ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ ਅਤੇ ਕਿਉਂ ?
ਉੱਤਰ-
ਹਾਂ, ਕਿਉਂਕਿ ਸੱਟਾਂ ਦੀ ਦੇਖਭਾਲ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ ਖੇਡ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਕਮੀ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਖਿਡਾਰੀ ਦੇ ਮਾਨਸਿਕ ਸੰਤੁਲਨ ‘ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 19.
ਸਿਹਤਮੰਦ ਵਾਤਾਵਰਣ ਦਾ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਦਾ ਕੀ ਕਾਰਨ ਹੈ ?
ਉੱਤਰ-
ਸਕੂਲ, ਘਰ ਅਤੇ ਖੇਡਾਂ ਦਾ ਮੈਦਾਨ ਬੇਹਤਰ ਸਿੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨ ਵਿਚ ਮੱਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦਾ ਹੈ । ਇਸ ਨਾਲ ਖਿਡਾਰੀ ਨੂੰ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਲਈ ਉਤਸ਼ਾਹ ਮਿਲਦਾ ਹੈ । ਇਕ ਚੰਗਾ ਵਾਤਾਵਰਣ ਅਤੇ ਚੰਗੀ ਭਾਗਦਾਰੀ ਵਧੀਆ ਵਿਕਾਸ ਅਤੇ ਵਾਧੇ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਅਹਿਮ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 20.
ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ ਅਤੇ ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਬਿਆਨ ਕਰੋ ।
ਉੱਤਰ-
(ੳ) ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ (General Endurance)-ਇਹ ਐਰੋਬਿਕਸ, ਅਤੇ ਐਨਰੋਬਿਕਸ ਦੋਵੇਂ ਕ੍ਰਿਆਵਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਹ ਹੌਲੀ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਦੋਵਾਂ ਪ੍ਰਕਾਰਾਂ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ ਖਿਡਾਰੀ ਨੂੰ ਬਿਨਾਂ ਥਕਾਵਟ ਦੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਕੰਮ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ ।

(ਅ) ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Middle Term Endurance-ਇਸ ਦੀ ਜ਼ਰੂਰਤ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਪੈਂਦੀ ਹੈ ਜੋ ਕਿ 2 ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਮੱਧ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 21.
ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫ਼ਤਾਰ ਅਤੇ ਗਤੀ ਯੋਗਤਾ ਵਿਚ ਕੀ ਫ਼ਰਕ ਹੈ ?
ਉੱਤਰ-
(ੳ) ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫਤਾਰ (Reaction Speed)-ਇਹ ਸਿਗਨਲ ਮਿਲਣ ਤੇ ਤੁਰੰਤ ਪ੍ਰਤੀਕ੍ਰਿਆਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਸਥਿਤੀ ਦੇ ਵਿਰੁੱਧ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਕੋਚ (Coach) ਦੀ ਸੀਟੀ ਵੱਜਣ ਤੇ ਅੱਗੇ ਵੱਲ, ਪਿੱਛੇ ਵੱਲ, ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜਾਣਾ ਆਦਿ ।

(ਅ) ਗਤੀ ਯੋਗਤਾ (Acceleration Ability)-ਇਹ ਸਥਿਰ (Stationary) ਅਵਸਥਾ ਤੋਂ ਵੱਧ ਤੋਂ ਵੱਧ (Maximum) ਰਫਤਾਰ ਵਿਚ ਇਕਦਮ ਜਾਣ ਦੀ ਯੋਗਤਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਸਪਰਿੰਟ (Sprint) ਛੋਟੀ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਵਿਚ ਦੇਖ ਸਕਦੇ ਹਾਂ ਜਿੱਥੇ ਇਕ ਵਿਸਫੋਟਕ ਤਾਕਤ, ਤਕਨੀਕ ਅਤੇ ਲਚਕ ਦੀ ਜ਼ਰੂਰਤ ਪੈਂਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 22.
ਇੰਜਨ ਯੋਗਤਾ ਅਤੇ ਸੰਚਲਨ ਵੇਗ ਨੂੰ ਆਪਣੇ ਸ਼ਬਦਾਂ ਵਿਚ ਲਿਖੋ ।
ਉੱਤਰ-
(ਉ) ਲੋਕੋਮੋਟਰ ਜਾਂ ਮਨ ਦੀ ਯੋਗਤਾ ਜਾਂ ਇੰਜਣ ਯੋਗਤਾ (Locomotor Ability)-ਇਹ ਇਕਦਮ ਰਫਤਾਰ ਬਣਾ ਕੇ ਉਸਨੂੰ ਉਸੇ ਸਥਿਤੀ ਵਿਚ ਬਣਾਏ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਛੋਟੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ 100 ਮੀ: 200 ਮੀ: ਅਤੇ 400 ਮੀ: ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

( ਅ) ਸੰਚਲਨ ਵੇਗ (Movement Speed)-ਇਹ ਉਹ ਯੋਗਤਾ ਜਿਸ ਵਿਚ ਘੱਟ ਤੋਂ ਘੱਟ ਸਮੇਂ ਵਿਚ ਵੱਧ ਤੋਂ ਵੱਧ ਕ੍ਰਿਆ ਨੂੰ ਪੂਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਆਈਸੋਟੋਨਿਕ ਅਤੇ ਆਈਸੋਮੀਟਰਿਕ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ?
ਉੱਤਰ-
1. ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਜਾਂ ਆਈਸੋਟੋਨਿਕ ਤਾਕਤ (Dynamic or Isotonic Strength)- ਜਦ ਸੁੰਗੜਨ ਨਾਲ ਮਾਸਪੇਸ਼ੀ ਦੀ ਲੰਬਾਈ ਵਿਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਕਹਿੰਦੇ ਹਨ । ਉਦਾਹਰਨ ਲਈ ਜਦ ਇਕ ਤੋਂ ਵੱਧ ਜੋੜਾਂ ਵਿਚ ਗਤੀ ਹੋਵੇ ਜਿਵੇਂ ਕਿ ਪੁਸ਼-ਅਪ, ਪੁਲ-ਅਪ, ਬਾਰਬੈਲ ਪੇਸ਼, ਸਕੈਊਟ ਜੰਪ (Squat Jump), ਡੈਡ ਲਿਫਟਜ (Dead lifts) ਆਦਿ । ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਨੂੰ ਤਿੰਨ ਭਾਗਾਂ ਵਿਚ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

2. ਸਥਿਰ ਤਾਕਤ ਜਾਂ ਆਈਸੋਮੀਟਰਿਕ (Static or Isometric Strength)-ਇਹ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਲਈ ਮਾਸਪੇਸ਼ੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਮਾਸਪੇਸ਼ੀ ਆਪਣੀ ਲੰਬਾਈ ਬਦਲੇ ਬਿਨਾਂ ਹੀ ਤਨਾਵ ਦਾ ਵਿਕਾਸ ਕਰਦੀ ਹੈ , ਜਿਵੇਂ ਕੰਧ ਨੂੰ ਧੱਕਾ ਮਾਰਨਾ ਆਦਿ। |

ਪ੍ਰਸ਼ਨ 2.
ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਕ੍ਰਿਆ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ ਕਿਵੇਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
(ੳ) ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Basic Endurance) – ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਮੁੱਖ ਤੌਰ ਤੇ ਐਰੋਬਿਕ ਸਹਿਣਸ਼ੀਲਤਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਐਰੋਬਿਕ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਜਿਸ ਵਿਚ ਆਕਸੀਜਨ ਦੀ ਪੂਰਤੀ ਕਸਰਤਾਂ ਅਤੇ ਅਭਿਆਸ ਨਾਲ ਮਿਲਦੀ ਰਹੇ ।
ਇਹ ਹੌਲੀ-ਹੌਲੀ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਿਸ ਵਿਚ ਸਰੀਰ ਦੇ ਸਾਰੇ ਮਸਲ ਗਰੁੱਪ ਭਾਗ ਲੈਂਦੇ ਹਨ ਜਾਂ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ । ਦੌੜਨਾ, ਜੋਗ, ਚੱਲਣਾ ਅਤੇ ਤੈਰਾਕੀ ਬੁਨਿਆਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦੇ ਉਦਾਹਰਨ ਹਨ ।

(ਅ) ਆਮ ਸਹਿਣਸ਼ੀਲਤਾ (General Endurance) – ਇਹ ਐਰੋਬਿਕਸ ਅਤੇ ਐਰੋਬਿਕਸ ਦੋਵੇਂ ਕ੍ਰਿਆਵਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਹ ਹੌਲੀ ਅਤੇ ਤੇਜ਼ ਗਤੀ ਦੋਵਾਂ ਪ੍ਰਕਾਰਾਂ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਸਹਿਣਸ਼ੀਲਤਾ ਖਿਡਾਰੀ ਨੂੰ ਬਿਨਾਂ ਥਕਾਵਟ ਦੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਕੰਮ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ ।
(ਈ ਵਿਸ਼ੇਸ਼ ਸਹਿਣਸ਼ੀਲੜਾ (Specific Endurance)–ਵਿਸ਼ੇਸ਼ ਸਹਿਣਸ਼ੀਲਤਾ ਹਰ ਖੇਡ ਲਈ ਅਲੱਗਅਲੱਗ ਹੁੰਦੀ ਹੈ । ਹਰ ਖੇਡ ਦੀ ਆਪਣੀ ਗਤੀ ਹੁੰਦੀ ਹੈ , ਜਿਵੇਂ ਕਿ ਮੈਰਾਥਨ ਦੌੜਾਕਾਂ ਨੂੰ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਦੌੜਨਾ ਪੈਂਦਾ ਹੈ ਤੇ ਉਹੀ ਮੁੱਕੇਬਾਜ਼ (Boxer) ਨੂੰ ਆਪਣੀ ਬਾਊਟ (Bout) ਨੂੰ 3 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਕਰਨੀ ਹੁੰਦੀ ਹੈ । ਇਸ ਲਈ ਹਰ ਖੇਡ ਵਿਚ ਖਿਡਾਰੀ ਨੂੰ ਉੱਪਰ ਦਿੱਤੀਆਂ ਸਹਿਣਸ਼ੀਲਤਾ ਦੇ ਪ੍ਰਕਾਰ ਤੋਂ ਇਲਾਵਾ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਾਰ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦੀ ਤਿਆਰੀ ਵੀ ਕਰਨੀ ਪੈਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਘੱਟ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਅਤੇ ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ।
ਉੱਤਰ-
(ੳ) ਘੱਟ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Short Term Endurance) – ਖੇਡ ਕ੍ਰਿਆਵਾਂ ਦੀ ਥਕਾਨ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੇ ਲਈ ਘੱਟ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ : ਜਿਵੇਂ ਕਿ ਛੋਟੀਆਂ ਦੌੜਾਂ ਜਿਵੇਂ (ਸਪਰਿੰਟ) ਤੇ ਮੱਧ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਆਦਿ ਇਸ ਦੇ ਉਦਾਹਰਨ ਹਨ । ਇਸਨੂੰ ਐਨੋਰੋਬਿਕ ਕਿਰਿਆ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

(ਅ) ਮੱਧ ਸਮੇਂ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Middle Term Endurance – ਇਸ ਦੀ ਜ਼ਰੂਰਤ ਉਹਨਾਂ ਮੁਕਾਬਲਿਆਂ ਵਿਚ ਪੈਂਦੀ ਹੈ ਜੋ ਕਿ 2 ਤੋਂ 10 ਮਿੰਟ ਵਿਚ ਖ਼ਤਮ ਹੋ ਜਾਂਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਮੱਧ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

ਪਸ਼ਨ 4.
ਤਾਲਮੇਲ ਯੋਗਤਾ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਤਾਲਮੇਲ ਦੀ ਯੋਗਤਾ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਮੋਟਰ ਟਾਸਕ (Motor task) ਸਹਜ ਅਤੇ ਸਹੀ ਢੰਗ ਨਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਜਿਸ ਵਿਚ ਇੰਦਰੀਆਂ ਅਤੇ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਸੁੰਗੜਨ ਦਾ ਪਰਸਪਰ ਸੰਬੰਧ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੋ ਕਿ ਜੋੜਾਂ ਦੀ ਗਤੀ ਅਤੇ ਉਸਦੇ ਆਸ-ਪਾਸ ਦੇ ਅੰਗਾਂ ਅਤੇ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਤਾਲਮੇਲ ਸਨਾਯੁਤੰਤਰ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ | ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਤਾਲਮੇਲ ਦਾ ਅਹਿਮ ਰੋਲ ਹੈ ਜਿਸ ਤੋਂ ਬਿਨਾਂ ਕੋਈ ਵੀ ਖੇਡ ਜਾਂ ਕ੍ਰਿਆ ਸੰਭਵ ਹੀ ਨਹੀਂ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 5.
ਫੁਰਤੀ ਅਤੇ ਰਫ਼ਤਾਰ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ?
ਉੱਤਰ-
ਗਤੀ (Speed) – ਗਤੀ ਤੋਂ ਭਾਵ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਵਿਚ ਤੇਜ਼ੀ ਲਿਆਉਣ ਤੋਂ ਹੈ । ਇਹ ਗਤੀ ਭਾਵੇਂ ਦੌੜਾਕ ਦੀਆਂ ਲੱਤਾਂ ਵਿਚ ਹੋਵੇ ਜਾਂ ਫਿਰ ਸ਼ਾਟ ਪੁੱਟ ਲਗਾਉਣ ਵਾਲੇ ਦੀਆਂ ਬਾਹਾਂ ਦੀ ਹੋਵੇ ।

ਫੁਰਤੀ (Agility) – ਉਲਟੀ ਦਿਸ਼ਾਵਾਂ ਵਿਚ ਅੱਗੇ ਵੱਧਣਾ ਅਤੇ ਵਿਸਫੋਟਕ ਊਰਜਾ ਨਾਲ ਗਤੀਵਿਧੀਆਂ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨਾ, ਜਿਵੇਂ ਕਿ, ਜੀ-ਜੈਗ ਦੌੜ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 6.
ਤਾਕਤ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ? ਵਿਸਥਾਰ ਸਹਿਤ ਲਿਖੋ ।
ਉੱਤਰ-
ਤਾਕਤ ਨੂੰ ਇਕ ਮਾਸਪੇਸ਼ੀ ਦੇ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਤੋਂ, ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਸਮੂਹ ਦੁਆਰਾ ਇਕੱਠੇ ਲਗਾਏ ਬਲ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਤਾਕਤ ਨੂੰ ਸਹੀ ਮਾਤਰਾ ਵਿਚ ਕੀਤੇ ਅਭਿਆਸ ਨਾਲ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।
ਤਾਕਤ ਦੇ ਪ੍ਰਕਾਰ (Types of Strength-ਖੇਡਾਂ ਦੀਆਂ ਲੋੜਾਂ ਮੁਤਾਬਿਕ ਤਾਕਤ ਨੂੰ ਹੇਠਾਂ ਲਿਖੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ-

  1. ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਜਾਂ ਆਈਸੋਟੋਨਿਕ ਤਾਕਤ (Dynamic or Isotonic Strength)
  2. ਸਥਿਰ ਤਾਕਤ ਜਾਂ ਆਈਸੋਮੀਟਰਿਕ (Static or Isometic Strength) ।

1. ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਜਾਂ ਆਈਸੋਟੋਨਿਕ ਤਾਕਤ (Dynamic or sotonic Strength – ਜਦ ਸੁੰਗੜਨ ਨਾਲ ਮਾਸਪੇਸ਼ੀ ਦੀ ਲੰਬਾਈ ਵਿਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਕਹਿੰਦੇ ਹਨ । ਉਦਾਹਰਨ ਲਈ | ਜਦ ਇਕ ਤੋਂ ਵੱਧ ਜੋੜਾਂ ਵਿਚ ਗਤੀ ਹੋਵੇ ; ਜਿਵੇਂ ਕਿ ਪੁਸ਼-ਅਪ, ਪੁਲ-ਅਪ, ਬਾਰਬੈਲ ਪੇਸ਼, ਸਕੈਊਟ ਜੰਪ (Squat Jump), ਡੈਡ ਲਿਫਟਜ (Dead lifts) ਆਦਿ । ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਨੂੰ ਤਿੰਨ ਭਾਗਾਂ ਵਿਚ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

2. ਸਥਿਰ ਤਾਕਤ ਜਾਂ ਆਈਸੋਮੀਟਰਿਕ ਤਾਕਤ (Static or Isometric strength – ਇਹ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ‘ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਲਈ ਮਾਸਪੇਸ਼ੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਮਾਸਪੇਸ਼ੀ ਆਪਣੀ ਲੰਬਾਈ ਬਦਲੇ ਬਿਨਾਂ ਹੀ ਤਨਾਵ ਦਾ ਵਿਕਾਸ ਕਰਦੀ ਹੈ ,:ਜਿਵੇਂ ਕੰਧ ਨੂੰ ਧੱਕਾ ਮਾਰਨਾ ਆਦਿ।

ਪ੍ਰਸ਼ਨ 7.
ਲਚਕ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ, ਲਚਕ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੈ ? ਵਿਆਖਿਆ ਕਰੋ ।
ਉੱਤਰ-
ਲਚਕ ਗਤੀਸ਼ੀਲਤਾ ਦੀ ਉਹ ਦਰ ਹੈ ਜੋ ਕਿ ਜੋੜਾਂ ਤੋਂ ਸੰਭਵ ਹੁੰਦੀ ਹੈ । ਲਚਕ ਦੇ ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਾਰ ਹਨ-

  1. ਸੁਸਤ ਲਚਕ (Pasive Flexibility)-ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਦੇ ਵੱਡੀ ਦਰ ਤੇ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਕਿਸੇ ਸਾਥੀ ਖਿਡਾਰੀ ਦੀ ਮਦਦ ਨਾਲ ਸਟ੍ਰੇਚਿੰਗ (Stretching) ਕਸਰਤਾਂ ਕਰਨਾ |
  2. ਚੁਸਤ ਲਚਕ (Active Flexibility-ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਤੋਂ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ | ਦਰ ਦੀ ਯੋਗਤਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਲੱਤਾਂ ਨੂੰ ਬੁਲਾਉਣਾ ਆਦਿ ।
  3. ਡਾਇਨਾਮਿਕ ਲਚਕ (Dynamic Flexibility-ਇਹ ਉਹ ਲਚਕ ਹੁੰਦੀ ਹੈ ਜਦ ਸਰੀਰ ਗਤੀ ਵਿਚ ਹੁੰਦਾ
    ਹੈ ਅਤੇ ਕ੍ਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਦੌੜਨਾ, ਤੈਰਨਾ ਜਾਂ ਸਮਰਸੱਲਟ (Samersault) ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 8.
ਰਫ਼ਤਾਰ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੈ ? ਵਿਸਥਾਰ ਸਹਿਤ ਲਿਖੋ ।
ਉੱਤਰ-ਰਫ਼ਤਾਰ ਪੰਜ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ-
1. ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫਤਾਰ (Reaction Speed – ਇਹ ਸਿਗਨਲ ਮਿਲਣ ਤੇ ਤੁਰੰਤ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਖਿਡਾਰੀ ਪਰਿਸਥਿਤੀ ਦੇ ਵਿਰੁੱਧ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਕੱਚ ਦੀ ਸੀਟੀ ਵੱਜਣ ਤੇ ਅੱਗੇ ਵੱਲ, ਪਿੱਛੇ ਵੱਲ, ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜਾਣਾ ਆਦਿ ।

2. ਤੇਜ਼ ਰਫਤਾਰ ਦੀ ਯੋਗਤਾ (Acceleration Ability) – ਇਹ ਸਥਿਰ (Stationary) ਅਵਸਥਾ ਤੋਂ ਵੱਧ ਤੋਂ . ਵੱਧ (Maximum) ਰਫਤਾਰ ਵਿਚ ਇਕਦਮ ਜਾਣ ਦੀ ਯੋਗਤਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਸਪਰਿੰਟ (Sprint) ਛੋਟੀ ਦੁਰੀ ਦੀਆਂ ਦੌੜਾਂ ਵਿਚ ਦੇਖ ਸਕਦੇ ਹਾਂ ਜਿੱਥੇ ਇਕ ਵਿਸਫੋਟਕ ਤਾਕਤ, ਤਕਨੀਕ ਅਤੇ ਲਚਕ ਦੀ ਜ਼ਰੂਰਤ ਪੈਂਦੀ ਹੈ ।

3. ਲੋਕੋਮੋਟਰ ਜਾਂ ਗਮਨ ਦੀ ਯੋਗਤਾ (Locomotor Ability) – ਇਹ ਇਕਦਮ ਰਫਤਾਰ ਬਣਾ ਕੇ ਉਸਨੂੰ ਉਸੇ ਸਥਿਤੀ ਵਿਚ ਬਣਾਏ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ । ਜਿਵੇਂ ਕਿ 100 ਮੀ: 200 ਮੀ: ਅਤੇ 400 ਮੀ: ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।

4. ਗਤੀ ਮੀਲ ਰਫ਼ਤਾਰ (Movement Ability) – ਘੱਟ ਤੋਂ ਘੱਟ ਸਮੇਂ ਵਿਚ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਗਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਟੀਮ ਖੇਡਾਂ, ਲੜਾਕੂ ਖੇਡਾਂ, ਰੈਕਟ ਖੇਡਾਂ, ਸੁੱਟਣਾ ਅਤੇ ਜਿਮਨਾਸਟਿਕ ਆਦਿ ਵਿਚ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

5. ਸਹਿਣਸ਼ੀਲਤਾ ਰਫ਼ਤਾਰ (Speed Endurance – ਇਹ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਖਿਡਾਰੀ ਆਪਣੀ ਰਫ਼ਤਾਰ ਨੂੰ ਖੇਡ ਦੇ ਆਖਰੀ ਪੜਾਅ ਤੱਕ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 9.
ਪ੍ਰਤੀਕ੍ਰਿਆ ਰਫ਼ਤਾਰ ਅਤੇ ਗਮਨ ਰਫ਼ਤਾਰ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਇੰਜਨ ਜਾਂ ਗਮਨ ਦੀ ਯੋਗਤਾ (Locomotor Ability) – ਇਹ ਇਕਦਮ ਰਫਤਾਰ ਬਣਾ ਕੇ ਉਸਨੂੰ ਉਸੇ ਸਥਿਤੀ ਵਿਚ ਬਣਾਏ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ । ਜਿਵੇਂ ਕਿ 100 ਮੀ:, 200 ਮੀ: ਅਤੇ 400 ਮੀ: ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ।
  2. ਗਤੀਸ਼ੀਲ ਰਫ਼ਤਾਰ (Movement Ability) – ਘੱਟ ਤੋਂ ਘੱਟ ਸਮੇਂ ਵਿਚ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਗਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਟੀਮ ਖੇਡਾਂ, ਲੜਾਕੂ ਖੇਡਾਂ, ਰੈਕਟ ਖੇਡਾਂ, ਸੁੱਟਣਾ ਅਤੇ ਜਿਮਨਾਸਟਿਕ ਆਦਿ ਵਿਚ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਅਰਥ ਸਮਝਾਉ ।
1. ਚੰਗਾ ਸਰੀਰਕ ਆਸਣ
2. ਖ਼ੁਰਾਕ
3. ਜੀਵਨ ਸ਼ੈਲੀ ।
ਉੱਤਰ-
ਅਨੇਕਾਂ ਅਜਿਹੇ ਕਈ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਨਿਸ਼ਕ੍ਰਿਆਂ ਦੇ ਕਾਰਨ ਛੋਟੇ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਅਭਿਆਸ ਕਾਲ ਤੇ ਕਈ ਤਰੀਕਿਆਂ ਨਾਲ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ । ਇਹ ਕਾਰਕ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ, ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਾਰ ਹਨ-
1. ਚੰਗਾ ਸਰੀਰਕ ਆਸਣ (Good Posture) – ਸਰੀਰਕ ਤਰੁੱਟੀਆਂ, ਸਰੀਰਕ ਯੋਗਤਾ ਵਿਚ ਹਮੇਸ਼ਾ ਹੀ ਮੁਸ਼ਕਿਲ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ , ਜਿਵੇਂ ਕਿ ਅਸੰਤੁਲਨ ਮਾਸਪੇਸ਼ੀਆਂ, ਕੁਪੋਸ਼ਣ, ਦਰਦ, ਲੋਰਡੋਸਿਸ (Lordosis) ਸਕੋਲਿਸਿਸ (Scoliosis), ਗੋਲ ਮੋਢੇ, ਗੋਡਿਆਂ ਦਾ ਟਕਰਾਉਣਾ ਆਦਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ ।

2. ਅਹਾਰ (Diet) – ਸਰੀਰਕ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਅਹਾਰ ਪ੍ਰਮੁੱਖ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ ਅਤੇ ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਸਤਰ ਨੂੰ ਬਣਾਏ ਰੱਖਣ ਵਿਚ ਬਹੁਤ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ , ਆਹਾਰ ਵਿਚ ਕੈਲਰੀ ਦੀ ਉਪਯੁਕਤ ਮਾਤਰਾ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸਰਵ-ਉੱਚ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਵਿਚ ਮਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਅਤੇ ਤਰਲ ਪਦਾਰਥਾਂ ਦੀ ਕਮੀ ਕਾਰਨ ਇਕ ਖਿਡਾਰੀ ਜਲਦੀ ਹੀ ਥਕਾਵਟ ਮਹਿਸੂਸ ਕਰਨ ਲੱਗ ਪੈਂਦਾ ਹੈ । ਮਾਸ਼ਪੇਸ਼ੀਆਂ ਦੇ ਪੁਨਰ-ਨਿਰਮਾਣ ਵਾਸਤੇ ਪ੍ਰੋਟੀਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟਸ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਵਿਟਾਮਿਨਸ ਤੋਂ ਬਿਨਾਂ ਖਿਡਾਰੀ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ ਅਤੇ ਉਸਦੀ ਸਰੀਰਕ ਯੋਗਤਾ ਵੀ ਘੱਟ ਜਾਂਦੀ ਹੈ ।

3. ਜੀਵਨ ਸ਼ੈਲੀ (Life Style) – ਉਹ ਖਿਡਾਰੀ ਜੋ ਚੰਗੀ ਜੀਵਨ ਸ਼ੈਲੀ ਨੂੰ ਅਪਨਾਉਂਦੇ ਹਨ, ਉਹ ਹਮੇਸ਼ਾ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦੇ ਹਨ । ਜੀਵਨ ਸ਼ੈਲੀ ਤੋਂ ਭਾਵ ਸ਼ਾਨੋ-ਸ਼ੌਕਤ ਵਾਲਾ ਜੀਵਨ ਤੋਂ ਨਹੀਂ ਹੈ ਬਲਕਿ ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਚੰਗੀਆਂ ਆਦਤਾਂ ਵਾਲਾ ਜੀਵਨ ਜਿਉਣਾ | ਇਕ ਵਿਅਕਤੀ ਜੋ ਸਿਗਰੇਟ, ਸ਼ਰਾਬ ਜਾਂ ਨਸ਼ੇ ਆਦਿ ਦਾ ਆਦੀ ਹੁੰਦਾ ਹੈ ਉਹੀ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ । ਇਹ ਉਸਦੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 11.
ਸੰਤੁਲਨ ਪ੍ਰਤਿਕ੍ਰਿਆ ਅਤੇ ਯੋਗਤਾ ਕਰਨ ਦੀ ਯੋਗਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-

  1. ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ Reaction Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਸਿੰਗਨਲ ਮਿਲਣ ਤੇ ਖਿਡਾਰੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ 100 ਮੀ: ਦੌੜ ਵਿਚ ਸਿੰਗਨਲ ਹੁੰਦੇ ਹੀ ਇਕ ਵੇਗ ਤੇ ਦਿਸ਼ਾ ਵੱਲ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਦੌੜਨਾ ।
  2. ਸੰਤੁਲਨ ਯੋਗਤਾ (Balance Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਗਤੀ ਵਿਚ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਬਣਾਈ ਰੱਖਦਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਸਕੂਟ ਸਟਾਂਪ (Scoot stop) ਅਤੇ 400 ਮੀ: ਵਿਚ ਆਪਣੀ ਲਾਈਨ ਵਿਚ ਰਹਿ ਕੇ ਦੌੜਨਾ ਆਦਿ ।

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ ਤੋਂ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਅੰਗ ਤਾਕਤ, ਰਫ਼ਤਾਰ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
1. ਤਾਕਤ (Strength) – ਤਾਕਤ ਨੂੰ ਇਕ ਮਾਸਪੇਸ਼ੀ ਦੇ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਤੋਂ, ਮਾਸਪੇਸ਼ੀਆਂ ਦੇ ਸਮੂਹ ਦੁਆਰਾ ਇਕੱਠੇ ਲਗਾਏ ਬਲ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਤਾਕਤ ਨੂੰ ਸਹੀ ਮਾਤਰਾ ਵਿਚ ਕੀਤੇ ਅਭਿਆਸ ਨਾਲ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।

ਤਾਕਤ ਦੇ ਪ੍ਰਕਾਰ (Types of Strength) – ਖੇਡਾਂ ਦੀਆਂ ਲੋੜਾਂ ਮੁਤਾਬਿਕ ਤਾਕਤ ਨੂੰ ਹੇਠ ਲਿਖੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ-
(ਉ) ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਜਾਂ ਆਈਸੋਟੋਨਿਕ ਤਾਕਤ (Dynamic or isotonic strength)
(ਅ) ਸਥਿਰ ਤਾਕਤ ਜਾਂ ਆਈਸੋਮੀਟਰਿਕ (Static or isometic strength) ।

(ਉ) ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਜਾਂ ਆਈਸੋਟੋਨਿਕ ਤਾਕਤ (Dynamic or Isotonic Strength) – ਜਦ ਸੁੰਗੜਨ ਨਾਲ ਮਾਸਪੇਸ਼ੀ ਦੀ ਲੰਬਾਈ ਵਿਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਕਹਿੰਦੇ ਹਨ । ਉਦਾਹਰਨ ਲਈ ਜਦ ਇਕ ਤੋਂ ਵੱਧ ਜੋੜਾਂ ਵਿਚ ਗਤੀ ਹੋਵੇ ; ਜਿਵੇਂ ਕਿ ਪੁਸ਼-ਅਪ, ਪੁਲ-ਅਪ, ਬਾਰਬੈਲ ਪੇਸ਼, ਸਕੈਊਟ ਜੰਪ (Squat Jump), ਡੈਡ ਲਿਫਟਜ (Dead lifts) ਆਦਿ । ਗਤੀਸ਼ੀਲ ਤਾਕਤ ਨੂੰ ਤਿੰਨ ਭਾਗਾਂ ਵਿਚ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
(i) ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਕਤ (Maximum Strength)-ਇਹ ਸਭ ਤੋਂ ਵੱਡੀ ਤਾਕਤ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਸਵੈ-ਇੱਛਾ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਵੱਧ ਤਾਕਤ ਨੂੰ ਅਸੀਂ ਮਸਕੂਲੋਸਕੇਟਲ (Musculosketal) ਬਲ ਦੀ ਮਾਤਰਾ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ ਜੋ ਕਿ ਵਿਅਕਤੀ ਬਾਹਰੀ ਯਤਨਾਂ ਨਾਲ ਪੈਦਾ ਕਰਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਦੋ ਮਿੰਟ ਵਿਚ ਵਿਅਕਤੀ ਕਿੰਨੀਆਂ ਡੰਡ ਪੇਲ ਸਕਦਾ ਹੈ, ਕਿੰਨੀਆਂ ਬੈਠਕਾਂ ਮਾਰ ਸਕਦਾ ਹੈ ।

(ii) ਵਿਸਫੋਟਕ ਤਾਕਤ (Explosive Strength) – ਇਹ ਗਤੀ ਅਤੇ ਤਾਕਤ ਦਾ ਮਿਸ਼ਰਣ ਹੈ । ਇਹ ਗਤੀ ਦੇ ਵਿਰੋਧ ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਕਾਬਲੀਅਤ ਹੁੰਦੀ ਹੈ । ਵਿਸਫੋਟਕ ਉੱਚ ਤਾਕਤ ਤੇਜ਼ ਗਤੀ ਦੀਆਂ ਦੌੜਾਂ, ਭਾਰ ਚੁੱਕਣਾ, ਹੈਮਰ ਥਰੋ, ਲੰਬੀ ਕੁੱਦ ਅਤੇ ਉੱਚੀ ਕੁੱਦ ਵਿਚ ਦੇਖੀ ਜਾ ਸਕਦੀ ਹੈ ।
PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ 1
(iii) ਤਾਕਤ ਦੀ ਸਹਿਣਸ਼ੀਲਤਾ (Strength Endurance) – ਇਹ ਤਾਕਤ ਅਤੇ ਸਹਿਣਸ਼ੀਲਤਾ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦੀ ਹੈ । ਇਹ ਵਿਰੋਧ ’ਤੇ ਕਾਬੂ ਪਾਉਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਲੰਬੀ ਦੂਰੀ ਦੀਆਂ ਦੌੜਾਂ, ਤੈਰਾਕੀ ਅਤੇ ਸਾਈਕਲਿੰਗ ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ । ਆ ਸਥਿਰ ਤਾਕਤ ਜਾਂ ਆਈਸੋਮੀਟਰਿਕ (Static or Isometic Strength)-ਇਹ ਵਿਰੋਧ ਦੇ ਵਿਰੁੱਧ ਕਿਆਵਾਂ ਕਰਨ ਲਈ ਮਾਸਪੇਸ਼ੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਇਸ ਵਿਚ ਮਾਸਪੇਸ਼ੀ ਆਪਣੀ ਲੰਬਾਈ ਬਦਲੇ ਬਿਨਾਂ ਹੀ ਤਨਾਵ ਦਾ ਵਿਕਾਸ ਕਰਦੀ ਹੈ : ਜਿਵੇਂ ਕੰਧ ਨੂੰ ਧੱਕਾ ਮਾਰਨਾ ਆਦਿ ।

2. ਗਤੀ (ਰਫਤਾਰ) (Speed – ਗਤੀ ਇਕ ਅਧਿਕਤਮ ਦਰ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿਚ ਇਕ ਵਿਅਕਤੀ ਇਕ ਵਿਸ਼ੇਸ਼ ਦੂਰੀ ਨੂੰ ਤੈਅ ਕਰਨ ਲਈ ਆਪਣੇ ਸਰੀਰ ਵਿਚ ਗਤੀ ਲੈ ਕੇ ਆਉਂਦਾ ਹੈ । ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਰਫਤਾਰ ਘੱਟ ਤੋਂ ਘੱਟ ਮੁਸ਼ਕਿਲ ਸਮੇਂ ਵਿਚ ਇਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਤੇ ਪਹੁੰਚਣ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । | ਰਫਤਾਰ, ਇਕਦਮ ਕ੍ਰਿਆ (Quick response), ਤੇਜ਼ੀ (acceleration), ਇਕਦਮ ਗਤੀ (maximum speed), ‘ ਰਫਤਾਰ ਸਹਿਣਸ਼ੀਲਤਾ ( speed cladira:ce ਤੋਂ ਮਿਲ ਕੇ ਬਣਦੀ ਹੈ ।

ਸਰੀਰਕ ਸਿੱਖਿਆ ਵਿਚ ਰਫਤਾਰ ਦਾ ਆਪਣਾ ਮਹੱਤਵ ਹੈ । ਇਸ ਨੂੰ ਅਸੀਂ ਇਹ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ Speed is the rate of motion” ਭਾਵ ਕੋਈ ਵਿਅਕਤੀ ਕਿੰਨੇ ਸਮੇਂ ਵਿਚ ਤੇਜ਼ ਰਫਤਾਰ ਬਣਾ ਕੇ ਆਪਣੇ ਸਥਾਨ ਤੇ ਪਹੁੰਚ ਸਕਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 2.
ਸਰੀਰਕ ਯੋਗਤਾ ਦੀ ਮਹੱਤਤਾ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਉਹ ਵਿਅਕਤੀ ਜੋ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਹਨ ਉਹ ਆਪਣੇ ਜੀਵਨ ਦਾ ਆਨੰਦ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਉਠਾਉਣ ਦੇ ਯੋਗ ਹਨ । ਅੱਜ ਦੇ ਤਕਨੀਕੀ ਵਿਕਾਸ ਦੇ ਯੁੱਗ ਵਿਚ ਲੋਕਾਂ ਕੋਲ ਮੁਸ਼ਕਿਲ ਨਾਲ ਹੀ ਆਪਣੀ ਸਰੀਰਕ ਯੋਗਤਾ ਲਈ ਸਮਾਂ ਹੁੰਦਾ ਹੈ । ਹੁਣ ਪ੍ਰਸ਼ਨ ਇਹ ਉੱਠਦਾ ਹੈ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ਹੋਣਾ ਇੰਨਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ ? ਇਹਨਾਂ ਸਵਾਲਾਂ ਦਾ ਜਵਾਬ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੈ-
1. ਸੰਪੂਰਨ ਸਿਹਤ ਦਾ ਸੁਧਾਰ (Improves Overall Health – ਸਰੀਰਕ ਯੋਗਤਾ ਨਾਲ ਵਿਅਕਤੀ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਸਰੀਰਕ ਫਾਇਦਿਆਂ ਨੂੰ ਮਾਣਦਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਸਾਹ ਪ੍ਰਕ੍ਰਿਆ, ਲਹੂ ਸੰਚਾਰ ਪ੍ਰਣਾਲੀ ਅਤੇ ਸਰੀਰ ਦੀਆਂ ਸਮੁੱਚੀ ਪ੍ਰਣਾਲੀਆਂ ਦਾ ਠੀਕ ਢੰਗ ਨਾਲ ਕੰਮ ਕਰਨਾ ਅਤੇ ਸਰੀਰ ਦਾ ਕ੍ਰਿਆਤਮਕ ਰੂਪ ਵਿਚ ਤਿਆਰ ਰਹਿਣਾ । ਉਹ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਜਿਵੇਂ ਡਾਈਬੀਟੀਜ਼ ਟਾਇਪ-2, ਦਿਲ ਦੀਆਂ ਬਿਮਾਰੀਆਂ, ਕੈਂਸਰ ਤੋਂ ਬਚਾਅ, ਆਦਿ ਤੋਂ ਬਚਿਆ ਰਹਿੰਦਾ ਹੈ ।

2. ਭਾਰ ਪ੍ਰਬੰਧਨ (Weight Management – ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਾਧੂ ਵਜ਼ਨ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਿਹਤ ਸੰਬੰਧੀ ਸਮੱਸਿਆਵਾਂ ; ਜਿਵੇਂ ਕਿ ਉੱਚਾ ਖੁਨ ਚਾਪ (High Blood Pressure), ਕੈਸਟਰੋਲ ਪੱਧਰ, ਡਾਇਬਟੀਜ਼ ਆਦਿ ਦੀ ਜੜ੍ਹ ਹੈ । ਇਸ ਲਈ ਉਹ ਵਿਅਕਤੀ ਜੋ ਸਰਗਰਮ ਅਤੇ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਹੁੰਦੇ ਹਨ, ਉਹਨਾਂ ਵਿੱਚ ਉਪਰੋਕਤ ਬਿਮਾਰੀਆਂ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ ।

3. ਤਨਾਵ ਪ੍ਰਬੰਧ ਵਿਚ ਮਹੱਤਵਪੂਰਨ (Importance as a stress Management) – ਇਕ ਵਿਅਕਤੀ ਸਰੀਰਕ ਯੋਗਤਾ ਅਤੇ ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਪ੍ਰੋਗਰਾਮ ਦੇ ਜਰੀਏ ਤਣਾਅ ਨੂੰ ਬਰਦਾਸ਼ਤ ਕਰਨਾ, ਉਸ ਤੋਂ ਬਾਹਰ ਨਿਕਲਣਾ ਅਤੇ ਰੋਜ਼ਮਰਾ ਦੇ ਵਿਚਿਲਤ ਕਰਨ ਵਾਲੇ ਤਣਾਅ ਤੇ ਕਾਬੂ ਪਾਉਣਾ ਸਿੱਖ ਲੈਂਦਾ ਹੈ । ਇਸ ਲਈ ਇਹ ਜੀਵਨ ਵਿਚ ਸੰਤੁਲਨ ਅਤੇ ਸ਼ਾਤੀ ਬਣਾਏ ਰੱਖਣ ਵਿਚ ਮਦਦ ਕਰਦਾ ਹੈ । ਇਸ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਜੀਵਨ ਵਿਚ ਸ਼ਾਂਤੀ ਬਣਾਈ ਰੱਖਣ ਲਈ ਵਿਅਕਤੀ ਦਾ ਤੰਦਰੁਸਤ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

4. ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਘਟਾਉਣਾ (Reduce risk of Injuries) – ਸਰੀਰਕ ਯੋਗਤਾ ਜੀਵਨ ਦੇ ਅਗਲੇ ਪੜਾਅ ਵਿਚ ਸੱਟਾਂ ਦੇ ਜ਼ੋਖ਼ਿਮ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ । ਇਸ ਦਾ ਕਾਰਨ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ, ਹੱਡੀਆਂ ਵਿਚਲੀ ਘਣਤਾ, ਲਚਕਤਾ ਅਤੇ ਸਥਿਰਤਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਸੱਟਾਂ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ ।

5. ਜੀਵਨ ਦੀ ਸੰਭਾਵਨਾ ਵਿਚ ਵਾਧਾ (Increases life Expectancy – ਨਿਯਮਿਤ ਕਸਰਤਾਂ ਅਤੇ ਯੋਗਤਾ ਸੰਬੰਧਿਤ ਪ੍ਰੋਗਰਾਮ ਸਿਹਤ ਸੰਬੰਧਿਤ ਬਿਮਾਰੀਆਂ ਨੂੰ ਘਟਾਉਣ ਵਿਚ ਲਾਭਦਾਇਕ ਹੁੰਦੇ ਹਨ ਜੋ ਕਿ ਉਮਰ ਦਰ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਵਧਾਉਂਦੀਆਂ ਹਨ ਅਤੇ ਸਮੇਂ ਤੋਂ ਪਹਿਲਾਂ ਹੋਣ ਵਾਲੀ ਮੌਤ ਦਰ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ । ਇਹ ਦੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਜੋ ਵਿਅਕਤੀ ਸਰੀਰਕ ਤੌਰ ਤੇ ਸਰਗਰਮ ਰਹਿੰਦੇ ਹਨ, ਉਹ ਸਵਸਥ ਅਤੇ ਲੰਬਾ ਜੀਵਨ ਗੁਜ਼ਾਰਦੇ ਹਨ ।

6. ਸਹੀ ਵਾਧਾ ਅਤੇ ਵਿਕਾਸ (Proper growth and Development) – ਸਰੀਰਕ ਯੋਗਤਾ ਅਤੇ ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਪ੍ਰੋਗਰਾਮਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਬੱਚਿਆਂ ਵਿਚ ਵਧੀਆ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ । ਉਹਨਾਂ ਦੀ ਸਿਹਤ, ਉਚਾਈ, ਸਰੀਰਕ ਸੰਰਚਨਾ ਅਤੇ ਭਾਰ ਸਹੀ ਅਨੁਪਾਤ ਅਤੇ ਕੂਮ ਵਿਚ ਵੱਧਦੇ ਹਨ ।

7. ਕੰਮ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਵਿਚ ਵਾਧਾ Improves work Efficiency) – ਸਰੀਰਕ ਤੌਰ ਤੇ ਯੋਗ ਵਿਅਕਤੀ ਜੀਵਨ ਦੇ ਹਰ ਪਹਿਲੂ ਜਿਵੇਂ ਕੰਮ ਕਰਨ ਦੀ ਥਾਂ, ਪਰਿਵਾਰ ਅਤੇ ਦੋਸਤਾਂ ਵਿਚ ਸੰਤਲੁਨ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ । ਉਸ ‘ ਦੀ ਸਰਗਰਮ ਜੀਵਨ ਸ਼ੈਲੀ ਅਤੇ ਤੰਦਰੁਸਤੀ ਕਾਰਨ ਉਹ ਕੰਮ ਨੂੰ ਸਫਲਤਾ ਨਾਲ ਕਰਦਾ ਹੈ ਅਤੇ ਆਪਣੇ ਸਮਾਜਿਕ ਸਮੂਹ ਦਾ ਵੀ ਉਤਸ਼ਾਹ ਨਾਲ ਆਨੰਦ ਮਾਣਦਾ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਉਪਰੋਕਤ ਤੱਥਾਂ ਤੋਂ ਇਹ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹਾਂ ਕਿ ਇਕ ਤੰਦਰੁਸਤ ਸਰੀਰ ਵਿਚ ਤੰਦਰੁਸਤ ਮਨ ਦਾ ਵਾਸ ਹੁੰਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 3.
ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕਾਂ ਬਾਰੇ ਵਿਸਥਾਰ ਨਾਲ ਚਰਚਾ ਕਰੋ ।
ਉੱਡਰ-
ਅਨੇਕਾਂ ਅਜਿਹੇ ਕਈ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਨਿਸ਼ਕ੍ਰਿਆਂ ਦੇ ਕਾਰਨ ਛੋਟੇ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਅਭਿਆਸ ਕਾਲ ਤੇ ਕਈ ਤਰੀਕਿਆਂ ਨਾਲ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ । ਇਹ ਕਾਰਕ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ, ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਾਰ ਹਨ-
1. ਸਰੀਰਕ ਢਾਂਚਾ (Anatomical Structure-ਸਰੀਰਕ ਢਾਂਚਾ ਅਲੱਗ-ਅਲੱਗ ਅਕਾਰ ਅਤੇ ਰੂਪ ਵਿਚ ਹੁੰਦਾ ਹੈ । ਕਈ ਵਾਰ ਅਨੁਚਿਤ ਆਕਾਰ ਅਤੇ ਰੂਪ ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਵਿਚ ਉਲਝਣਾਂ ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਕਈ ਵਾਰ ਕਮਜ਼ੋਰ ਅੰਗ ਵਿਅਕਤੀ ਦੇ ਕੰਮਾਂ ਜਾਂ ਕ੍ਰਿਆਵਾਂ ਨੂੰ ਘਟਾ ਦਿੰਦੇ ਹਨ ।

2. ਸਰੀਰਕ ਕਿਰਿਆ ਦੀ ਬਣਤਰ (Physiological Structures) – ਸਾਡੇ ਸਰੀਰ ਦੀਆਂ ਪ੍ਰਣਾਲੀਆਂ ਜਿਵੇਂ ਸਾਹ ਪ੍ਰਣਾਲੀ, ਲਹੂ ਸੰਚਾਰ ਪ੍ਰਣਾਲੀ, ਮਾਸਪੇਸ਼ੀ ਪ੍ਰਣਾਲੀ ਅਤੇ ਅਨੇਕਾਂ ਹੋਰ ਪ੍ਰਣਾਲੀਆਂ ਨੇ ਕੁਸ਼ਲਤਾਪੂਰਵਕ ਕੰਮ ਕਰਨਾ ਹੁੰਦਾ ਹੈ । ਸਰੀਰਕ ਪ੍ਰਣਾਲੀ ਵਿਚ ਖ਼ਰਾਬੀ, ਸਰੀਰਕ ਕੰਮਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਸਾਹ ਲੈਣ ਵਿਚ ਔਖ ਹੋਣਾ ਜਾਂ ਫਿਰ ਦਿਲ ਦੀ ਬਿਮਾਰੀ ਆਦਿ । ਇਸ ਲਈ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਵਿਅਕਤੀ ਦਾ ਫਿਟ ਹੋਣਾ ਬੜਾ ਜ਼ਰੂਰੀ ਹੈ ।

3. ਮਨੋਵਿਗਿਆਨਿਕ ਕਾਰਨ (Psychological Factor) – ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਮਾਨਸਿਕ ਵਿਗਾੜ ਜੋ ਕਿ ਸਰੀਰਕ | ਕੰਮਾਂ ਵਿਚ ਉਲਝਣਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ , ਜਿਵੇਂ ਕਿ ਦਬਾਅ, ਤਨਾਵ, ਚਿੰਤਾਵਾਂ ਆਦਿ । ਇਹ ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਵਿਚ ਰੁਕਾਵਟ ਦਾ ਕਾਰਨ ਬਣਦੀਆਂ ਹਨ । ਮਾਨਸਿਕ ਰੂਪ ਨਾਲ ਮਜ਼ਬੂਤ ਅਤੇ ਤਨਾਅ-ਮੁਕਤ ਵਿਅਕਤੀ ਖੇਡਾਂ
ਲਈ ਯੋਗ ਹੁੰਦਾ ਹੈ । ਦਬਾਅ ਅਤੇ ਤਨਾਅ ਹਮੇਸ਼ਾ ਹੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਘਟਾ ਦਿੰਦਾ ਹੈ ।

4. ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ (Heedity and Environment) – ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ ਦੋਵੇਂ ਹੀ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਮਨੁੱਖੀ ਸੈੱਲ 23 (ਜੋੜੇ) ਕੋਰਮੋਸੋਮਜ ਤੋਂ ਬਣਿਆ ਹੁੰਦਾ ਹੈ । ਜਿਸ ਵਿਚ 75% ਮਾਤਾ ਅਤੇ ਪਿਤਾ ਅਤੇ 25% ਬਾਕੀ ਖਾਨਦਾਨੀ ਜੀਨਸ ਦਾ ਸੰਚਾਰਣ ਹੁੰਦਾ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੱਦੀ ਗੁਣ ਜਿਵੇਂ ਕਿ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਔਗੁਣ, ਚਮੜੀ ਅਤੇ ਅੱਖਾਂ ਦਾ ਰੰਗ, ਸਰੀਰਕ ਬਣਾਵਟ ਆਦਿ ਮਨੁੱਖ ਨੂੰ ਜੱਦ ਵਿਚ ਮਿਲਦੀ ਹੈ ਅਤੇ ਇਹ ਜੱਦ ਅਤੇ ਵਾਤਾਵਰਣ ਦੇ ਗੁਣ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ‘ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ।

5. ਚੰਗਾ ਸਰੀਰਕ ਆਸਣ (Good Posur) – ਸਰੀਰਕ ਤਰੁੱਟੀਆਂ, ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਹਮੇਸ਼ਾ ਹੀ ਮੁਸ਼ਕਿਲ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ , ਜਿਵੇਂ ਕਿ ਅਸੰਤੁਲਨ ਮਾਸਪੇਸ਼ੀਆਂ, ਕੁਪੋਸ਼ਣ, ਦਰਦ, ਲੋਰਡੋਸਿਸ (Lordosis) ਸਕੋਲਿਸਿਸ (Scoliosis), ਗੋਲ ਮੋਢੇ, ਗੋਡਿਆਂ ਦਾ ਟਕਰਾਉਣਾ ਆਦਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ‘ ਕਰਦੇ ਹਨ ।

6. ਅਹਾਰ (Diet) – ਸਰੀਰਕ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਅਹਾਰ ਪ੍ਰਮੁੱਖ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ ਅਤੇ ਸਰੀਰਕ ਯੋਗਤਾ ਦੇ ਸਤਰ ਨੂੰ ਬਣਾਏ ਰੱਖਣ ਵਿਚ ਬਹੁਤ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ । ਆਹਾਰ ਵਿਚ ਕੈਲਰੀ ਦੀ ਉਪਯੁਕਤ ਮਾਤਰਾ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸਰਵ-ਉੱਚ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਵਿਚ ਮਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਅਤੇ ਤਰਲ ਪਦਾਰਥਾਂ ਦੀ ਕਮੀ ਕਾਰਨ ਇਕ ਖਿਡਾਰੀ ਜਲਦੀ ਹੀ ਥਕਾਵਟ ਮਹਿਸੂਸ ਕਰਨ ਲੱਗ ਪੈਂਦਾ ਹੈ | ਮਾਸ਼ਪੇਸ਼ੀਆਂ ਦੇ ਪੁਨਰ-ਨਿਰਮਾਣ ਵਾਸਤੇ ਪ੍ਰੋਟੀਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ । ਕਾਰਬੋਹਾਈਡਰੇਟਸ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਵਿਟਾਮਿਨਸ ਤੋਂ ਬਿਨਾਂ ਖਿਡਾਰੀ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ ਅਤੇ ਉਸਦੀ ਸਰੀਰਕ ਯੋਗਤਾ ਵੀ ਘੱਟ ਜਾਂਦੀ ਹੈ ।

7. ਜੀਵਨ ਸ਼ੈਲੀ (Life Style)ਉਹ ਖਿਡਾਰੀ ਜੋ ਚੰਗੀ ਜੀਵਨ ਸ਼ੈਲੀ ਨੂੰ ਅਪਨਾਉਂਦੇ ਹਨ, ਉਹ ਹਮੇਸ਼ਾ ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦੇ ਹਨ । ਜੀਵਨ ਸ਼ੈਲੀ ਤੋਂ ਭਾਵ ਸ਼ਾਨੋ-ਸ਼ੌਕਤ ਵਾਲਾ ਜੀਵਨ ਤੋਂ ਨਹੀਂ ਹੈ ਬਲਕਿ ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਚੰਗੀਆਂ ਆਦਤਾਂ ਵਾਲਾ ਜੀਵਨ ਜਿਉਣਾ । ਇਕ ਵਿਅਕਤੀ ਜੋ ਸਿਗਰੇਟ, ਸ਼ਰਾਬ ਜਾਂ ਨਸ਼ੇ ਆਦਿ ਦਾ ਆਦੀ ਹੁੰਦਾ ਹੈ ਉਹੀ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਨਹੀਂ ਕਰ ਸਕਦਾ । ਇਹ ਉਸਦੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ।

8. ਜਲਵਾਯੂ (Climate) – ਅਲੱਗ-ਅਲੱਗ ਤਰ੍ਹਾਂ ਦੀ ਜਲਵਾਯੂ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੀ ਹੈ ! ਸਰਦੀ, ਗਰਮੀ ਅਤੇ ਨਮੀ ਵਰਗੇ ਭਿੰਨ-ਭਿੰਨ ਜਲਵਾਯੂ ਸਰੀਰਕ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ । ਵਧੀਆ ਪ੍ਰਦਰਸ਼ਨ ਵਾਸਤੇ ਇਕ ਖਿਡਾਰੀ ਨੂੰ ਅਲੱਗ-ਅਲੱਗ ਜਲਵਾਯੂ ਪ੍ਰਸਿਥਤੀਆਂ ਵਿਚ ਰਹਿ ਕੇ ਅਭਿਆਸ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਜੇਕਰ ਖਿਡਾਰੀ ਗਰਮ ਜਾਂ ਮੈਦਾਨੀ ਇਲਾਕਿਆਂ ਦਾ ਰਹਿਣ ਵਾਲਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਠੰਡੇ ਇਲਾਕੇ ਵਿਚ ਜ਼ਰੂਰ ਅਭਿਆਸ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਉਸਦਾ ਪ੍ਰਦਰਸ਼ਨ ਵਧੀਆ ਹੋ ਸਕੇ । ਇਹਨਾਂ ਜਲਵਾਯੂ ਰੁਕਾਵਟਾਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦਾ ਤਰੀਕਾ ਇਹ ਹੀ ਹੈ ਕਿ ਅਲੱਗ-ਅਲੱਗ ਜਲਵਾਯੂ ਵਾਤਾਵਰਣ ਵਿਚ ਅਭਿਆਸ ਕੀਤਾ ਜਾਵੇ ।

9. ਨਿਸ਼ਕ੍ਰਿਆ (Inactivity) – ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਦੀ ਘਾਟ ਨਾਲ ਵਿਅਕਤੀ ਗਤੀਹੀਨ , ਜੀਵਨ ਸ਼ੈਲੀ ਵੱਲ ਚਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਰੀਰਕ ਪ੍ਰਣਾਲੀਆਂ ਵਿਚ ਖ਼ਰਾਬੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ | ਸਰੀਰਕ ਗਤੀਵਿਧੀ ਸ਼ਬਦ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ ਨਾਲ ਖ਼ਰਚ ਹੋਣ ਵਾਲੀ ਉਰਜਾ ਦੇ ਰੂਪ ਵਿਚ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਇਹ ਰੋਜ਼ਮੱਰਾ ਦੇ ਕੰਮ ਜਿਵੇਂ ਕਿ ਚੱਲਣਾ, ਦੌੜਨਾ, ਸਾਈਕਲ ਚਲਾਉਣਾ, ਤੈਰਨਾ, ਝਾੜੂ ਮਾਰਨਾ ਆਦਿ ਘਰੇਲੂ ਕੰਮ ਹੁੰਦੇ ਹਨ । ਨਿਸ਼ਕ੍ਰਿਆ ਦੇ ਕਾਰਨ ਸਰੀਰਕ ਪ੍ਰਣਾਲੀ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਕਈ ਸਿਹਤ ਨੂੰ ਲੈ ਕੇ ਮਸਲੇ ਖੜ੍ਹੇ ਹੋ ਜਾਂਦੇ ਹਨ ਜੋ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ।

10. ਸੱਟਾਂ (Injuries) – ਸੱਟਾਂ ਲੱਗਣਾ ਖੇਡਾਂ ਦਾ ਹਿੱਸਾ ਹਨ । ਸੱਟਾਂ ਦੀ ਦੇਖਭਾਲ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ ਖੇਡ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚ ਕਮੀ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਖਿਡਾਰੀ ਦੇ ਮਾਨਸਿਕ ਸੰਤੁਲਨ ‘ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ।

11. ਉਮਰ (Age) – ਉਮਰ ਵਿਚ ਅੰਤਰ ਹਮੇਸ਼ਾ ਹੀ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ । ਜਦ ਅਸੀਂ ਛੋਟੇ | ਬੱਚੇ ਹੁੰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਵੱਡੀ ਉਮਰ ਦੇ ਵਿਅਕਤੀ ਦੀ ਸਰੀਰਕ ਯੋਗਤਾ ਦੀ ਤੁਲਨਾ ਵਿਚ ਨਹੀਂ ਖੇਡ ਸਕਦੇ । ਇਸ ਤਰ੍ਹਾਂ ਜਦ ਅਸੀਂ ਬੁਢਾਪੇ ਵੱਲ ਵੱਧਦੇ ਹਾਂ ਤਾਂ ਸਾਡੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਸਰੀਰ
ਉੱਤੇ ਚਰਬੀ ਵੱਧ ਜਾਂਦੀ ਹੈ ਜੋ ਕਿ ਸਰੀਰਕ ਯੋਗਤਾ ‘ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦੀ ਹੈ ।

12. ਲਿੰਗ (Gender) – ਲਿੰਗ ਸਰੀਰਕ ਯੋਗਤਾ ਵਿਚ ਹਮੇਸ਼ਾਂ ਹੀ ਵਿਸ਼ੇਸ਼ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ । ਔਰਤ ਅਤੇ ਆਦਮੀ ਦੋਨਾਂ ਦੇ ਸਰੀਰ ਵਿਚ ਕਈ ਵਿਲੱਖਣਤਾਵਾਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਔਰਤਾਂ ਦੇ ਸਰੀਰ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ, ਆਦਮੀ ਨਾਲੋਂ ਘੱਟ ਮਜ਼ਬੂਤ ਹੁੰਦੀਆਂ ਹਨ ਪਰ ਔਰਤਾਂ ਦੇ ਜੋੜਾਂ ਵਿਚ ਲਚਕਤਾ ਆਦਮੀ ਦੇ ਮੁਕਾਬਲੇ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਜਿਮਨਾਸਟਿਕ ਵਰਗੀਆਂ ਖੇਡਾਂ ਵਿਚ ਬਹੁਤ ਲਾਭ ਮਿਲਦਾ ਹੈ । ਉੱਥੇ ਹੀ ਆਦਮੀਆਂ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਮਜ਼ਬੂਤ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਦਿਲ ਦਾ ਆਕਾਰ ਵੱਡਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਖੇਡਾਂ ਵਿਚ ਸ਼ਕਤੀ, ਤਾਕਤ ਅਤੇ ਗਤੀ ਮਿਲਦੀ ਹੈ ।

13. ਸਿਹਤਮੰਦ ਵਾਤਾਵਰਣ (Healthy Envrionment) – ਸਕੂਲ, ਘਰ ਅਤੇ ਖੇਡਾਂ ਦਾ ਮੈਦਾਨ ਬੇਹਤਰ ਸਿੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨ ਵਿਚ ਮੱਦਦਗਾਰ ਸਾਬਿਤ ਹੁੰਦਾ ਹੈ । ਇਸ ਨਾਲ ਖਿਡਾਰੀ ਨੂੰ ਚੰਗਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਲਈ ਉਤਸ਼ਾਹ ਮਿਲਦਾ ਹੈ । ਇਕ ਚੰਗਾ ਵਾਤਾਵਰਣ ਅਤੇ ਚੰਗੀ ਭਾਗਦਾਰੀ ਵਧੀਆ ਵਿਕਾਸ ਅਤੇ ਵਾਧੇ ਲਈ ਜ਼ਰੂਰੀ
ਹੈ ਜੋ ਕਿ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਅਹਿਮ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ

ਪ੍ਰਸ਼ਨ 4.
ਲਚਕ ਨੂੰ ਬਿਆਨ ਕਰੋ ਅਤੇ ਇਸਦੇ ਅਲੱਗ-ਅਲੱਗ ਪ੍ਰਕਾਰਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਲਚਕ ਗਤੀਸ਼ੀਲਤਾ ਦੀ ਉਹ ਦਰ ਜੋ ਕਿ ਜੋੜਾਂ ਤੇ ਸੰਭਵ ਹੁੰਦੀ ਹੈ | ਅਸੀਂ ਆਮ ਸ਼ਬਦਾਂ ਵਿਚ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਲਚਕ ਨੂੰ ਸੁਸਤ (Possive) ਕ੍ਰਿਆਵਾਂ ਦੇ ਦੌਰਾਨ, ਜੋੜਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਆਸ-ਪਾਸ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ (Muscles) ਦੀ ਗਤੀ ਦੀ ਦਰ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

ਲਚਕ ਹੋਰਨਾਂ ਸਰੀਰਕ ਗੁਣਾਂ ਵਾਂਗ ਇਕ ਬਹੁਮੁੱਲਾ ਗੁਣ ਹੈ ਅਤੇ ਸਰੀਰਕ ਸਿੱਖਿਆ ਅਤੇ ਖਿਡਾਰੀਆਂ ਵਿਚ ਇਸਦੀ ਆਪਣੀ ਮਹੱਤਤਾ ਹੈ ਕਿਉਂਕਿ ਲਚਕਦਾਰ ਖਿਡਾਰੀ ਮੈਦਾਨ ਵਿਚ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੱਟਾਂ ਤੋਂ ਬਚਿਆ ਰਹਿੰਦਾ ਹੈ । ਲਚਕ ਦੇ ਕਈ ਪ੍ਰਕਾਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦਾ ਵਰਗੀਕਰਨ ਅੱਗੇ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ-
ਲਚਕ ਦੇ ਪ੍ਰਕਾਰ (Types of Flexibility) –
PSEB 12th Class Physical Education Solutions Chapter 1 ਸਰੀਰਕ ਯੋਗਤਾ 2
1. ਸੁਸਤ ਲਚਕ (Pasive Flexibility) – ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਦੇ ਵੱਡੀ ਦਰ ਤੇ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਕਿਸੇ ਸਾਥੀ ਖਿਡਾਰੀ ਦੀ ਮਦਦ ਨਾਲ ਸਚਿੰਗ (Stretching) ਕਸਰਤਾਂ ਕਰਨਾ ।

2. ਚੁਸਤ ਲਚਕ (Active Flexibility) – ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਬਾਹਰੀ ਮੱਦਦ ਜਾਂ ਸਹਾਰੇ ਤੋਂ ਕ੍ਰਿਆਵਾਂ ਕਰਨ ਦੀ ਦਰ ਦੀ ਯੋਗਤਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਲੱਤਾਂ ਨੂੰ ਝੂਲਾਉਣਾ ਆਦਿ ।

3. ਗਤੀਸ਼ੀਲ ਲਚਕ (Dynamic Flexibility) – ਇਹ ਉਹ ਲਚਕ ਹੁੰਦੀ ਹੈ ਜਦ ਸਰੀਰ ਗੜੀ ਵਿਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕ੍ਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ । ਜਿਵੇਂ ਕਿ ਦੌੜਨਾ, ਤੈਰਨਾ ਜਾਂ ਸਮਰਸੱਲਟ (Samersault) ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 5.
ਤੁਸੀਂ ਤਾਲਮੇਲ ਯੋਗਤਾ ਤੋਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਤਾਲਮੇਲ ਦੇ ਅਲੱਗ-ਅਲੱਗ ਅੰਗਾਂ ਨੂੰ ਬਿਆਨ ਕਰੋ ।
ਉੱਤਰ-
ਤਾਲਮੇਲ ਦੀ ਯੋਗਤਾ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਮੋਟਰ ਟਾਸਕ ( Motor task) ਸਹਜ ਅਤੇ ਸਹੀ ਢੰਗ ਨਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਜਿਸ ਵਿਚ ਇੰਦਰੀਆਂ ਅਤੇ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਸੁੰਗੜਨ ਦੀ ਪਰਸਪਰ ਸੰਬੰਧ ਹੁੰਦਾ ਹੈ। ਅਤੇ ਜੋ ਕਿ ਜੋੜਾਂ ਦੀ ਗਤੀ ਅਤੇ ਉਸਦੇ ਆਸ-ਪਾਸ ਦੇ ਅੰਗਾਂ ਅਤੇ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਤਾਲਮੇਲ ਸਨਾਯੁਤੰਤਰ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ । ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਵਿਚ ਤਾਲਮੇਲ ਦਾ ਅਹਿਮ ਰੋਲ ਹੈ ਜਿਸ ਤੋਂ ਬਿਨਾਂ ਕੋਈ ਵੀ ਖੇਡ ਜਾਂ ਕਿਆ ਸੰਭਵ ਹੀ ਨਹੀਂ ਹੈ ।
ਤਾਲਮੇਲ ਦੇ ਪ੍ਰਕਾਰ (Types of co-ordination-ਖੇਡਾਂ ਦੀ ਦੁਨੀਆਂ ਵਿਚ ਮੁੱਖ ਤੌਰ ਤੇ ਸੱਤ (7) ਪ੍ਰਕਾਰ ਦੀ ਤਾਲਮੇਲ ਯੋਗਤਾ ਪਾਈ ਜਾਂਦੀ ਹੈ ।

1. ਸਥਿਤੀ ਨਿਰਧਾਰਣ ਯੋਗਤਾ (Orientation) – ਯੋਗਤਾ-ਇਹ ਵਿਅਕਤੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਜ਼ਰੂਰਤ ਅਨੁਸਾਰ ਸਥਾਨ ਅਤੇ ਸਮੇਂ ਤੇ ਆਪਣੇ ਸਰੀਰ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ ਪਰਿਵਰਤਨ ਕਰ ਲੈਂਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਜਿਮਨਾਸਟਿਕ ਵਿਚ ਖੇਡ ਪ੍ਰਦਰਸ਼ਨ ਮੁਤਾਬਿਕ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਨੂੰ ਬਦਲਣਾ, ਬਾਸਕਟਬਾਲ ਵਿਚ ਅਫੈਨਸ ਤੇ ਡੀਫੈਨਸ (Offense and defense) ਵਿਚ ਆਪਣੇ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਵਿਚ ਬਦਲਾਵ ਕਰ ਲੈਂਦਾ ਹੈ ।

2. ਸੰਯੋਜਨ ਦੀ ਯੋਗਤਾ (Coupling Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਨੂੰ ਗਤੀ ਵਿਚ ਅਰਥਪੂਰਨ ਢੰਗ ਨਾਲ ਸੰਯੋਜਨ ਕਰਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ; ਜਿਵੇਂ ਵਾਲੀਬਾਲ ਵਿਚ ਸਪਾਈਕਿੰਗ ਦੇ ਦੌਰਾਨ ਖਿਡਾਰੀ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਜੰਪ ਕਰਦਾ ਹੈ | ਬਾਲ ਨੂੰ ਹਿੱਟ ਕਰਦਾ ਹੈ । ਇਸ ਸਮੇਂ ਉਸ ਦੇ ਸਰੀਰ ਦੇ ਸਾਰੇ ਅੰਗਾਂ ਵਿਚ ਇਕਸਾਰਤਾ ਦਾ ਤਾਲਮੇਲ ਹੁੰਦਾ ਹੈ ।

3. ਡਿਫਰੇਂਸੀਏਸ਼ਨ (Differentiation Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਖਿਡਾਰੀ ਮੋਟਰ ਐਕਸ਼ਨ (Motor action) ਦੇ ਦੌਰਾਨ ਸਰੀਰ ਦੇ ਅਲੱਗ-ਅਲੱਗ ਅੰਗਾਂ ਤੋਂ ਕ੍ਰਿਆ ਕਰਵਾਉਣ ਦੀ ਸਮਰੱਥਾ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ ਕਿ ਵਾਲੀਬਾਲ ਵਿਚ ਸਪਾਈਕਿੰਗ ਜੰਪ ਦੇ ਦੌਰਾਨ ਸਥਿਤੀ ਦੇ ਅਨੁਸਾਰ ਬਾਲ ਨੂੰ ਸੁੱਟਣਾ (Drop) ਕਰਨਾ ।

4. ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ (Reaction Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਸਿੰਗਨਲ ਮਿਲਣ ਤੇ ਖਿਡਾਰੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦਾ ਹੈ , ਜਿਵੇਂ 100 ਮੀ: ਦੌੜ ਵਿਚ ਸਿੰਗਨਲ ਹੁੰਦੇ ਹੀ ਇਕ ਵੇ ਤੇ ਦਿਸ਼ਾ ਵੱਲ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਦੌੜਨਾ ।

5. ਸੰਤੁਲਨ ਯੋਡਾ (Balance Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਗਤੀ ਵਿਚ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਬਣਾਈ ਰੱਖਦਾ ਹੈ ; ਜਿਵੇਂ ਕਿ ਸਕੂਟ ਸਟਾਂਪ (Scoot stop) ਅਤੇ 400 ਮੀ: ਵਿਚ ਆਪਣੀ ਲਾਈਨ ਵਿਚ ਰਹਿ ਕੇ ਦੌੜਨਾ ਆਦਿ ।

6. ਲੈਅ ਦੀ ਯੋਗਤਾ (Rhythm Abhity) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਲੈਅ ਨੂੰ ਸਮਝਦੇ ਹੋਏ ਲੈਅ ਵਿਚ ਗਤੀ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਬਾਸਕਟ ਬਾਲ ਵਿਚ ਲੈ-ਅਪ (Lay up) ਸਾਂਟ ਲਗਾਉਣਾ ।

7. ਹਿਣ ਯੋਸਤਾ (Alkation Ability) – ਇਹ ਵਿਅਕਤੀ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜਿਸ ਵਿਚ ਉਹ ਪ੍ਰਸਥਿਤੀ ਨੂੰ ਸਮਝ ਕੇ ਉਸ ਵਿਚ ਪ੍ਰਭਾਂਵੀ ਪਰਿਵਰਤਨ ਲੈ ਕੇ ਆਵੇ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਬਾਸਕਟ ਬਾਲ ਵਿਚ ਜੰਪ ਸੱਟ ਕਿਆ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਣਾ ਆਇ ॥

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 5 Magnetism and Matter Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 5 Magnetism and Matter

PSEB 12th Class Physics Guide Magnetism and Matter Textbook Questions and Answers

Question 1.
Answer the following questions regarding earth’s magnetism:
(a) A vector needs three quantities for its specification. Name the three independent quantities conventionally used to specify the earth’s magnetic field.

(b) The angle of dip at a location in southern India is about 18°
Would you expect a greater or smaller dip angle in Britain?

(c) If you made a map of magnetic field lines at Melbourne in Australia, would the lines seem to go into the ground or come out of the ground?

(d) In which direction would a compass free to move in the vertical plane point to, if located right on the geomagnetic north or south pole?

(e) The earth’s field, it is claimed, roughly approximates the field due to a dipole of magnetic moment 8 × 1022 JT-1 located at its centre. Check the order of magnitude of this number in some way.

(f) Geologists claim that besides the main magnetic N-S poles, there are several local poles on the earth’s surface oriented in different directions. How is such a thing possible at all?
Answer:
(a) The three independent quantities conventionally used for specifying earth’s magnetic field are magnetic declination, angle of dip and horizontal component of earth’s magnetic field.

(b) The angle of dip at a point depends on how far the point is located with respect to the North Pole or the South Pole. The angle of dip would be greater in Britain (it is about 70°) than in southern India because the location of Britain on the globe is closer to the magnetic North Pole.

(c) It is hypothetically considered that a huge bar magnet is dipped inside earth with its North Pole near the geographic South Pole and its South Pole near the geographic North Pole.

Magnetic field lines emanate from a magnetic North Pole and terminate at a magnetic South Pole. Hence, in a map depicting earth’s magnetic field lines, the field lines at Melbourne, Australia would seem to come out of the ground.

(d) If a compass is located on the geomagnetic North Pole or South Pole, then the compass will be free to move in the horizontal plane while earth’s field is exactly vertical to the magnetic poles. In such a case, the compass can point in any direction.

(e) Magnetic moment, M = 8 × 1022 JT-1
Radius of earth, r = 6.4 × 106 m
Magnetic field strength, B = \(\frac{\mu_{0} M}{4 \pi r^{3}}\)
∴ B = \(\frac{4 \pi \times 10^{-7} \times 8 \times 10^{22}}{4 \pi \times\left(6.4 \times 10^{6}\right)^{3}}\) = 0.3G
This quantity is of the order of magnitude of the observed field on earth.

(f) Yes, there are several local poles on earth’s surface oriented in different directions. A magnetised mineral deposit is an example of a local N-S pole.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 2.
Answer the following questions :
(a) The earth’s magnetic field varies from point to point in space. Does it also change with time? If so, on what time scale does it change appreciably?

(b) The earth’s core is known to contain iron. Yet geologists do not regard this as a source of the earth’s magnetism. Why?

(c) The charged currents in the outer conducting regions of the earth’s core are thought to be responsible for earth’s magnetism. What might be the ’battery’ (i.e., the source of energy) to sustain these currents?

(d) The earth may have even reversed the direction of its field several times during its history of 4 to 5 billion years. How can geologists know about the earth’s field in such distant past?

(e) The earth’s field departs from its dipole shape substantially at large distances (greater than about 30,000 km). What agencies may be responsible for this distortion?

(f) Interstellar space has an extremely weak magnetic field of the order of 10-12 T. Can such a weak field he of any significant consequence? Explain.
[Note: Exercise 5.2 is meant mainly to arouse your curiosity. Answers to some questions above are tentative or unknown. Brief answers wherever possible are given at the end. For details, you should consult a good text on geomagnetism.]
Answer:
(a) Earth’s magnetic field changes with time. It takes a few hundred years to change by an appreciable amount. The variation in earth’s magnetic field with the time cannot be neglected.

(b) Earth’s core contains molten iron. This form of iron is not ferromagnetic. Hence, this is not considered as a source of earth’s magnetism.

(c) The radioactivity in earth’s interior is the source of energy that sustains the currents in the outer conducting regions of earth’s core. These charged currents are considered to be responsible for earth’s magnetism.

(d) Earth reversed the direction of its field several times during its history of 4 to 5 billion years. These magnetic fields got weakly recorded in rocks during their solidification. One can get clues about the geomagnetic history from the analysis of this rock magnetism.

(e) Earth’s field departs from its dipole shape substantially at large distances (greater than about 30,000 km) because of the presence of the ionosphere. In this region, earth’s field gets modified because of the field of single ions. While in motion, these ions produce the magnetic field associated with them.

(f) An extremely weak magnetic field can bend charged particles moving in a circle. This may not be noticeable for a large radius path. With reference to the gigantic interstellar space, the deflection can affect the passage of charged particles.

Question 3.
A short bar magnet placed with its axis at 30° with a uniform external magnetic field of 0.25 T experiences a torque of magnitude equal to 4.5 × 10-2 J. What is the magnitude of magnetic moment of the magnet?
Answer:
Magnetic field strength, B = 0.25 T
Torque on the bar magnet, τ = 4.5 × 10-2J
Angle between the bar magnet and the external magnetic field, θ = 30°
Torque is related to magnetic moment (M) as
τ = MB sinθ
∴ M = \(\frac{\tau}{B \sin \theta}\)
= \(\frac{4.5 \times 10^{-2}}{0.25 \times \sin 30^{\circ}}\)
\(\frac{4.5 \times 10^{-2} \times 2}{0.25 \times 1}\)
(∵ sin30° = \(\frac{1}{2}\))
= 0.36 JT-1
Hence, the magnetic moment of the magnet is 0.36 JT-1.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 4.
A short bar magnet of magnetic moment m = 0.32 JT-1 is placed in a uniform magnetic field of 0.15 T. If the bar is free to rotate in the plane of the field, which orientation would correspond to its (a) stable, and (b) unstable equilibrium? What is the potential energy of the magnet in each case?
Answer:
Given, M = 0.32 JT-1, B = 0.15T,U = ?
(a) Stable Equilibrium: The magnetic moment should be parallel to the magnetic field. In this position, the potential energy is
U = -MB cos θ =0.32 × 0.15 × 1
= -0.048 J or-4.8 × 10-2 J\

(b) Unstable Equilibrium: The magnetic moment should be antiparallel to the magnetic field. In this position, the potential energy is
U = -MBcosθ = 0.32 × 0.15 × (-1)
= +0.048 J or + 4.8 × 10-2 J

Question 5.
A closely wound solenoid of 800 turns and area of cross-section 2.5 × 10-4 m2 carries a current of 3.0 A. Explain the sense in which the solenoid acts like a bar magnet. What is its associated magnetic moment?
Answer:
Solenoid acts as a bar magnet, its magnetic moment is along the axis of the solenoid, the direction determined by the sense of flow of current. The magnetic moment of a current carrying loop having N turns
= NIA = 800 × 3 × 2.5 × 10-4
= 6 × 10-1
= 0.60 A-m2
= 0.60 JT-1

Question 6.
If the solenoid in Exercise 5.5 is free to turn about the vertical direction and a uniform horizontal magnetic field of 0.25 T is applied, what is the magnitude of torque on the solenoid when its axis makes an angle of 30° with the direction of applied field?
Answer:
Magnetic field strength, B = 0.25 T
Magnetic moment, M = 0.6 JT-1
The angle θ, between the axis of the solenoid and the direction of the applied field is 30°.
Therefore, the torque acting on the solenoid is given as
τ = MB sinθ
= 0.6 × 0.25 × sin30°
= 0.6 × 0.25 × \(\frac{1}{2}\)
= 0.075 N-m

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 7.
A bar magnet of magnetic moment 1.5 J T-1 lies aligned with the direction of a uniform magnetic field of 0.22 T.
(a) What is the amount of work required by an external torque to turn the magnet so as to align its magnetic moment:
(i) normal to the field direction,
(ii) opposite to the field direction?

(b) What is the torque on the magnet in cases (i) and (ii)?
Answer:
Given, M = 1.5 JT-1,B = 0.22 T,θ1 =0°

(a) To align the dipole normal to the field direction θ2 = 90°. Therefore,
W = MB(cosθ1 – cosθ2)
W = 1.5 × 0.22(cos0° – cos90°) = 0.33 J
Also, τ = MB sinθ2
or τ = 1.5 × 0.22sin90° = 0.33 Nm

(b) To align the dipole opposite to the field direction θ2 = 180°. Therefore,
W =MB(cosθ1 – cosθ2)
W = 1.5 × 0.22(cos0° – cos180°) = 0.66 J
Also, τ = MB sinθ2
or τ = 1.5 × 0.22sinl80° = 0 Nm

Question 8.
A closely wound solenoid of2000 turns and area of cross-section 1.6 × 10-4 m2, carrying a current of 4.0 A, is suspended through its centre allowing it to turn in a horizontal plane.
(a) What is the magnetic moment associated with the solenoid?
(b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of 7.5 × 10-2 T is set up at an angle of 30° with the axis of the solenoid?
Answer:
Number of turns on the solenoid, N = 2000
Area of cross-section of the solenoid, A = 1.6 × 10-4 m2</sup
Current in the solenoid, I = 4 A

(a) Let M = magnetic moment of the solenoid.
∴ Using the relation M = NIA, we get
M = 2000 × 4.0 × 1.6 × 10-4</sup
= 1.28 JT-1</sup

The direction of \(\vec{M}\) is along the axis of the solenoid in the direction related to the sense of current according to right-handed screw rule.

(b) Here θ = 30°
\(\vec{B}\) = 7.5 × 10-2 T
Let F = force on the solenoid = ?
τ = torque on the solenoid = ?
The solenoid behaves as a bar magnet placed in a uniform magnetic field, so the force is
F = m \(\vec{B}\) + (-m \(\vec{B}\)) = 0
where m = pole strength of the magnet.
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 1
Using the relation, τ = MB sinθ, we get
τ = 1.28 × 7.5 × 10-2 × sin30°
= 1.28 × 7.5 × 10-2 × \(\frac{1}{2}\) = 0.048 J
The direction of the torque is such that it tends to align the axis of the solenoid (i. e., magnetic moment vector \(\vec{M}\)) along \(\vec{B}\).

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 9.
A circular coil of 16 turns and radius 10 cm carrying a current of 0.75 A rests with its plane normal to an external field of magnitude 5.0 × 10-2 T. The coil is free to turn about an axis in its plane perpendicular to the field direction. When the coil is turned slightly and released, it oscillates about its stable equilibrium with a frequency of 2.0 s-1. What is the moment of inertia of the coil about its axis of rotation?
Answer:
Number of turns in the circular coil, N = 16
Radius of the coil, r = 10cm = 0.1m
Cross-section of the coil, A = πr2 = π × (0.1)2 m2
Current in the coil, I = 0.75 A
Magnetic field strength, B = 5.0 × 10-2 T
Frequency of oscillations of the coil, v = 2.0 s-1
∴ Magnetic moment, M = NIA = 16 × 0.75 × π × (0.1)2 = 0.377 JT-1
Frequency is given by the relation
v = \(\frac{1}{2 \pi} \sqrt{\frac{M B}{I}}\)
where, I = Moment of inertia of the coil
I = \(\frac{M B}{4 \pi^{2} v^{2}}\) = \(\frac{0.377 \times 5 \times 10^{-2}}{4 \pi^{2} \times(2)^{2}}\)
= 1.19 × 10-4 kg m2
Hence, the moment of inertia of the coil about its axis of rotation is 1.19 × 10-4 kg m2.

Question 10.
A magnetic needle free to rotate in a vertical plane parallel to the magnetic meridian has its north tip pointing down at 22° with the horizontal. The horizontal component of the earth’s magnetic field at the place is known to be 0.35 G. Determine the magnitude of the earth’s magnetic field at the place.
Answer:
Horizontal component of earth’s magnetic field, BH = 0.35 G
Angle made by the needle with the horizontal plane
= Angle of dip = δ = 22°
Earth’s magnetic field strength = B
We can relate B and BH as
BH = B cosδ
∴ B = \(\frac{B_{H}}{\cos \delta}=\frac{0.35}{\cos 22^{\circ}}=\frac{0.35}{0.9272}\) = 0.377 G
Hence, the strength of earth’s magnetic field at the given location is 0.377 G.

Question 11.
At a certain location in Africa, a compass points 12° west of the geographic north. The north tip of the magnetic needle of a dip circle placed in the plane of magnetic meridian points 60° above the horizontal. The horizontal component of the earth’s field is measured to he 0.16 G. Specify the direction and magnitude of the earth’s field at the location.
Answer:
Angle of declination, θ = 12°
Angle of dip, δ = 60°
Horizontal component of earth’s magnetic field, BH = 0.16 G
Earth’s magnetic field at the given location = B
We can relate B and BH as
BH = B cosδ
B= \(\frac{B_{H}}{\cos \delta}\) = \(=\frac{0.16}{\cos 60^{\circ}}\) = \(\frac{0.16}{\left(\frac{1}{2}\right)}\) = 0.16 × 2 = 0.32 G
Earth’s magnetic field lies in the vertical plane, 12° west of the geographic meridian, making an angle of 60° (Upward) with the horizontal direction. Its magnitude is 0.32 G.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 12.
A short bar magnet has a magnetic moment of 0.48 JT-1. Give the direction and magnitude of the magnetic field produced by the magnet at a distance of 10 cm from the centre of the magnet on (a) the axis, (b) the equatorial lines (normal bisector) of the magnet.
Answer:
Magnetic moment of the bar magnet, M = 0.48 JT-1
Distance, d = 10cm = 0.1m

(a) The magnetic field at distance d, from the centre of the magnet on the axis is given by the relation,
B = \(\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{3}}\)
∴ B = \(\frac{4 \pi \times 10^{-7} \times 2 \times 0.48}{4 \pi \times(0.1)^{3}}\)
= 0.96 × 10-4 T = 0.96 G
The magnetic field is along the S-N direction.

(b) The magnetic field at a distance of 10 cm (i.e., d = 0.1 m) on the equatorial line of the magnet is given as,
B = \(\frac{\mu_{0} \times M}{4 \pi \times d^{3}}\)
∴ B = \(\frac{4 \pi \times 10^{-7} \times 0.48}{4 \pi \times(0.1)^{3}}\) = 0.48G
The magnetic field is along the N-S direction.

Question 13.
A short bar magnet placed in a horizontal plane has its axis aligned along the magnetic north-south direction. Null points are found on the axis of the magnet at 14 cm from the centre of the magnet. The earth’s magnetic field at the place is 0.36 G and the angle of dip is zero. What is the total magnetic field on the normal bisector of the magnet at the same distance as the null-point (i. e., 14 cm) from the centre of the magnet? (At null points, field due to a magnet is equal and opposite to the horizontal component of earth’s magnetic field.)
Answer:
Distance of the null point from the centre of magnet
d = 14 cm = 0.14 m
The earth’s magnetic field where the angle of dip is zero, is the horizontal component of earth’s magnetic field. i.e., H = 0.36 G
Initially, the null points are on the axis of the magnet. We use the formula of magnetic field on axial line (consider that the magnet is short in length).
B1 = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 m}{d^{3}}\)
This magnetic field is equal to the horizontal component of earth’s magnetic field.
i.e., B1 = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 m}{d^{3}}\) = H ……….(1)
On the equitorial line of magnet at same distance (d) magnetic field due to the magnet
B2 = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{m}{d^{3}}=\frac{B_{1}}{2}=\frac{H}{2}\) …………….. (2)
The total magnetic field on equitorial line at this point (as given in question)
B = B2 + H = \(\frac{H}{2}\) + H = \(\frac{3}{2}\)H = \(\frac{3}{2}\) × 0.36 = 0.54G
The direction of magnetic field is in the direction of earth’s field.

Question 14.
If the bar magnet in exercise 5.13 is turned around by 180°, where will the new null points be located?
Answer:
When the bar magnet is turned by 180°, then the null points are obtained on the equitorial line.
So, magnetic field on the equitorial line at distance d’ is
B’ = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{m}{d^{3}}\)
This magnetic field is equal to the horizontal component of earth’s magnetic field
B’ = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{m}{d^{3}}\) = H ………… (1)
From Q.No. 13 MISS
Magnetic field B1 = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 m}{d^{3}}\) = H ………….. (2)
From eqs. (1) and (2), we get
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 2
Thus, the null points are located on the equitorial line at a distance of 11.1 cm.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 15.
A short bar magnet of magnetic moment 5.25 × 10-2 JT-1 is placed with its axis perpendicular to the earth’s field direction. At what distance from the centre of the magnet, the resultant field is inclined at 45° with earth’s field on (a) its normal bisector and (b) its axis. Magnitude of the earth’s field at the place is given to be 0.42 G. Ignore the length of the magnet in comparison to the distances involved.
Answer:
Given, magnetic moment m = 5.25 × 10-2 J/T
Let the resultant magnetic field is Bnet. It makes an angle of 45° with Be.
∴ Be = 0.42G =0.42 × 10-4 T
(a) At normal bisector
Let r is the distance between axial line and point P.
The magnetic field at point P, due to a short magnet
B = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{m}{r^{3}}\) …………. (1)
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 3
The direction of B is along PB, i.e., along N pole to S pole.
According to the vector analysis,
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 4
r = 0.05 m
r = 5 cm

(b) When point lies on axial line
Let the resultant magnetic field Bnet makes an angle 45° from Be. The magnetic field on the axial line of the magnet at a distance of r from the centre of magnet
B’ = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 m}{r^{3}}\) (S to N)
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 5
Direction of magnetic field is from S to N.
According to the vector analysis,
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 6

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 16.
Answer the following questions :
(a) Why does a paramagnetic sample display greater magnetisation (for the same magnetising field) when cooled?

(b) Why is diamagnetism, in contrast, almost independent of temperature?

(c) If a toroid uses bismuth for its core, will the field in the core be (slightly) greater or (slightly) less than when the core is empty?

(d) Is the permeability of a ferromagnetic material independent of the magnetic field? If not, is it more for lower or higher fields?

(e) Magnetic field lines are always nearly normal to the surface of a ferromagnet at every point. (This fact is analogous to the static electric field lines being normal to the surface of a conductor at every point). Why?

(f) Would the maximum possible magnetisation of a paramagnetic sample be of the same order of magnitude as the magnetisation of a ferromagnet?
Answer:
(a) Owing to the random thermal motion of molecules, the alignments of dipoles get disrupted at high temperatures. On cooling, this disruption is reduced.’Hence, a paramagnetic sample displays greater magnetisation when cooled.

(b) The induced dipole moment in a diamagnetic substance is always opposite to the magnetising field. Hence, the internal motion of the atoms (which is related to the temperature) does not affect the diamagnetism of a material.

(c) Bismuth is a diamagnetic substance. Hence, a toroid with a bismuth core has a magnetic field slightly greater than a toroid whose core is empty.

(d) The permeability of ferromagnetic materials is not independent of the applied magnetic field. It is greater for a lower field and vice versa.

(e) The permeability of ferromagnetic materials is not less than one. It is always greater than one. Hence, magnetic field lines are always nearly normal to the surface of such materials at every point.

(f) The maximum possible magnetisation of a paramagnetic sample can be of the same order of magnitude as the magnetisation of a ferromagnet. This requires high magnetising fields for saturation.

Question 17.
Answer the following questions:
(a) Explain qualitatively on the basis of domain picture the irreversibility in the magnetisation curve of a ferromagnet.

(b) The hysteresis loop of a soft iron piece has a much smaller area than that of a carbon steel piece. If the material is to go through repeated cycles of magnetisation, which piece will dissipate greater heat energy?

(c) ‘A system displaying a hysteresis loop such as a ferromagnet, is a device for storing memory?’ Explain the meaning of this statement.

(d) What kind of ferromagnetic material is used for coating magnetic tapes in a cassette player,’ or for building ‘memory stores’ in a modern computer?

(e) A certain region of space is to be shielded from magnetic fields. Suggest a method.
Answer:
(a) The hysteresis curve (B-H curve) of a ferromagnetic material is shown in the following figure
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 7
It can be observed from the given curve that magnetisation persists even when the external field is removed. This reflects the irreversibility of a ferromagnet.

(b) The dissipated heat energy is directly proportional to the area of a hysteresis loop. A carbon steel piede has a greater hysteresis curve area. Hence, it dissipates greater heat energy.

(c) The value of magnetisation is memory or record of hysteresis loop cycles of magnetisation. These bits of information correspond to the cycle of magnetisation. Hysteresis loops can be used for storing information.

(d) Ceramic is used for coating magnetic tapes in cassette players and for building memory stores in modern computers.

(e) A certain region of space can be shielded from magnetic fields if it is – surrounded by soft iron rings. In such arrangements, the magnetic lines are drawn out of the region.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 18.
A long straight horizontal cable carries a current of 2.5 A in the direction 10° south of west to 10° north of east. The magnetic meridian of the place happens to be 10° west of the geographic meridian. The earth’s magnetic field at the location is 0.33 G, and the angle of dip is zero. Locate the line of neutral points (ignore the thickness of the cable). (At neutral points, magnetic field due to a current-carrying cable is equal and opposite to the horizontal component of earth’s magnetic field.)
Answer:
Given, current in the cable
I = 2.5 A
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 8
Magnetic meridian MNMS is 10° west of geographical meridian GNGS earth’s magnetic field R = 0.33 G
= 0.33 × 10-4 T ……….. (1)
Angle of dip δ = S
The neutral point is the point where the magnetic field due to the current carrying cable is equal to the horizontal component of earth’s magnetic field.
Horizontal component of earth’s magnetic field
H = Rcosθ = 0.33 × 10-4 cos0°
= 0.33 × 10-4 T
Using the formula of magnetic field at distance r due to an infinite long current carrying conductor
B = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 I}{r}\)
At neutral points,
H = B
0.33 × 10-4 = \(\frac{\mu_{0}}{4 \pi} \cdot \frac{2 I}{r}\)
0.33 × 10-4 = \(\frac{10^{-7} \times 2 \times 2.5}{r}\)
or r = \(\frac{5 \times 10^{-7}}{0.33 \times 10^{-4}}\)
or r = 1.5 × 10-2 m = 1.5cm
Thus, the line of neutral points is at a distance of 1.5 cm from the cable.

Question 19.
A telephone cable at a place has four long straight horizontal wires carrying a current of 1.0 A in the same direction east to west. The earth’s magnetic field at the place is 0.39 G, and the angle of dip is 35°. The magnetic declination is nearly zero. What are the resultant magnetic fields at points 4.0 cm above and below the cable?
Answer:
Number of horizontal wires in the telephone cable, n = 4
Current in each wire, I = 1.0 A
Earth’s magnetic field at the location, H = 0.39 G = 0.39 × 10-4 T
Angle of dip at the location, δ = 35°
Angle of declination, θ = 0°
For a point 4 cm below the cable
Distance, r = 4 cm = 0.04 m
The horizontal component of earth’s magnetic field can be written as
Hh, = Hcosδ – B
where,
B = Magnetic field at 4 cm due to current I in the four wires
= 4 × \(\frac{\mu_{0} I}{2 \pi r}\)
μ0 = 4π × 10-7 TmA-1
∴ B = 4 × \(\frac{4 \pi \times 10^{-7} \times 1}{2 \pi \times 0.04}\)
= 0.2 × 10-4 T = 0.2G
∴ Hh = 0.39 cos35°- 0.2
= 0.39 × 0.819 – 0.2 ≈ 0.12 G

The vertical component of earth’s magnetic field is given as
Hv = H sinδ
= 0.39 sin35°= 0.22 G
The angle made by the field with its horizontal component is given as
θ = tan-1 \(\frac{H_{v}}{H_{b}}\)
= tan-1 \(\frac{0.22}{0.12}\) = 61.39°
The resultant field at the point is given as
H1 = \(\sqrt{\left(H_{v}\right)^{2}+\left(H_{h}\right)^{2}}\)
= \(\sqrt{(0.22)^{2}+(0.12)^{2}}\) = 0.25 G

For a point 4 cm above the cable
Horizontal component of earth’s magnetic field
Hh = Hcosδ +B = 0.39 cos35° + 0.2 = 0.52 G
Vertical component of earth’s magnetic field
Hv = H sinδ
= 0.39 sin35° = 0.22 G
Angle, θ = tan-1 \(\frac{H_{v}}{H_{h}}\) = tan-1\(\frac{0.22}{0.52}\) = 22.90
And resultant field
H2 = \(\sqrt{\left(H_{v}\right)^{2}+\left(H_{h}\right)^{2}}\)
= \(\sqrt{(0.22)^{2}+(0.52)^{2}}\) = 0.56 G

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 20.
A compass needle free to turn in a horizontal plane is placed at the centre of circular coil of 30 turns and radius 12 cm. The coil is in a vertical plane making an angle of 45° with the magnetic meridian. When the current in the coil is 0.35 A, the needle points west to east.
(a) Determine the horizontal component of the earth’s magnetic field at the location.
(b) The current in the coil is reversed, and the coil is rotated about its vertical axis by an angle of 90° in the anticlockwise sense looking from above. Predict the direction of the needle. Take the magnetic declination at the places to be zero.
Answer:
Number of turns in the circular coil, N = 30
Radius of the circular coil, r = 12cm = 0.12m
Current in the coil, I = 0.35 A
Angle of dip, δ = 45°

(a) The magnetic field due to current I, at a distance r, is given as
B = \(\frac{\mu_{0} 2 \pi N I}{4 \pi r}\)
∴ B = \(\frac{4 \pi \times 10^{-7} \times 2 \pi \times 30 \times 0.35}{4 \pi \times 0.12}\)
= 5.49 × 10-5 T
The compass needle points from west to east. Hence, the horizontal component of earth’s magnetic field is given as
BH = B sinδ
= 5.49 × 10-5 sin 45°
= 3.88 × 10-5 T = 0.388G

(b) When the current in the coil is reversed and the coil is rotated about its vertical axis by an angle of 90°, the needle will reverse its original direction. In this case, the needle will point from east to west.

Question 21.
A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is 60°, and one of the fields has a magnitude of 1.2 × 10-2 T. If the dipole comes to stable equilibrium at an angle of 15° with this field, what is the magnitude of the other field?
Answer:
The two fields \(\vec{B}\)1 and \(\vec{B}\)2 are shown in the figure
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 9
here in which a magnet is placed s.t.
∠NOB = 15°
∠B1OB2 = 60°
∴ ∠NOB2 = 60 – 15 = 45°
B1 = 1.2 × 10-2 T
B2 = ?
Let θ1 and θ2 he the inclination of the dipole
with \(\vec{B}\)1 and \(\vec{B}\)2 respectively.
∴ θ1 = 15°,θ2 = 45°
If τ1 and τ2 be the torques on the dipole due to \(\vec{B}\)1 and \(\vec{B}\)2 respectively, then
Using the relation,
τ = MB sin θ, we get
τ1 = MB1 sinθ1
and τ2 = MB2 sinθ2
As the dipole is in equilibrium, the torques on the dipole due to \(\vec{B}\)1 and \(\vec{B}\)2 are equal and opposite, i. e.,
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 10

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 22.
A monoenergetic (18 keV) electron beam initially in the horizontal direction is subjected to a horizontal magnetic field of 0.40 G normal to the initial direction. Estimate the up or down deflection of the beam over a distance of 30 cm (me = 9.11 × 10-31 kg). [Note : Data in this exercise are so chosen that the answer will give you an idea of the effect of earth’s magnetic field on the motion of the electron beam from the electron gun to the screen in a TV set.]
Answer:
Here, energy = E = 18 KeV = 18 × 1.6 × 10-16 J
(∵ 1 KeV=103eV = 103 × 1.6 × 10-19 J)
B = horizontal magnetic field = 0.40 G = 0.40 × 10-4 J
m = 9.11 × 10-31 kg, e = 1.6 × 10-19 C
x = 30 cm = 0.30 m
As the magnetic field is normal to the velocity, the charged particle follows circular path in magnetic field. The centrepetal force \(\frac{m v^{2}}{r}\) required for this purpose is provided by force on electron due to magnetic field i. e., BeV
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 11

Question 23.
A sample of paramagnetic salt contains 2.0 × 1024 atomic dipoles each of dipole moment 1.5 × 10-23 JT-1. The sample is placed under a homogeneous magnetic field of 0.64 T, and cooled to a temperature of 4.2 K. The degree of magnetic saturation achieved is equal to 15%. What is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K? (Assume Curie’s law)
Answer:
Number of atomic dipoles, n = 2.0 × 1024
Dipole moment of each atomic dipole, M = 1.5 × 10-23 JT-1
When the magnetic field, B1 = 0.64 T
The sample is cooled to a temperature, T1 = 4.2 K
Total dipole moment of the atomic dipole, Mtot = n × M
= 2 × 1024 × 1.5 × 10-23 = 30 JT-1
Magnetic saturation is achieved at 15%.
Hence, effective dipole moment, M1 = \(\frac{15}{100}\) × 30 = 4.5 JT-1
When the magnetic field, B2 = 0.98 T
Temperature, T2 = 2.8 K
Its total dipole moment = M2
According to Curie’s law, we have the ratio of two magnetic dipoles as
\(\frac{M_{2}}{M_{1}}=\frac{B_{2}}{B_{1}} \times \frac{T_{1}}{T_{2}}\)
∴ M2 = \(\frac{B_{2} T_{1} M_{1}}{B_{1} T_{2}}\) = \(\frac{0.98 \times 4.2 \times 4.5}{2.8 \times 0.64}\) = 10 336 JT-1
Therefore, 10.336 J T-1 is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K.

Question 24.
A Rowland ring of mean radius 15 cm has 3500 turns of wire wound on a ferromagnetic core of relative permeability 800. What is the magnetic field B in the core for a magnetising current of 1.2 A?
Answer:
Mean radius of the Rowland ring, r = 15 cm = 0.15 m
Number of turns on the ferromagnetic core, N = 3500
Relative permeability of the core material, μr = 800
Magnetising current, I = 1.2 A
The magnetic field is given by the relation
B = \(\frac{\mu_{r} \mu_{0} I N}{2 \pi r}\)
B = \(\frac{800 \times 4 \pi \times 10^{-7} \times 1.2 \times 3500}{2 \pi \times 0.15}\) = 4.48T
Therefore, the magnetic field in the core is 4.48 T.

PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter

Question 25.
The magnetic moment vectors μs and μl associated with the intrinsic spin angular momentum S and orbital angular momentum l, respectively, of an electron are predicted by quantum theory (and verified experimentally to a high accuracy) to be given by
μg = -(e/m)S, μl = -(e/2m)l
Which of these relations is in accordance with the result expected classically? Outline the derivation of the classical result.
Answer:
Out of these two relations, \(\overrightarrow{\mu_{l}}=-\frac{e}{2 m} \vec{l}\) is in accordance with classical physics and can be derived as follows

We know that electrons revolving around the nucleus of an atom in circular orbits behave as tiny current loops having angular momentum \(\vec{\imath}\) given in magnitude as
\(\vec{\imath}\) = mvr …………. (1)
where m = mass of an electron
v = its orbital velocity
r = radius of the circular orbit.
or vr = \(\frac{l}{m}\) …………… (2)

\(\vec{\imath}\) acts along the normal to the plane of the orbit in upward direction. The orbital motion of electron is taken as equivalent to the flow of conventional current I given by
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 12
where – ve sign shows that the electron is negatively
charged. The eqn. (3) shows that μe and \(\vec{\imath}\) are opposite to each other i. e., antiparallel and both being normal to the plane of the orbit as shown in the figure
PSEB 12th Class Physics Solutions Chapter 5 Magnetism and Matter 13
∴ \(\overrightarrow{\mu_{l}}=-\frac{e}{2 m} \cdot \vec{l}\)
\(\frac{\mu_{s}}{S}\) in contrast to \(\frac{\mu_{l}}{\vec{l}}\) is \(\frac{e}{m}\) i.e., twice the classically
expected value. This latter result is an outstanding consequence of modern quantum theory and cannot be obtained classically.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 11 Dual Nature of Radiation and Matter Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

PSEB 12th Class Physics Guide Dual Nature of Radiation and Matter Textbook Questions and Answers

Question 1.
Find the
(a) maximum frequency, and
(b) minimum wavelength of X-rays produced by 30 kV electrons.
Answer:
Potentialoftheelectrons, V=30 kV= 3O x 103 V=3 x 104 V
Hence, energy of the electrons, E = 3 x 104 eV
where, e = Charge on an electron = 1.6 x 10-19C
(a) Maximum frequency produced by the X-rays = v
The energy of the electrons is given by the relation
E=eV=hv
where, h = Planck’s constant = 6.63 x 10-34 Js
∴ v = \(\frac{e V}{h} \) (∵ E = eV)
= \(\frac{1.6 \times 10^{-19} \times 3 \times 10^{4}}{6.63 \times 10^{-34}}\) = 7.24 x 1018 Hz
Hence, the maximum frequency of X-rays produced is 7.24 x 1018 Hz

(b) The minimum wavelength produced by the X-rays is given as
λ = \(\frac{c}{v}\)
= \(\frac{3 \times 10^{8}}{7.24 \times 10^{18}}\)
= 0.414 x 10-10
= 0.0414 x 10-9 m
= 0.0414 nm
Hence, the minimum wavelength of X-rays produced is 0.0414 nm.

Question 2.
The work function of caesium metal is 2.14 eV. When light of frequency 6 x 1014 Hz is incident on the metal surface, photoemission of electrons occurs.
What is the
(a) maximum kinetic energy of the emitted electrons,
(b) stopping potential, and
(c) maximum speed of the emitted photoelectrons?
Answer:
Work function of caesium metal, Φ0 = 2.14 eV
Frequency of light, v = 6.0 x 1014 Hz
The maximum kinetic energy is given by the photoelectric effect as
K = hv- Φ0
where, h = Planck’s constant = 6.63 x 10-34 Js .
∴ k = \(\frac{6.63 \times 10^{-34} \times 6 \times 10^{14}}{1.6 \times 10^{-19}}-2.14 \)
( ∵ e=1.6 x 10-19)
= 2.485-2.140 =0.345eV
Hence, the maximum kinetic energy of the emitted electrons is 0.345 eV.

(b) For stopping potential V0, we can write the equation for kinetic energy
as K=eV0
∴ V0 = \(\frac{K}{e}\) (∵ e=1.6×1019)
= \(\frac{0.345 \times 1.6 \times 10^{-19}}{1.6 \times 10^{-19}}\) =0.345V
Hence, the stopping potential of the material is 0.345 V.

(c) Maximum speed of the emitted photoelectrons = y
Hence, the relation for kinetic energy can be written as
K = \(\frac{1}{2}\) mv2
where, m = mass of an electron = 9.1 x 10-31 kg
(∴ e=1.6 x 10-19)
= \(\frac{2 \times 0.345 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}\) = 0.1104 x 1012
∴ v = 3.323 x 105 m/s = 332.3 km/s
Hence, the maximum speed of the emitted photoelectrons is 332.3 km/s.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 3.
The photoelectric cut off voltage n a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?
Answer:
Cut-off voltage, V0 = 1.5 V
Maximum kinetic energy of photoelectrons
EK =eV0 =1.5eV=1.5 x 1.6 x 10-19J
=2.4 x 10-19J.

Question 4.
Monochromatic light of wavelength 632.8 mn is produced by a helium-neon laser. The power emitted is 9.42 mW.
(a) Find the energy and momentum of each photon in the light beam,
(b) How many photons per second, on the average, arrive at a target irradiated by this beam? (Assume the beam to have uniform cross-section which is less than the target area), and
(c) How fast does a hydrogen atom have to travel in order to have the same momentum as that of the photon?
Answer:
Wavelength of the monochromatic light, 632.8 nm = 632.8 x 10-9 m
Power emitted by the laser, P = 9.42 mW = 9.42 x 10-3 W
Planck’s constant, h = 6.63 x 10-34Js
Speed of light, c=3 x 108 m/s
Mass of a hydrogen atom, m =1.66 x 10-27 kg
(a) The energy of each photon is given as
E = \(\frac{h c}{\lambda}\)
= \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{632.8 \times 10^{-9}}\)
= 3.141 x 10-19

The momentum of each photon is given as
p = \(\frac{h}{\lambda}\)
= \(\frac{6.63 \times 10^{-34}}{632.8 \times 10^{-9}}=1.047 \times 10^{-27} \mathrm{~kg} \mathrm{~ms}^{-1} \)

(b) Number of photons arriving per second, at a target irradiated by the beam = n.
Assume that the beam has a uniform cross-section that is less than the
target area.
Hence, the equation for power can be written as
P=nE
∴ n= \(\frac{P}{E}\)
= \(\frac{9.42 \times 10^{-3}}{3.141 \times 10^{-19}}\) = 3 x 1016

(c) Momentum of the hydrogen atom is the same as the momentum of the photon, .
p=1.047 x 1027 kgms-1
Momentum is given as
p = mv
where, v = speed of the hydrogen atom
v = \(\frac{p}{m}\)
= \(=\frac{1.047 \times 10^{-27}}{1.66 \times 10^{-27}}\) = 0.630m/s

Question 5.
The enery flux of sunlight reaching the surface of the earth is 1.388 x 103 W/m2.
How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 rims.
Answer:
Energy flux of sunlight reaching the surface of earth,
Φ = 1.388 x 103 W/m2
Hence, power of sunlight per square metre, P = 1.388 x 103W
Speed of light, c = 3 x 108 m/s
Planck’s constant, h = 6.63 x 10-34 Js
Average wavelength of photons present in sunlight, λ = 550 nm.
=550 x 10-9m
Number of photons per square metre incident on earth per second = n

Hence, the equation for power can be written as
P = nE
∴ n = \(\frac{P}{E}=\frac{P \lambda}{h c}=\frac{1.388 \times 10^{3} \times 550 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}\)
= 3.84 x 1021 photons/m2/s
Therefore, every second, 3.84×1021 photons are incident per square metre on earth.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 6.
In an experiment on photoelectric effect, the slope of the cut-off voltage versus frequency of incident light is found to be 4.12 x 10-15 Vs. Calculate the value of Planck’s constant.
Answer:
The slope of the cut-off voltage (V) versus frequency (v) of an incident light is given as
\(\frac{V}{v}\) = 4.12 x 10-15 Vs
V is related to frequency by the equation
hv = eV

where, e = charge on an electron = 1.6 x 10-19
h = Planck’s constant
∴ h = e x \(\frac{V}{v}\)
= 1.6 x 10-19 x 4.12 x 10-15
= 6.592 x 10-34 Js
Therefore, the value of Planck’s constant is 6.592 x 10-34 Js.

Question 7.
A 100 W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm.
(a) What is the energy per photon associated with the sodium light?
(b) At what rate are the photons delivered to the sphere?
Answer:
Power of the sodium lamp,. P = 100 W
Wavelength of the emitted sodium light, λ = 589 nm = 589 x 109 m
Planck’s constant, h = 6.63 x 10-34 Js
Speed of light, c = 3 x 108 m/s
The energy per photon associated with the sodium light is given as
E= \(\frac{h c}{\lambda}\)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 1
(b) Number of photons delivered to the sphere = n
The equation for power can be written as
P=nE
∴ n = \(\frac{P}{E}=\frac{100}{3.37 \times 10^{-19}}\) = 2.96 x 1020 photons/s
Therefore, every second, 2.96 x 1020 photons are delivered to the sphere.

Question 8.
The threshold frequency for a certain metal is 3.3 x 1014 Hz. If light of frequency 8.2 x 1014 Hz is incident on the metal, predict the cut-off voltage for the photoelectric emission.
Answer:
Threshold frequency of the metal, v0 = 3.3 x 1014 Hz
Frequency of light incident on the metal, v = 82 x 1014 Hz
Charge on’an electron, e = 1.6 x 10-19 C .
Planck’s constant, h = 6.63 x 10-34 Js
Cut-off voltage for the photoelectric emission from the metal = V0
The equation for the cut-off energy is given as
eV0 = h(v-v0)
Vo = \(\frac{h\left(v-v_{0}\right)}{e}\)
= \(\frac{6.63 \times 10^{-14} \times\left(8.2 \times 10^{14}-3.3 \times 10^{14}\right)}{1.6 \times 10^{-19}}\)
= 2.0292 V
Therefore, the cut-off voltage for the photoelectric emission is 2.0292 V.

Question 9.
The work function for a certain metal Is 4.2 eV. Will this metal give photoelectric emission for incident radiation of
wavelength 330 nm?
Answer:
The energy of incident radiations
E = \(\frac{h c}{\lambda}\) = \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{330 \times 10^{-9}}\) J
= 6.03 x 10-19 J
= \(\frac{6.03 \times 10^{-19}}{1.6 \times 10^{-19}}\)eV = 3.77 eV
The work function of photometal, Φ0 = 4.2 eV
As energy of incident photon is less than work function, photoemission is not possible.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 10.
Light of frequency 7.21 x 1014 Hz is incident on a metal surface. Electrons with a maximum speed of 6.0 x10s m/s are ejected from the surface. What is the threshold frequency for photoemission of electrons?
Answer:
Frequency of light incident on the metal surface, v = 7.21 x 1014 Hz
Maximum speed of the electrons, v = 6.0 x 105 m/s
Planck’s constant, h = 6.63 x 10-34 Js
Mass of an electron, m = 9.1 x 10-31 kg
For threshold frequency v0, the relation for kinetic energy is written asFor threshold frequency y0, the relation for kinetic energy is written as
\(\frac{1}{2} m v^{2}\) = h(v-v0)
v0 = v – \(\frac{m v^{2}}{2 h}\)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 2
Therefore, the threshold frequency for the photoemission of electrons is 4.738 x 1014 Hz.

Question 11.
Light of wavelength 488 mn is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut-off) potential of photoelectrons is 0.38 V. Find the work function of the material from which the emitter is made.
Answer:
Wavelength of light produced by the argon laser,
λ = 488 nm = 488 x 10-9 m
Stopping potential of the photoelectrons, V0 = 0.38 V
1 eV=l.6 x 10-19 J
∴ V0= \(\frac{0.38}{1.6 \times 10^{-19}}\) eV
Planck’s constant, h = 6.63 x 10-34 Js
Charge on an electron, e = 1.6 x 10-19 C
Speed of light, c =3 x 10 m/s
From Einstein’s photoelectric effect, we have the relation involving the work function Φ0 of the material of the emitter as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 3
Therefore, the material with which the emitter is made has the work function of 2.16 eV.

Question 12.
Calculate the
(a) momentum, and
(b) de Broglie wavelength of the electrons accelerated through a potential difference of 56 V.
Answer:
Potential difference, V = 56 V
Planck’s constant, h = 6.63 x 10-34 Js
Mass of an electron, m = 9.1 x 10-31 kg
Charge on an electron, e = 1.6 x 10-19 C
(a) At equilibrium, the kinetic energy of each electron is equal to the accelerating potential, i.e., we can write the relation for velocity (v) of each electron as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 4
The momentum of each accelerated electron is given as
P = mv
= 9.1 x 10-31 x 4.44 x 106
= 4.04 x 10-24 kg m s-1
Therefore, the momentum of each electron is 4.04 x 10-24 kg m s-1.

(b) de Broglie wavelength of an electron accelerating through a potential V is given by the relation
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 5
Therefore, the de Broglie wavelength of each electron is 0.1639 nm.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 13.
What is the
(a) momentum,
(b) speed, and
(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.
Answer:
Kinetic energy of the electron, Ek = 120 eV
Planck’s constant, h = 6.63 x 10-34 Js
Mass of an electron, m = 9.1 x 10-31
Charge on an electron, e = 1.6 x 10-19 C

(a) For the electron, we can write the relation for kinetic energy as
Ek = \(\frac{1}{2}\) mv2
where, v = speed of the electron
∴ v2 = \(\sqrt{\frac{2 e E_{k}}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 120}{9.1 \times 10^{-31}}}\)
= \(\sqrt{42.198 \times 10^{12}}\) = 6.496 x 106 m/s
Momentum of the electron, p = mv = 9.1 x 10-31 x 6.496 x 106
=5.91 x 1024 kg ms-1
Therefore, the momentum of the electron is 5.91 x 1024 kg ms-1.

Question 14.
The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which an electron, and a neutron, would have the same de Broglie wavelength.
Answer:
Wavelength of light of sodium line, λ = 589 nm = 589 x 10-9 m
Mass of an electron, me = 9.1 x 10-31 kg
Mass of a neutron, mn = 1.66 x 10-27 kg
Planck’s constant, h = 6.63 x 10-34 Js

(a) For the kinetic energy K, of an electron accelerating with a velocity v, we have the relation
K = \(\frac{1}{2}\) mev2 ………………………… (1)
We have the relation for de Broglie wavelength as
λ = \(\frac{h}{m_{e} v}\)
∴ v2 = \(\frac{h^{2}}{\lambda^{2} m_{e}^{2}}\) ………………………… (2)
Substituting equation (2) in equation (1), we get the relation
K = \(\frac{1}{2} \frac{m_{e} h^{2}}{\lambda^{2} m_{e}^{2}}=\frac{h^{2}}{2 \lambda^{2} m_{e}}\) ………….. (3)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 6
Hence, the kinetic energy of the electron is 6.9 x 10-25 J or 4.31 µeV.

(b) Using equation (3), we can write the relation for the kinetic energy of the neutron as = \(\frac{h^{2}}{2 \lambda^{2} m_{n}}\)
= \(\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times\left(589 \times 10^{-9}\right)^{2} \times 1.66 \times 10^{-27}}\)
= 3.78 x 10-28
= \(\frac{3.78 \times 10^{-28}}{1.6 \times 10^{-19}} \) = 2.36 x 10-9 eV
= 2.36 neV
Hence, the kinetic energy of the neutron is 3.78 x 10-28 J or 2.36 neV.

Question 15.
What is the de Broglie wavelength of
(a) a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s,
(b) a ball of mass 0.060 kg moving at a speed of 1.0 m/s, and
(c) a dust particle of mass 1.0 x 10-9 kg drifting with a speed of 2.2 m/s?
Answer:
(a) Mass of the bullet, m = 0.040 kg
Speed of the bullet, v = 1.0 km/s = 1000 m/s
Planck’s constant, h = 6.63 x 10-34 Js
de Broglie wavelength of the bullet is given by the relation
λ = \(\frac{h}{m v}\)
= \(\frac{6.63 \times 10^{-34}}{0.040 \times 1000} \) = 1.65 x 10-35 m

(b) Mass of the ball, m = 0.060 kg
Speed of the ball, v =1.0 m/s
de Brogue wavelength of the ball is given by the relation
λ = \(\frac{h}{m v}\)
= \(\frac{6.63 \times 10^{-34}}{0.060 \times 1}\) = 1.1 x 10-32 m

(c) Mass of the dust particle, m = 1 x 10-9 kg
Speed of the dust particle, v = 2.2 m/s
de Brogue wavelength of the dust particle is given by the relation
λ = \(\frac{h}{m v}\)
= \(\frac{6.63 \times 10^{-34}}{2.2 \times 1 \times 10^{-9}}\) = 3.0 x 10-25 m.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 16.
An electron and a photon each have a wavelength of 1.00 run. Find
(a) their momenta,
(b) the energy of the photon, and
(c) the kinetic energy of electrons.
Answer:
Wavelength of an electron (λe) and a photon (λp),λe = λp = λ = 1 nm
= 1 x 10-9 m
Planck’s constant, h = 6.63 x 10-34 Js

(a) The momentum of an elementary particle is given by de Broglie relation
λ = \(\frac{h}{p}\)
p = \(\frac{h}{\lambda}\)
It is clear that momentum depends only on the wavelength of the particle. Since the wavelengths of an electron and a photon are equal, both have an equal momentum.
∴ p= \(\frac{6.63 \times 10^{-34}}{1 \times 10^{-9}} \) =6.63 x 10-25 kgms-1

(b) The energy of a photon is given by the relation
E= \(\frac{h c}{\lambda}\)
where, speed of light, c =3 x 108 m/s
∴ E = \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1 \times 10^{-9} \times 1.6 \times 10^{-19}}\)
= 1243.1 eV = 1.243 keV
Therefore, the energy of the photon is 1.243 keV.

(c) The kinetic energy (K) of an electron having momentum p, is given by the relation
K = \(\frac{1}{2} \frac{p^{2}}{m}\)
where, m = mass of the electron = 9.1 x 10-31 kg;
p = 6.63 x 10-25 kgm s-1

∴ K = \(\frac{1}{2} \times \frac{\left(6.63 \times 10^{-25}\right)^{2}}{9.1 \times 10^{-31}}\) = 2.415 x 10-19 J
= \(\frac{2.415 \times 10^{-19}}{1.6 \times 10^{-19}}\) = 1.51 eV
Hence, the kinetic energy of the electron is 1.51 eV.

Question 17.
(a) For what kinetic energy of a neutron will the associated de Broglie wavelength be 1.40x 10-10 m?
(b) Also, find the de Brogue wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of (3/2) kT at 300 K.
Answer:
(a) de Brogue wavelength of the neutron, λ =1.40 x 10-10 m
Mass of a neutron,mn =1. 66 x 10-27 kg
Planck’s constant, h = 6.63 x 10-34 Js
Kinetic energy (K) and velocity ( v) are related as
K = \( \frac{1}{2} m_{n} v^{2}\) ……………………………… (1)
de Brogue wavelength (λ) and velocity (v) are related as
λ= \(\frac{h}{m_{n} v}\) ……………………………….. (2)
Using equation (2) in equation (1), we get
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 7
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 8
Hence, the kinetic energy of the neutron is 6.75 x 10-21 J or 4.219 x 10-2 eV.

(b) Temperature of the neutron, T = 300 K
Boltzmann’s constant, k =1.38 x 10-23 kg m2 s-2 K-1
Average kinetic energy of the neutron,
K’ = \(\frac{3}{2} \) kT.
= \(\frac{3}{2} \) x 1.38 x 10-23 x 300 = 6.21 x 10-21 J
The relation for the de Broglie wavelength is given as
λ ‘ = \(\frac{h}{\sqrt{2 K^{\prime} m_{n}}}\)

where, mn = 1.66 x 10-27 kg
h = 6.63 x 10-34 Js
K’ = 6.21 x 10-21 J
∴ λ’ = \(\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 6.21 \times 10^{-21} \times 1.66 \times 10^{-27}}}\)
=1.46 x 10-10
m = 0.146 nm
Therefore, the de Broglie wavelength of the neutron is 0.146 nm.

Question 18.
Show that the wavelength cf electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).
Answer:
The momentum of a photon having energy (hv) is given as ’
p = \(\frac{h v}{c}=\frac{h}{\lambda}\)
λ = \(\frac{h}{p}\) ………………………….. (1)
where, λ = wavelength of the electromagnetic radiation
c = speed of light
h = Planck’s constant
de Broglie wavelength of the photon is given as
λ = \(\frac{h}{m v}\)
But p = mv
∴ λ =\(\frac{h}{p}\) ………………………………….. (2)
where, m = mass of the photon
v = velocity of the photon
Hence, it can be inferred from equations (1) and (2) that the wavelength of the electromagnetic radiation is equal to the de Broglie wavelength of the photon.

Question 19.
What is the de Broglie wavelength of a nitrogen molecule in air at 300 K?
Assume that the molecule is moving with the root mean square speed of molecules at this temperature. (Atomic mass of nitrogen = 140076 u)
Answer:
Temperature of the nitrogen molecule, T = 300 K
Atomic mass of nitrogen = 14.0076 u
Hence, mass of the nitrogen molecule, m = 2 x 14.0076 = 28.0152 u
But 1 u = 1.66 x 10-27 kg
∴ m=28.0152 x 1.66 x 10-27 kg
Planck’s constant, h = 6.63 x 10-34 Js
Boltzmann’s constant, k = 1.38 x 10-23 K-1
We have the expression that relates mean kinetic energy \(\left(\frac{3}{2} k T\right)\) of the nitrogen molecuLe with the root mean square speed (vrms) as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 9
Hence, the de Broglie wavelength of the nitrogen molecule is given as
λ = \(\frac{h}{m v_{\text {rms }}}=\frac{h}{\sqrt{3 m k T}}\)
= \(\frac{6.63 \times 10^{-34}}{\sqrt{3 \times 28.0152 \times 1.66 \times 10^{-27} \times 1.38 \times 10^{-23} \times 300}}\)
= 0.028 x 10-9 m
= 0.028 nm
Therefore, the de Broglie wavelength of the nitrogen molecule is 0.028 nm.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

[Additional Exercises]

Question 20.
(a) Estimate the speed with which electrons emitted from a heated emitter of an evacuated tube impinge on the collector maintained at a potential difference of 500 V with respect to the emitter.
Ignore the small initial speeds of the electrons. The specific charge of the electron, i.e., its elm, is given to be 1.76 x 1011 Ckg-1.
(b) Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?
Answer:
(a) Potential difference across the evacuated tube, V = 500 V
Specific charge of the electron, e/m = 1.76 x 1011 C kg-1
The speed of each emitted electron is given by the relation for kinetic energy as

KE = \(\frac{1}{2}\) mv2
Therefore, the speed of each emitted electron is
KE =\(\frac{1}{2}\) mv2 = eV
∴ v = \(\left(\frac{2 e V}{m}\right)^{1 / 2}=\left(2 V \times \frac{e}{m}\right)^{1 / 2} \)
= (2x 500 xl.76 x 1011)1/2
= 1.327 x 107 m/s

(b) Potential of the anode, V = 10 MV = 10 x 106 = 107 V
The speed of each electron is given as
v = \(\left(2 V \frac{e}{m}\right)^{1 / 2}\)
= (2 x 107x 1.76 x 1011)1/2
= 1.88 x 109 m/s .
This result is wrong because nothing can move faster than light. In the above formula, the expression (mv2 / 2) for energy can only be used in the non-relativistic limit, i. e., for v < < c.
For very high speed problems, relativistic equations must be considered for solving them. In the relativistic limit, the total energy is given as E = mc2
where, m = relativistic mass
m0 = \(\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}\) = mass of the particle at rest
Kinetic energy is given as
K = mc2 – m0c2

Question 21.
(a) A monoenergetic electron beam with electron speed of 5.20x 106 ms-1 is subject to a magnetic field of 1.30 x 10 4T normal to the beam velocity. What is the radius of the circle traced by the beam, given elm for electron equals 1.76x 1011 C kg-1
(b) Is the formula you employ in (a) valid for calculating radius of the path of a 20 MeV electron beam? If not, in what way is it modified? [Note: Exercises 11.20 (b) and 11.21 (b) take you to relativistic mechanics which is beyond the scope of this book. They have been inserted here simply to emphasise the point that the formulas you use in part (a) of the exercises are not valid at very high speeds or energies. See answers at the end to know what ‘very high speed or energy’ means.]
Answer:
(a) Speed of the electron, v = 5.20 x 106 m/s
Magnetic field experienced by the electron, B = 1.30 x 10-4 T
Specific charge of the electron, e/m = 1.76 x 1011 C kg’
where, e = charge on the electron = 1.6 x 10-19 C
m = mass of the electron = 9.1 x 10-31 kg
The force exerted on the electron is given as
F = e\(|\vec{v} \times \vec{B}|\)
= evBsinθ
θ = angle between the magnetic field and the beam velocity.

The magnetic field is normal to the direction of beam.
∴ θ = 90°
F = evB ……………………………. (1)
The beam traces a circular path of radius, r. It is the magnetic field, due to its bending nature, that provides the centripetal force \(\left(F=\frac{m v^{2}}{r}\right)\) for the
beam.
Hence, equation (1) reduces to
evB = \(\frac{m v^{2}}{r}\)
∴ r = \(\frac{m v}{e B}=\frac{v}{\left(\frac{e}{m}\right) B}=\frac{5.20 \times 10^{6}}{\left(1.76 \times 10^{11}\right) \times 1.30 \times 10^{-4}}\)
= 0.227 m
= 0.227 x 100 cm = 22.7 cm
Therefore, the radius of the circular path is 22.7 cm.

(b) Energy of the electron beam, E = 20 MeV = 20 x 106 x 1.6 x 10-19 J
The energy of the electron is given as
E = \(\frac{1}{2} \) mv2
∴ v = \(\left(\frac{2 E}{m}\right)^{1 / 2}\)
= \(\sqrt{\frac{2 \times 20 \times 10^{6} \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}\) = 2.652 x 109 m/s

This result is incorrect because nothing can move faster than light. In the above formula, the expression (mv2 / 2) for energy can only be used in the non-relativistic limit, i. e., for v« c.

When very high speeds are concerned, the relativistic domain comes into consideration. In the relativistic domain, mass is given as
m = m0 \(\left[1-\frac{v^{2}}{c^{2}}\right]^{1 / 2}\)
where, m0 = mass of the particle at rest

Hence, the radius of the circular path is given as
r = mv/eB = \(\frac{m_{0} v}{e B \sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}\).

Question 22.
An electron gun with its collector at a potential of 100 V fires out electrons in a spherical hulh containing hydrogen gas at low pressure (~ 10-2 nun of Hg). A magnetic field of 2.83 x 10-4 T curves the path of the electrons in a circular orbit of radius 12.0 cm. (The path can be viewed because the gas ions in the path focus the beam by attracting electrons, and emitting light by electron capture; this method is known as the ‘fine beam tube’ method). Determine elm from the data.
Answer:
Potential of the anode, V = 100 V
Magnetic field experienced by the electrons, B = 2.83 x 10,sup>-4 T
Radius of the circular orbit r = 12.0 cm = 12.0 x 10-2 m
Mass of each electron = m
Charge on each electron = e ‘
Velocity of each electron = v

The energy of each electron is equal to its kinetic energy, i. e.,
\(\frac{1}{2}\) mv2 = eV
v2 = \(\frac{2 e V}{m}\)
It is the magnetic field, due to its bending nature, that provides the \(\left(F=\frac{m v^{2}}{r}\right) \) for the beam.
Hence, we can write Centripetal force = Magnetic force mv2
\(\frac{m v^{2}}{r}\) = evB
eB = \(\frac{m v}{r}\)
v = \(\frac{e B r}{m}\) ………………………………. (2)
Putting the value of y in equation (1), we get
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 10
Therefore, the specific charge ratio (e/ m) is 1.73 x 1011 C kg-1.

Question 23.
(a) An X-ray tube produces a continuous spectrum of radiation with its short wavelength end at 0.45 A. What is the maximum energy of a photon in the radiation?
(b) From your answer to (a), guess what order of accelerating voltage (for electrons) is required in such a tube?
Answer:
(a) Wavelength produced by the X-ray tube, λ= 0.45Å= 0.45 x 10-10 m
Planck’s constant, h = 6.63 x 10-34 Js
Speed of light, c = 3 x 108 m/s
The maximum energy of a photon is given as
E = \(=\frac{h c}{\lambda}\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{0.45 \times 10^{-10} \times 1.6 \times 10^{19}} \) = 27.6 x 103 eV = 27.6 keV
Therefore, the maximum energy of the X-ray photon is 27.6 keV.

(b) Accelerating voltage provides energy to the electrons for producing X-rays.
To get an X-ray of 27.6 keV, the incident electrons must possess at least 27.6 keV of kinetic electric energy. Hence, an accelerating voltage of the order of 30 keV is required for producing X-rays.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 24.
In an accelerator experiment on high-energy collisions of electrons with positrons, a certain event is interpreted as an annihilation of an electron-positron pair of total energy 10.2 BeV into two y-rays of equal energy. What is the wavelength associated with each γ-ray? (1 BeV = 109 eV)
Answer:
Total energy of two γ-rays
E = 10.2 BeV
= 10.2 x 109 eV
= 10.2 x 109 x 1.6 x 10-19 J
= 10.2 x 1.6 x 10-10

Hence, the energy of each γ-ray
E’ = \(\frac{E}{2}\)
= \(\frac{10.2 \times 1.6 \times 10^{-10}}{2}\)
= 8.16 x 10-10 J
Planck’s constant, h = 6.63 x 10-34 Js
Speed of light, c = 3 x 108 m/s
Energy is related to wavelength as
E ‘ = \(\frac{h c}{\lambda}\)
∴ λ = \(\frac{h c}{E^{\prime}}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{8.16 \times 10^{-10}}\)
= 2.436 x 10-16 m
Therefore, the wavelength associated with each γ-ray is 2.436 x 10-16 m.

Question 25.
Estimating the following two numbers should be interesting. The first number will tell you why radio engineers do not need to worry much about photons. The second number tells you why our eye can never ‘count photons’, even in barely detectable light.
(a) The number of photons emitted per second by a Mediumwave transmitter of 10 kW power, emitting radio waves of wavelength 500 m.
(b) The number of photons entering the pupil of our eye per second corresponding to the minimum intensity of white light that we humans can perceive (~ 10-10 W m-2). Take the area of the pupil to be about 0.4 cm2, and the average frequency of white light to be about 6 x 1014 Hz.
Answer:
(a) Power of the medium wave transmitter,
P = 10kW = 104 W = 104 J/s
Hence, the energy emitted by the transmitter per second, E = 104
The wavelength of the radio wave, λ = 500 m
The energy of the wave is given as E1 = \(\frac{h c}{\lambda}\)
where, h = Planck’s constant = 6.63 x 10-34 Js
c = speed of light = 3 x 108 m/s
∴ E1 = \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{500}\) = 3.96 x 10-28

Let n be the number of photons emitted by the transmitter.
∴ nE1 = E
n = \(\frac{E}{E_{1}}\) =\(\frac{10^{4}}{3.96 \times 10^{-28}}\) = 2.525 x 1031
≈ 3 x 1031
The energy (E1) of a radio photon is very less, but the number of photons (n) emitted per second in a radio wave is very large. The existence of a minimum quantum of energy can be ignored and the total energy of a radio wave can be treated as being continuous.

(b) Intensity of light perceived by the human eye, I = 10-10 W m-2
Area of the pupil, A = 0.4 cm2 = 0.4 x 10-4 m2
Frequency of white light, v = 6 x 1014 Hz
The energy emitted by a photon is given as
E = hv
where, h = Planck’s constant = 6.63 x 10-34 Js
∴ E = 6.63 x 10-34 x 6 x 1014
= 3.96 x 10-19 J
Let n be the total number of photons falling per second, per unit area of the pupil. The total energy per unit for n falling photons is given as
E = n x 3.96 x 10-19 Js-1 m-2
The energy per unit area per second is the intensity of light.
∴ E = I
n x 3.96 x 10-19 = 10-10
n = \(\frac{10^{-10}}{3.96 \times 10^{-19}}\)
= 2.52 x 108 m2 s-1

The total number of photons entering the pupil per second is given as
nA =n x A
= 2.52 x 108 x 0.4 x 10-4
= 1.008 x 104 s-1
This number is not as large as the one found in problem (a), but it is large enough for the human eye to never see the individual photons.

Question 26.
Ultraviolet light of wavelength 2271 Å from a 100 W mercury source irradiates a photo-cell made of molybdenum metal. If the stopping potential is -1.3 V, estimate the work function of the metal. How would the photo-cell respond to a high intensity (~105 Wm-2) red light of wavelength 6328 Å produced by a He-Ne laser?
Answer:
Wavelength of ultraviolet light, λ = 2271 Å = 2271 x 10-10 m
Stopping potential of the metal, V0 = 1.3 V
Planck’s constant, h = 6.63 x 10-34 Js
Charge on an electron, e = 1.6 x 10-19 C
Work function of the metal = Φ0
Frequency of light = v
We have the photo-energy relation from the photoelectric effect as
Φ0 =hv0
v0 = \(\frac{\phi_{0}}{h}\)
= \(\frac{6.64 \times 10^{-19}}{6.63 \times 10^{-34}} \)
= 1.006 x 1015 Hz = 4.15 eV
Let v0 be the threshold frequency of the metal.
∴ Φ0 = hv0
v0 = \(\frac{\phi_{0}}{h}\)
= \(\frac{6.64 \times 10^{-19}}{6.63 \times 10^{-34}}\)
= 1.006 x 1015 Hz

Wavelength of red light, λr = 6328 Å = 6328 x 10-10
∴ Frequency of red light, vr = \(\frac{c}{\lambda_{r}}=\frac{3 \times 10^{8}}{6328 \times 10^{-10}} \)
= 4.74 x 1014 Hz
Since v0 > vr, the photocell will not respond to the red light produced by the laser.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 27.
Monochromatic radiation of wavelength 640.2 nm (1 nm = 10-9 m) from a neon lamp irradiates photosensitive material made of caesium on tungsten. The stopping voltage is measured to be 0.54 V. The source is replaced by an iron source and its 427.2 nm line irradiates the same photo-cell. Predict the new stopping voltage.
Answer:
Wavelength of the monochromatic radiation, λ = 640.2 nm = 640.2 x 10-9 m
Stopping potential of the neon lamp, V0 = 0.54 V
Charge on an electron, e = 1.6 x 10-19 C
Planck’s constant, h = 6.63 x 10-34 Js
Let Φ0 the work function and v be the frequency of emitted light. We have the photo-energy relation from the photoelectric effect as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 11
Wavelength of the radiation emitted from an iron source, λ’ = 427.2 nm = 427.2 x 10-9 m
Let V’0 be the new stopping potential. Hence, photo-energy is given as
eV’0 = \(\frac{h c}{\lambda^{\prime}}-\phi_{0}\)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 12
Hence, the new stopping potential is 1.50 eV.

Question 28.
A mercury lamp is a convenient source for studying frequency dependence of photoelectric emission, since it gives a number of spectral lines ranging from the UV to the red end of the visible spectrum. In our experiment with rubidium photo-cell, the following lines from a mercury source were used :
λ1 =3650 Å,
λ2 = 4047 Å,
λ3 =4358 Å,
λ4 =5461 Å,
λ5 =6907 Å,
The stopping voltages, respectively, were measured to be :
V01 = 1.28 V,
V02 = 0.95 V,
V03 = 0.74 V,
V04 = 0.16 V,
V05 = 0 V.
Determine the value of Planck’s constant h, the threshold frequency and work function for the material.
[Note: You will notice that to get h from the data, you will need to know e (which you can take to be 1.6 x 10-19 C). Experiments of this kind on Na, Li, K, etc. were performed by Millikan, who, using his own value of e (from the oil-drop experiment) confirmed Einstein’s photoelectric equation and at the same time gave an independent estimate of the value of h.]
Answer:
Given, the following wavelength from a mercury source were used
λ1 =3650 Å, = 3650 x 10-10 m
λ2 = 4047 Å, = 4047 x 10-10m
λ3 =4358 Å, = 4358 x 10-10 m
λ4 =5461 Å, = 5461 x 10-10 m
λ5 =6907 Å, = 6907 x 10-10m
The stopping voltages are as follows
V01 =1.28 V,
V02 = 0.95V,
V03 =0.74V,
V04 =0.16 V,
V5 =0

Frequencies corresponding to wavelengths
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 13
As we know that
eV0 = hv-Φ0
v0 = \(\frac{h v}{e}-\frac{\phi_{0}}{e}\)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 14
As the graph between V0 and frequency v is a straight line.
The slope of this graph gives the values of \(\frac{h}{e} \)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 15
(b) Work function, Φ0 = hv0
= 6.574 x 10-34 x 5 x 1014
= 32.870 x 10-20J
= 2.05eV.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 29.
The work function for the following metals is given: Na: 2.75 eV; K: 2.30 eV; Mo: 4.17 eV; Ni: 5.15 eV.
Which of these metals will not give photoelectric emission for a radiation of wavelength 3300 Å from a He-Cd laser placed 1 m away from the photo-cell? What happens if the laser is brought nearer and placed 50 cm away?
Answer:
Mo and Ni will not show photoelectric emission in both cases.
Wavelength for the radiation, λ – 3300 Å = 3300 x 10-10 m
Speed of light, c = 3 x 108 m/s
Planck’s constant, h = 6.63 x 10-34 Js
The energy of incident radiation is given as
E = \(\frac{h c}{\lambda}\)
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 16
= 3.758eV
It can be observed that the energy of the incident radiation is greater than the work function of Na and K only. It is less for Mo and Ni. Hence, Mo and Ni will not show photoelectric emission. If the source of light is brought near the photocells and placed 50 cm away from them, then the intensity of radiation will increase. This does not affect the energy of the radiation. Hence, the result will be the same as before. However, the photoelectrons emitted from Na and K will increase in proportion to intensity.

Question 30.
Light of intensity 10-5 W m-2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for photoelectric emission in the wave-picture of radiation. The work function for the metal is given to be about 2 eV. What is the implication of your answer?
Answer:
Given, intensity of light = 10-5 W/m2
Area = 2 cm2 = 2 x 10-4 m2
Work function for the metal Φ0 = 2 eV
Let t be the time.
The effective atomic area of Na = 10-20 m2 and it contains one conduction electron per atom.
Number of conduction electrons in five layers
= \(\frac{5 \times \text { Area of one layer }}{\text { Effective atomic area }}=\frac{5 \times 2 \times 10^{-4}}{10^{-20}}\)
= 107
We know that sodium has one free electron (or conduction electron) per atom.
Incident power on the surface area of photocell
= Incident intensity x Area on the surface area of photocell
= 10-5 x 2 x 10-4
= 2 x 10-9W
The electron present in all the 5 layers of sodium will share the incident energy equally.
Energy absorbed per second per electron,
E = \(\frac{\text { Incident power }}{\text { Number of electrons in five layers }} \)
= \(\frac{2 \times 10^{-9}}{10^{17}}\) = 2 x 10-26W
Time required for emission by each electron, t = \(\frac{\text { Energy required per electron }}{\text { Energy absorbed per second }} \) = \(\frac{2 \times 1.6 \times 10^{-19}}{2 \times 10^{-26}} \) = 1.6 x 107s
which is about 0.5 yr.
The answer obtained implies that the time of emission of electrons is very large and is not agreement with the observed time of emission. There is no time lag between the incidence of light and the emission of photoelectrons. Thus, it is implied that the wave theory cannot be applied in this experiment.

Question 31.
Crystal diffraction experiments can be performed using X-rays, or electrons accelerated through appropriate voltage. Which probe has greater energy? (For quantitative comparison, take the wavelength of the probe equal to 1 Å, which is of the order of interatomic spacing in the lattice) (me = 9.11 x 10-31 kg).
Answer:
An X-ray probe has a greater energy than an electron probe for the same wavelength.
Wavelength of light emitted from the probe, λ = 1 Å = 10-10 m
Mass of an electron, me = 9.11 x 10-31 kg
Planck’s constant, h = 6.63 x 10-34 Js
Charge on an electron, e = 1.6 x 10-19 C
The kinetic energy of the electron is given as
K = \(\frac{1}{2} m_{n} v^{2}\)
mnv = \(\sqrt{2 K m_{n}}\)
where, v = velocity of the electron
mnv = momentum (p) of the electron

According to the de Brogue principle, the de Brogue wavelength is given as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 17
The energy of a photon,
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 18
Hence, a photon has a greater energy than an electron for the same wavelength.

Question 32.
(a) Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have seen in Exercise 11.31, an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (m = 1.675x 10-27 kg)
(b) Obtain the de Brogue wavelength associated with thermal neutrons at room temperature (27C). Hence, explain why a fast neutron beam needs to be thermalised with the environment before it can be used for neutron diffraction experiments.
Answer:
(a) de Brogue wavelength= 2.327 x 10-12 m; neutron is not suitable for
the diffraction experiment Kinetic energy of the neutron, K = 150 eV
= 150 x 1.6 X 10-19
=2.4 x 10-17 J
Mass of a neutron, mn = l.675 x 10-27 kg
The kinetic energy of the neutron is given by the relation
K = \(\frac{1}{2} m_{n} v^{2}\)
mnv = \(\sqrt{2 K m_{n}}\)
where, y = velocity of the neutron
mnv = momentum of the neutron

deBroglie wavelength of the neutron is given as
λ = \(\frac{h}{m_{n} v}=\frac{h}{\sqrt{2 K m_{n}}}\)
It is clear that wavelength is inversely proportional to the square root of mass.
Hence, wavelength decreases with increase in mass and vice versa.
∴ λ = \(\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 2.4 \times 10^{-17} \times 1.675 \times 10^{-27}}}\)
= 2.327 x 10-12 m
It is given in the previous problem that the interatomic spacing of a crystal is about 1 Å, i.e., 10-10 m.
Hence, the interatomic spacing is about a hundred times greater. Hence, a neutron beam of energy 150 eV is not
suitable for diffraction experiments.

(b) de Brogue wavelength =1.447 x 10-10 m
Room temperature, T = 27°C = 27+ 273 = 300 K
The average kinetic energy of the neutron is given as
E=\(\frac{3}{2}\) kT
where, k = Boltzmann’s constant = 1.38 x10-23 J mol-1K-1
The wavelength of the neutron is given as
λ = \(\frac{h}{\sqrt{2 m_{n} E}}=\frac{h}{\sqrt{3 m_{n} k T}}\)
= \(\frac{6.63 \times 10^{-34}}{\sqrt{3 \times 1.675 \times 10^{-27} \times 1.38 \times 10^{-23} \times 300}}\)
=1.447 x 10-10 m
This wavelength is comparable to the interatomic spacing of a crystal. Hence, the high energy neutron beam should first be thermalised, before using it for diffraction.

Question 33.
An electron microscope uses electrons accelerated by a voltage of 50 kV. Determine the de Brogue wavelength associated with the electrons, if other factors (such as numerical aperture, etc.) are taken to be roughly the same, how does the resolving power of an electron microscope compare with that of an optical microscope which uses yellow light?
Answer:
Electrons are accelerated by a voltage, V = 50 kV = 50 x 103 V
Charge on an electron, e 1.6 x 10-19 C
Mass of an electron, me = 9.11 x 10-31 kg
Wavelength of yellow light = 5.9 x 10-7 m

The kinetic energy of the electron is given as
E=eV
=l.6 x 10-19x 50x 103
= 8 x 10-15 J
de Brogue wavelength is given by the relation
λ = \(\frac{h}{\sqrt{2 m_{e} E}}\)
= \(\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 8 \times 10^{-15}}}\)
= 5.467 x 10-12 m
This wavelength is nearly 105 times less than the wavelength of yellow light. The resolving power of a microscope is inversely proportional to the wavelength of light used. Thus, the resolving power of an electron microscope is nearly 105 times that of an optical microscope.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

Question 34.
The wavelength of a probe is roughly a measure of the size of a structure that it can probe in some detail. The quark structure of protons and neutrons appears at the minute length scale of 10-15 m or less. This structure was first, probed in early 1970s using high energy electron beams produced by a linear accelerator at Stanford, USA. Guess what might have been the order of energy of these electron beams. (Rest mass energy of electron = 0.511 MeV.)
Answer:
Wavelength of a proton or a neutron, λ ≈ 10-15 m
Rest mass energy of an electron,
m0c2 =0.511 MeV
= 0.511 x 106 x 1.6 x 10-19
= 0.8176 x 10-13 J
Planck’s constant, h = 6.63 x 10-34 Js
Speed of light, c = 3 x 108 m/s ,

The momentum of a proton or a neutron is given as
p = \(\frac{h}{\lambda}\)
= \(\frac{6.63 \times 10^{-34}}{10^{-15}}\) = 6.6 x 10-19 kg m/s
The relativistic relation for energy (E) is given as
E2 = p2c2 +m02c4
= (6.6x 10-19 x 3 x 108)2 + (0.8176 x 10-13)2
= 392.04 x 10-22 +0.6685 x 10-26
≈ 392.04 x 10-22
∴ E = 1.98x 10-10 J
Thus, the electron energy emitted from the accelerator at Stanford, USA might be of the order of 1.24 BeV.

Question 35.
Find the typical de Broglie wavelength associated with a He atom in helium gas at room temperature (27°C) and 1 atm pressure, and compare it with the mean separation between two atoms under these conditions.
Answer:
de Broglie wavelength associated with He atom = 0.7268 x 10-10 m .
Room temperature, T = 27°C =27 + 273 = 300 K
Atmospheric pressure, P = 1 atm = 1.01 x 105 Pa
Atomic weight of a He atom = 4
Avogadro’s number, NA = 6.023 x 1023
Boltzmann’s constant, k = 1.38 x 10-23 J mol-1 K-1

Average energy of a gas at temperature T, is given as
E = \(\frac{3}{2}\) kT
de Broglie wavelength is given by the relation
λ = \(\frac{h}{\sqrt{2 m E}}\)
where, m = mass of a He atom
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 19
We have the ideal gas formula
PV = RT
PV = kNT
∵ \(\frac{V}{N}=\frac{k T}{P}\)
where V = volume of the gas
N = number of moles of the gas
Mean separation between two atoms of the gas is given by the relation
r = \(\left(\frac{V}{N}\right)^{1 / 3}=\left(\frac{k T}{P}\right)^{1 / 3}=\left[\frac{1.38 \times 10^{-23} \times 300}{1.01 \times 10^{5}}\right]^{1 / 3}\)
= 3.35 x 10-9 m
Hence, the mean separation between the atoms is much greater than the de Broglie wavelength.

Question 36.
Compute the typical de Broglie wavelength of an electron in a metal at 2 7° C and compare it with the mean separation between two electrons in a metal which is given to be about 2 x 1010 m. [Note: Exercises 11.35 and 11.36 reveal that while the wave-packets associated with gaseous molecules under ordinary conditions are non-overlapping, the electron wave- packets in a metal strongly overlap with one another. This suggests that whereas molecules in an ordinary gas can be distinguished apart, electrons in a metal cannot be distinguished apart from one another. This indistinguishability has many fundamental implications which you will explore in more advanced Physics courses.]
Answer:
Temperature, T = 27°C = 27 +273 = 300 K
Mean separation between two electrons, r = 2 x 10-10 m
de Broglie wavelength of an electron is given as
λ = \(\frac{h}{\sqrt{3 m k T}}\)
where,
h = Planck’s constant = 6.63 x 10-34 Js
m = Mass of an electron = 9.11 x 10 -31 kg
k = Boltzmann’s constant = 1.38 x 10-23 J mol-1 K-1
∴ λ = \(\frac{6.63 \times 10^{-34}}{\sqrt{3 \times 9.11 \times 10^{-31} \times 1.38 \times 10^{-23} \times 300}}\)
= 6.2 x 109 m
Hence, the de Broglie wavelength is much greater than the given inter-electron separation.

Question 37.
Answer the following questions :
(a) Quarks inside protons and neutrons are thought to carry fractional charges [(+2/3)e ; (-1/3)e]. Why do they not show up in Millikan’s oil-drop experiment?
(b) What is so special about the combination e/m? Why do we not simply talk of e and m separately?
(c) Why should gases be insulators at ordinary pressures and start conducting at very low pressures?
(d) Every metal has a definite work function. Why do all photoelectrons not come out with the same energy if incident radiation is monochromatic? Why is there an energy distribution of photoelectrons?
(e) The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations :
E = hv, p = \(\frac{\boldsymbol{h}}{\lambda}\)
But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?
Answer:
(a) Quarks inside protons and neutrons carry fractional charges. This is because nuclear force increases extremely if they are pulled apart. Therefore, fractional charges may exist in nature; observable charges are siti the integral multiple of an electrical charge.

(b) Thè basic relations for electric field and magnetic field are \(\left(e V=\frac{1}{2} m v^{2}\right)\) and \(\left(e B v=\frac{m v^{2}}{r}\right) \) respectively.

These relations include e (electric charge), y (velocity), m (mass), V (potential), r (radius), and B (magnetic field)._These relations give the value of velocity of an electron as \(\left(v=\sqrt{2 v\left(\frac{e}{m}\right)}\right) \text { and }\left(v=B r\left(\frac{e}{m}\right)\right)\) respectively. It can be observed from these relations that the dynamics of an electron is determined not by e and m separately, but by the ratio e / m.

(c) At atmospheric pressure, the ions of gases have no chance of reaching their respective electrons because of collision and recombination with other gas molecules. Hence, gases are insulators at atmospheric pressure. At low pressure, ions have a chance of reaching their respective electrodes and constitute a current. Hence, they conduct electricity at these pressures.

(d) The work function of a metal is the minimum energy required for a conduction electron to get out of the metal surface. All the electrons in an atom do not have the same energy level. When a ray having some photon energy is incident on a metal surface, the electrons come out from different levels with different energies. Hence, these emitted electrons show different energy distributions.

PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter

(e) The absolute value of energy of a particle is arbitrary within the additive constant. Hence, wavelength (λ) is significant, but the frequency (v) associated with an electron has no direct physical significance. Therefore, the product vλ (phase speed) has no physical significance. Group speed is given as
PSEB 12th Class Physics Solutions Chapter 11 Dual Nature of Radiation and Matter 20
This Quantity has a physical meaning.

PSEB 12th Class Physics Solutions Chapter 12 Atoms

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 12 Atoms Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 12 Atoms

PSEB 12th Class Physics Guide Atoms Textbook Questions and Answers

Question 1.
Choose the correct alternative from the clues given at the end of the each statement:
(a) The size of the atom in Thomson’s model is ………………….. the atomic size in Rutherford’s model, (much greater than/no different from/much less than.)
(b) In the ground state of ………………………………… electrons are in stable equilibrium, while in …………………….. electrons always experience a net force. (Thomson’s model/Rutherford’s model.)
(c) A classical atom based on ……………………………. is doomed to collapse. (Thomson’s model/Rutherford’s model.)
(d) An atom has a nearly continuous mass distribution in a ………………………… but has a highly non-uniform mass distribution in …………………….. (Thomson’s model/Rutherford’s model.)
(e) The positively charged part of the atom possesses most of ………………………. the mass in ………………….. (Rutherford’s model/both the models.)
Answer:
(a) The size of the atom in Thomson’s model is no different from the atomic size in Rutherford’s model.
(b) In the ground state of Thomson’s model, electrons are in stable equilibrium while, in Rutherford’s model, electrons always experience a net force.
(c) A classical atom based on Rutherford’s model is doomed to collapse.
(d) An atom has a nearly continuous mass distribution in Thomson’s model but has a highly non-uniform mass distribution in Rutherford’s model.
(e) The positively charged part of the atom possesses most of the mass in both the models.

Question 2.
Suppose you are given a chance to repeat the alpha-particle scattering experiment using a thin sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below 14 K.) What results do you expect?
Answer:
The basic purpose of scattering experiment is not completed because solid hydrogen will be a much lighter target as compared to the alpha particle acting as a projectile. By using the conditions of elastic collisions, the hydrogen will move much faster as compared to alpha after the collision. We cannot determine the size of hydrogen nucleus.

PSEB 12th Class Physics Solutions Chapter 12 Atoms

Question 3.
What is the shortest wavelength present in the Paschen series of spectral lines?
Answer:
Rydberg’s formula is given as
\(\frac{h c}{\lambda}\) = \(21.76 \times 10^{-19}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]\)
where, h = Planck’s constant = 6.63 x 10-34 Js
c=Speed oflight=3 x 108 m/s (n1 and n2 are integers)
The shortest wavelength present in the Paschen series of the spectral lines
is given for values n1 = 3 and n2 = ∞
PSEB 12th Class Physics Solutions Chapter 12 Atoms 1
= 822.65 nm

Question 4.
A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom makes a transition from the upper level to the lower level?
Answer:
According to Bohr’s postulate
E2 – E1 = hv
∴ Frequency of emitted radiation
PSEB 12th Class Physics Solutions Chapter 12 Atoms 2

Question 5.
The ground state energy of hydrogen atom is -13.6 eV. What are the kinetic and potential energies of the electron in this state?
Answer:
Given, the ground state energy of hydrogen atom
E=-13.6eV
We know that,
Kinetic Energy, EK = -E = 13.6 eV
Potential Energy Ep = -2KE =-2 x 13.6 = -27.2eV

Question 6.
A hydrogen atom initially In the ground level absorbs a photon, which excites it to the n = 4 level. Determine the wavelength and frequency of photons.
Answer:
The energy levels of H-atom are given by
En = \(-\frac{R h c}{n^{2}}\)
For given transition n1 =1, n2 = 4
∴ E1 = \(-\frac{R h c}{1^{2}}\) ,E2= \(-\frac{R h c}{4^{2}}\)
∴ Energy of absorbed photon
ΔE=E2 -E1 =Rhc \(\left(\frac{1}{1^{2}}-\frac{1}{4^{2}}\right)\)
or
ΔE = \(\frac{15}{16}\) Rhc ………………………….. (1)
∴ The wavelength of absorbed photon λ is given by
PSEB 12th Class Physics Solutions Chapter 12 Atoms 3

Question 7.
(a) Using the Bohr’s model, calculate the speed of the electron in a hydrogen atom in the n =1, 2, and 3 levels.
(b) Calculate the orbital period in each of these levels.
Answer:
(a) Let y1 be the orbital speed of the electron in a hydrogen atom in the ground state level, n1 =1.
For charge (e) of an electron, v1 is given by the relation,
v1 = \(\frac{e^{2}}{n_{1} 4 \pi \varepsilon_{0}\left(\frac{h}{2 \pi}\right)}=\frac{e^{2}}{2 \varepsilon_{0} h} \)
where, e=1.6 x 10-19 C
\(\varepsilon_{0}\) = Permittivity of free space = 8.85 x 10-12 N-1 C2m2
h = Planck’s constant = 6.63 x 10-34 Js
∴ v1 = \(\frac{\left(1.6 \times 10^{-19}\right)^{2}}{2 \times 8.85 \times 10^{-12} \times 6.63 \times 10^{-34}}\)
= 0.0218 x 108 =2.18 x 106 m/s

For level n2 =2, we can write the relation for the corresponding orbital speed as
v2 = \(\frac{e^{2}}{n_{2} 2 \varepsilon_{0} h}\) = \(\frac{\left(1.6 \times 10^{-19}\right)^{2}}{2 \times 2 \times 8.85 \times 10^{-12} \times 6.63 \times 10^{-34}}\) = 1.09 x 106 m/s
And, for n3 =3, we can write the relation for the corresponding orbital speed as
PSEB 12th Class Physics Solutions Chapter 12 Atoms 4
PSEB 12th Class Physics Solutions Chapter 12 Atoms 5
Hence, the speed of the electron in a hydrogen atom in n = 1, n = 2 and n = 3 is 2.18 x 106 m/s,
1.09 x 106 m/s, 7.27 x 105 m/s respectively.

(b) Orbital period of electron is given by
T = \(\frac{2 \pi r}{v}\)
Radius of nth orbit
rn = \(\frac{n^{2} h^{2}}{4 \pi^{2} K m e^{2}}\)
∴ r1 = \(\frac{(1)^{2} \times\left(6.63 \times 10^{-34}\right)^{2}}{4 \times 9.87 \times\left(9 \times 10^{9}\right) \times 9 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)}\)
= 0.53 x 10-10 m
For n=1, T1 = \(\frac{2 \pi r_{1}}{v_{1}}\)
= \(\frac{2 \times 3.14 \times 0.53 \times 10^{-10}}{2.19 \times 10^{6}}\) = 1.52 x 10-16s

For n = 2, radius rn = n2r1
∴ r2 =’22.r1 =4 x0.53 x 10-10
and velocity vn, = \(\frac{v_{1}}{n}\)
∴ v2 = \(\frac{v_{1}}{2}=\frac{2.19 \times 10^{6}}{2}\)
Time period T2 = \(\frac{2 \times 3.14 \times 4 \times 0.53 \times 10^{-10} \times 2}{2.19 \times 10^{6}}\)
=1216 x 10-15 s
For n=3,radius r3 =32,r1 =9r1 =9 x 0.53 x 10-10m and velocity v3 = \(\frac{v_{1}}{3}=\frac{2.19 \times 10^{6}}{3}\) m/s
Time period T3 = \(\frac{2 \pi r_{3}}{v_{3}}=\frac{2 \times 3.14 \times 9 \times 0.53 \times 10^{-10} \times 3}{2.19 \times 10^{6}}\) = 4.1 x 10-15 s

PSEB 12th Class Physics Solutions Chapter 12 Atoms

Question 8.
The radius of the innermost electron orbit of a hydrogen atom is 5.3 x 10-11 m. What are the radii of the n = 2 and n = 3 orbits?
Answer:
The radius of the innermost electron orbit of a hydrogen atom, r1 = 5.3 x 10-11 m.
Let r2 be the radius of the orbit at n = 2.
It is related to the radius of the innermost orbit as r2 = (n)2r1 = (2)2 x 5.3 x 10-11
= 4 x 5.3 x 10-11 = 2.12 x 10-10m
For n = 3, we can write the corresponding electron radius as
r3 =(n)2r1 = (3)2 x 5.3 x 10-11
n = 9 x 5.3 x 10-11 = 4.77 x 10-10m
Hence, the radii of an electron for n = 2 and n = 3 orbits are 2.12 x 10-10 m and 4.77 x 10-10 m respectively.

Question 9.
A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?
Answer:
It is given that the energy of the electron beam used to bombard gaseous hydrogen at room temperature is 12.5 eV. Also, the energy of the gaseous hydrogen in its ground state at room temperature is -13.6 eV. When gaseous hydrogen is bombarded with an electron beam, the energy of the gaseous hydrogen becomes -13.6 + 12.5 eV i. e., -1.1 eV.

Orbital energy is related to orbit level (n) as
E = \(\frac{-13.6}{(n)^{2}}\)eV
For n=3, E = \(\frac{-13.6}{(3)^{2}}=\frac{-13.6}{9}\) = -1.5 eV
This energy is approximately equal to the energy of gaseous hydrogen. it can be concluded that the electron has jumped from n I to n = 3 level.

During its de-excitation, the electrons can jump from n = 3 to n = 1 directly, which forms a line of the Lyman series of the hydrogen spectrum.
We have the relation for wave number for Lyman series as
\(\frac{1}{\lambda}=R_{y}\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)\)
where, Ry =Rydberg constant = 1.097 x 107 m-1,
λ = Wavelength of radiation emitted by the transition of the electron for
n =3,
We can obtain λ as
\(\frac{1}{\lambda}\) = 1.097 x 107\(\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)\)
= 1.097 x 107 \(\left(1-\frac{1}{9}\right)\) = 1.097 x 107x \(\frac{8}{9}\)

λ = \(\frac{9}{8 \times 1.097 \times 10^{7}}\) = 102.55nm
If the electron jumps from n = 2 to n = 1, then the wavelength of the radiation is given as
\(\frac{1}{\lambda}\) = 1.097 x 107 \(\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)\)
= 1.097 x 107\(\left(1-\frac{1}{4}\right)\) = 1.097 x 107x \(\frac{3}{4}\)
λ = \(\frac{4}{1.097 \times 10^{7} \times 3}\) = 121.54 nm

If the transition takes place from n = 3 to n = 2, then the wavelength of the radiation is given as
PSEB 12th Class Physics Solutions Chapter 12 Atoms 6
This radiation corresponds to the Balmer series of the hydrogen spectrum. Hence, in Lyman series, two wavelengths i. e., 102.54 nm, and 121.55 nm are emitted. And in the Balmer series, one wavelength i. e., 656.33 nm is emitted.

Question 10.
In accordance with the Bohr’s model, find the quantum number that characterizes the earth’s revolution around the sun in an orbit of radius 1.5 x 1011 m with orbital speed 3 x 104 m/s. (Mass of earth = 6.0 x 1024 kg.)
Answer:
Radius of the orbit of the Earth around the Sun, r = 1.5 x 1011 m
Orbital speed of the Earth, v = 3 x 104 m/s
Mass of the Earth, m = 6.0 x 1024 kg
According to Bohr’s model, angular momentum is quantized and given as
mvr = \(\frac{n h}{2 \pi}\)

where, h = Planck’s constant = 6.63 x 10-34 Js
n = Quantum number
∴ n = \(\frac{m v r 2 \pi}{h}\)
= \(\frac{2 \pi \times 6 \times 10^{24} \times 3 \times 10^{4} \times 1.5 \times 10^{11}}{6.63 \times 10^{-34}} \) = 25.61 x 1073 = 2.6 x 1074
Hence, the quanta number that characterizes the Earth’s revolution is 2.6 x 1074.

PSEB 12th Class Physics Solutions Chapter 12 Atoms

Additional Exercises

Question 11.
Answer the following questions, which help you to understand the difference between Thomson’s model and Rutherford’s model better.
(a) Is the average angle of deflection of α-particles by a thin gold foil predicted by Thomson’s model much less, about the same, or much greater than that predicted by Rutherford’s model?

(b) Is the probability of backward scattering (i. e., scattering of α-particles at angles greater than 90°) predicted by Thomson’s model much less, about the same, or much greater than that predicted by Rutherford’s model?

(c) Keeping other factors fixed, it is found experimentally that for small thickness t, the number of α-particles scattered at moderate angles is proportional to t. What clue does this linear dependence on t provide?

(d) In which model is it completely wrong to ignore multiple scattering for the calculation of average angle of scattering of α-particles by. a thin foil?
Answer:
(a) The average angle of deflection of α-particles by a thin gold foil predicted by Thomson’s model is about the same size as predicted by Rutherford’s model. This is because the average angle was taken in both models.

(b) The probability of scattering of α-particles at angles greater than 90° predicted by Thomson’s model is much less than that predicted by Rutherford’s model. This is because there is no such massive central core called the nucleus in Rutherford’s model.

(c) Scattering is mainly due to single collisions. The chances of a single collision increase linearly with the number of target atoms. Since the number of target atoms increases with an increase in thickness, the collision probability depends linearly on the thickness of the target.

(d) It is wrong to ignore multiple scattering in Thomson’s model for the calculation of average angle of scattering of α-particles by a thin foil. This is because a single collision causes very little deflection in this model. Hence, the observed average scattering angle can be explained only by considering multiple scattering.

Question 12.
The gravitational attraction between electron and proton in a hydrogen atom is weaker than the Coulomb attraction by a factor of about 10-40. An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction. You will find the answer interesting.
Answer:
Radius of the first Bohr orbit is given by the relation,
r1 = \(\frac{4 \pi \varepsilon_{0}\left(\frac{h}{2 \pi}\right)^{2}}{m_{e} e^{2}}\) ……………….. (i)
where, ε0 = Permittivity of free space
h = Planck’s constant = 6.63 x 10-34 Js
me = Mass of an electron = 9.1 x 10-31 kg
e = Charge of an electron = 1.9x 10-19C
mp = Mass of a proton = 1.67 x 10-27 kg
r = Distance between the electron and the proton Coulomb attraction between an electron and a proton is given as
FC = \(\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \) ………………………….. (2)

Gravitational force of attraction between an electron and a proton is
FG = \(\frac{G m_{p} m_{e}}{r^{2}}\) ……………………………………. (3)
where, G = Gravitational constant = 6.67 x 10-11 N m2/kg2
If the electrostatic (Coulomb) force and the gravitational force between an electron and a proton are equal, then we can write
∴ FG = FC
\(\frac{G m_{p} m_{e}}{r^{2}}\) = \(\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}}\)
\(\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}}\) = Gmpme …………………………. (4)
Putting the value of equation (4) in equation (1), we get
PSEB 12th Class Physics Solutions Chapter 12 Atoms 7

Question 13.
Obtain an expression for the frequency of radiation emitted when a hydrogen atom de-excites from level n to level (n -1). For large n, show that this frequency equals the classical frequency of revolution of the electron in the orbit.
Answer:
It is given that a hydrogen atom de-excites from an upper level (n) to a lower level (n —1). We have the relation for energy (E1) of radiation at level n as
E1 = hv1 = \(\frac{h m e^{4}}{(4 \pi)^{3} \varepsilon_{0}^{2}\left(\frac{h}{2 \pi}\right)^{3}} \times\left(\frac{1}{n^{2}}\right)\)
where, v1 = Frequency of radiation at level n
h = Planck’s constant
m = Mass of hydrogen atom
e = Charge on an electron
εo = Permittivity of free space

Now, the relation for energy (E2) of radiation at level (n -1) is given as
E2 = hv2 = \(\frac{h m e^{4}}{(4 \pi)^{3} \varepsilon_{0}^{2}\left(\frac{h}{2 \pi}\right)^{3}} \times \frac{1}{(n-1)^{2}}\) ………………………… (2)
where, v2 = Frequency of radiation at level (n -1)
Energy (E) released as a result of de-excitation
E = E2 – E1 hv= E2 – E 1 ………………….. (3)
where, v = Frequency of radiation emitted
Putting values from equations (1) and (2) in equation (3), we get
PSEB 12th Class Physics Solutions Chapter 12 Atoms 8
For large n, we can write (2 n -1) ≈ 2 n and (n-1) ≈ n.
V = \(\frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2}\left(\frac{h}{2 \pi}\right)^{3} n^{3}} \)
∵ v = \(\frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2}\left(\frac{h}{2 \pi}\right)^{3} n^{3}}\) ………………….. (4)
Classical relation of frequency of revolution of an electron is given as
Vc = \(\frac{v}{2 \pi r}\) ……………………………….. (5)
where, velocity of the electron in the nth orbit is given as
v = \(\frac{e^{2}}{4 \pi \varepsilon_{0}\left(\frac{h}{2 \pi}\right) n}\) ……………………………… (5)
And, radius of the nth orbit is given as
v = \(\frac{e^{2}}{4 \pi \varepsilon_{0}\left(\frac{h}{2 \pi}\right) n}\) ………………………………(6)
Putting the values of equations (6) and (7) in equation (5), we get
Vc = \( \frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2}\left(\frac{h}{2 \pi}\right)^{3} n^{3}}\)
Hence, the frequency of radiation emitted by the hydrogen atom is equal to its classical orbital frequency.

Question 14.
Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text.

To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~10-10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognizing that h, me, and e will yield the right atomic size.

Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.
Answer:
(a) Charge on an electron, e = 1.6 x 10-19 C
Mass of an electron, me = 9.1 x 10-31 kg
Speed of light, c = 3 x 108 m/s
Let us take a quantity involving the given quantities as \(\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m_{e} c^{2}}\right)\)
where, ε0 = Permittivity of free space and, \(\frac{1}{4 \pi \varepsilon_{0}}\) = 9 x 109 Nm2C-2 .
The numerical value of the taken quantity will be
PSEB 12th Class Physics Solutions Chapter 12 Atoms 9
Hence, the numerical value of the taken quantity is much smaller than the typical size of an atom.

(b) Charge on an electron, e = 1.6 x 10-19 C
Mass of an electron, me = 9.1 x 10-31 kg
Planck’s constant, h = 6.63 x 10-34 Js
Let us take a quantity involving the given quantities as \(\frac{4 \pi \varepsilon_{0}\left(\frac{h}{2 \pi}\right)^{2}}{m_{e} e^{2}}\)
where, ε0 = Permittivity of free space
and, \(\frac{1}{4 \pi \varepsilon_{0}}\) = 9 x 109Nm2C-2

The numerical value of the taken quantity will be
\(\frac{1}{4 \pi \varepsilon_{0}} \times \frac{\left(\frac{h}{2 \pi}\right)^{2}}{m_{e} e^{2}}=9 \times 10^{9} \times \frac{\left(\frac{6.63 \times 10^{-34}}{2 \times 3.14}\right)^{2}}{9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{2}} \)
= 0.53 x 10-10 m
Hence, the value of the quantity taken is of the order of the atomic size.

PSEB 12th Class Physics Solutions Chapter 12 Atoms

Question 15.
The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV.
(a) What is the kinetic energy of the electron in this state?
(b) What is the potential energy of the electron in this state?
(c) Which of the answers above would change if the choice of the zero of potential energy is changed?
Answer:
(a) Total energy of the electron, E = -3.4 eV ’
Kinetic energy of the electron is equal to the negative of the total energy.
⇒ K = -E
= -(-3.4) = + 3.4 eV
Hence, the kinetic energy of the electron in the given state is + 3.4 eV.

(b) Potential energy (JJ) of the electron is equal to the negative of twice of its kinetic energy.
⇒ U = -2 K
= -2 x 3.4 = -6.8 eV
Hence, the potential energy of the electron in the given state is -6.8 eV.

(c) The potential energy of a system depends on the reference point taken. Here, the potential energy of the reference point is taken as zero. If the reference point is changed, then the value of the potential energy of the system also changes. Since total energy is the sum of kinetic and potential energies, total energy of the system will also change.

Question 16.
If Bohr’s quantization postulate (angular momentum = nh/2π) is a basic law of nature, it should be equally valid for the case of planetary motion also. Why then do we never speak of quantization of orbits of planets around the sun?
Answer:
We never speak of quantization of orbits of planets around the Sun because the angular momentum associated with planetary motion is largely relative to the value of Planck’s constant (h).
The angular momentum of the Earth in its orbit is of the order of 1070h. This leads to a very high value of quantum levels n of the order of 1070.
For large values of n, successive energies and angular momenta are relatively very small. Hence, the quantum levels for planetary motion are considered continuous.

Question 17.
Obtain the first Bohr’s radius and the ground state energy of a muonic hydrogen atom an atom in which a negatively
charged muon (μ ) of mass about 207 me orbits around a proton.
Answer:
Muonic hydrogen is the atom in which a negatively charged muon of mass about 207 me revolves around a proton.
In Bohr’s atom model, r ∝ \(\frac{1}{m}\)
∵ \(\frac{r_{\text {muon }}}{r_{\text {electron }}}=\frac{m_{e}}{m_{\mu}}=\frac{m_{e}}{207 m_{e}}=\frac{1}{207}\) [ ∵mμ = 207 me]
Here, re is radius of orbit of electron in hydrogen atom is 0.53 Å.