PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 7 Integrals Ex 7.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 1.
\(\frac{3 x^{2}}{x^{6}+1}\)
Solution.
∫ \(\frac{3 x^{2}}{x^{6}+1}\) dx = ∫ \(\frac{3 x^{2}}{\left(x^{3}\right)^{2}+1}\) dx
Let x3 = t
⇒ 3x2 dx = dt
⇒ dx = \(\frac{d t}{3 x^{2}}\)
∫ \(\frac{3 x^{2}}{\left(x^{3}\right)^{2}+1}\) dx = ∫ \(\frac{d t}{t^{2}+1}\)
= tan-1 t + C
= tan-1 (x3) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 2.
\(\frac{1}{\sqrt{1+4 x^{2}}}\)
Solution.
∫ \(\frac{1}{\sqrt{1+4 x^{2}}}\) dx = ∫ \(\) dx
Let 2x = t
⇒ 2 dx = dt
⇒ dx = \(\frac{1}{2}\)
∴ \(\int \frac{1}{\sqrt{1+4 x^{2}}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{1+t^{2}}}\)

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 1

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 3.
\(\frac{1}{\sqrt{(2-x)^{2}+1}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 2

Question 4.
\(\frac{1}{\sqrt{9-25 x^{2}}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 3

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 5.
\(\frac{3 x}{1+2 x^{4}}\)
Solution.
∫ \(\frac{3 x}{1+2 x^{4}}\) dx = \(\frac{3}{2} \int \frac{x d x}{\frac{1}{2}+x^{4}}=\frac{3}{2} \int \frac{x d x}{\frac{1}{2}+\left(x^{2}\right)^{2}}\)

Let x2 = t
⇒ 2x = \(\frac{d t}{d x}\)

⇒ dx = \(\frac{d t}{2 x}\)

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 4

Question 6.
\(\frac{x^{2}}{1-x^{6}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 5

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 7.
\(\frac{x-1}{\sqrt{x^{2}-1}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 6

Question 8.
\(\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 9

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 9.
\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 7

Question 10.
\(\frac{1}{\sqrt{x^{2}+2 x+2}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 8

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 11.
\(\frac{1}{9 x^{2}+6 x+5}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 10

Question 12.
\(\frac{1}{\sqrt{7-6 x-x^{2}}}\)
Solution.
7 – 6x – x2 can be written as 7 – (x2 + 6x + 9 – 9).
Therefore, 7 – (x2 + 6x + 9 – 9) = 16 – (x2 + 6x + 9)
= 16 – (x + 3)2
= (4)2 – (x + 3)2

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 11

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 13.
\(\frac{1}{\sqrt{(x-1)(x-2)}}\)
Solution.
(x – 1) (x – 2) can be written as x2 – 3x + 2

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 12

Question 14.
\(\frac{1}{\sqrt{8+3 x-x^{2}}}\)
Solution.
8 + 3x – x2 can be written as – (x2 – 3x + \(\frac{9}{4}\) – \(\frac{9}{4}\))

Therefore, 8 – (x2 – 3x + \(\frac{9}{4}\) – \(\frac{9}{4}\)) = \(\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}\)

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 13

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 15.
\(\frac{1}{\sqrt{(x-a)(x-b)}}\)
Solution.
(x – a) (x – b) can be written as x2 – (a + b) x + ab
Therefore,

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 14

Question 16.
\(\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}\)
Solution.
∫ \(\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}\) dx
Let 2x2 + x – 3 = t
⇒ (4x + 1) dx = dt
⇒ dx = \(\frac{d t}{4 x+1}\)

= \(\int \frac{d t}{\sqrt{t}}=\int t^{-\frac{1}{2}} d t=\frac{t^{-\frac{1}{2}+1}}{\frac{1}{2}}+C=2 \sqrt{t}+C\)

= 2 \(\sqrt{2 x^{2}+x-3}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 17.
\(\frac{x+2}{\sqrt{x^{2}-1}}\)

Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 15

Question 18.
\(\frac{5 x-2}{1+2 x+3 x^{2}}\)
Solution.
Let 5x – 2 = A \(\frac{d}{d x}\) (1 +2x + 3x2) + B
⇒ 5x – 2 = A (2 + 6x) + B
Equating the coefficient of x and constant term on both sides, we get
5 = 6A
⇒ A = \(\frac{5}{6}\) ;
2A + B = – 2
⇒ B = – \(\frac{11}{3}\)

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 16

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 17

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 19.
\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\)
Solution.
\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}=\frac{6 x+7}{\sqrt{x^{2}-9 x+20}}\)

Let 6x + 7 = A \(\frac{d}{d x}\) (x2 – 9x + 20) + B
⇒ 6x + 7 = A (2x – 9) + B
Equating the coefficients of x and constant term, we get
2A = 6
⇒ A = 3;
– 9A + B = 7
⇒ B = 34
∴ 6x + 7 = 3 (2x – 9) + 34

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 18

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 19

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 20.
\(\frac{x+2}{\sqrt{4 x-x^{2}}}\)
Solution.
∫ \(\frac{x+2}{\sqrt{4 x-x^{2}}}\) dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 20

Question 21.
\(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 21

Substituting equations (ii) and (iii) in equation (i), we get
∫ \(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\) dx = \(\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \mid(x+1)+\sqrt{x^{2}+2 x+3 \mid}\)

= \(\sqrt{x^{2}+2 x+3}+\log \mid(x+1)+\sqrt{x^{2}+2 x+3 \mid}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 22.
\(\frac{x+3}{x^{2}-2 x-5}\)
Solution.
Let (x + 3) = A \(\frac{d}{d x}\) (x2 – 2x – 5) + B
⇒ (x + 3) = A (2x – 2) + B
⇒ x + 3 = 2Ax – 2A + B
On equating the coefficients of x and constant term on both sides, we get
2A = 1
⇒ A = \(\frac{1}{2}\);
– 2A + B = 3
⇒ B = 4
⇒ (x + 3) = \(\frac{1}{2}\) (2x – 2) + 4

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 22

Question 23.
\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\)
Solution.
Let 5x + 3 = A \(\frac{d}{d x}\) (x2 + 4x + 10) + B
⇒ 5x + 3 = A (2x + 4) + B
⇒ 5x + 3 = 2Ax + 4A + B
On equating the coefficients of x and constant term, we get
2A = 5
A = \(\frac{5}{2}\);
4A + B = 3
⇒ B = – 7
⇒ 5x + 3 = (2x + 4) – 7

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 23

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Direction (24 – 25): Choose the correct answer:

Question 24.
∫ \(\int \frac{d x}{x^{2}+2 x+2}\) equals
(A) x tan-1 (x + 1) + C
(B) tan-1 (x + 1) + C
(C) (x + 1) tan-1 x + C
(D) tan-1 x + C
Solution.
∫ \(\int \frac{d x}{x^{2}+2 x+2}\) dx = \(\int \frac{d x}{\left(x^{2}+2 x+1\right)+1}=\int \frac{1}{(x+1)^{2}+(1)^{2}} d x\)
Let x + 1 = t
⇒ dx = dt
∴ ∫ \(\frac{1}{t^{2}+1^{2}}\) dt = \(\frac{1}{1} \tan ^{-1}\left(\frac{t}{1}\right)\) + C

= tan \(\left(\frac{x+1}{1}\right)\) + C

= tan-1 (x + 1) + C
Hence, the correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4

Question 25.
∫ \(\frac{d x}{\sqrt{9 x-4 x^{2}}}\) equals
(A) \(\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)\) + C

(B) \(\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)\)

(C) \(\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)\)

(D) \(\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.4 24

Hence, the correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 7 Integrals Ex 7.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Direction (1 – 22): Find the integrals of the functions:

Question 1.
sin2 (2x + 5)
Solution.
= ∫ sin2 (2x + 5) dx = ∫ \(\frac{1-\cos (4 x+10)}{2}\) dx
= ∫ 1 dx + \(\frac{1}{2}\) ∫ cos (4x + 10) dx
= \(\frac{1}{2}\) x – \(\frac{1}{2}\) (\(\left(\frac{\sin (4 x+10)}{4}\right)\)) + C
= \(\frac{x}{2}\) – \(\frac{1}{8}\) sin(4x + 10) + C

Question 2.
sin 3x cos 4x
Solution.
∫ sin 3x cos 4x dx = \(\frac{1}{2}\) ∫ {sin(3x + 4x) + sin(3x – 4x)} dx
[∵ 2 sin A cos B = sin (A + B) + sin(A – B)]
= \(\frac{1}{2}\) ∫ {sin 7x + sin (- x)}dx

= \(\frac{1}{2}\) ∫ {sin 7x – sin x} dx

= \(\frac{1}{2}\) ∫ sin 7x dx – \(\frac{1}{2}\) ∫ sin x dx

= \(\frac{1}{2}\) \(\left(\frac{-\cos 7 x}{7}\right)\) – \(\frac{1}{2}\) (- cos x) + C

= \(\frac{-\cos 7 x}{14}+\frac{\cos x}{2}\) + C

Question 3.
cos 2x cos 4x cos 6x
Solution.
∫ cos 2x (cos 4x cos 6x) dx = ∫ cos 2x [\(\frac{1}{2}\) {cos (4x +6x) + cos (4x – 6x)}] dx
[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]
= \(\frac{1}{2}\) ∫ {cos 2x cos 10x + cos 2x cos (- 2x)}dx 2J

= \(\frac{1}{2}\) ∫ {cos 2x cos 10x + cos2 2x}dx

= \(\frac{1}{2}\) ∫ (cos 12x + cos 8x + 1 + cos 4x)dx

= \(\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}\right]\) + C

Question 4.
sin3 (2x + 1)
Solution.
Let I = ∫ sin3 (2x + 1) dx
⇒ = ∫ sin2 (2x + 1) . sin (2x + 1) dx
= ∫ (1 – cos2 (2x + 1)) sin(2x +1) dx
Let cos (2x + 1) = t
⇒ – 2 sin (2x + 1) dx = dt
⇒ sin (2x + 1) dx = \(\frac{-d t}{2}\)
∴ I = – \(\frac{1}{2}\) ∫ (1 – t2) dt
= \(\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\}\) + C

Question 5.
sin3 x cos3 x
Solution.
Let I = ∫ sin3 x cos3 x dx
= ∫ cos3 x . sin2 x . sin x dx
= ∫ cos3 x (1 – cos2 x) sin x dx
Let cos x = t
⇒ – sin x dx = dt
⇒ dx = \(\frac{d t}{-\sin x}\)
⇒ I = – ∫ t3 (1 – t2) dt
= – ∫ (t3 – t5) dt
= – \(\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}\) + C

= – \(\left\{\frac{\cos ^{4} x}{4}-\frac{\cos ^{6} x}{6}\right\}\) + C

= \(\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}\) + C

Question 6.
sin x sin 2x sin 3x
Solution.
∫ sin x sin 2x sin 3x dx = ∫ [sin x . \(\frac{1}{2}\) {cos(2x – 3x) – cos(2x + 3x)}] dx
[∵ 2 sin A sin B = cos(A – B) – cos(A + B)]
= \(\frac{1}{2}\) ∫ (sin x cos (- x) – sin x cos 5x) dx
= \(\frac{1}{2}\) ∫ (sin x cos x – sin x cos 5x) dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 1

Question 7.
sin 4x sin 8x
Solution.
∫ sin 4x sin 8x dx = ∫ {\(\frac{1}{2}\) cos(4x – 8x) – cos(4x + 8x)} dx
= \(\frac{1}{2}\) ∫ (cos (- 4x) – cos 12x) dx
= \(\frac{1}{2}\) ∫(cos 4x – cos 12x) dx
= \(\frac{1}{2}\) \(\) + C
= \(\) [sin 4x – \([latex]\)[/latex] sin 12x] + C

Question 8.
\(\frac{1-\cos x}{1+\cos x}\)
Solution.
∫ \(\frac{1-\cos x}{1+\cos x}\) dx = ∫ \(\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\) dx

[∵ 1 – cos x = 2 sin2 \(\frac{x}{2}\) and
1 + cos x = 2 cos2 \(\frac{x}{2}\)]

= ∫ tan2 \(\frac{x}{2}\) dx

= (sec2 \(\frac{x}{2}\) – 1) dx

= ∫ sec2 \(\frac{x}{2}\) dx – ∫ 1 dx

= \(\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}-x\right]\) + C

= 2 tan \(\frac{x}{2}\) – x + C

Question 9.
\(\frac{\cos x}{1+\cos x}\)
Solution.
∫ \(\frac{\cos x}{1+\cos x}\) dx = ∫ \(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\) dx
[∵ cos x = cos2 \(\frac{x}{2}\) – sin2 \(\frac{x}{2}\) and
cos x = 2 cos2 \(\frac{x}{x}\) – 1]

= \(\frac{1}{2}\) ∫ (1 – tan2 \(\frac{x}{2}\)) dx

= \(\frac{1}{2}\) ∫ (1 – sec2 \(\frac{x}{2}\) + 1 ) dx

= \(\frac{1}{2}\) ∫ (2 – sec2 \(\frac{x}{2}\)) dx

= \(\frac{1}{2}\) ∫ 2 dx – \(\frac{1}{2}\) ∫ sec2 \(\frac{x}{2}\) dx

= \(\frac{1}{2}\) [2x – \(\frac{\tan \frac{x}{2}}{\frac{1}{2}}\)] + C

= x – tan \(\frac{x}{2}\) + C

Question 10.
sin4 x
Solution.
∫ sin4 x dx = ∫ sin2 x sin2 x dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 2

Question 11.
cos4 2x
Solution.
∫ cos4 2x dx = ∫ (cos2 2x)2 dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 3

Question 12.
\(\frac{\sin ^{2} x}{1+\cos x}\)
Solution.
∫ \(\frac{\sin ^{2} x}{1+\cos x}\) dx = ∫ \(\frac{\left(1-\cos ^{2} x\right)}{1+\cos x}\) dx

= ∫ \(\frac{(1-\cos x)(1+\cos x)}{1+\cos x}\) dx

[∵ a22 = (a – b) (a + b)]

= ∫ (1 – cos x) dx = x – sin x + C

Question 13.
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\)
Solution.
∫ \(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\) dx = ∫ \(\frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \alpha-1\right)}{\cos x-\cos \alpha}\) dx

= ∫ \(\frac{2\left(\cos ^{2} x-\cos ^{2} \alpha\right)}{\cos x-\cos \alpha}\) dx

= ∫ \(\frac{2(\cos x-\cos \alpha)(\cos x+\cos \alpha)}{\cos x-\cos \alpha}\) dx

= 2 ∫(cos x + cos α) dx
= 2 sin x + 2 cos α x + C
= 2 (sin x + x cos α) + C

Question 14.
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
Solution.
∫ \(\frac{\cos x-\sin x}{1+\sin 2 x}\) dx = ∫ \(\frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \alpha-1\right)}{\cos x-\cos \alpha}\) dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 4

Question 15.
tan3 2x sec 2x
Solution.
∫ tan3 2x sec 2x dx = ∫ tan2 2x tan 2x sec 2x dx
= ∫ (sec2 2x – 1) tan 2x sec 2x dx
= ∫ (sec2 2x tan 2x sec 2x – tan 2x sec 2x) dx
= ∫ sec2 2x tan 2x sec 2x dx – ∫ tan 2xsec 2x dx
= ∫ sec2 2x tan 2x sec 2x dx – \(\frac{\sec 2 x}{2}\) + C
Let sec 2x = t
∴ 2 sec 2x tan 2x dx = dt
∴ ∫ tan3 2x sec 2x dx = \(\frac{1}{2}\) ∫ t2 dt – \(\frac{\sec 2 x}{2}\) + C
= \(\frac{t^{3}}{6}-\frac{\sec 2 x}{2}\) + C

= \(\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}\) + C

Question 16.
tan4 x
Sol.
tan4 x dx = ∫ tan2 x . tan2 x dx
= ∫ [(sec2 x – 1) tan2 x] dx
= ∫ [sec2 x tan2 x – tan2 x] dx
= ∫ sec2 x tan2 x dx – ∫ (sec2 x – 1)dx
= ∫ sec2 x tan2 x dx – ∫ sec2 x dx + ∫ 1 dx
= ∫ sec2 x tan2 x dx – tan x + x + C ……………….(i)
= ∫ sec2 x tan2 x dx
Let tan x = t
⇒ sec2 x dx = dt
∫ sec2 x tan2 x dx = ∫ t2 dt
= \(\frac{\tan ^{3} x}{3}\)
From Eq. (i), we get
∫ tan4 x dx = \(\frac{1}{3}\) tan3 x – tan x + x + C

Question 17.
\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
Solution.
∫ \(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\) dx = \(\int \frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\)

= \(\int \frac{\sin x}{\cos ^{2} x} d x+\int \frac{\cos x}{\sin ^{2} x} d x\)

= ∫ tan x sec x dx + ∫ cot x cosec x dx

= sec x – cosec x + C

Question 18.
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\)
Solution.
∫ \(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\) dx = ∫ \(\frac{\cos 2 x+(1-\cos 2 x)}{\cos ^{2} x}\) dx
[∵ cos 2x = 1 – 2 sin2 x]

∫ \(\frac{1}{\cos ^{2} x}\) dx
= ∫ sec2 x dx = tan x + C

Question 19.
\(\frac{1}{\sin x \cos ^{3} x}\)
Solution.
∫ \(\frac{1}{\sin x \cos ^{3} x}\) dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 5

= ∫ tan x sec2 x dx + ∫ \(\frac{\sec ^{2} x}{\tan x}\) dx
Let tan x = t
⇒ sec2 x dx = dt
= ∫ t dt + ∫ \(\frac{1}{t}\) dt
= \(\frac{t^{2}}{2}\) + log |t| + C
= \(\frac{1}{2}\) tan2 x + log |tan x| + C

Question 20.
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\)
Solution.
∫ \(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\) dx = ∫ \(\frac{\cos 2 x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}\) dx
= ∫ \(\frac{\cos 2 x}{(1+\sin 2 x)}\) dx
Let 1 + sin 2x = t
⇒ 2 cos 2x dx = dt
∴ ∫ \(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\) dx = \(\frac{1}{2}\) ∫ \(\frac{1}{t}\) dt

= \(\frac{1}{2}\) log |t| + C

= \(\frac{1}{2}\) log|1 + sin 2x| + C

= \(\frac{1}{2}\) log |(sin x + cos x)2| + C

= log |sin x + cos x| + C

Question 21.
sin-1 x (cos x)
Solution.
∫ sin-1 x (cos x) dx = ∫ sin-1 x [sin (\(\frac{\pi}{2}\) – x)] dx
= ∫ (\(\frac{\pi}{2}\) – x) = \(\frac{\pi}{2}\) ∫ dx – ∫ x dx
= \(\frac{\pi x}{2}-\frac{x^{2}}{2}\) + C

Question 22.
\(\frac{1}{\cos (x-a) \cos (x-b)}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.3 6

Question 23.
∫ \(\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\) dx is equal to
(A) tan x + cot x + C
(B) tan x + cosec x + C
(C) tan x + cot x + C
(D) tan x + sec x + C
Solution.
∫ \(\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\) dx = ∫ \(\left(\frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\right)\) dx
= ∫ (sec2 x – cosec2 x) dx
= tan x + cot x + C
Hence, the correct answer is (A).

Question 25.
∫ \(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx equals
(A) – cot (e xx) + C
(B) tan (x ex) + C
(C) tan (ex) + C
(D) cot (ex) + C
Solution.
∫ \(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx
Let x ex = t
⇒ (ex . x + ex . 1) dx = dt
⇒ ex (x + 1) dx = dt
∴ \(\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x=\int \frac{d t}{\cos ^{2} t}\) = ∫ sec2 t dt
= tan t + C
= tan (ex x) + C
Hence, the correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 7 Integrals Ex 7.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Direction (1 – 37): Integrate the following functions.

Question 1.
\(\frac{2 x}{1+x^{2}}\)
Solution.
∫ \(\frac{2 x}{1+x^{2}}\) dx
Let 1 + x2 = t
On differentiating w.rt. x, we get
2x dx = dt
⇒ x dx = \(\frac{d t}{2}\)
⇒ ∫ \(\frac{2 x}{1+x^{2}}\) dx = ∫ \(\frac{1}{t}\) dt
= log |t| + C
= log |1 + x2| + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 2.
\(\frac{(\log x)^{2}}{x}\)
Sol.
∫ \(\frac{(\log x)^{2}}{x}\) dx
Let log x = t
On differentiating w.r.t. x, we get
\(\frac{1}{x}\) dx = dt
⇒ dx = x dt
⇒ ∫ \(\frac{(\log x)^{2}}{x}\) dx = ∫ t2 dt
= \(\frac{t^{3}}{3}\) + C
= \(\frac{(\log x)^{3}}{3}\) + C

Question 3.
\(\frac{1}{x+x \log x}\)
Solution.
∫ \(\frac{1}{x+x \log x}\) dx = ∫ \(\frac{1}{x(1+\log x)}\) dx
Let 1 + log x = t
On differentiating w.r.t. x, we get
\(\frac{1}{x}\) dx = dt
⇒ dx = x dt
⇒ ∫ \(\frac{1}{x+x \log x}\) dx = ∫ \(\frac{1}{t}\) dt
= log |t| + C
= log |1 + log x| + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 4.
sin x . sin (cos x)
Solution.
∫ sin x . sin(cos x) dx
Let cos x = t
On differentiating w.r.t. x, we get
– sin x dx = dt
⇒ ∫ sin x . sin (cos x) dx = – ∫ sin t dt
= – [- cos t] + C
= cos t + C = cos (cos x) + C

Question 5.
sin(ax + b) cos(ax + b)
Solution.
∫ sin(ax + b) cos(ax + b) dx
= – \(\frac{1}{2}\) ∫ 2 sin (ax + b) cos(ax + b) dx
= – \(\frac{1}{2}\) ∫ sin (2ax + 2b) dx
Let 2ax + 2b = t
On differentiating w.r.t. x, we get
2a dx = dt
∴ I = \(\frac{1}{2}\) ∫ sin t . \(\frac{d t}{2 a}\)

= \(\frac{1}{4 a}\) ∫ sin t dt

= – \(\frac{1}{4 a}\) cos t + C

= – \(\frac{1}{4 a}\) cos (2ax + 2) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 6.
\(\sqrt{a x+b}\)
Solution.
∫ \(\sqrt{a x+b}\) dx
Let ax + b = t
On differentiating w.r.t. x, we get
a dx = dt
∴ dx = \(\frac{1}{a}\) dt
⇒ ∫ \((a x+b)^{\frac{1}{2}} d x=\frac{1}{a} \int t^{\frac{1}{2}} d t\)

= \(\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)\)

= \(\frac{2}{3 a}(a x+b)^{\frac{3}{2}}\) + C

Question 7.
x \(\sqrt{x+2}\)
Solution.
∫ x \(\sqrt{x+2}\) dx
Let (x + 2) = t
On differentiating w.r.t. x, we get
dx = dt

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 1

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 8.
x \(\sqrt{1+2 x^{2}}\)
Solution.
∫ x \(\sqrt{1+2 x^{2}}\) dx
Let 1 + 2x2 = t
On differentiating w.r.t. x, we get
4x dx = dt
∫ x \(\sqrt{1+2 x^{2}}\) dx = \(\int \frac{\sqrt{t} d t}{4}=\frac{1}{4} \int t^{\frac{1}{2}} d t\)

= \(\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C=\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+C\)

Question 9.
(4x + 2) \(\sqrt{x^{2}+x+1}\)
Solution.
∫ (4x + 2) \(\sqrt{x^{2}+x+1}\) dx
Let x2 + 2x + 1 = t
On differentiating w.r.t. x, we get
(2x + 1) dx = dt
∫ (4x + 2) \(\sqrt{x^{2}+x+1}\) dx = ∫ 2√t dt = 2 ∫ √t dt
= 2 \(\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)\) + C

= \(\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 10.
\(\frac{1}{x-\sqrt{x}}\)
Solution.
∫ \(\frac{1}{x-\sqrt{x}}\) dx = ∫ \(\frac{1}{\sqrt{x}(\sqrt{x}-1)}\) dx
Let (√x – 1) = t
On differentiating w.r.t. x, we get
∴ \(\frac{1}{2 \sqrt{x}}\) dx = dt
⇒ dx = 2√x dt
⇒ ∫ \(\frac{1}{2 \sqrt{x}}\) dx = ∫ \(\frac{1}{\sqrt{x} t} 2 \sqrt{x} d t=\int \frac{2}{t} d t\)
= 2 log |t| + C
= 2 log |\(\sqrt{x}-1\)| + C

Question 11.
\(\frac{x}{\sqrt{x+4}}\), x > 0
Solution.
∫ \(\frac{x}{\sqrt{x+4}}\) dx
Let x + 4 = t
On differentiating w.r.t. x, we get
dx = dt

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 2

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 11.
\(\frac{x}{\sqrt{x+4}}\), x > 0
Solution.
∫ \(\frac{x}{\sqrt{x+4}}[latex] dx
Let x + 4 = t
On differentiating w.r.t. x, we get
dx = dt

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 3

= [latex]\frac{2}{3}(x+4)^{\frac{1}{2}}\) (x + 4 – 12) + C

= \(\frac{2}{3} \sqrt{x+4}\) (x – 8) + C

Question 12.
\(\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}\)
Solution.
∫ \(\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}\) dx
Let x3 – 1 = t
On differentiating w.r.t. x, we get
3x2 dx = dt
⇒ dx = \(\frac{d t}{3 x^{2}}\)
⇒ ∫ \(\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}\) dx = ∫ (x3 – 1)\(\frac{4}{4}\) x3 x2 dx

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 4

Question 13.
\(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\)
Solution.
∫ \(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\) dx
On differentiating w.r.t. x, we get
9x2 dx = dt
⇒ dx = \(\frac{d t}{9 x^{2}}\)
∫ \(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\) dx = \(\frac{1}{9} \int \frac{d t}{(t)^{3}}=\frac{1}{9}\left[\frac{t^{-3+1}}{-3+1}\right]+C\)

= – \(\frac{1}{18}\left(\frac{1}{t^{2}}\right)\) + C

= – \(\frac{1}{18\left(2+3 x^{3}\right)^{2}}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 14.
\(\frac{1}{x(\log x)^{m}}\), x > 0, m ≠ 1
Solution.
∫ \(\frac{1}{x(\log x)^{m}}\) dx
Let log x = t
On differentiating w.r.t. x, we get
\(\frac{1}{x}\) dx = dt
⇒ dx = x dt
∴ ∫ \(\frac{1}{x(\log x)^{m}}\) dx = ∫ \(\frac{d t}{(t)^{m}}\)

= \(\left(\frac{t^{-m+1}}{-m+1}\right)\) + C

= \(\frac{(\log x)^{1-m}}{(1-m)}\) + C

Question 15.
\(\frac{x}{9-4 x^{2}}\)
Solution.
∫ \(\frac{x}{9-4 x^{2}}\) dx
Let 9 – 4x2 = t
On differentiating w.r.t. x, we get
– 8x dx = dt
⇒ dx = \(\frac{d t}{-8 x}\)
∫ \(\frac{x}{9-4 x^{2}}\) dx = \(\frac{-1}{8}\) ∫ \(\frac{1}{t}\) dt
= \(\frac{-1}{8}\) log |t| + C
= \(\frac{-1}{8}\) log |9 – 4x2| + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 16.
e2x +3
Solution.
∫ e2x + 3 dx
Let 2x + 3 = t
On differentiating w.r.t. x, we get
2 dx = dt
⇒ dx = \(\frac{1}{2}\) dt
∴ ∫ e2x + 3 dx = \(\frac{1}{2}\) ∫ et dt
= \(\frac{1}{2}\) (et) + C
= \(\frac{1}{2}\) e(2x + 3) + C

Question 18.
\(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\)
Solution.
∫ \(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\) dx
Let tan-1 x = t
⇒ \(\frac{1}{1+x^{2}}\) dx = dt
⇒ dx = (1 + x2) dt
∴ ∫ \(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\) dx = ∫ et dt
= et + C
= etan-1 x + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 19.
\(\frac{e^{2 x}-1}{e^{2 x}+1}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 5

= log |t| + C
= log |ex + e-x| + C.

Question 20.
\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Solution.
∫ \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\) dx
Let e2x + e-2x = t
⇒ (2 e2x – 2 e-2x) dx = dt
⇒ dx = \(\frac{d t}{2\left(e^{2 x}-e^{-2 x}\right)}\)

∫ \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\) dx = ∫ \(\frac{d t}{2 t}\)

= \(\frac{1}{2}\) ∫ \(\frac{1}{t}\) dt

= \(\frac{1}{2}\) log |t| + C

= \(\frac{1}{2}\) log |e2x + e-2x| + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 21.
tan2 (2x – 3)
Solution.
∫ tan2 (2x – 3) dx = ∫ sec2 (2x – 3) dx – ∫ 1 dx
Let 2x – 3 = t
⇒ 2 dx = dt
⇒ dx = \(\frac{1}{2}\) dt
⇒ ∫ sec2 (2x – 3) dx – ∫ 1 dx = \(\frac{1}{2}\) ∫ (sec2 t dt – ∫ 1 dx
= \(\frac{1}{2}\) tan t – x + C
= \(\frac{1}{2}\) tan (2x – 3) – x + C

Question 22.
sec2 (7 – 4x)
Solution.
∫ sec2 (7 – 4x) dx
Let 7 – 4x = t
⇒ – 4 dx = dt
⇒ dx = \(\frac{d t}{-4}\)

∴ ∫ sec2 (7 – 4x) dx = \(\frac{-1}{4}\) ∫ sec2 t dt
= \(\frac{-1}{4}\) (tan t) + C
= \(\frac{-1}{4}\) tan (7 – 4x) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 23.
\(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\)
Solution.
∫ \(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\) dx
Let sin-1 x = t

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 6

Question 24.
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\)
Solution.
∫ \(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\) dx = ∫ \(\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}\) dx

Let 3 cos x + 2 sin x = t

⇒ (- 3 sin x + 2 cos x) dx = dt

⇒ dx = \(\frac{d t}{2 \cos x-3 \sin x}\)

∴ ∫ \(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\) dx = ∫ \(\frac{d t}{2 t}\) + \(\frac{1}{2}\) ∫ \(\frac{1}{t}\) dt

= \(\frac{1}{2}\) log |t| + C

= \(\frac{1}{2}\) log |2 sin x + 3 cos x| + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 25.
\(\frac{1}{\cos ^{2} x(1-\tan x)^{2}}\)
Solution.
∫ \(\frac{1}{\cos ^{2} x(1-\tan x)^{2}}\) dx = ∫ \(\frac{\sec ^{2} x}{(1-\tan x)^{2}}\) dx
Let (1 – tan x) = t
⇒ – sec2 x dx = dt
⇒ dx = \(\frac{d t}{-\sec ^{2} x}\)

∫ \(\frac{\sec ^{2} x}{(1-\tan x)^{2}}\) dx = ∫ \(\frac{-d t}{t^{2}}\)
= – ∫ t2 dt

= – \(\left(\frac{-t^{-2+1}}{-2+1}\right)\) + C

= \(\frac{1}{t}+C=\frac{1}{(1-\tan x)}\) + C

Question 26.
\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)
Solution.
∫ \(\frac{\cos \sqrt{x}}{\sqrt{x}}\) dx
Let √x = t
⇒ \(\frac{1}{2 \sqrt{x}}\) dx = dt
⇒ dx = 2 √x dt
∫ \(\frac{\cos \sqrt{x}}{\sqrt{x}}\) dx = 2 ∫ cos t dt
= 2 sin t + C
= 2 sin √x + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 27.
\(\sqrt{\sin 2 x}\) cos 2x
Solution.
∫ \(\sqrt{\sin 2 x}\) cos 2x dx
Let sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ dx = \(\frac{d t}{2 \cos 2 x}\)
∴ ∫ \(\sqrt{\sin 2 x}\) cos 2x dx = \(\frac{1}{2}\) ∫ (t)\(\frac{1}{2}\) dt

= \(\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)\)

= \(\frac{1}{3} t^{\frac{3}{2}}\) + C

= \(\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}\) + C

Question 28.
\(\frac{\cos x}{\sqrt{1+\sin x}}\)
Solution.
∫ \(\frac{\cos x}{\sqrt{1+\sin x}}\) dx
Let 1 + sin x = t
⇒ cos x dx = dt
⇒ dx = \(\frac{d t}{\cos x}\)

∫ \(\frac{\cos x}{\sqrt{1+\sin x}}\) dx = \(\frac{d t}{\sqrt{t}}\)

= \(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\) + C

= 2√t + C

= 2 \({\sqrt{1+\sin x}}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 29.
cot x log sin x
Solution.
∫ cot x log sin x dx
Let log sin x = t .
⇒ \(\frac{1}{\sin x}\) . cos x dx = dt
⇒ cot x dx = dt
⇒ dx = \(\frac{d t}{\cot x}\)
∴ ∫ cot x log sin x dx = ∫ t dt
= \(\frac{t^{2}}{2}\) + C
= \(\frac{1}{2}\) (log sin x)2 + C

Question 30.
\(\frac{\sin x}{1+\cos x}\)
Solution.
∫ \(\frac{\sin x}{1+\cos x}\) dx
Let 1 + cos x = t
⇒ – sin x dx = dt
⇒ dx = \(\frac{d t}{-\sin x}\)
∴ ∫ \(\frac{\sin x}{1+\cos x}\) dx = ∫ – \(\frac{d t}{t}\)
= – log |t| + C
= – log |1 + cos x| + C
= log \(\frac{1}{|1+\cos x|}\) + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 31.
\(\frac{\sin x}{(1+\cos x)^{2}}\)
Solution.
∫ \(\frac{\sin x}{(1+\cos x)^{2}}\) dx
Let 1 + cos x = t
⇒ – sin x dx = dt
⇒ dx = \(=\frac{d t}{-\sin x}\)
∴ ∫ \(\frac{\sin x}{(1+\cos x)^{2}}\) dx = ∫ – \(\frac{d t}{t^{2}}\)

= ∫ t-2 dt

= \(\frac{-t^{-2+1}}{-2+1}\) + C

= \(\frac{1}{t}\) + C

= \(\frac{1}{1+\cos x}\) + C

Question 32.
\(\frac{1}{1+\cot x}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 7

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 33.
\(\frac{1}{1-\tan x}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 8

Question 34.
\(\frac{\sqrt{\tan x}}{\sin x \cos x}\)
Solution.
Let I = \(\frac{\sqrt{\tan x}}{\sin x \cos x}\) dx

= ∫ \(\frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x}\) dx

= ∫ \(\frac{\sqrt{\tan x}}{\tan x \cos ^{2} x}\) dx

= ∫ \(\frac{\sec ^{2} x}{\sqrt{\tan x}}\) dx

Let x = tan t
⇒ sec2 x dx = dt
⇒ dx = \(\frac{d t}{\sec ^{2} x}\)

∴ I = ∫ \(\frac{d t}{\sqrt{t}}\)

= ∫ t\(-\frac{1}{2}\)

= 2√t + C

= 2√tan x + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 35.
\(\frac{(1+\log x)^{2}}{x}\)
Solution.
∫ \(\frac{(1+\log x)^{2}}{x}\) dx
Let 1 + log x = t
⇒ \(\frac{1}{x}\)dx = dt
⇒ dx = x dt
∴ ∫ \(\frac{(1+\log x)^{2}}{x}\) dx = ∫ t2 dt
= \(\frac{t^{3}}{3}\) + C
= \(\frac{(1+\log x)^{3}}{3}\) + C

Question 36.
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
Solution.
∫ \(\frac{(x+1)(x+\log x)^{2}}{x}\) dx = ∫ \(\frac{x+1}{x}\) (x + log x)2 dx

= ∫ (1 + \(\frac{1}{x}\)) (x + log x)2 dx

Let x + log x = t
⇒ (1 + \(\frac{1}{x}\)) dx = dt

∴ ∫ (1 + \(\frac{1}{x}\)) (x + log x)2 dx = ∫ t2 dt

= \(\frac{t^{3}}{3}\) + C

= \(\frac{1}{3}\) (x + log x)3 + C

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 37.
\(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\)
Solution.
Let I = ∫ \(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\) dx

Let tan-1 x4 = t
⇒ \(\frac{1}{1+x^{8}}\) . 4x3 = \(\frac{d t}{d x}=\)

⇒ dx = \(\frac{\left(1+x^{8}\right)}{4 x^{3}}\) dt

∴ I = ∫ \(\frac{x^{3} \sin t}{\left(1+x^{8}\right)} \cdot \frac{1+x^{8} d t}{4 x^{3}}\)

= \(\frac{1}{4}\) ∫ sin t dt

= – \(\frac{1}{4}\) cos t + C

Direction (38 – 39) : Choose the correct answer.

Question 38.
∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx equals
(A) 10x – x10 + C

(B) 10x + x10 + C

(C) (10x – x10)-1 + C

(D) log (10x + x10) + C
Solution.
∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx
Let x10 + 10x = t
⇒ dx = \(\frac{d t}{10 x^{9}+10^{x} \log _{e} 10}\)
∴ ∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx = ∫ \(\frac{dt}{t}\)
= log t + C
= log (10x + x10) + C
Hence, the correct answer is (D).

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2

Question 39.
∫ \(\frac{d x}{\sin ^{2} x \cos ^{2} x}\) ,
(A) tan x + cot x + C
(B) tan x – cot x + C
(C) tan x cot x + C
(D) tan x – cot 2x + C
Solution.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.2 9

Hence, the correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 7 Integrals Ex 7.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.1

Direcflon (1 – 5):
Find the anti-derivative (or integral) of the following by the method of inspection.

Question 1.
sin 2x
Solution.
The anti-derivative of sin 2x is a function of x whose derivative is sin 2x.
It is known that,
\(\frac{d}{d x}\) (cos 2x) = – 2 sin 2x
⇒ sin 2x = – \(\frac{1}{2} \frac{d}{d x}\) (cos 2x)
sin 2x = \(\frac{d}{d x}\) (- \(\frac{1}{2}\) cos 2x)
Therefore, the anti-derivative of sin 2x is – \(\frac{1}{2}\) cos 2x + C.

Question 2.
cos 3x
Solution.
The anti-derivative of cos 3x is a function of x whose derivative is cos 3x.
It is known that,
\(\frac{d}{d x}\) (sin 3x) = 3 cos 3x
⇒ cos 3x = \(\frac{1}{3}\) \(\frac{d}{d x}\) (sin 3x)

∴ cos 3x = \(\frac{d}{d x}\) (\(\frac{1}{3}\) sin 3x)

Therefore, the anti-derivative of cos 3x is \(\frac{1}{3}\) sin 3x + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 3.
e2x
Solution.
The anti-derivative of e2x is the function of x whose derivative is e2x.
It is known that,
\(\frac{d}{d x}\) (e2x) = 2e2x
⇒ e2x = \(\frac{1}{2}\) \(\frac{d}{d x}\) (e2x)

∴ e2x = \(\frac{d}{d x}\) (\(\frac{1}{2}\) e2x)

Therefore, the anti-derivative of e2x is \(\frac{1}{2}\) e2x + C.

Question 4.
(ax + b)2
Solution.
The anti-derivative of (ax + b)2 is the function of x whose derivative is (ax + b)2.
It is known that,
\(\frac{d}{d x}\) (ax + b)2 = 3a (ax + b)2

⇒ (ax + b)2 = \(\frac{1}{3 a}\) \(\frac{d}{d x}\) (ax + b)3

∴ (ax + b)2 = \(\frac{d}{d x}\) (\(\frac{1}{3 a}\) (ax + b)3))

Therefore, the anti-derivative of (ax + b)2 is \(\frac{1}{3 a}\) (ax + b)3) + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 5.
sin 2x – 4 e3x
Solution.
The anti-derivative of (sin 2x – 4 e3x) is the function of x whose derivative is (sin 2x – 4 e3x).
It is known that,
\(\frac{d}{d x}\) (- \(\frac{1}{2}\) cos 2x – \(\frac{4}{3}\) e3x) = sin 2x – 4 e3x
Therefore, the anti-derivative of (sin 2x – 4 e3x) is (- \(\frac{1}{2}\) cos 2x – \(\frac{4}{3}\) e3x) + C.

Direction (6 – 20): Find the following integrals:

Question 6.
∫ (4 e3x + 1) dx
Solution.
∫ (4 e3x + 1) dx = 4 ∫ e3x dx + ∫ 1 dx

= 4 \(\left(\frac{e^{3 x}}{3}\right)\) + x + C

= \(\frac{4}{3}\) e3x + x + C {∵ ∫ enx dx = \(\frac{e^{n x}}{x}\)}

Question 7.
∫ x2 (1 – \(\frac{1}{x^{2}}\)) dx
Solution.
∫ x2 (1 – \(\frac{1}{x^{2}}\)) dx = ∫ (x2 – 1) dx
= ∫ x2 dx – ∫ 1 dx
= \(\frac{x^{3}}{3}\) – x + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Q.8.
∫ (ax2 + bx + c) dx
Solution.
∫ (ax2 + bx + c) dx = a ∫ x2 dx + b ∫ x dx + c ∫ 1 dx

= \(\frac{a x^{2+1}}{2+1}+\frac{b x^{1+1}}{1+1}\) + cx + C

= \(a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)\) + cx + C

= \(\frac{a x^{3}}{3}+\frac{b x^{2}}{2}\) + cx + C

Question 9.
∫ (2x2 + ex) dx
Solution.
∫ (2x2 + ex) dx = 2 ∫ x2 dx + ∫ ex dx

= 2 \(\left(\frac{x^{2+1}}{2+1}\right)\) + ex + C

= 2 \(\left(\frac{x^{3}}{3}\right)\) + ex + C

= \(\frac{2}{3}\) x3 + ex + C

Question 10.
∫ (√x – \(\frac{1}{\sqrt{x}}\))2 dx
Solution.
∫ (√x – \(\frac{1}{\sqrt{x}}\))2 dx = ∫ [(√x)2 – 2 √x × \(\frac{1}{\sqrt{x}}\)] dx

= ∫ (x + \(\frac{1}{x}\) – 2) dx = ∫ x dx + ∫ \(\frac{1}{x}\) dx – 2 ∫ 1 dx

= \(\frac{x^{2}}{2}\) + log |x| – 2x + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 11.
∫ \(\frac{x^{3}+5 x^{2}-4}{x^{2}}\) dx
Solution.
∫ \(\frac{x^{3}+5 x^{2}-4}{x^{2}}\) dx = ∫ \(\left(\frac{x^{3}}{x^{2}}+5 \frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}\right)\) dx

= ∫ (x + 5 – 4 x-2) dx
= ∫ x dx + 5 ∫ 1 dx – 4 ∫ x-2 dx
= \(\frac{x^{2}}{2}\) + 5x – 4 \(\left(\frac{x^{-2+1}}{-2+1}\right)\) + C

= \(\frac{x^{2}}{2}\) + 5x – 4 \(\left(\frac{x^{-1}}{-1}\right)\) + C

= \(\frac{x^{2}}{2}\) + 5x + \(\frac{4}{4}\) + C

Question 12.
∫ \(\frac{x^{3}+3 x+4}{\sqrt{x}}\) dx
Solution.
∫ \(\frac{x^{3}+3 x+4}{\sqrt{x}}\) dx

= PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1 1

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 13.
∫ \(\frac{x^{3}-x^{2}+x-1}{x-1}\) dx
Solution.
∫ \(\frac{x^{3}-x^{2}+x-1}{x-1}\) dx = ∫ \(\frac{x^{2}(x-1)+1(x-1)}{x-1}\) dx

= ∫ \(\frac{\left(x^{2}+1\right)(x-1)}{x-1}\) dx

= ∫ (x2 + 1) dx

= ∫ x2 dx + 1 dx

= \(\frac{x^{3}}{3}\) + x + C.

Question 14.
∫ (1 – x) √x dx
Solution.
∫ (1 – x) √x dx = ∫ \(\left(x^{\frac{1}{2}}-x^{\frac{3}{2}}\right)\) dx

= PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1 2

Question 15.
∫ √x (3x2 + 2x + 3) dx
Solution.
∫ √x (3x2 + 2x + 3) dx

= PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1 3

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 16.
∫ (2x – 3 cos x + ex) dx
Solution.
∫ (2x – 3 cos x + ex) dx = 2 ∫ x dx – 3 ∫ cos x dx + ∫ ex dx
= \(\frac{2 x^{2}}{2}\) – 3 (sin x) + ex + C
= x2 – 3 sin x + ex + C

Question 17.
∫ (2x2 – 3 sin x + 5√x) dx
Solution.
∫ (2x2 – 3 sin x + 5√x) dx = 2 ∫ x2 dx – 3 ∫ sin x dx + 5 ∫ x\(\frac{1}{2}\) dx

= \(\frac{2 x^{3}}{3}\) – 3 (- cos x) + 5 \(\left(\frac{x^{3 / 2}}{\frac{3}{2}}\right)\) + C

= \(\frac{2}{3}\) x3 + 3 cos x + \(\frac{10}{3}\) x\(\frac{3}{2}\) + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Question 18.
∫ sec x (sec x + tan x) dx
Solution.
∫ sec x (sec x + tan x) dx = ∫ (sec2 x + sec x . tan x dx
= ∫ sec2 x dx + ∫ sec x . tan x dx
= tan x + sec x + C

Question 19.
∫ \(\frac{\sec ^{2} x}{\ {cosec}^{2} x}\) dx
Solution.
∫ \(\frac{\sec ^{2} x}{\ {cosec}^{2} x}\) dx = ∫ \(\frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}}\) dx

= ∫ \(\frac{\sin ^{2} x}{\cos ^{2} x}\) dx

= ∫ tan2 x dx

= ∫ (sec2 x – 1) dx

= ∫ sec2 x dx – ∫ 1 dx = tan x – x + C

Question 20.
∫ \(\int \frac{2-3 \sin x}{\cos ^{2} x} d x\)
Solution.
∫ \(\int \frac{2-3 \sin x}{\cos ^{2} x} d x\) = ∫ \(\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right)\) dx

= ∫ (2 sec2 x – 3 sec x . tan x) dx
= 2 ∫ sec2 x dx – ∫ tan x . sec x dx
= 2 tan x – 3 sec x + C.

PSEB 12th Class Maths Solutions Chapter 7 Integrals Ex 7.1

Direction (21 – 22) : Choose the correct answer.

Question 21.
The anti-derivative of (√x + \(\frac{1}{\sqrt{x}}\)) equals.
(A) \(\frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+C\)

(B) \(\frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+C\)

(C) \(\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C\)

(D) \(\frac{3}{2} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+C\)
Solution.
∫ (√x + \(\frac{1}{\sqrt{x}}\)) dx = ∫ \(x^{\frac{1}{2}}\) dx + ∫ \(x^{-\frac{1}{2}}\) dx

= \(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\) + C

= \(\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}\) + C

Hence the correct answer is (C).

Question 22.
If \(\frac{d}{d x}\) f(x) = 4x3 – \(\frac{3}{x^{4}}\) such that f(2) = 0. Then, f(x) is
(A) x4 + \(\frac{1}{x^{3}}-\frac{129}{8}\)

(B) x4 + \(\frac{1}{x^{4}}+\frac{129}{8}\)

(C) x3 + \(\frac{1}{x^{3}}+\frac{129}{8}\)

(D) x3 + \(\frac{1}{x^{4}}-\frac{129}{8}\)
Solution.
It is given that,
\(\frac{d}{d x}\) f(x) = 4x3 – \(\frac{3}{x^{4}}\)

∴ Anti – derivative of 4x3 – \(\frac{3}{x^{4}}\) = f(x)

∴ f(x) = ∫ (4x3 – \(\frac{3}{x^{4}}\)) dx

⇒ f(x) = 4 ∫ x3 dx – 3 ∫ x-4 dx

f(x) = \(4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+C\)

⇒ f(x) = x4 + \(\frac{1}{x^{3}}\) + C
Also, f(2) = 0
∴ f(2) = (2)4 + \(\frac{1}{(2)^{3}}\) + C

⇒ 16 + \(\frac{1}{8}\) + C = 0

⇒ C = – (16 + \(\frac{1}{8}\))

⇒ C = – \(\frac{129}{8}\)

⇒ f(x) = x4 + \(\frac{1}{x^{3}}-\frac{129}{8}\)

Hence, the correct answer is (A).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 1.
Using differentials, find the approximate value of each of the following:
Solution.
(a) \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\)
Solution.
Consider y = \(x^{\frac{1}{4}}\).

Let x = \(\frac{16}{81}\) and ∆x = \(\frac{1}{81}\).

Then, ∆y = (x + ∆x)\(\frac{1}{4}\) – x\(\frac{1}{4}\)

= \(\left(\frac{17}{81}\right)^{\frac{1}{4}}-\left(\frac{16}{81}\right)^{\frac{1}{4}}\)

= \(\left(\frac{17}{81}\right)^{\frac{1}{4}}-\frac{2}{3}\)

∴ \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\) = \(\frac{2}{3}\) + ∆y

Now, dy is approximately equal to ∆y and is given by

dy = \(\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x)\)

= \(\frac{1}{4\left(\frac{16}{81}\right)^{\frac{3}{4}}}\left(\frac{1}{81}\right)=\frac{27}{4 \times 8} \times \frac{1}{81}=\frac{1}{32 \times 3}=\frac{1}{96}\) = 0.010

Hence, the approximate value of \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\) is \(\frac{2}{3}\) + 0.010
= 0.667 + 0.010 = 0.677.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

(b) Consider y = \(x^{-\frac{1}{5}}\).
Let x = 32 and ∆x = 1.
Then, ∆y = (x + ∆x)\(-\frac{1}{5}\) – x\(-\frac{1}{5}\)

= (33)\(-\frac{1}{5}\) – (32)\(-\frac{1}{5}\)

= (33)\(-\frac{1}{5}\) – \(\frac{1}{2}\)
∴ (33)\(-\frac{1}{5}\) = \(\frac{1}{2}\) + ∆y

Now, dy is approximately equal to ∆y and is given by
dy = \(\left(\frac{d y}{d x}\right) \Delta x=\frac{-1}{5(x)^{\frac{6}{5}}}(\Delta x)\) (As y = x\(-\frac{1}{5}\))

= \(\frac{-1}{5(2)^{6}}(1)=-\frac{1}{320}\) = – 0.003.

Hence, the approximate value of (33)\(-\frac{1}{5}\)
= \(\frac{1}{2}\) + (- 0.003) = 0.5 – 0.003 = 0.497.

Question 2.
Show that the function given by f(x) = \(\frac{\log x}{x}\) maximum at x = e.
Solution.
The given function is f(x) = \(\frac{\log x}{x}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 1

Therefore, by second derivative test, f is the maximum at x = e.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 3.
The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast s the area decreasing when two equal sides are equal to the base?
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 2

Let ∆ ABC be isosceles, where BC is the base of fixed length b.
Let the length of the two equal sides of ∆ABC be a.
Draw AD ⊥ BC

Now, in ∆ADC, by applying the Pythagoras theorem, we have

AD = \(\sqrt{a^{2}-\frac{b^{2}}{4}}\)

:. Area of triangle (A) = \(\frac{1}{2} b \sqrt{a^{2}-\frac{b^{2}}{4}}\)

The rate of change of the area with respect to time (t) is given by

\(\frac{d A}{d t}=\frac{1}{2} b \cdot \frac{2 a}{2 \sqrt{a^{2}-\frac{b^{2}}{4}}} \cdot \frac{d a}{d t}=\frac{a b}{\sqrt{4 a^{2}-b^{2}}} \cdot \frac{d a}{d t}\)

It is given that the two equal sides of the triangle are decreasing at the rate of 3 cm per second.

∴ \(\frac{d a}{d t}\) = – 3 cm/s (Negative sign shows for decreasing)

∴\(\frac{d A}{d t}=\frac{-3 b}{\sqrt{4 a^{2}-b^{2}}} \mathrm{~cm}^{2} / \mathrm{s}\) cm2 / s

When a = b, we have \(\frac{d A}{d t}=\frac{-3 b^{2}}{\sqrt{4 b^{2}-b^{2}}}=\frac{-3 b^{2}}{\sqrt{3 b^{2}}}\) = √3b cm2 / s
Hence, if the two equal sides are equal to the base, then the area of the triangle ¡s decreasing at the rate of √3 db cm2/s.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 4.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Solution.
The equation of the given curve is y2 = 4x.
On differentiating w.r.t. x, we get
2y \(\frac{d y}{d x}\) = 4

⇒ \(\frac{d y}{d x}\) = \(\frac{4}{2 y}=\frac{2}{y}\)

Slope of the tangent at (1, 2) is \(\left(\frac{d y}{d x}\right)_{(1,2)}=\frac{2}{2}\) = 1
and slope of the normal at the point (1, 2) is = \(\frac{-1}{1}\) = – 1.
∴ Equation of the normal at (1, 2) is
y – 2 = – 1(x – 1)
⇒ y – 2 = – x + 1
⇒ x + y – 3 = 0.

Question 5.
Show that the normal at any point 0 to the curve x = a cos0 + a0 sin0, y = a sin0 – a0 cos0 is at a constant distance from the origin.
Solution.
The given curve is x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ
On differentiating w.r.t. θ, we get dx
\(\frac{d x}{d \theta}\) = – a sin θ + a sin θ + a θ cos θ
= a θ cos θ

and \(\frac{d y}{d \theta}\) = a cos θ – a cos θ + a θ sin θ
= a θ sin θ

Slope of the tangent at θ,

\(\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}\) = tan θ

∴ Slope of the normal at θ is \(\frac{1}{\tan \theta}\) = – cot θ.

The equation of the normal at a given point (x, y) is given by
y – a sin θ + a θ cos θ = – \(\frac{1}{\tan \theta}\) (x – a cos θ – a θ sin θ)

⇒ y sin θ – a sin2 θ + a θ sin θ cos θ = – x cos θ + a cos2 θ + a θ sin θ cos θ
⇒ x cos θ + y sin θ – a (sin2 θ + cos2 θ) = 0
⇒ x cos θ + y sin θ – a = 0
Now, the perpendicular distance of the normal from the origin is \(\frac{|-a|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=\frac{|-a|}{\sqrt{1}}=|-a|\), which is independent of θ.
Hence, the perpendicular distance of the normal from the origin is constant.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 6.
Find the intervals in which the function f given by f(x) = \(\frac{4 \sin x-2 x-x \cos x}{2+\cos x}\) is
(i) strictly increasing
(ii) strictly decreasing
Solution.
Given, f(x) = \(\frac{4 \sin x-2 x-x \cos x}{2+\cos x}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 3

Now, f'(x) = 0
⇒ cos x = 0 or cos x = 4
But, cos x ≠ 4
∴ cos x = 0
⇒ x = \(\frac{\pi}{2}, \frac{3 \pi}{2}\)
Now, x = \(\frac{\pi}{2}\) and x = \(\frac{3 \pi}{2}\) divides (0, 2π) into three disjoint intervals i.e.,
(0, \(\frac{\pi}{2}\)), (\(\frac{\pi}{2}, \frac{3 \pi}{2}\)), and (\(\frac{3 \pi}{2}\), 2π)

In intervals (0, \(\frac{\pi}{2}\)) and (\(\frac{3 \pi}{2}\), 2π), f'(x) > 0.

Thus, f(x) is increasing for 0 < x < \(\frac{x}{2}\) and \(\frac{3 \pi}{2}\) < x < 2π.
In the interval \(\frac{\pi}{2}, \frac{3 \pi}{2}\), f'(x) < 0.
Thus, f(x) is decreasing for \(\frac{\pi}{2}\) < x < \(\frac{3 \pi}{2}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 7.
Find the intervals in which the function f given by f(x) = x3 + \(\frac{1}{x^{3}}\), x ≠ 0 is
(i) increasing
(ii) decreasing
Solution.
f(x) = x3 + \(\frac{1}{x^{3}}\)

∴ f'(x) = 3x2 – \(\frac{3}{x^{4}}=\frac{3 x^{6}-3}{x^{4}}\)

Then, f’(x) = 0 = 3x6 – 3 = 0
⇒ x6 = 1
⇒ x = ± 1
Now, the points x = 1 and x = – 1 divide the real line into three disornt intervals i.e., (- ∞, – 1), (- 1, 1), and (1, ∞).
In intervals (- ∞, – 1) and (1, ∞) i.e., when x < – 1 and x > 1, f’(x) > 0.
Thus, when x < – 1 and x > 1, f is increasing.
In interval (- 1, 1) i.e., when – 1 < x < 1, f’(x) < 0.
Thus, when – 1 < x < 1, f is decreasing.

Question 8.
Find the maximum area of an isosceles triangle inscribed in the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\) = 1 with Its vertex at one end of the major
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 4

A = area of isosceles ∆ APP’
= \(\frac{1}{2}\) . PP’ . AM

= \(\frac{1}{2}\) ab (2b sin θ) (a – a cos θ)

= ab (sin θ – \(\frac{1}{2}\) sin 2θ)

Differentiating w.r.t. θ, we get
\(\frac{d A}{d \theta}\) = ab (cos θ – cos 2θ)

For maxima and minima,
\(\frac{d A}{d \theta}\) = 0

∴ ab(cos θ – cos 2θ) = 0
⇒ cos 2θ = cos θ
⇒ 2θ = 2π – θ
⇒ θ = \(\frac{2 \pi}{3}\)

Now, \(\frac{d^{2} A}{d \theta^{2}}\) = ab(- sin θ + 2 sin 2θ)

At θ = \(\frac{2 \pi}{3}\),

\(\frac{d^{2} A}{d \theta^{2}}\) = ab \(\left(-\sin \frac{2 \pi}{3}+2 \sin \frac{4 \pi}{3}\right)\)

= ab \(\left[-\left(\frac{\sqrt{3}}{2}\right)+2\left(-\frac{\sqrt{3}}{2}\right)\right]\)

= ab \(\left(-\frac{\sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}\right)=\frac{-3 \sqrt{3}}{2}\) ab < 0

⇒ A is maximum, when θ = \(\frac{2 \pi}{3}\) = 120°

Maximum value of A = ab(sin 120° – \(\frac{1}{2}\) sin 240°)
= ab \(\left[\frac{\sqrt{3}}{2}-\frac{1}{2}\left(-\frac{\sqrt{3}}{2}\right)\right]=\frac{3 \sqrt{3}}{4} a b\)

Thus, rnaximum area o the isosceles triangle is \(\frac{3 \sqrt{3}}{4} a b\) ab sq. unit.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 9.
A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth in 2 m and volume is 8 m3. If building of tank costs ₹ 70 per sq m for the base and ₹ 45 per sq metre for sides. What is the cost of least expensive tank?
Solution.
Let l, b and h represent the length, breadth and height of the tank, respectively.
Then, we have height (ft) = 2 m
∴ Volume of the tank = 8 m3
⇒ Volume of the tank = l × b × h
⇒ 8 = l × b × 2
⇒ lb = 4
⇒ b = \(\frac{4}{l}\)
Now, area of the base = lb = 4
Area of the 4 walls (A) = 2h (l + b)
∴ A = 4 (l + \(\frac{4}{l}\))
⇒ \(\frac{d A}{d l}=4\left(1-\frac{4}{l^{2}}\right)\)
However, the length cannot be negative.
Therefore, we have l = 4
∴ b = \(\frac{4}{l}=\frac{4}{2}\) = 2

Now, \(\frac{d^{2} A}{d l^{2}}=\frac{32}{l^{3}}\)

when l = 2, then \(\frac{d^{2} A}{d l^{2}}=\frac{32}{8}\) = 4 > 0

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 5

Thus, by second derivative test, the area is the minimum when l = 2.
We have l = b = h = 2
∴ Cost of building the base = ₹ 70 × (lb)
= ₹ 70 (4) = ₹ 280
Cost of building the walls = ₹ 2h (l + b) × 45
= ₹ 90 (2) (2 + 2)
= ₹ 8 (90) = ₹ 720
Required total cost = ₹ 280 + 720 = ₹ 1000
Hence, the total cost of the tank will be ₹ 1000.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 10.
The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.
Solution.
Let x be the radius of the circle and y be the side of the square
Circumference of the circle = 2πx
Perimeter of square = 4y
Sum of perimeters of circle and square = 2πx + 4y = k ……………(i)
Area of circle = πx2
Area of square = y2
Sum of areas of circle and square = πx2 + y2 …………..(ii)
From Eq. (i),
y = \(\frac{k-2 \pi x}{4}\) ……………..(iii)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 6

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 11.
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 7

Let x and y be the length and breadth of the rectangular window.
Then, radius of the semicircular opening = \(\frac{x}{2}\)
It is given that the perimeter of the window is 10 m.
∴ x + 2y + \(\frac{\pi x}{2}\) = 10

⇒ (x + \(\frac{\pi}{2}\)) + 2y = 10

⇒ 2y = 10 – x (1 + \(\frac{\pi}{2}\))

⇒ y = 5 – x (\(\frac{1}{2}+\frac{\pi}{4}\))

∴ Area of the window (A) is given by

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 8

Therefore, by second derivative test, the area is the maximum when length x = \(\frac{20}{\pi+4}\) m.

y = \(5-\frac{20}{\pi+4}\left(\frac{2+\pi}{4}\right)=5-\frac{5(2+\pi)}{\pi+4}=\frac{10}{\pi+4} \mathrm{~m}\)

Hence, the required dimensions of the window to admit maximum light is given by length = \(\frac{20}{\pi+4}\) m and breadth = \(\frac{10}{\pi+4}\) m.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 12.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the maximum length of the hypotenuse is \(\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\).
Solution.
Let ∆ ABC be right angled at B.
Let AB = x and BC = y.
Let P be a point on the hypotenuse of the triangle such that P is at a distance of a and b from the sides AB and BC respectively.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 9

Let ∠C = θ.
We have, AC = \(\sqrt{x^{2}+y^{2}}\)
Now, PC = b cosec θ and, AP = a sec θ
∴ AC = AP + PC
⇒ AC = b cosec θ + a sec θ ……………. (i)

∴ \(\frac{d(A C)}{d \theta}\) = – cosec θ cot θ + a sec θ tan θ

∴ \(\frac{d(A C)}{d \theta}\) = 0

⇒ a sec θ tan θ = cosec θ cot θ

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 10

It can be clearly shown that \(\frac{d^{2}(A C)}{d \theta^{2}}\) < 0 when tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\).

Therefore, by second derivative test, the length of the hypotenuse is the tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\).

Now, when tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\), then we have

AC = \(\frac{b \sqrt{a^{\frac{2}{3}}}+b^{\frac{2}{3}}}{b^{\frac{1}{3}}}+\frac{a \sqrt{a^{\frac{2}{3}}}+b^{\frac{2}{3}}}{a^{\frac{1}{3}}}\) [Using Eqs. (i) and (ii)]

= \(\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}\left(b^{\frac{2}{3}}+a^{\frac{2}{3}}\right)=\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\)

Hence, the maximum length of the hypotenuse is \(\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 13.
Find the points at which the function f given by f(x) = (x – 2)4 (x + 1)3 has –
(i) local maxima
(ii) local minima
(iii) point of inflexion
Solution.
The given function is f(x) = (x – 2)4 (x + 1)3
∴ f'(x) = 4 (x – 2)3 (x + 1)3 + 3(x + 1)2 (x – 2)4
= (x – 2)3 (x +1)2 [4(x + 1) + 3(x – 2)]
= (x – 2)3 (x + 1)2 (7x – 2)
f'(x) = 0
⇒ x = – 1 and x = \(\frac{2}{7}\) or x = 2
Now, for values of x close to \(\frac{2}{7}\) and to the left of \(\frac{2}{7}\), f'(x) > 0.

Also, for values of x close to \(\frac{2}{7}\) and to the right of \(\frac{2}{7}\), f'(x) < 0.

Thus, x = \(\frac{2}{7}\) is the point of local maxima.
Now, for values of x close to 2 and to the left of 2, f'(x) < 0. Also, for values of x close to 2 and to the right of 2, f'(x) > 0.
Thus, x = 2 is the point of local minima.
Now, as the value of x varies through – 1, f (x) does not change its sign.
Thus, x = – 1 is the point of inflexion.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 14.
Find the absolute maximum and minimum values of the function f’given by f(x) = cos2 x + sin x, x ∈ [0, π].
Solution.
Given, f(x) = cos2 x + sin x
∴ f'(x) = 2 cos x (- sin x) + cos x = – 2 sin x cos x + cos x
Now, f’ (x) = 0
⇒ 2 sin x cos x = cos x
⇒ 2 sin x cos x – cos x = 0
⇒ cos x (2 sin x – 1) = 0
⇒ sin x = – or cos x = 0
⇒ x = \(\frac{\pi}{6}\) or \(\frac{\pi}{2}\) as x ∈ [0, π]
Now, evaluating the value of f at critical points x = \(\frac{\pi}{2}\) and x = \(\frac{\pi}{6}\) and at
the end points of the interval [0, π] (i.e., at x = 0 and x = π), we have

f(\(\frac{\pi}{6}\)) = cos2 \(\frac{\pi}{6}\) + sin \(\frac{\pi}{6}\)
= \(\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{5}{4}\)

f(0) = cos2 0 + sin 0
= 1 + 0 = 1

f(π) = cos2 π + sin π
= (- 1)2 + 0 = 1

f(\(\frac{\pi}{2}\)) = cos2 \(\frac{\pi}{2}\) + sin \(\frac{\pi}{2}\)
= 0 + 1 = 1

Hence, the absolute maximum value of f is \(\frac{5}{4}\) occurring at x = \(\frac{\pi}{6}\) and the absolute minimum value of f is 1 occurring at x = 0, \(\frac{\pi}{2}\) and π.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 15.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r, is -.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 11

Let R be the radius and h be the height of cone.
∴OA = h – r
In ∆OAB, r2 = R2 + (h – r)2
⇒ r2 = R2 + h2 + r2 – 2rh
⇒ R2 = 2rh – h2
The volume V of the cone is given by V = \(\frac{1}{3}\) πR2h
= \(\frac{1}{3}\) πh (2rh – h2)

= \(\frac{1}{3}\) π (2rh2 – h3)

On differentiating w.r.t. h, we get
\(\frac{d V}{d h}\) = \(\frac{1}{3}\) π (4rh – 3h2)

For maximum or minimum put \(\frac{d V}{d h}\) = 0
⇒ 4rh = 3h2
⇒ 4r = 3h
∴ h = \(\frac{4 r}{3}\) (h ≠ 0)

Now, \(\frac{d^{2} V}{d h^{2}}\) = \(\frac{1}{3}\) π (4r – 6h)

At h = \(\frac{4 r}{3}\),

\(\left(\frac{d^{2} V}{d h^{2}}\right)_{h=\frac{4 r}{3}}\) = \(\frac{1}{3}\) π (4r – 6 × \(\frac{4 r}{3}\))

= \(\frac{pi}{3}\) (4r – 8r) = \(\frac{-4 r \pi}{3}\) < 0 ⇒ V is maximum when h = \(\frac{4 r}{3}\) Hence, volume of the cone is maximum when h = \(\frac{4 r}{3}\), which is the altitude of cone. Question 16. Let f be a function defined on [a, b] such that f'(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Solution.
Given, f'(x) > 0 on (a, b)
f is a differentiable function on (a, b).
Also, every differentiable function is continuous, therefore, f is continuous on (a, b).
Let x1, x2 ∈ [a, b] and x2 > x1; then by LMV theorem, there exist c ∈ [a, b] such that

f'(c) = \(\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\)
⇒ f(x2) – f(x1) = (x2 – x1) f'(c)
⇒ f(x2) – f(x1) > 0 as x2 > x1 and f'(x) > 0
⇒ f(x2) > f(x1)
For x1 < x2
⇒ f(x1) < f(x2)
Hence, f is an increasing function on (a, b).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 17.
Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R, is . Also, find the maximum volume.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 12

Radius of the sphere = R
Let h be the height and x be the diameter of the base of the inscribed cylinder Then.
h2 + x2 = (2R)2
⇒ h2 + x2 = 4R2 …………(i)
Volume of the cylinder = π (radius)2 × height

⇒ V = π (\(\frac{x}{2}\))2 . h
= \(\frac{1}{4}\) πx2h
⇒ V = \(\frac{1}{4}\) πh(4R2 – h2) …………(ii)
[From Eq. (i), x2 = 4R2 – h2]

⇒ V = πR2h – \(\frac{1}{4}\) πh3
On differentiating w.r.t h, we get
\(\frac{d V}{d h}\) = πR2h – \(\frac{3}{4}\) πh2
= π (R2 – \(\frac{3}{4}\) h2)

Put \(\frac{d V}{d h}\) = 0
⇒ R2 = \(\frac{3}{4}\) h2
⇒ h = \(\frac{2 R}{\sqrt{3}}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 14

Thus, volume of the cylinder is maximum when h = \(\frac{2 R}{\sqrt{3}}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 18.
Show that height of the cylinder of greatest volume which can be inscribed in a circular cone of height h and having
semi-vertical angle a is one-third that of one cone and the
greatest volume of cylinder Is ida3 tan2 a.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 15

Let VAR be the cone of height h, semi-vertical angle a and let x be the radius of the base of the cylinder A’ B’ DC which is inscribed in the cone VAB.
Then, OO’ is the height of the cylinder = VO – VO’ = h – x cot α
Volume of the cylinder,
V = πx2 (h – x cot α) ………………(i)
On differentiating w.r.t. x, we get
\(\frac{d V}{d x}\) = 2πrh – 3πx2 cot α
For maxima or minima put \(\frac{d V}{d x}=\)= 0
⇒ 2πxh – 3πx2 cot α = 0

⇒ x = \(\frac{2 h}{3}\) tan α (∵ x ≠ 0)

Now, \(\frac{d^{2} V}{d x^{2}}\) = 2πh – 6π x cot α

At x= \(\frac{2 h}{3}\) tan α,

\(\frac{d^{2} V}{d x^{2}}\) = π (2h – 4h) = – 2πh < 0

Now, OO’ = h – x cot α = h – \(\frac{2 h}{3}\) = \(\frac{h}{3}\)

∴ The maximum volume of the cylinder is V = π (\(\frac{2 h}{3}\) tan α)2 (h – \(\frac{2 h}{3}\))

= \(\frac{4}{27}\) πh3 tan2 α.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Direction (19 – 24):
Choose the correct answer.

Question 19.
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic meter per hour. Then the depth of the wheat is increasing at the rate of
(A) 1 m/h
(B) 0.1 m/h
(C) 1.1 m/h
(D) 0.5 m/h
Solution.
Let r be the radius of the cylinder.
Then, volume (V) of the cylinder is given by,
V = π (radius)2 × height
= π (10)2 h (radius = 10 m)
= 100 πh
On differentiating w.r.t. t, we get
\(\frac{d V}{d t}\) = 100 π \(\frac{d h}{d t}\)
The tank is being filled with wheat at the rate of 314 cubic metres per hour.
\(\frac{d V}{d t}\) = 314 m3/h

Thus, we have
314 = 100π \(\frac{d h}{d t}\)

⇒ \(\frac{d h}{d t}\) = \(\frac{314}{100(3.14)}=\frac{314}{314}\) = 1

Hence, the depth of wheat is increasing at the rate of 1 m / h.
The correct answer is (A).

Question 20.
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, – 1) is
(A) \(\frac{22}{7}\)

(B) \(\frac{6}{7}\)

(C) \(\frac{7}{6}\)

(D) \(\frac{-6}{7}\)
Solution.
The given curve is x = t2 + 3t – 8 and y = 2t2 – 2t – 5
∴ \(\frac{d x}{d t}\) = 2t + 3 and

\(\frac{d y}{d t}\) =4t – 2

∴ \(\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{4 t-2}{2 t+3}\)

The given point is (2, – 1)
At x = 2, we have r2+3r-8=2
⇒ t2 + 3t – 10 = 0
⇒ (t – 2) (t + 5) = 0
⇒ t = 2 or t = – 5
At y = – 1, we have
⇒ 2t2 – 2t – 4 = 0
⇒ 2 (t2 – t – 2) = 0
⇒ t = 2 or t = – 1
The common value oft is 2.
Hence, the slope of the tangent to the given curve at point (2, – 1) is

\(\left[\frac{d y}{d x}\right]_{t=2}=\frac{4(2)-2}{2(2)+3}=\frac{8-2}{4+3}=\frac{6}{7}\)
The correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 21.
The line y = mx + 1 is a tangent to the curve y2 = 4# if the value of m is
(A) 1
(B) 2
(C) 3
(D) \(\frac{1}{2}\)
Solution.
The equation of the tangent to the given curve is y = mx + 1.
Now, substituting y = mx + 1 in y2 = 4x, we get
⇒ (mx + 1)2 = 4x
⇒ m2x2 +1 + 2mx – 4x = 0
⇒ m2x2 + x (2m – 4) + 1 = 0 …………….(i)
Since a tangent touches the curve at one point, the roots of equation (i) must be equal.
Therefore, we have
Discriminant = 0
⇒ (2m – 4)2 – 4(m2) (1) = 0
⇒ 4m2 + 16 – 16m – 4m2 = 0
⇒ 16 – 16m = 0
⇒ m = 1
Hence, the required value of m is 1.
The correct answer is A.

Question 22.
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x – y = 0
(C) x + y + 1 = 0
(D) x – y = 0
Solution.
The equation of the given curve is 2y + x2 = 3

\(\frac{2 d y}{d x}\) + 2x = 0

\(\frac{d y}{d x}\) = – x

Slope of the normal to the given curve at point (1, 1) is \(\frac{-1}{\left[\frac{d y}{d x}\right]_{(1,1)}}=\frac{-1}{-1}\) = 1
Hence, the equation of the normal to the given curve at (1, 1) is given as
⇒ y – 1 = 1 (x – 1)
⇒ y – 1 = x – 1
⇒ x – y = 0
The correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 23.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x – y = 3
(C) x + y = 1
(D) x – y = 1
Solution.
The equation of the given curve is x = 4y
Differentiating w.r.t x, we get
2x = 4 \(\frac{d y}{d x}\)

∴ \(\frac{d y}{d x}=\frac{2 x}{4}=\frac{x}{2}\) = slope of the tangent
∴Slope of the normal = (- 1) / slope of tangent
∴ Equation of normal at (x1, y1) is
y – y1 = (x – x1) ……………..(i)
It passes through (1, 2), therefore
2 – y1 = – \(\frac{2}{x_{1}}\) (1 – x1)
⇒ 2x1 – x1y1 = – 2 + 2x1
x1y1 = 2
or y1 = \(\frac{2}{x_{1}}\) …………(ii)
The point (x1, y1) lies on x2 = 4y
x12 = 4y1 ……………(iii)
From Eqs. (i) and (iii), we get
x12 = 4 . \(\frac{2}{x_{1}}\)
∴ x13 = 8
x1 = 2
From Eq. (iii), 4 = 4y1
∴ y1 = 1
Putting these values in Eq. (i), we get
y – 1 = – \(\frac{2}{24}\) (x – 2)
y – 1 = – x + 2
⇒ x + y = 3
The correct answer is (A).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 24.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A) (4, ± \(\frac{8}{3}\))

(B) (4, – \(\frac{8}{3}\))

(C) (4, ± \(\frac{3}{8}\))

(D)(± 4, \(\frac{3}{8}\))
Solution.
The equation of the given curve is 9y2 = x3
Differentiating w.r.t. x, we get
18 y \(\text { dy }\) = 3x2

⇒ \(\frac{d y}{d x}=\frac{x^{2}}{6 y}\)

Let P(x1, y1) be the point where normal is drawn
Slope of tangent = \(\frac{x_{1}^{2}}{6 y_{1}}\)

∴ Slope of normal = \(\frac{6 y_{1}}{x_{1}^{2}}\)

Normal make equal intercepts on the curve
∴ Its slope = ± 1
– \(\frac{6 y_{1}}{x_{1}^{2}}\) = ± 1
⇒ 6y1 = ± x12 ……………..(i)
(x1, y1)lies on the curve 9y2 = x3
⇒ 9y12 = x13 …………..(ii)
Taking +ve sign, eliminating y1 from Eq. (1) and Eq. (ii),
9 \(\left(\frac{x_{1}^{2}}{6}\right)^{2}\) = x13
⇒ \(\frac{9 x_{1}^{4}}{36}\) = x13
⇒ x1 = 4
From Eq. (i),
y1 = ± \(\frac{x_{1}^{2}}{6}=\pm \frac{16}{6}\)[Putting x = 4]
= ± \(\frac{8}{3}\)
∴ The point P is (4, ± \(\frac{8}{3}\))
The correct answer is (A).

PSEB 12th Class Hindi Book Solutions | PSEB 12th Class Hindi Guide

Punjab State Board Syllabus PSEB 12th Class Hindi Book Solutions Guide Pdf is part of PSEB Solutions for Class 12.

PSEB 12th Class Hindi Guide | Hindi Guide for Class 12 PSEB

Hindi Guide for Class 12 PSEB | PSEB 12th Class Hindi Book Solutions

प्राचीन काव्य

आधुनिक काव्य

निबन्ध भाग

कहानी भाग

एकांकी भाग

हिन्दी साहित्य का इतिहास

PSEB 12th Class Hindi Book Vyakaran व्याकरण

व्यावहारिक व्याकरण

PSEB 12th Class Hindi Book Rachana रचना-भाग

PSEB 12th Class Hindi Structure of Question Paper

कक्षा – बारहवीं (पंजाब)
विषय – हिंदी

समय : 3 घंटे

पूर्णांक लिखित : 80

नोट – (i) 05 अंक सुंदर लिखाई के लिए निर्धारित किए गए हैं। अक्षरों व शब्दों के सामान्य आकार, अक्षरों की सुस्पष्टता, अक्षरों व शब्दों के बीच की निश्चित दूरी, लिखने में एकसारता व प्रवाहयुक्त लेखन आदि के आधार पर अध्यापक परीक्षार्थी को लिखाई का मूल्यांकन करेगा।

  • प्रश्न-पत्र में कुल 15 प्रश्न होंगे।
  • सभी प्रश्न हल करने अनिवार्य होंगे।
  • प्रश्न-पत्र के छह भाग (क से च तक) होंगे।

भाग – क : अति लघूत्तर प्रश्न (वस्तुनिष्ठ प्रश्न) (20 Marks)

प्रश्न 1. में (i) से (x) तक वस्तुनिष्ठ प्रश्न पूछे जायेंगे। प्रत्येक प्रश्न एक अंक का होगा। ये प्रश्न एक शब्द से एक वाक्य तक के उत्तर वाले अथवा हां/नहीं अथवा रिक्त स्थानों की पूर्ति करो अथवा सही/गलत अथवा बहुवैकल्पिक उत्तरों वाले, किसी भी प्रकार के हो सकते हैं।

  • (i – iv) तक समास (अव्ययीभाव, तत्पुरुष, बहुब्रीहि तथा द्वंद्व) से संबंधित चार वस्तुनिष्ठ प्रश्न पूछे जायेंगे। (4 × 1 = 4)
  • (v – vi) पद परिचय से संबंधित दो वस्तुनिष्ठ प्रश्न पूछे जाएंगे। (2 × 1 = 2)
  • (vii – xi) तक पाठ्य-पुस्तक (हिंदी पुस्तक-12) में से पाँच वस्तुनिष्ठ प्रश्न पूछे जायेंगे। (5 × 1 = 5)
  • (xii – xvi) तक हिंदी साहित्य का इतिहास (रीतिकाल एवं आधुनिक काल) में से पाँच वस्तुनिष्ठ प्रश्न पूछे जायेंगे। (5 × 1 = 5)
  • (xvii – xviii) छंद से संबंधित दो वस्तुनिष्ठ प्रश्न पूछे जाएंगे। (2 × 1 = 2)
  • (xvii – xviii) अलंकार से संबंधित दो वस्तुनिष्ठ प्रश्न पूछे जाएंगे। (2 × 1 = 2)

भाग – ख (पाठ्य-पुस्तक) (23 Marks)

प्रश्न 2. (i) हिंदी पुस्तक-12 में संकलित ‘प्राचीन काव्य’ में से दो पद्यांश दिये जायेंगे जिनमें से एक पद्यांश की सप्रसंग व्याख्या लिखने के लिये कहा जायेगा। प्रसंग के लिये 1 अंक तथा व्याख्या के लिये 3 अंक निर्धारित हैं। (1 + 3 = 4)

(ii) हिंदी पुस्तक-12 में संकलित ‘आधुनिक काव्य’ में से दो पद्यांश दिये जायेंगे जिनमें से एक पद्यांश की सप्रसंग व्याख्या लिखने के लिये कहा जायेगा। प्रसंग के लिये 1 अंक तथा व्याख्या के लिये 3 अंक निर्धारित हैं। (1 + 3 = 4)

प्रश्न 3. ‘प्राचीन काव्य’ तथा आधुनिक काव्य की विषय वस्तु से संबंधित दो लघूत्तर प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 50 शब्दों में लिखने के लिए कहा जायेगा। (2½)

प्रश्न 4. पाठ्य-पुस्तक में संकलित गद्य भाग की विषय वस्तु से संबंधित तीन निबंधात्मक प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 80 शब्दों में लिखने के लिये कहा जायेगा। (5)

नोट : प्रश्न-पत्र निर्माता पाठ्य-पुस्तक में संकलित गद्य भाग (निबंध, कहानी एवं एकाँकी) की सर्भ विधाओं को पूर्ण प्रतिनिधित्व दे।

प्रश्न 5. पाठ्य-पुस्तक में संकलित ‘निबंध’ भाग में से दो लघूत्तर प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 50 शब्दों में लिखने के लिये कहा जायेगा। (2½)

प्रश्न 6. पाठ्य-पुस्तक में संकलित ‘कहानी’ भाग में से दो लघूत्तर प्रश्न पूछे जायेंगे जिनमें से एक का उत्तर लगभग 50 शब्दों में लिखने के लिये कहा जायेगा। (2½)

प्रश्न 7. पाठ्य-पुस्तक में संकलित ‘एकाँकी’ भाग में से दो लघूत्तर प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 50 शब्दों में लिखने के लिये कहा जायेगा। (2½)

भाग – ग : हिंदी साहित्य का इतिहास (रीतिकाल एवं आधुनिक काल) (8 अंक)

प्रश्न 8. इस प्रश्न में हिंदी साहित्य के ‘रीतिकाल’ की प्रमुख परिस्थितियों, प्रमुख प्रवृत्तियों एवं प्रमुख कवियों से संबंधित दो निबंधात्मक प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 70-80 शब्दों में लिखने के लिये कहा जायेगा। (4)

प्रश्न 9. इस प्रश्न में हिंदी साहित्य के ‘आधुनिक काल’ की प्रमुख परिस्थितियों, प्रमुख प्रवृत्तियों एवं प्रमुख कवियों से संबंधित दो निबंधात्मक प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लगभग 70-80 शब्दों में लिखने के लिये कहा जायेगा। (4)

भाग – घ (रचनात्मक लेखन) (7 अंक)

प्रश्न 10. यह प्रश्न निबंध रचना से संबंधित होगा। कोई चार विषय देकर उनमें से किसी एक विषय पर लगभग 230-250 शब्दों में निबंध लिखने के लिये कहा जायेगा। भूमिका के 2 अंक, विषय वस्तु के 4 अंक और उपसंहार के 1 अंक निर्धारित हैं। (2 + 4 + 1 = 7)

भाग – ङ (व्यावहारिक ज्ञान) (9 अंक)

प्रश्न 11. इस प्रश्न में लगभग 40-50 शब्दों का पंजाबी में एक गद्यांश दिया जायेगा जिसका अनुवाद हिंदी में लिखना होगा। (3)

प्रश्न 12. अंग्रेजी के पाँच पारिभाषिक शब्द दिए जायेंगे जिनमें से किन्हीं तीन शब्दों के हिंदी रूप लिखकर वाक्यों में प्रयोग करने के लिए कहा जायेगा। (3)

प्रश्न 13. विज्ञापन और सूचना से संबंधित दो प्रश्न पूछे जायेंगे जिनमें से एक प्रश्न का उत्तर लिखने के लिये कहा जायेगा। (3)

भाग – च (छंद एवं अलंकार) (8 अंक)

प्रश्न 14. कोई दो छंद देकर किसी एक छंद का लक्षण एवं उदाहरण लिखने के लिये कहा जायेगा। (1 + 3 = 4)

प्रश्न 15. कोई दो अलंकार देकर किसी एक अलंकार की परिभाषा एवं उदाहरण लिखने के लिये कहा जायेगा। (1 + 3 = 4)

आंतरिक मूल्यांकन (20 अंक)

आंतरिक मूल्यांकन की रूपरेखा

1. भाषायी कौशलों का मूल्यांकन (12 अंक)

  • श्रवण कौशल (3)
  • वाचन कौशल (3)
  • पठन कौशल (3)
  • लेखन कौशल (3)

2. पुस्तक बैंक (2 अंक)
विद्यार्थी द्वारा स्कूल के पुस्तकालय में हिंदी विषय की पुस्तकों के संग्रह में योगदान देने के आधार पर मूल्यांकन किया जाए। स्कूल में बने पुस्तक बैंक में समय पर पुस्तकें जमा करवाने व पुस्तकों का रखरखाव करने आदि के आधार पर मूल्यांकन किया जाए।

3. परियोजना कार्य : (6 अंक)
इसके अंतर्गत निर्धारित पाठ्यक्रम के आधार पर अध्यापक द्वारा विद्यार्थियों को परियोजना तैयार करने को कहा जाएगा, जिसका मार्गदर्शन अध्यापक करेगा। विद्यार्थी परियोजना लिखते समय उसे रुचिपूर्ण बनाने के लिए चित्रों का प्रयोग कर सकता है। इसके अंक निम्नलिखित प्रकार से निर्धारित होंगे। विषय वस्तु की समझ एवं प्रस्तुतिकरण (2 + 4 = 6)

PSEB 12th Class Hindi Syllabus

कक्षा – बारहवीं (पंजाब)
विषय – हिंदी
समय : 3 घंटे

पूर्णांक (लिखित) = 75 + 5 (सुंदर लिखाई) = 80
आंतरिक मूल्यांकन : 20

विषय-वस्तु अंक
भाग – क : अति लघूत्तर प्रश्न (वस्तुनिष्ठ प्रश्न) 20
समास (अव्ययीभाव, तत्पुरुष, बहुब्रीहि तथा द्वंद्व)
पाठ्य-पुस्तक
हिंदी साहित्य का इतिहास (रीतिकाल एवं आधुनिक काल)
छंद
अलंकार
भाग – ख : पाठ्य-पुस्तक (हिंदी पुस्तक-12) 23
भाग – ग : हिंदी साहित्य का इतिहास (रीतिकाल एवं आधुनिक काल) 8
भाग – घ : रचनात्मक लेखन : निबंध लेखन 7
भाग – ङ : व्यावहारिक ज्ञान 9
1. पंजाबी गद्यांश का हिंदी अनुवाद 3
2. पारिभाषिक शब्दावली (J से लेकर Z तक) 3
3. विज्ञापन लेखन, सूचना लेखन 3
भाग-च : छन्द एवं अलंकार 8
1. छंद (दोहा, सोरठा, सवैया, कवित्त, चौपाई) 4
2. अलंकार (अनुप्रास, उपमा, रूपक, यमक, श्लेष)। 4

PSEB 12th Class Environmental Education Book Solutions Guide in Punjabi English Medium

Punjab State Board Syllabus PSEB 12th Class Environmental Education Book Solutions Guide Pdf in English Medium & Punjabi Medium & Hindi Medium are part of PSEB Solutions for Class 12.

PSEB 12th Class Environmental Education Guide | Environmental Education Guide for Class 12 PSEB in English Medium

PSEB 12th Class Environmental Education Book Solutions in Punjabi Medium

PSEB 12th Class Physical Education Book Solutions Guide in Punjabi English Medium

PSEB 12th Class Physical Education Book Solutions Guide in Punjabi English Medium

Punjab State Board Syllabus PSEB 12th Class Physical Education Book Solutions Guide Pdf in English Medium & Punjabi Medium & Hindi Medium are part of PSEB Solutions for Class 12.

PSEB 12th Class Physical Education Guide | Health and Physical Education Guide for Class 12 PSEB

PSEB 12th Class Physical Education Book Solutions in English Medium

PSEB 12th Class Physical Education Practical in English Medium

PSEB 12th Class Physical Education Book Solutions in Punjabi Medium

PSEB 12th Class Physical Education Practical in Punjabi Medium

PSEB Class 12 Physical Education Syllabus

Class – XII
Physical Education and Sports

Theory

1. Physical Fitness
2. Sport Training
3. Careers in Physical Education and Sports Awards
4. Sport Injuries
5. Disability
6. Sociological and Psychological Aspects of Physical Education

Practicals

(A) Track and field events (Common for boys and girls)
Any two events can be opted.
Sprints – 100 m, 200 m, 400 m, 800 m, 3000 m.

1. 110 m Hurdles for Boys (Hurdle should be 96.4 cm high and ten heights) 100 m hurdle for girls (Hurdle should be 76.2 cm high and eight heights) relay race 4 × 100 m (for boys), 4 × 100 m (for girls).

2. Hammer throw, Discus throw, Javelin throw, Shot- put, Long jump, High jump, Triple jump, Pole vault.

(B) Any two games can be opted. Games (for boys and girls)
Group 1 – Cricket, Kho Kho, Wrestling, Swimming, Lawantennis.
Group 2 – Hockey, Badminton, Soft ball, Judo, Wieght lifting.

(C) Achievements in Sports – Zonal Representation, Distt. Representation, State Representation, National Representation

(D) Practical Copy, Chart or Model

(E) Viva Voce

Note: At the time of practical the student must be in the sports kit.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 6 Application of Derivatives Ex 6.5 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 6 Application of Derivatives Ex 6.5

Question 1.
Find the maximum and minimum values, if any, of the following functions given by
(i) = (2x – 1)2 + 3
(ii) f(x) = 9x2 + 12x + 2
(iii) f(x) = – (x – 1)2 + 10
(iv) g(x) = x3 + 1
Solution.
(i) The given function is f(x) = (2x – 1)2 + 3.
It can be observed that (2x – 1)2 ≥ 0 for every x ∈ R.

Therefore, f(x) = (2x – 1)2 + 3 ≥ 3 for every x ∈ R.
The minimum value of f is attained when 2x – 1 = 0
⇒ x = \(\frac{1}{2}\)
∴ Minimum value of f = f(\(\frac{1}{2}\))
= (2 . \(\frac{1}{2}\) – 1)2 + 3 = 3
Hence, function f does not have a maximum value.

(ii) The given function is f(x) = 9x2 + 12x + 2
= (3x + 2)2 – 2
It can be observed that (3x + 2)2 ≥ 0 for every x ∈ R.
Therefore, f(x) = (3x + 2)2 – 2 ≥ – 2 for every x ∈ R.
The minimum value of f is attained when 3x +2 = 0
⇒ x = \(\frac{-2}{3}\)
∴ Minimum value of f = f(\(\frac{-2}{3}\))= (3 . (\(\frac{- 2}{3}\)) + 2)2 – 2 = – 2.
Hence, function f does not have a maximum value.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(iii) The given function is f(x) = -(x – 1)2 + 10.
It can be observed that (x – 1)2 ≥ 0 for every x ∈ R.
Therefore, f(x) = – (x – 1)2 + 10 ≤ 10 for every x ∈ R.
The minimum value off is attained when (x – 1) = 0
⇒ x = 1
∴ Minimum value of f = f(1) = -(1 – 1)2 + 10 = 10
Hence, function f does not have a minimum value.

(iv) The given function is g(x) = x3 + 1.
We observe that the value of f(x) increases when the value of x increases and f(x) can be made as large as we please by giving large value to x. So, f(x) does not have the maximum value.
Similarly, f(x) can be made as small as we please by giving smaller values of x.
So, f(x) does not have the minimum value.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 2.
Find the maximum and minimum values, if any, of the following functions given by
(i) f(x) = |x + 2| – 1
(ii) g(x) = – |x + 1| + 3
(iii) h(x) = sin (2x) + 5
(iv) f(x) = |sin 4x| + 3|
(v) h(x) = x + 1, x e (-1, 1)
Solution.
(i) Given, f(x) = |x + 2 | – 1
We know that, | x + 2 | ≥ 0 for every x ∈ R.
Therefore, f(x) = |x + 2| – 1 ≥ – 1 for every x ∈ R.
The minimum value of / is attained when | x + 2| = 0
⇒ x = – 2
∴ Minimum value of f = f(- 2) = = |- 2 + 2| – 1 = – 1
Hence, function f does not have a maximum value.

(ii) Given, g(x) = – | x + 1| + 3
We know that -| x + 1| < 0 for every x ∈ R.
Therefore, g(x) = -|x + 1| + 3 ≤ 3 for every x ∈ R.
The maximum value of g is attained when |x + 1| = 0
⇒ x = – 1
∴ Maximum value of g = g(- 1) = -|- 1 + 1| + 3 = 3
Hence, function g does not have a minimum value.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(iii) Given, h(x) = sin 2x + 5
We know that, – 1 ≤ sin 2x ≤ 1
⇒ – 1 + 5 ≤ sin 2x + 5 ≤ 1 + 5
⇒ 4 ≤ sin 2x + 5 ≤ 6
Hence, the maximum and minimum values of h are 6 and 4, respectively.

(iv) Given,f(x) = |sin 4x + 3|
We know that, – 1 < sin 4x < 1
⇒ 2 ≤ sin 4x + 3 ≤ 4
2 ≤ |sin 4x + 3| ≤ 4
Hence, the maximum and minimum values of f are 4 and 2, respectively.

(v) h(x) = x + 1, x ∈ (- 1, 1)
Here, if a point x0 is closest to – 1, then we find \(\frac{x_{0}}{2}\) + 1 < x0 ∈ (- 1, 1).
Also, if x1 is closest to 1, then
x1 + 1 < \(\frac{x_{1}+1}{2}\) + 1 for all x1 ∈ (- 1, 1).
Hence, function h(x) has neither maximum nor minimum value in (- 1, 1).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 3.
Find the local maxima and local minima, if any, of the following functions, Find also the local maximum and the local minimum values, as the case may be :
(i) f(x) = x2
(ii) g(x) = x3 – 3x
(iii) h(x) = sin x + cos x, 0 < x < \(\frac{\pi}{2}\)
(iv) f(x) = sin x – cos x, 0 < x < 2π
(v) f(x) = x3 – 6x2 + 9x + 15
(vi) g(x) = \(\frac{x}{2}+\frac{2}{x}\), x > 0
(vii) g(x) = \(\frac{1}{x^{2}+2}\)
(viii) f(x) = \(x \sqrt{1-x}\), x > 0
Solution.
(i) Given, f(x) = x2
⇒ f'(x) = 2x
Now, f'(x) = 0
⇒ x = 0
Thus, x = 0 is the only critical point which could possibly be the point of local maxima or local minima of f.
We have f”(0) = 2, which is positive.
Therefore, by second derivative test, x = 0 is a point of local minima and local minimum value of f at x = 0 is f(0) = 0.

(ii) Given, g(x) = x3 – 3x
⇒ g'(x) = 3x2 – 3
Now, g'(x) = 0
⇒ 3x2 = 3
⇒ x = ± 1
∴ g'(x) = 6x
⇒ g'(1) = 6 > 0
⇒ g'(- 1) = – 6 > 0
By second derivative test x = 1 is a point of local minima and local minimum value of g at x = 1 is
g(1) = 13 – 3
= 1 – 3 = – 2.
However, x = – 1 is a point of local maxima and local maximum value of g at x = – 1 is
g(- 1) = (- 1)3 – 3(- 1)
= – 1 + 3 = 2.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(iii) Given, h(x) = sinx + cos x, 0 < x < \(\frac{\pi}{2}\)
∴ h'(x) = – sin x – cos x = -(sin x + cos x)
h'(x) = 0
⇒ sin x = cos x
⇒ tan x = 1
⇒ x = \(\frac{\pi}{4}\) ∈ (0, \(\frac{\pi}{2}\))
h”(x) = – sin x – cos x
= – (sin x + cos x)
h(\(\frac{\pi}{4}\)) = – \(\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{2}{\sqrt{2}}=-\sqrt{2}<0\)
Therefore, by second derivative test, x = \(\frac{\pi}{4}\) is a point of local maxima and
and the local maximum value of h at x = \(\frac{\pi}{4}\) is h(\(\frac{\pi}{4}\)) = sin \(\frac{\pi}{4}\) + cos \(\frac{\pi}{4}\)
= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\) = √2.

(iv) f(x) = sin x – cos x, 0 < x < 2π
∴ f'(x) = cos x + sin x f'(x) = 0
⇒ cos x = – sin x ⇒ tan x = 1
⇒ x = \(\frac{3 \pi}{4}\), \(\frac{7 \pi}{4}\) ∈ (0, 2π)
f”(x) = – sin x + cos x f”(\(\frac{3 \pi}{4}\)) = \(-\sin \frac{3 \pi}{4}+\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}>0\)

f”(\(\frac{7 \pi}{4}\)) = \(-\sin \frac{7 \pi}{4}+\cos \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}>0\)

Therefore, by second derivative test, x = \(\frac{3 \pi}{4}\) is a point of local maxima and the local maximum value of f at x = \(\frac{3 \pi}{4}\) is
f(\(\frac{3 \pi}{4}\)) = sin \(\frac{3 \pi}{4}\) – cos \(\frac{3 \pi}{4}\)
= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\) = √2.

However, x = \(\frac{7 \pi}{4}\) is a point of local minima and the local minimum value of f at x = \(\frac{7 \pi}{4}\) is
f(\(\frac{7 \pi}{4}\)) = sin \(\frac{7 \pi}{4}\) – cos \(\frac{7 \pi}{4}\)
= \(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(v) Given, f(x) = x3 – 6x2 + 9x + 15
f'(x) = 3x2 – 12x + 9
f'(x) = 0
⇒ 3(x2 – 4x + 3) = 0
⇒ 3(x – 1) (x – 3) = 0
⇒ x = 1, 3
Now, f'(x) = 6x – 12 = 6 (x – 2)
f'(1) = 6(1 – 2) = – 6 < 0 ⇒ f'(3) = 6(3 – 2) = 6 > 0
Therefore, by second derivative test, x = 1 is a point of local maxima and the local maximum value of f at x = 1 is
f(1) = 1 – 6 + 9 + 15 = 19.
However, x = 3 is a point of local minima and the local minimum value of f at x = 3 is
f(3) = 27 – 54 + 27 + 15 = 15

(vi) Given, g(x) = \(\frac{x}{2}+\frac{2}{x}\), x > 0

∴ g'(x) = \(\frac{1}{2}-\frac{2}{x^{2}}\)

Now, g'(x) = 0 gives \(\frac{2}{x^{2}}=\frac{1}{2}\)
⇒ x2 = 4
⇒ x = ± 2
Therefore, by second derivative test, x = 2 is a point of local minima and the local minimum value of g at x = 2 is
g(2) = \(\frac{2}{2}+\frac{2}{2}\) = 1 + 1 = 2.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(vii) Given, g(x) = \(\frac{1}{x^{2}+2}\)

∴ g'(x) = \(\frac{-(2 x)}{\left(x^{2}+2\right)^{2}}\)
Now, g'(x) = 0
⇒ \(\frac{-2 x}{\left(x^{2}+2\right)^{2}}\) = 0
⇒ x = 0
Now, for values close to x = 0 and to the left of 0, g’(x) > 0.
Also, for values close to x = 0 and to the right of 0, g’(x) < 0.
Therefore, by first derivative test, x = 0 is a point of local maxima and the local maximum value of g(0) is \(\frac{1}{0+2}=\frac{1}{2}\).

(viii) Given, f(x) = x\(\sqrt{1-x}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 1

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 2

Therefore, by second derivative test, x = \(\frac{2}{3}\) is a point of local maxima and the local maximum value of f at x = \(\frac{2}{3}\) is
f(\(\frac{2}{3}\)) = \(\frac{2}{3} \sqrt{1-\frac{2}{3}}=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{3 \sqrt{3}}=\frac{2 \sqrt{3}}{9}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 4.
Prove that the following functions do not have maxima or minima:
(i) f(x) = ex
(ii) g(x) = log x
(iii) h(x) = x3 + x2 + x + 1
Solution.
(i) Given function is f(x) = ex
⇒ f'(x) = ex
Now, if f'(x) = 0, then ex = 0.
But, the exponential function can never assume 0 for any value of x. ,
Therefore, there does not exist c ∈ R such that f'(c) = 0.
Hence, function f does not have maxima or minima.

(ii) Given function is g(x) = log x
⇒ g'(x) = \(\frac{1}{x}\)
Since, log x is defined for a positive number x, g’ (x) > 0 for any x.
Therefore, there does not exist ce R such that g’ (c) = 0.
Hence, function g does not have maxima or minima.

(iii) Given function is h(x) = x3 + x2 + x + 1
⇒ h'(x) = 3x + 2x + 1
Now, h(x) = 0
⇒ 3x2 + 2x +1 = 0
⇒ x = \(\frac{-2 \pm 2 \sqrt{2} i}{6}=\frac{-1 \pm \sqrt{2} i}{3}\) ∉ R
Therefore, there does not exist c ∈ R such that h'(c) = 0.
Hence, function h does not have maxima or minima.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 5.
Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals :
(i) f(x) = x3, x ∈ [- 2, 2]
(ii) f(x) = sin x + cos x, x ∈ [0, π]
(iii) f(x) = 4x – \(\frac{1}{2}\) x2, x ∈ [- 2, \(\frac{9}{2}\)]
(iv) f(x) = (x – 1)2 + 3, x ∈ [- 3, 1]
Solution.
(i) The given function is f(x) = x3
∴ f'(x) = 3x2
Now, f(x) = 0
⇒ x = 0
Then, we evaluate the value of f at critical point x = 0 and at end points of the interval [- 2, 2].
∴ f(0) = 0; f(- 2) = (- 2) 3 = – 8; 012f(2) = (2)3 – 8
Hence, we can conclude that the absolute maximum value of f on [- 2, 2] is 8 occurring at x = 2.
Also, the absolute minimum value of f on [- 2, 2] is – 8 occurring at x = – 2.

(ii) The given function is f(x) = sin x + cos x.
f'(x) = cos x – sin x
Now, f'(x) = 0
⇒ sin x = cos x
⇒ tan x = 1
⇒ x = \(\frac{\pi}{4}\)
Then, we evaluate the value of f at critical point x = \(\frac{\pi}{4}\) and at the end points of the interval [0, π].

∴ f(\(\frac{\pi}{4}\)) = sin \(\frac{\pi}{4}\) + cos \(\frac{\pi}{4}\)
= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{2}}=\sqrt{2}\)

f(0) = sin 0 + cos 0 = 0 + 1 = 1
f(π) = sin π + cos π = 0 – 1 = – 1
Hence, we can conclude that the absolute maximum value of f on [0, π] is 2 occurring at x = \(\frac{\pi}{4}\) and the absolute minimum value of f on [0, π] is – 1 occurring at x = π.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

(iii) The given function is f(x) = 4x – \(\frac{1}{2}\) x2
f(x) = 4 – \(\frac{1}{2}\) (2x) = 4 – x
Now, f'(x) = 0
⇒ x = 4
Then, we evaluate the value of f at critical point x = 4 and at the end [- 2, \(\frac{9}{2}\)]
∴ f(4) = 16 – \(\frac{1}{2}\) (16) = 16 – 8 = 8

f(- 2) = – 8 – \(\frac{1}{2}\) (4) = – 8 – 2 = – 10

f(\(\frac{1}{2}\)) = \(4\left(\frac{9}{2}\right)-\frac{1}{2}\left(\frac{9}{2}\right)^{2}=18-\frac{81}{8}\)

= 18 – 10.125 = 7.875
Hence, we can conclude that the absolute maximum value of f on is 8 occurring at x = 4 and the absolute minimum value of f on – 10 occurring at x = – 2.

(iv) The given function is f(x) = (x – 1)2 + 3
∴ f'(x) = 2(x – 1)
Now, f'(x) = 0
⇒2 (x – 1) = 0
⇒ x = 1
Then, we evaluate the value of f at critical point x = 1 and at the end points of the interval [- 3, 1].
∴ f(1) = (1 – 1)2 + 3 = 0 + 3 = 3;
f(- 3) = (- 3 – 1)2 + 3 = 16 + 3 = 19
Hence, we can conclude that the absolute maximum value of / on [- 3, 1] is 19 occurring at x = – 3 and the minimum value of f on [- 3, 1] is 3 occurring at x = 1.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 6.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 – 72x – 18x2
Solution.
The profit function is given as p(x) = 41 – 72x – 18x2
On differentiating both sides w.r.t. x, we get
p'(x) = – 72 – 36x = – 36 (2 + x)
Again, differentiating both sides w.r.t. x, wt ,et
p”(x) = – 36
For maxima or minima, put p(x) = 0
⇒ – 36 (2 + x) = 0
⇒ x + 2 = 0
⇒x = – 2
At x = – 2, p'(-2) = – 36 < 0
∴ x = – 2 is a point of maxima.
Maximum profit, p(- 2) = 41 – 72 (- 2) – 81 (- 2)2
= 41 + 144 – 72 = 113
Hence, the maximum profit that a company can make, is 113 units.

Question 7.
Find both the maximum value and the minimum value of 3x4 – 8x3 + 12x2 – 48x + 25 on the interval [0, 3].
Solution.
Let f(x) = 3x4 – 8x3 + 12x2 – 48x + 25
⇒ f'(x) = 12x3 – 24x2 + 24x – 48
= 12 (x3 – 2x2 + 2x – 4)
= 12 (x2 (x – 2) + 2 (x – 2))
= 12(x – 2) (x2 + 2)
For maxima or minima put f'(x) = 0
12(x – 2) (x2 + 2) = 0
⇒ if x – 2 = 0 ⇒ x = 2 e [0, 3]
And if, x2 + 2 = 0
⇒ x2 = – 2
⇒x = √- 2
Hence, the only real root is x = 2 which is considered as critical point.
Now, we evaluate the value of f at critical point x = 2 and at the end point of the interval [0, 3].
At x = 2, f(2) = 3 × 24 – 8 × 23 + 12 × 22 – 48 × 2 + 25
= 48 – 64 + 48 – 96 + 25 = – 39

At x = 0, f(0) = 0 – 0 + 0 – 0 + 25 = 25
At x = 3, f(3) = 3 × 34 – 8 × 33 + 12 × 32 – 48 × 3 + 25
= 243 – 216 + 108 – 144 + 25 = 16
Hence, we can conclude that the absolute maximum value of f is 25 at x = 0 and the absolute minimum value of f is – 39 at x = 2.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 8.
At what points in the interval [0, 2π], does the function sin2x attain its maximum value?
Solution.
Let f(x) = sin 2x
⇒ f'(x) = 2 cos 2x
Now, f'(x) = 0
⇒ cos 2x = 0
⇒ 2x = \(\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}\)

⇒ x = \(\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\)

Then, we evaluate the value off at critical points x = \(\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\) and at the end points of the interval [0, 2π].
f(\(\frac{\pi}{4}\)) = sin \(\frac{\pi}{2}\) = 1;

f(\(\frac{3 \pi}{4}\)) = sin \(\frac{3 \pi}{2}\) = – 1;

f(\(\frac{5 \pi}{4}\)) = sin \(\frac{5 \pi}{2}\) = 1;

f(\(\frac{7 \pi}{4}\)) = sin \(\frac{7 \pi}{2}\) = – 1;

f(0) = sin 0 = 0;
f(2π) = sin 2π = 0
Hence, we can conclude that the absolute maximum value of f on [0, 2π] is occurring at x = \(\frac{\pi}{4}\) and x = \(\frac{5 \pi}{4}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 9.
What is the maximum value of the function sin x + cos x?
Solution.
Let f(x) = sin x + cos x
f”(x) = – sin x – cos x = – (sin x + cos x)
Now, f”(x) will be negative when (sin x + cos x) is positive i.e., when sin x and cos x are both positive.
Also, we know that, sin x and cos x both are positive in the first quadrant.
Then, f”(x) will be negative when x ∈ (0, \(\frac{\pi}{2}\))
Thus, we consider x = \(\frac{\pi}{4}\)

f”(\(\frac{\pi}{4}\)) = – (sin \(\frac{\pi}{4}\) + cos \(\frac{\pi}{4}\))

= –\(\left(\frac{2}{\sqrt{2}}\right)\) = – √2
∴ By second derivative test, f will be the maximum at x = \(\frac{\pi}{4}\) and the maximum value of f is
f(\(\frac{\pi}{4}\)) = sin \(\frac{\pi}{4}\) + cos \(\frac{\pi}{4}\)
= \(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\).

Question 10.
Find the maximum value of 2x3 – 24x + 107in the interval [1, 3]. Find the maximum value of the same function in [- 3, – 1].
Solution.
Let f(x) = 2x3 – 24x + 107
⇒ f(x) = 6x2 – 24
= 6(x2 – 4)
Now, f'(x) = 0
⇒ 6 (x2 – 4) = 0
⇒ x2 = 4
⇒ x = ± 2
We first consider the interval [1, 3]
Then, we evaluate the value of f at the critical point x = 2 ∈ [1, 3] and at the end points of the interval [1, 3].
f(2) = 2(8) – 24(2) +107 = 16 – 48 +107 = 75
f(1) = 2(1)-24(1)+ 107 = 2 – 24 +107 = 85
f(3) = 2(27) – 24(3) +107 = 54 – 72 +107 = 89
Hence, the absolute maximum value of f(x) in the interval [1, 3] is 89 occurring at x = 3.
Next, we consider the interval [- 3, – 1],
Evaluate the value of f at the critical point x = – 2 ∈ [- 3, – 1] and at the end points of the interval [1, 3].
f(- 3) = 2(- 27) – 24(- 3) +107 = – 54 + 72 +107 = 125
f(- 1) = 2(- 1) – 24(- 1) + 107 = – 2 + 24 +107 = 129
f(- 2) = 2(- 8) – 24(- 2) + 107 = – 16 + 48 +107 = 139
Hence, the absolute maximum value of f(x) in the interval [- 3, – 1] is 139 occurring at x = – 2.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 11.
It is given that at x = 1, the function x4 – 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Solution.
Let f(x) = x4 – 62x2 + ax + 9
f'(x) = 4x3 – 124x + a
It is given that function f attains its maximum value on the interval [0, 2] at x = 1.
∴ f'(1) = 0
⇒ 4 – 124 + a = 0
⇒ a = 120
Hence, the value of a is 120.

Question 12.
Find the maximum and minimum values of x + sin 2x on [0, 2π].
Solution.
Let f(x) = x + sin 2x
⇒ f'(x) = 1 + 2 cos 2x
Now, f'(x) = 0
⇒ cos 2x = – \(\frac{1}{2}\) = – cos \(\frac{\pi}{3}\)

= cos (π – \(\frac{\pi}{3}\))

= cos \(\frac{2 \pi}{3}\)

2x = 2n ± \(\frac{2 \pi}{3}\), n ∈ Z

x = nπ ± \(\frac{\pi}{3}\), n ∈ Z
⇒ x = \(\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\) ∈[0, 2π]

Then, we evaluate the value of f at critical points x = \(\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\) and at the end points of the interval [0, 2π],
∴ f(\(\frac{\pi}{3}\)) = \(\frac{\pi}{3}+\sin \frac{2 \pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}\);

f(\(\frac{2 \pi}{3}\)) = \(\frac{2 \pi}{3}+\sin \frac{4 \pi}{3}=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\);

f(\(\frac{4 \pi}{3}\)) = \(\frac{4 \pi}{3}+\sin \frac{8 \pi}{3}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}\);

f(\(\frac{5 \pi}{3}\)) = \(\frac{5 \pi}{3}+\sin \frac{10 \pi}{3}=\frac{5 \pi}{3}-\frac{\sqrt{3}}{2}\);
f(0) = 0 + sin 0 = 0;
f(2π) = 2π + sin 4π = 2π + 0 = 2π
Thus, maximum value is 2π at x = 2π and minimum value is 0 at x = 0.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 13.
Find two numbers whose sum is 24 and whose product is as large as possible.
Solution.
Let one number be x.
Then, the other number is (24 – x).
Let f(x) denote the product of the two numbers.
Thus, we have P(x) = x(24 – x) = 24x – x2
P'(x) = 24 – 2x;
P”(x) = – 2
Now, P’ (x) = 0
⇒ x =12
Also, P”(12) = – 2 < 0
By second derivative test, x = 12 is the point of local maxima of P.
Hence, the product of the number is the maximum when the numbers are 12 and 24 – 12 = 12.

Question14.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Solution.
The two numbers are x and y such that x + y – 60
⇒ y = 60 – x
Let f(x) = xy3
⇒ f(x) = x(60 – x)3
⇒ f'(x) = (60 – x)3 – 3x (60 – x)2
= (60 – x)2 [60 – x – 3x]
= (60 – x)2 (60 – 4x)
Also, f(x) = – 2 (60 – x) (60 – 4x) – 4 (60 – x)2
= – 2 (60 – x) [60 – 4x + 2(60 – x)]
= – 2 (60 – x) (180 – 6x)
= -12(60 – x) (30 – x)
Now, f'(x) = 0
⇒ x = 60 or x = 15
When, x = 60 then, f”(x) = 0
When x = 15, then f'(x) – 12(60 – 15) (30 – 15) = – 12 × 45 × 15 < 0 .
∴ By second derivative test, x = 15 is a point of local maxima of f.
Thus, function xy3 is maximum when x = 15 and y = 60 -15 = 45.
Hence, the required numbers are 15 and 45.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 15.
Find two positive numbers x and y such that their sum is 35 and the product x2zy5 is a maximum.
Solution.
Let one number be x. Then, the other number is y = (35 – x).
Let P(x) = x2y5, then
P(x) = x2 (35 – x)5
∴ P'(x) = 2x (35 – x)5 – 5x2 (35 – x)4
= x (35 – x)4 [2(35 – x) – 5x]
= x (35 – x)4 (70 – 7x)
= 7x (35 – x)44/sup> (10 – x)

And p”(x) = 7(35 – x)4 (10 – x) + 7x [- (35 – x)4 – 4(35 – x)3 (10 – x)]
= 7 (35 – x)4 (10 – x) – 7x (35 – x)4 – 28x (35 – x)3 (10 – x)
= 7 (35 – x)3 [(35 – x)(10 – x) – x(35 – x) – 4x(10 – x)]
= 7 (35-x)3 [350 – 45x + x2 – 35x + x2 – 40x + 4x2]
= 7 (35 – x)3 (6x2 – 120x + 350)
Now, P'(x) = 0
⇒ x = 0, x = 35, x = 10
When, x = 35, f'(x) = f(x) = 0 and y = 35 – 35 = 0.
This will make the product x2y5 equal to 0.
When x = 0, then y = 35 -0 = 35 and the product x2y2 will be 0.
∴ x = 0 and x = 35 cannot be the possible values of x.
When x = 10 then, we have
P'(x) = 7(35 – 10)3 (6 × 100 – 120 × 10 + 350)
= 7(25)3 (- 250) < 0
∴ By second derivative test, P(x) will be the maximum when x = 10 and y = 35 – 10 = 25.
Hence, the required numbers are 10 and 25.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 16.
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Solution.
Let one number be x.
Then, the other number is (16 – x).
Let the sum of the cubes of these numbers be denoted by S(x). Then, S(x) = x3 + (16 -x)3
∴ S'(x) = 3x2 – 3(16 – x)2;
S'(x) = 6x + 6(16 – x)
Now, S'(x) = 0
⇒ 3x2 – 3(16 – x)2 = 0
⇒ x2 – (16 – x)2 = 0
⇒ x2 – 256 – x2 + 32x = 0
⇒ x =\(\frac{256}{32}\) = 8
Now, S'(8) = 6(8) + 6(16 -8) = 48 + 48 = 96 > 0.
By second derivatives test, x = 8 is the point of local minima of S.
Hence, the sum of the cubes of the numbers is the minimum when the numbers are 8 and 16 – 8 = 8.

Question 17.
A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 3

Let the side of the square to be cut-off be x cm (0 < x < 9).
Then, the length and the breadth of the box will be (18 – 2x) cm each and the height of the box is x cm.
Let V the volume of the open box formed by folding up the flaps, then
V = x (18 – 2x) (18 – 2x)
= 4x (9 – x)2
= 4x (81 + x2 – 18x)
= 4(x3 – 18x2 + 81x)
On differentiating twice w.r.t. x, we get
\(\frac{d V}{d x}\) = 4(3x2 – 36x + 81)
= 12(x2 – 12x+27)
and \(\frac{d^{2} V}{d x^{2}}\) = 12 (2x – 12) = 24 (x – 6)
For maxima put \(\frac{d V}{d x}\) = 0
⇒ 12(x – 12x + 27) = 0
⇒ x2 – 12x + 27 = 0
⇒ (x – 3) (x – 9) = 0
⇒ x = 3, 9
But x = 9 is not possible,
∵ 2x = 2 × 9 = 18
Which is equal to side of square piece.
At x = 3,
\(\left(\frac{d^{2} V}{d x^{2}}\right)_{x=3}\) = 24 (3 – 6) = – 72 < 0

∴ By second derivative test, x = 5 is the point of maxima.
Hence, the side of the square to be cut-off to make the volume of the box maximum possible is 5 cm.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 18.
A rectangular sheet of tin 45cm by 24cm is to be made into a box without top, by cutting off square from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 4

Let the side of the square to be cut off be x cm.
Then, the height of the box is x, the length is 45 – 2x and the breadth is 24 f'(x) 2x.
Let V be the corresponding volume of the box then,
V = x (24 – 2x) (45 – 2x)
V = x (4x2 – 138x + 1080)
=4x3 – 138 x2 + 1080x
On differentiating twice w.r.t. x,

\(\frac{d V}{d x}\) = 12x2 – 276x + 1080

\(\frac{d^{2} V}{d x^{2}}\) = 24x – 276
For maxima put \(\frac{d V}{d x}\) = o
⇒ 12x2 – 276x + 1080 = 0
⇒ x2 – 23x + 90 = 0
= (x – 18) (x – 5) = 0
⇒ x = 5, 18
It is not possible to cut-off a square of side 18 cm from each corner of the rectangular sheet.
Thus, x cannot be equal to 18.
At x = 5,
\(\left(\frac{d^{2} V}{d x^{2}}\right)_{x=5}\) = 24 × 5 – 276
= 120 – 276
= – 156 < 0
∴ By second derivative test, x = 5 is the point of maxima.
Hence, the side of the square to be cut-off to make the volume of the box maximum possible is 5 cm.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 19.
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Solution.
Let a rectangle of length l and breadth b be inscribed in the given circle of radius a.
Then, the diagonal passes through the centre and is of length 2a cm.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 5

Now, by applying the Pythagoras theorem, we have (2 a)2 = l2 + b2
⇒ b2 = 4 a2 – l2
⇒ b = \(\sqrt{4 a^{2}-l^{2}}\)
∴ Area of rectangle, A = l \(\sqrt{4 a^{2}-l^{2}}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 6

∴ By the second derivative test, when l = √2a then the area of the rectangle is the maximum.
Since, l = b = √2a, therefore the rectangle is a square.
Hence, it has been proved that of all the rectangles inscribed in the given fixed circle the square has the maximum area.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 20.
Show that th right circular cylinder of given surface and maximum volume Is such that its heigh is equal to the diameter of the base.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 7

Let r and h be the radius and height of the cylinder, respectively.
Then, the surface area (S) of the cylinder is given by
S = 2πr2 + 2πrh
⇒ h = \(\frac{S-2 \pi r^{2}}{2 \pi r}=\frac{S}{2 \pi}\left(\frac{1}{r}\right)-r\)

Let V be the volume of the cylinder. Then,

V = πr2h
= πr2 \(\left[\frac{S}{2 \pi}\left(\frac{1}{r}\right)-r\right]=\frac{S r}{2}-\pi r^{3}\)

On differentiating w.r.t. x, we get
\(\frac{d V}{d r}=\frac{S}{2}-3 \pi r^{2}\)

For maxima or mmima put \(\frac{d V}{d r}\) = 0
\(\frac{S}{2}\) = 3πr2
r2 = \(\frac{S}{6 \pi}\)

Now, \(\frac{d^{2} V}{d r^{2}}\) = – 6π \(\left(\sqrt{\frac{S}{6 \pi}}\right)\) < 0

∴ By second derivative test, the volume is the maximum when r2 = \(\frac{S}{6 \pi}\).

Now, when r2 = \(\frac{S}{6 \pi}\), then h = \(\frac{6 \pi r^{2}}{2 \pi}\left(\frac{1}{r}\right)\) – \(\frac{1}{r}\) = 3r – r = 2r.
Hence, the volume is the maximum when the height is twice the radius si.e., when the height is equal to the diameter.

Question 21.
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic cm, find the dimensions of the can which has the minimum surface area?
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 15

 

Let r and h be the radius and height of the cylinder, respectively.
Then, volume (V) of the cylinder is given by
V = πr2h = 100
∴ h = \(\frac{100}{\pi r^{2}}\)
Surface area (S) of the cylinder is given by S = 2πr2 + 2πrh = 2πr2 + \(\frac{200}{r}\)
On differentiating w.r.t. x, we get h
∴ \(\frac{d S}{d r}\) = 4πr – \(\frac{200}{r^{2}}\)
Now, for maxima or minima put \(\frac{d S}{d r}\) = 0

⇒ 4πr = \(\frac{200}{r^{2}}\)

⇒ r3 = \(\frac{200}{4 \pi}=\frac{50}{\pi}\)

⇒ r = \(\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\)

Again, differentiating w.r.t. x, we get.
\(\frac{d^{2} S}{d r^{2}}\) = 4π + \(\frac{400}{r^{3}}\)

Now, it is observed that when r = latex]\left(\frac{50}{\pi}\right)^{\frac{1}{3}}[/latex], \(\frac{d^{2} S}{d r^{2}}\) > 0.

∴ By second derivative test, the surface area is the minimum when the radius of the cylinder is \(\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\) cm.

when r = \(\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\), then h = \(\frac{100}{\pi\left(\frac{50}{\pi}\right)^{\frac{2}{3}}}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\) cm

Hence, the required dimensions of the can which has the minimum surface area, is given by radius = \(\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\) cm and height = 2 \(\left(\frac{50}{\pi}\right)^{\frac{1}{3}}\) cm.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 22.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Solution.
Let a piece of length l be cut from the given wire to make a square.
Then, the other piece of wire to be made into a circle is of length (28 – l) m.
Now, side of square = \(\frac{l}{4}\)
Let r be the radius of the circle. Then, 2πr = 28 – l
The combined area of the square and the circle (A) is given by A = (side of the square)2 + πr2

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 8

∴ By second derivative test, the area (A) is the minimum when l = \(\frac{112}{\pi+4}\)

Hence, the combined area is the minimum when the length of the wire in making the square is \(\frac{112}{\pi+4}\) cm while the length of the wire in making the circle is 28 – \(\frac{112}{\pi+4}=\frac{28 \pi}{\pi+4}\) cm.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 23.
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R, is \(\frac{8}{27}\) of the volume of the sphere.
Solution.
Let r and h be the radius and height of the cone respectively inscribed in a sphere of radius R.
Let V be the volume of the cone.
Then, V = \(\frac{1}{3}\) πr2h
Height of the cone is given by h = R + AB
= R + \(\sqrt{R^{2}-r^{2}}\) [∵ ABC is right angled triangle]

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 9

For maxima put
\(\frac{d V}{d r}\) = 0

⇒ \(\frac{2}{3}\) πrR = \(\frac{3 \pi r^{3}-2 \pi r R^{2}}{3 \sqrt{R^{2}-r^{2}}}\)

⇒ 2R = \(\frac{3 r^{2}-2 R^{2}}{\sqrt{R^{2}-r^{2}}}\)

⇒ 2R \(\sqrt{R^{2}-r^{2}}\) = (3r2 – 2R2)2
⇒ 4R2 (R2 – r2)
= (3r2 – 2R2)2
⇒ 4R4 – 4R2r2 = 9r4 + 4R4 – 12r2R2
⇒ 9r4 = 8R2r2
⇒ r2 = \(\frac{8}{9}\) R2

∴ By second derivative test, the volume of the cone is the maximum when r2 = \(\frac{8}{9}\) R2.

When r2 = \(\frac{8}{9}\) R2, then
h = R + \(\sqrt{R^{2}-\frac{8}{9} R^{2}}=R+\sqrt{\frac{1}{9} R^{2}}=R+\frac{R}{3}=\frac{4}{3} R\)

Therefore, V = \(\frac{1}{3} \pi\left(\frac{8}{9} R^{2}\right)\left(\frac{4}{3} R\right)=\frac{8}{27}\left(\frac{4}{3} \pi R^{3}\right)\)

= \(\frac{8}{27}\) × (volume of the sphere)
Hence, the volume of the largest cone that can be inscribed in the sphere, is \(\frac{8}{27}\) of the volume of the sphere.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 24.
Show that the right circular cone of least curved surface and given volume has an altitude equal toJ time the radius of the base.
Solution.
Let r be the radius of the base, h be the height, V be the volume and S be the curved surface area of the cone.
Then, V = \(\frac{1}{3}\) πr2h
⇒ 3V = πr2h
⇒ 9V2 = π2 r4 h2
⇒ h2 = \(\frac{9 V^{2}}{\pi^{2} r^{4}}\) ……………..(i)
And S = πrl
⇒ S = πr \(\sqrt{r^{2}+h^{2}}\) (∵ l = \(\sqrt{h^{2}+r^{2}}\))
⇒ S2 = π2 r2 (r2 + h2)
= π2 r2 (\(\frac{9 V^{2}}{\pi^{2} r^{4}}\) + r2) [Using Eq. (i)]

⇒ S2 = \(\frac{9 V^{2}}{r^{2}}\) + π2 r4 …………(ii)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 10

Hence, S2 and therefore S is minimum when 9V2 = 2π2r6
On putting 9 V2 = 2π2r6 in Eq. (i) we get
2r6 = π2r4h2
⇒ 2r2 = h2
⇒ h = √2r
Hence, altitude of right circular cone is √2 times the radius of the base.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 25.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan-1 √2.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 11

Let θ be the semi-vertical angle of the cone.
It is clear that θ ∈ [0, \(\frac{\pi}{2}\)]
Let r, h and l be the radius, height and the slant height of the cone, respectively.
The slant height of the cone is given as constant.
Now, r = l sin θ and h = l cos θ
The volume (V) of the cone is given by V = \(\frac{1}{3}\) πr2 h
⇒ \(\frac{1}{3}\) π (l2 sin2 θ) (l cos θ)
= \(\frac{1}{3}\) π l2 sin2 θ cos θ
On differentiating w.r.t. θ, we get
∴ \(\frac{d V}{d \theta}\) = \(\frac{l^{2} \pi}{3}\) [sin2 θ (- sin θ) + cos θ (2 sin θ cos θ)]

= \(\frac{l^{3} \pi}{3}[\) [- sin3 θ + 2sin θ cos2 θ]

Again, differentiating w.r.t. θ, we get
\(\frac{d^{2} V}{d \theta^{2}}\) = \(\frac{l^{3} \pi}{3}\) [- 3 sin2 θ cos θ + 2 cos3 θ – 4 sin2 θ cos θ]

= \(\frac{l^{3} \pi}{3}\) [2 cos3 θ – 7 sin2 θ cos θ]
For maxima put \(\frac{d V}{d \theta}\) = 0
⇒ sin3 θ = 2 sin θ cos θ v d0
⇒ tan2 θ = 2
⇒ tan θ = √2
⇒ θ = tan-1 √2
Now, when θ = tan-1 √2, then tan2 θ = 2 or sin2 θ = 2 cos2 θ
Then, we have

\(\frac{d^{2} V}{d \theta^{2}}\) = \(\frac{l^{3} \pi}{3}\) [2 cos3 θ – 14 cos3 θ]
= – 4πl3 cos3 θ < 0 for θ ∈ [0, \(\frac{\pi}{2}\)]

∴ By second derivative test, the volume (V) is the maximum when θ = tan-1 √2.
Hence, for a given slant height, the semi-vertical angle of the cone of the maximum volume is tan-1 √2.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 26.
Show that the semi-vertical angle of right circular cone of given surface area and maximum volume is sin-1 (\(\frac{1}{3}\)).
Solution.
With usual notation, given that total surface area S = πrl + πr2

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 12

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 13

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Direction (27 – 29): Choose the correct answer.

Question27.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is
(A) (2√2, 4)
(B) (2√2, 0)
(C) (0, 0)
(D) (2, 2)
Solution.
Let d be the distance of the point (x, y) on x2 = 2y from the point (0, 5),
then
d = \(\sqrt{(x-0)^{2}+(y-5)^{2}}=\sqrt{x^{2}+(y-5)^{2}}\) ……………(i)

= \(\sqrt{2 y+(y-5)^{2}}\) [Putting x2 = 2y]

= \(\sqrt{y^{2}-8 y+25}\)

= \(\sqrt{y^{2}-8 y+4^{2}+9}=\sqrt{(y-4)^{2}+9}\)

d is least when (y – 4)2 = 0 i.e., when y = 4
when y = 4 then x2 = 2 × 4
⇒ x = ± √8 = ± 2√2
∴ The points (2√2, 4) and (- 2√2, 4) on the given curve are nearest to the point (0, 5).
The correct answer is (A).

Question 28.
For all real values of x, the minimum value of \(\frac{1-x+x^{2}}{1+x+x^{2}}\) is
(A) 0
(B) 1
(C) 3
(D) \(\frac{1}{3}\)
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5 14

The correct answer is (D).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Ex 6.5

Question 29.
The maximum value of [x (x – 1) + 1]\(\frac{1}{3}\),0 < x < 1 is
(A) \(\left(\frac{1}{3}\right)^{\frac{1}{3}}\)

(B) \(\frac{1}{2}\)

(C) 1
(D) 0
Solution.
Let f(x) = [x (x – 1) + 1]\(\frac{1}{3}\)

∴ f'(x) = \(\frac{2 x-1}{3[x(x-1)+1]^{\frac{2}{3}}}\)

Now, f'(x) = 0
⇒ x = \(\frac{1}{2}\)
Then, we evaluate the value of f at critical point x = \(\frac{1}{2}\) and at the point of the interval [0, 1]
{i.e., at x = 0 and x = 1}.
f(0) = [0 (0 – 1) + 1]\(\frac{1}{3}\) = 1;

f(1) = [1 (1 – 1) + 1]\(\frac{1}{3}\) = 1

f(\(\frac{1}{2}\)) = \(\left[\frac{1}{2}\left(\frac{-1}{2}\right)+1\right]^{\frac{1}{3}}=\left(\frac{3}{4}\right)^{\frac{1}{3}}\)

Hence, we can conclude that the maximum value off in the interval [0, 1] is 1.
The correct answer is (C).

PSEB 12th Class General English Book Solutions A Rainbow of English | PSEB 12th Class English Guide

Punjab State Board Syllabus A Rainbow of English 12 Class PSEB Solutions Pdf, General English Class 12 PSEB Solutions, English Guide for Class 12 PSEB Pdf Free Download is part of PSEB Solutions for Class 12.

A Rainbow of English 12 Class Solutions PSEB | General English Class 12 PSEB Solutions

English Guide for Class 12 PSEB Pdf Free Download | General English Class 12 PSEB Book

A Rainbow of English 12 Class PSEB Solutions Pdf

A Rainbow of English 12 Class Guide Prose

A Rainbow of English 12 Class Solutions PSEB Poetry

General English Class 12 PSEB Solutions Supplementary Reading

PSEB 12th Class English Grammar & Composition

PSEB 12th Class English Grammar

PSEB 12th Class English Composition

General English Class 12 PSEB Syllabus

Class – XII
General English
(2021-22)

Time: 3hrs

Theory: 80 Marks
IA: 20 Marks
(Listening and Speaking skills-based practical: 18 marks and Book bank: 2 marks)
Total: 100 Marks

Syllabus

Unseen Passages For Testing Reading Skills
Text Book

Section A (Lessons for Intensive Study)

1. Hassan’s Attendance Problem – Sudha Murthy
2. The March King – Katherine Little Bakeless
3. Thinking Out of the Box: Lateral Thinking – Adapted from the article from the Internet
4. On Saying ‘Please’ – A. G. Gardiner
5. The Story of My Life – Helen Keller
6. Two Gentlemen of Verona – A. J. Cronin
7. In Celebration of Being Alive – Dr. Christian Barnard
8. Gadari Babas in Kalapani Jail – Dr. Harish Puri

Section B (Poetry)

1. Prayer of the Woods – Anonymous
2. On Friendship – Khalil Gibran
3. The Echoing Green – William Blake
4. Once upon a Time – Gabriel Okara
5. Father Returning home – Dilip Chitre
6. The Road Not Taken – Robert Frost
7. On His Blindness – John Milton

Section C (Lessons for Extensive Study)

1. The School for Sympathy – E. V. Lucas
2. A Chamelon – Anton Chekhov
3. Bholi – K.A. Abbas
4. The Gold Frame – R.K. Luxman
5. The Barber’s Trade Union – Mulk Raj Anand
6. The Bull beneath the Earth – K.S. Virk

Grammar, Composition & Translation

Grammar

1. Determiners
2. Use of Non-finites (Infinitives, Gerunds, Participles)
3. Transformation of Sentences
4. Voice
5. Narration

Composition

1. Precis writing
2. Letter writing (Official/Business/To Editors)
3. Applications
4. Explaining Newspaper Headlines
5. E-Mail writing

Translation from English to Hindi/Punjabi and Translation from Hindi/ Punjabi to English.

From Chapter 18 The Art of Translation given in the book English Grammar And Composition for XI and XII

Note: Following two lessons & one poem has been deleted from the syllabus from the academic session 2020-21 onwards.

  • Robots and People – Isaac Asimov
  • On Giving Advice – Joseph Addison
  • Cheerfulness Taught by Reason – Elizabeth Barret Browning