Processing math: 100%

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Punjab State Board PSEB 11th Class Maths Book Solutions Chapter 3 Trigonometric Functions Ex 3.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

Question 1.
Find the principal and general solutions of the equation, tan x = √3
Answer.
tan x = √3
It is known that:
tan \frac{\pi}{3} = √3 and
tan (\frac{4 \pi}{3}) = tan ( π + \frac{\pi}{3})
= tan \frac{\pi}{3} = √3
Therefore, the principal solutions are x = \frac{\pi}{3} and \frac{4 \pi}{3}.
Now, tan x = tan \frac{\pi}{3}
⇒ x = nπ + \frac{\pi}{3}, where n ∈ Z
Therefore, the general solution is x = nπ + \frac{\pi}{3}, where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 2.
Find the principal and general solutions of the equation: sec x = 2
Answer.
sec x = 2
It is known that:
sec \frac{\pi}{3} = 2 and
sec \frac{5 \pi}{3} = sec (2π – \frac{\pi}{3})
= sec \frac{\pi}{3} = 2
Therefore, the principal solutions are x = \frac{\pi}{3} and \frac{5 \pi}{3}.
Now, sec x = sec \frac{\pi}{3}
cos x = cos \frac{\pi}{3} [∵ sec x = \frac{1}{\cos x}]
⇒ x = 2nπ ± \frac{\pi}{3}, where n e Z
Therefore, the general solution is x = 2nπ ± \frac{\pi}{3}, where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 3.
Find the principal and general solutions of the equation cot cot x = – √3.
Answer.
cot x = – √3

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4 1

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 4.
Find the principal and general solutions of cosec x = – 2
Answer.
cosec x = – 2
It is known that:
cosec \frac{\pi}{6} = 2

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4 2

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 5.
Find the general solution of the equation: cos 4x = cos 2x
Answer.
cos 4x = cos 2x
cos 4x – cos 2x = 0
– 2 sin \left(\frac{4 x+2 x}{2}\right) sin \left(\frac{4 x-2 x}{2}\right) = 0

[∵ cos A – cos B = 2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)]

sin 3x sin x = 0
sin 3x = 0or sin x = 0
3x = nπ or x = nπ, where n ∈ Z
x = \frac{n \pi}{3} or x = nπ, where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 6.
Find the general solution of the equation cos 3x + cosx – cos 2x = 0
Answer.
cos 3x + cos x – cos 2x = 0
2 cos \left(\frac{3 x+x}{2}\right) cos \left(\frac{3 x-x}{2}\right) – cos 2x = 0

[∵ cos A + cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]

2 cos 2x cos x – cos 2x = 0
cos 2x (2 cos x – 1) = 0
cos 2x = 0 or 2 cos x – 1 = 0
cos 2x = 0 or cos x = \frac{1{2}
∴ 2x = (2n + 1) \frac{\pi}{2} or cos x = cos \frac{\pi}{3}, where n ∈ Z
x = (2n + 1) \frac{\pi}{4} or x = 2nπ ± \frac{\pi}{3} where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 7.
Find the general solution of the equation sin 2x + cos x = 0
Answer.
sin 2x + cos x = 0
⇒ 2sin x cos x + cos x = 0
⇒ cos x (2 sin x + 1) = 0
⇒ cos x = 0 or 2 sin x + 1 = 0
Now, cos x = 0
⇒ x = (2n + 1) \frac{\pi}{2} , where n ∈ Z.
or 2 sin x + 1 = 0
⇒ sin x = – \frac{1}{2}

= – sin \frac{\pi}{6}

= sin (π + \frac{\pi}{6})

= sin \frac{7 \pi}{6}

x = nπ + (- 1)n \frac{7 \pi}{6} where n ∈ Z
Therefore, the general solution is (2n + 1) \frac{\pi}{2} or nπ + (- 1)n \frac{7 \pi}{6} where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 8.
Find the general solution of the equation sec2 2x = 1 – tan 2x.
Answer.
sec2 2x = 1 – tan 2x
1 + tan2 2x = 1 – tan 2x
tan2 x + tan 2x = 0
=> tan 2x (tan 2x + 1) = 0
=> tan 2x = 0 or tan 2x + 1 = 0
Now, tan 2x = 0
=> tan 2x = tan 0
2x = nπ + 0, where n ∈ Z
x = \frac{n \pi}{2}, where n ∈ Z
or tan 2x + 1 = 0
= tan 2x = – 1
= – tan \frac{\pi}{4}

= tan (π – \frac{\pi}{4})

= tan \frac{3 \pi}{4}

2x = nπ + \frac{3 \pi}{4} where n ∈ Z

x = \frac{n \pi}{2}+\frac{3 \pi}{8}, where n ∈ Z

Therefore, the general solution is \frac{n \pi}{2} or \frac{n \pi}{2}+\frac{3 \pi}{8} where n ∈ Z.

PSEB 11th Class Maths Solutions Chapter 3 Trigonometric Functions Ex 3.4

Question 9.
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Answer.
sin x + sin 3x + sin 5x = 0
⇒ (sin x + sin 5x) + sin 3x = 0

\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right] + sin 3x = 0

[∵ sin A + sin B = 2 sin \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]

2 sin 3x cos (2x) + sin 3x = 0
2 sin 3x cos 2x + sin 3x = 0
sin 3x (2 cos 2x +1) = 0
sin 3x = 0 or 2 cos 2x + 1 = 0
Now sin 3x = 0
⇒ 3x = nπ, where n ∈ Z
i.e., x = \frac{n \pi}{3} where n ∈ Z
or 2 cos 2x + 1 = 0
cos 2x = -\frac{1}{2}

= – cos \frac{\pi}{3}

= cos (π – \frac{\pi}{3})

cos 2x = cos \frac{2 \pi}{3}

⇒ 2x = 2nπ ± \frac{2\pi}{3}, where n ∈ Z

⇒ x = nπ ± \frac{\pi}{3}, where n ∈ Z

Therefore, the general solution is \frac{n \pi}{3} or nπ ± \frac{\pi}{3}, where n ∈ Z.

Leave a Comment