Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 4 Determinants Ex 4.4 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4
Dfrectlon (1 – 2): Write minors and cofactors of the elements of following determinants.
Question 1.
(i) \(\left|\begin{array}{cc}
2 & -4 \\
0 & 3
\end{array}\right|\)
(ii) \(\left|\begin{array}{ll}
\boldsymbol{a} & \boldsymbol{c} \\
\boldsymbol{b} & \boldsymbol{d}
\end{array}\right|\)
Solution.
(i) The given determinants is \(\left|\begin{array}{cc}
2 & -4 \\
0 & 3
\end{array}\right|\)
Minor of elements aij is Mij.
∴ M11 = Minor of element a11 = 3
M12 = Minor of element a12= 0
M21 = Minor of element a21 = – 4
M22 = Minor of element a22 = 2
Cofactor of aij is = (- 1)i + j Mij.
∴ A11 = (- 1)1 + 1 M11 = (- 1)2 (2) = 3
A12 = (- 1)1 + 2 M12 = (- 1)3 (0) = 0
A21 = (- 1)2 + 1 M21 = (- 1)3 (- 4) = 4
A22 = (- 1)2 + 2 M22 = (- 1)4 (2) = 2
(ii) The given determinant is \(\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|\)
Minor of element aij is Mij.
∴ M11 = Minor of element a11 = d
M12 = Minor of element a12= b
M21 = Minor of element a21 = c
M22 = Minor of element a22 = a
Cofactor of aij is = (- 1)i + j Mij.
∴ A11 = (- 1)1 + 1 M11 = (- 1)2 (d) = d
A12 = (- 1)1 + 2 M12 = (- 1)3 (b) = – b
A21 = (- 1)2 + 1 M21 = (- 1)3 (c) = – c
A22 = (- 1)2 + 2 M22 = (- 1)4 (a) = a.
Question 2.
(i) \(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
(ii) \(\left|\begin{array}{ccc}
1 & 0 & 4 \\
3 & 5 & -1 \\
0 & 1 & 2
\end{array}\right|\)
Solution.
100
The given determinant is \(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
By the definition of minors and cofactors, we have
M11 = Minor of A11 = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1
M12 = Minor of A12 = \(\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|\) = 0.
M13 = Minor of A13 = \(\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|\) = 0
M21 = Minor of A21 = \(\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|\) = 0
M22 = Minor of A22 = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1
M23 = Minor of A23 = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|\) = 0
M31 = Minor of A31 = \(\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|\) = 0
M32 = Minor of A32 = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|\) = 0
M33 = Minor of A33 = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1.
A11 = Cofactor of a11 = (- 1)1 + 1 M11 = 1
A12 = Cofactor of a12 = (- 1)1 + 2 M12 = 0
A13 = Cofactor of a13 = (-1)1 + 3 M13 = 0
A21 = Cofactor of a21 = (- 1)2 + 1 M21 = 0
A22 = Cofactor of a22 = (- 1)2 + 2 M22 = 1
A23 = Cofactor of a23 = (- 1)2 + 3 M23 = 0
A31 = Cofactor of a31 = (- 1)3 + 1 M31 = 0
A32 = Cofactor of a32 = (-1)3 + 2 M32 = 0
A33 = Cofactor of a33 = (-1)3 + 3 M33 = 1
(ii) The given determinant is \(\left|\begin{array}{ccc}
1 & 0 & 4 \\
3 & 5 & -1 \\
0 & 1 & 2
\end{array}\right|\)
By definition of minors and cofactors, we have
M11 = Minor of a11
= \(\left|\begin{array}{cc}
5 & -1 \\
1 & 2
\end{array}\right|\) = 10 + 1 = 11
M12 = Minor of a12
= \(\left|\begin{array}{cc}
3 & -1 \\
0 & 2
\end{array}\right|\) = 6 – 0 = 6
M13 = Minor of a13
= \(\left|\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right|\) = 3 – 0 = 3
M21 = Minor of a21
= \(\left|\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right|\) = 0 – 4 = – 4
M22 = Minor of a22
= \(\left|\begin{array}{ll}
1 & 4 \\
0 & 2
\end{array}\right|\) = 2 – 0 = 2
M23 = Minor of a23
= \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1
M31 = Minor of a31
= \(\left|\begin{array}{cc}
0 & 4 \\
5 & -1
\end{array}\right|\) = 0 – 20 = – 20
M32 = Minor of a32
= \(\left|\begin{array}{cc}
1 & 4 \\
3 & -1
\end{array}\right|\) = – 1 – 12 = – 13
M33 = Minor of a33
= \(\left|\begin{array}{ll}
1 & 0 \\
3 & 5
\end{array}\right|\) = 5 – 0 = 5.
Cofactor of aij = (- 1)i + j Mij
A11 = Cofactor of a11 = (- 1)1 + 1 M11 = 11
A12 = Cofactor of a12 = (- 1)1 + 2 M12 = – 6
A13 = Cofactor of a13 = (- 1)1 + 3 M13 = 3
A21 = Cofactor of a21 = (- 1)2 + 1 M21 = 4
A22 = Cofactor of a22 = (- 1)2 + 2 M22 = 2
A23 = Cofactor of a23 = (- 1)2 + 3 M23 = – 1
A31 = Cofactor of a31 = (- 1)3 + 1 M31 = – 20
A32 = Cofactor of a32 = (- 1)3 + 2 M32 = 13
A33 = Cofactor of a33 = (- 1)3 + 3 M33 = 5
Question 3.
Using cofactors of elements of second row, evaluate ∆ = \(\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|\).
Solution.
The given determinant is \(\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|\)
We have,
M21 = \(\left|\begin{array}{ll}
3 & 8 \\
2 & 3
\end{array}\right|\) = 9 – 16 = – 7
∴ A21 = Cofactor of a21 = (- 1)2 + 1 = 7
M22 = \(\left|\begin{array}{ll}
5 & 8 \\
1 & 3
\end{array}\right|\) = 15 – 8 = 7
∴ A22 = Cofactor of a22 = (- 1)2 + 1 = 7
M23 = \(\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right|\)
∴ A23 = Cofactor of a23 = (- 1)2 + 3 M23 = – 7
We know that is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
∴ ∆ = a21A21 + a22A22 + a23A23
= 2 (7) + 0 (7) + 1 (- 7) = 14 – 7 = 7.
Question 4.
Using cofactors of elements of third column, evaluate
∆ = \(\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & x & x y
\end{array}\right|\)
Solution.
The given determinant is \(\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & x & x y
\end{array}\right|\)
We have,
M13 = \(\left|\begin{array}{ll}
1 & y \\
1 & z
\end{array}\right|\) = z – y
M23 = \(\left|\begin{array}{ll}
1 & x \\
1 & z
\end{array}\right|\) = z – x
M33 = \(\left|\begin{array}{ll}
1 & x \\
1 & y
\end{array}\right|\) = y – x
∴ A13 = Cofactor of a13 = (- 1)1 + 3 M13 = (z – y)
A23 = Cofactor of a23 = (- 1)2 + 3 M23 = – (z – x) = (x – z)
A33 = Cofactor of a33 = (- 1 )3 + 3 M33 = (y – x)
We know that ∆ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
∴ ∆ = a13A13 + a23A23 + a33A33
= yz (z – y) + zx (x – z) + xy (y – x)
= yz2 – y2z + x2z – xz2 + xy2 – x2y
= (x2z – y2z) + (yz2 – xz2) + (xy2 – x2y)
= z(x2 – y2) + z2 (y – x) + xy (y – x)
= z(x – y)(x + y) + z2 (y – x) + xy (y – x)
= (x – y)[zx + zy – z2 – xy]
= (x – y) [z(x – z) + y(z – x)]
= (x – y) (z – x)[- z + y]
= (x – y) (y – z) (z – x)
Hence, A = (x – y)(y – z)(z – x)
Question 5.
If ∆ = \(\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|\) and Aij is cofactor of aij, then value of ∆ is given by
(A) a11A31 + a12A32 + a13A33
(B) a11A11 + a12A21 + a13A31
(C) a21A11 + a22A12 + a23A13
(D) a11A11 + a21A21 + a31A31
Solution.
∆ is equal to the sum of the products of the elements of a row (or a column) with their corresponding cofactors.
∆ = a11A11 + a12A12 + a13A13 or
a21A21 + a22A22 + a23A23 or
a31A31 + a32A32 + a33A33 or
a11A11 + a21A21 + a31A31 or
a12A12 + a22A22 + a32A32 or
a13A13 + a23A23 + a33A33
Sum of the products of the elements of first column with their corresponding cofactors is ∆ = a11A11 + a21A21 + a31A31
Hence, the correct answer is (D).