Punjab State Board PSEB 8th Class Maths Book Solutions Chapter 12 ਘਾਤ ਅੰਕ ਅਤੇ ਘਾਤ Ex 12.1 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 8 Maths Chapter 12 ਘਾਤ ਅੰਕ ਅਤੇ ਘਾਤ Exercise 12.1
1. ਮੁੱਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
3-2
ਹੱਲ:
3-2
⇒ 3-2 = \(\frac{1}{3^{2}}\) = \(\frac{1}{3×3}\) = \(\frac{1}{9}\)
ਪ੍ਰਸ਼ਨ (ii).
(-4)-2
ਹੱਲ:
(-4)-2
⇒ (-4)-2 = \(\frac{1}{(-4)^{2}}\) = \(\frac{1}{(-4)×(-4)}\) = \(\frac{1}{16}\)
ਪ੍ਰਸ਼ਨ (iii).
(\(\frac{1}{2}\))-5
ਹੱਲ:
(\(\frac{1}{2}\))-5
⇒ (\(\frac{1}{2}\))-5 = \(\frac{(1)^{-5}}{(2)^{-5}}\)
= \(\frac{1}{(1)^{5}}\) × \(\frac{(2)^{5}}{1}\) = \(\frac{2^{5}}{1}\) = 22
= 2 × 2 × 2 × 2 × 2
= 32
2. ਸਰਲ ਕਰੋ ਅਤੇ ਉੱਤਰ ਨੂੰ ਧਨਾਤਮਕ ਘਾਤ ਅੰਕਾਂ ਤੇ ਰੂਪ ਵਿਚ ਦਰਸਾਓ ।
ਪ੍ਰਸ਼ਨ (i).
(-4)5 ÷ (-4)8
ਹੱਲ:
(-4)5 ÷ (-4)8
[∵ am ÷ an = am-n]
⇒ (-4)5 ÷ (-4)8 = (-4)5-8
= (-4)-3
= \(\frac{1}{(-4)^{3}}\)
ਪ੍ਰਸ਼ਨ (ii).
(\(\frac{1}{2^{3}}\))2
ਹੱਲ:
(\(\frac{1}{2^{3}}\))2
⇒ (\(\frac{1}{2^{3}}\))2 = \(\frac{1^{2}}{\left(2^{3}\right)^{2}}\) = \(\frac{1}{2^{6}}\) [∵(am)n = amn]
ਪ੍ਰਸ਼ਨ (iii).
(-3)4 × (\(\frac{5}{3}\))4
ਹੱਲ:
(-3)4 × (\(\frac{5}{3}\))4
⇒ (-3)4 × (\(\frac{5}{3}\))4 = (-3) × (-3) × (-3) × (-3) × \(\frac{(5)^{4}}{(3)^{4}}\)
= 81 × \(\frac{5^{4}}{3 \times 3 \times 3 \times 3}\)
= 54
ਪ੍ਰਸ਼ਨ (iv).
(3-7 ÷ 3-10) × 3-5
ਹੱਲ:
(3-7 ÷ 3-10) × 3-5
⇒ (3-7 ÷ 3-10) × 3-5
= (3-7-(-10)) × 3-5 [am ÷ an = am-n]
= 3-7+10 × 3-5
= 33 × 3-5 [am × an = am+n]
= 33+(-5) = 33-5 = 3-2 = \(\frac{1}{3^{2}}\)
ਪ੍ਰਸ਼ਨ (v).
2-3 × (-7)-3
ਹੱਲ:
2-3 × (-7)-3 = [2 × (-7)]-3] = [-14]-3.
= \(\frac{1}{[-14]^{3}}\)
3. ਮੁੱਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
(30 + 4-1) × 22
ਹੱਲ:
(30 + 4-1) × 22
∴ (30 + 4-1) × 22 = (1 +\(\frac{1}{4}\)) × 4
= (\(\frac{4+1}{4}\)) × 4 = 5
ਪ੍ਰਸ਼ਨ (ii).
(2-1 × 4-1) ÷ 2-2
ਹੱਲ:
(2-1 × 4-1) ÷ 2-2
∴ (2-1 × 4-1) ÷ 2-2 = (\(\frac{1}{2}\) × \(\frac{1}{2}\)) ÷ (\(\left(\frac{1}{2^{2}}\right)\))
= \(\frac{1}{8}\) ÷ \(\frac{1}{4}\)
= \(\frac{1}{8}\) × \(\frac{1}{4}\) = \(\frac{1}{2}\)
ਪ੍ਰਸ਼ਨ (iii).
\(\left(\frac{1}{2}\right)^{-2}\) + \(\left(\frac{1}{3}\right)^{-2}\) + \(\left(\frac{1}{4}\right)^{-2}\)
ਹੱਲ:
\(\left(\frac{1}{2}\right)^{-2}\) + \(\left(\frac{1}{3}\right)^{-2}\) + \(\left(\frac{1}{4}\right)^{-2}\)
∴ \(\left(\frac{1}{2}\right)^{-2}\) + \(\left(\frac{1}{3}\right)^{-2}\) + \(\left(\frac{1}{4}\right)^{-2}\)
= \(\frac{1^{-2}}{2^{-2}}\) + \(\frac{1^{-2}}{3^{-2}}\) + \(\frac{1^{-2}}{4^{-2}}\)
= 22 + 32 + 42
= 4 + 9 + 16
= 29.
ਪ੍ਰਸ਼ਨ (iv).
(3-1 + 4-1 + 5-1)0
ਹੱਲ:
(3-1 + 4-1 + 5-1)0
∴ (3-1 + 4-1 + 5-1)0 = (\(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\))0
= (\(\frac{20+15+12}{60}\))0
= (\(\frac{47}{60}\))0 = 1
ਪ੍ਰਸ਼ਨ (v).
\(\left\{\left(\frac{-2}{3}\right)^{-2}\right\}^{2}\)
ਹੱਲ:
4. ਮੁੱਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
\(\frac{8^{-1} \times 5^{3}}{2^{-4}}\)
ਹੱਲ:
ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ : \(\frac{8^{-1} \times 5^{3}}{2^{-4}}\)
= \(\frac{1}{8}\) × 5 × 5 × 5 × 24
= \(\frac{125 \times 2 \times 2 \times 2 \times 2}{8}\)
= 250
ਪ੍ਰਸ਼ਨ (ii).
(5-1 × 2-1) × 6-1
ਹੱਲ:
(5-1 × 2-1) × 6-1 = (\(\frac{1}{5}\) × \(\frac{1}{5}\)) × \(\frac{1}{6}\)
= (\(\frac{1}{10}\)) × \(\frac{1}{6}\) = \(\frac{1}{60}\)
ਪ੍ਰਸ਼ਨ 5.
m ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਜਿਸਦੇ ਲਈ : 5m ÷ 5-3 = 55
ਹੱਲ:
ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ .
5m ÷ 5-3 = 55
⇒ 5m-(-3) = 55
[∵ am ÷ an = am-n]
⇒ 5m+3 = 55
⇒ m + 3 = 5
⇒ m = 5 – 3
⇒ m = 2.
6. ਮੁੱਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
\(\left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}\)
ਹੱਲ:
ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ :
\(\left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}\) = (3 – 4)-1
= (-1)-1 = \(\frac{1}{-1}\) = -1
ਪ੍ਰਸ਼ਨ (ii).
\(\left(\frac{5}{8}\right)^{-7}\) × \(\left(\frac{8}{5}\right)^{-4}\)
ਹੱਲ:
\(\left(\frac{5}{8}\right)^{-7}\) × \(\left(\frac{8}{5}\right)^{-4}\)
= \(\left(\frac{8}{5}\right)^{7}\) × \(\left(\frac{5}{8}\right)^{4}\)
= \(\frac{8^{7}}{5^{7}}\) × \(\frac{5^{4}}{8^{4}}\)
= 87-4 × 59-7
= 83 × 5-3
= 83 × \(\frac{1}{5^{3}}\)
= (\(\frac{8}{5}\))3
= \(\frac{512}{125}\)
7. ਸਰਲ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
\(\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}\) (t ≠ 0)
ਹੱਲ:
ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ : \(\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}\)
ਪ੍ਰਸ਼ਨ (ii).
\(\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}\)
ਹੱਲ:
ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ :
\(\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}\) = \(\frac{3^{-5} \times(2 \times 5)^{-5} \times 125}{5^{-7} \times(2 \times 3)^{-5}}\)
= \(\frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 125}{5^{-7} \times 2^{-5} \times 3^{-5}}\)
= 3-5+5 × 2-5+5 × 5-5+7 × 125
= 30 × 20 × 52 × 125
= 1 × 1 × 25 × 125
= 3125.