PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Very Short Answer Type Questions

Question 1.
Two identical solid balls, one of ivory and the other of wet clay, are dropped from the same height on the floor. Which will rise to a greater height after striking the floor and why?
Answer:
The ball of ivory will rise to a greater height because ivory is more elastic than wet-clay.

Question 2.
Is it possible to double the length of a metallic wire by applying a force over it?
Answer:
No, it is not possible because, within elastic limit, strain is only order of 10-3, wires actually break much before it is stretched to double the length.

Question 3.
Is stress a vector quantity? (NCERT Exemplar)
Stress = \(\frac{\text { Magnitude of internal reaction force }}{\text { Area of cross – section }}\)
Therefore, stress is a scalar quantity, not a vector quantity.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 4.
What does the slope of stress versus strain graph indicate?
Answer:
The slope of stress (on y-axis) and strain (on x-axis) gives modulus of elasticity.
The slope of stress (on x-axis) and strain (on y-axis) gives the reciprocal of modulus of elasticity.

Question 5.
Stress and pressure are both forces per unit area. Then in what respect does stress differ from pressure?
Answer:
Pressure is an external force per unit area, while stress is the internal restoring force which comes into play in a deformed body acting transversely per unit area of a body.

Question 6.
What is the Young’s modulus for a perfect rigid body?
Solution:
Young’s modulus (Y) = \(\frac{F}{A} \times \frac{l}{\Delta l}\)
For a perfectly rigid body, change in length Δl = 0
∴ Y = \(\frac{F}{A} \times \frac{l}{0}\) = ∞
Therefore, Young’s modulus for a perfectly rigid body is ∞.

Question 7.
What is Bulk modulus for a perfectly rigid body?
Solution:
Bulk modulus (B) = \(\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}\)
For perfectly rigid body, change in volume ΔV = 0
∴ B = \(\frac{p V}{0}\) = ∞
Therefore, Bulk modulus for a perfectly rigid body is ∞.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Short Answer Type Questions

Question 1.
Explain why steel is more elastic than rubber?
Solution:
Consider two pieces of wires, one of steel and the other of rubber. Suppose both are of equal length (L) and of equal area of cross-section (a). Let each be stretched by equal forces, each being equal to F. We find that the change in length of the rubber wire (lr) is more than that of the steel (ls)i.e.,lr>ls.
If Ys and Yr are the Young’s moduli of steel and rubber respectively, then from the definition of Young’s modulus,
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 1
i. e,, the Young’s modulus of steel is more than that of rubber. Hence steel is more elastic than rubber.
Or
Any material which offers more opposition to the deforming force to change its configuration is more elastic.

Question 2.
Elasticity is said to be internal property of matter. Explain.
Answer:
When a deforming force acts on a body, the atoms of the substance get displaced from their original positions. Due to this, the configuration of the body (substance) changes. The moment, the deforming force is removed, the atoms return to their original positions and hence, the substance or body regains its original configuration. That is why, elasticity is said to be internal property of matter.

Question 3.
A wire elongates by l mm when a load W is hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, then what will be the elongation of the wire in mm?
Solution:
According to Hooke’s law,
Modulus of elasticity, E = \(\frac{W}{A} \times \frac{L}{l}\)
where, L = original length of the wire
A- cross-sectional area of the wire
Elongation, l = \(\frac{W L}{A E}\) ………………………… (i)
On either side of the wire, tension is W and length is L/2.
Δl = \(\frac{W L / 2}{A E}=\frac{W L}{2 A E}=\frac{l}{2}\) [from eq.(i)]
Total elongation in the wire = \(\frac{l}{2}+\frac{l}{2}\) = l

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 4.
A bar of cross-section A is subjected to equal and opposite tensile forces at its, ends. Consider a plane section of the bar whose normal makes an angle θ with the axis of the bar.
(i) What is the tensile stress on this plane?
(ii) What is the shearing stress on this plane?
(iii) For what value of θ is the tensile stress maximum?
(iv) For what value of θ is the shearing stress maximum?
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 2
Solution:
(i) The resolved part of F along the normal is the tensile force on this plane and the resolved part parallel to the plane is the shearing force on the plane.
∵ Area of MO plane section = A sec θ
Tensile stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F \cos \theta}{A \sec \theta}=\frac{F}{A} \cos ^{2} \theta\)
= [ ∵ sec θ = \(\frac{1}{\cos \theta}\)]

(ii) Shearing stress applied on the top face
So, F = F sinθ
Shearing stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F \sin \theta}{A \sec \theta}\)
= \(\frac{F}{A}\) sinθcosθ
= \(\frac{F}{2 A} \sin 2 \theta\) [∵ sin 2θ = 2sinθcosθ]

(iii) Tensile stress will be maximum when cos2θ is maximum i.e., cosθ = 1 or θ=0°.

(iv) Shearing stress will be maximum when sin20 is maximum i.e., sin2θ = 1 or 2θ = 90° or θ = 45°.

Question 5.
What is an elastomer? What are their special features?
Answer:
Elastomers are those substances which can be stretched to cause large strains.Substances like tissue of aorta, rubber etc., are elastomers.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 3
The stress-strain curve for an elastomer is shown in figure. Although elastic region is very large but the materials does not obey Hooke’s law over most of the region. Moreover, there is no well-defined plastic region.

Question 6.
The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress? (NCERT Exemplar)
Solution:
Young’s modulus (Y) = \( \frac{\text { Stress }}{\text { Longitudinal strain }}\)
For same longitudinal strain, Y ∝ stress
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 4
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 5

Question 7.
Why are the springs made of steel and not of copper?
Answer:
A spring will be better one if a large restoring force is set up in it on being deformed, which in turn depends upon the elasticity of the material of the spring. Since the Young’s modulus of elasticity of steel is more than that of copper, hence, steel is preferred in making the springs.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 8.
Identical springs of steel and copper are equally stretched. On which, more work will have to be done? (NCERT Exemplar)
Solution:
Work done in stretching a wire is given by
W =- \(\frac{1}{2}\) F x Δl
As springs of steel and copper are equally stretched.
Therefore, for same force (F).
W ∝ Δl …………………………………… (i)

Young’s modulus (Y) = \(\frac{F}{A} \times \frac{l}{\Delta l}\)
or Δl = \(\frac{F}{A} \times \frac{l}{Y}\)
As both spring are identical,
∴ Δl ∝ \(\frac{1}{Y}\) …………………………………. (ii)
From eqs. (i) and (ii), we get W ∝ \(\frac{1}{Y}\) .
∴ \(\frac{W_{\text {steel }}}{W_{\text {copper }}}=\frac{Y_{\text {copper }}}{Y_{\text {steel }}}<1\)
[as Ysteel > Ycopper]
or Wsteel < WCopper
Therefore, more work will be done for stretching copper spring.

Long Answer Type Questions

Question 1.
A steel wire of length 21 and cross-sectional area A is stretched within elastic limit as shown in figure. Calculate the strain and stress in the wire.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 6
Solution:
Total length L =21. Increase in length of the wire, when it is stretched from its mid-point.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 7
From Pythagoras theorem, BC2 =l2 + x2
BC= \(\sqrt{l^{2}+x^{2}}\)
Similarly, AC = \(\sqrt{l^{2}+x^{2}}\)
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 8

Since x<< l, so using Binomial expansion, we have
\(\left(1+\frac{x^{2}}{l^{2}}\right)^{1 / 2}=\left(1+\frac{x^{2}}{2 l^{2}}\right)\)
[Neglecting terms containing higher powers of x]
∴ ΔL = 2l\(\left(1+\frac{x^{2}}{2 l^{2}}\right)-2 l=\frac{x^{2}}{l}\)
Hence Strain = \(\frac{\Delta L}{L}=\frac{x^{2}}{l \times 2 l}=\frac{x^{2}}{2 l^{2}}\)

Stress = \(\frac{F}{A}=\frac{\text { Tension }}{\text { Area }} \)
So, area of cross section of wire having radius r is πr²
Stress = \(\frac{T}{\pi r^{2}}\)

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 2.
Consider a long steel bar unde a tensile stress due to forces F acting at the edges along the length of the bar (figure). Consider a plane making an angle θ with the length. What are the tensile and shearing stresses on this plane?
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 9
(a) For what angle is the tensile stress a maximum?
(b) For what angle is the shearing stress a maximum? (NCERT Exemplar)
Solution:
Consider the adjacent diagram.
Let the cross-sectional area of the bar be A. Consider the equilibrium of the plane aa’.
A force F must be acting on this plane making an angle \(\frac{\pi}{2}\) – θ with the normal ON. Resolving F into components, along the plane (FP) and normal to the plane.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 10
FP = F cosθ
FN = Fsinθ
Let the area of the face aa’ be A’, then
\(\frac{A}{A^{\prime}}\) = sinθ’
∴ A’= \(\frac{A}{\sin \theta}\)
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 11
(a) For tensile stress to be maximum, sin2θ =1
⇒ sinθ = 1
⇒ θ = \(\frac{\pi}{2}\)
(b) For shearing stress to be maximum,
sin 2θ = 1
⇒ 2θ = \(\frac{\pi}{2}\)
⇒ θ = \(\frac{\pi}{4}\)

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

very short answer type questions

Question 1.
(n – 1) equal point masses each of mass m are placed at the vertices of a regular n-polygon. The vacant vertex has a position vector \(\vec{a}\) with respect to the centre of the polygon. Find the position vector of centre of mass. (NCERT Exemplar)
Solution
Suppose, \(\vec{b}\) be the position vector of centre of mass of regular n-polygon. As (n – 1) equal point masses each of mass m are placed at (n – 1) vertices of regular polygon, therefore
\(\frac{(n-1) m b+m a}{(n-1+1) m}\) = 0
⇒ (n – 1)mb + ma = 0
⇒ b = \(\frac{-a}{(n-1)}\)

Question 2.
If net torque on a rigid body is zero, does it linear momentum necessary remain conserved?
Answer:
The linear momentum remain conserved if the net force on the system is zero.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 3.
When is a body lying in a gravitation field in stable equilibrium?
Answer:
A body in a gravitation field will be in stable equilibrium, if the vertical line through its centre of gravity passes through the base of the body.

Question 4.
Is centre of mass and centre of gravity body always coincide?
Ans.
No, if the body is large such that g varies from one point to another, then centre of gravity is offset from centre of mass.
But for small bodies, centre of mass and centre of gravity lies at their geometrical centres.

Question 5.
Why is moment of inertia also called rotational inertia?
Answer:
The moment of inertia gives a measure of inertia in rotational motion. So, it is also called rotational inertia.

Question 6.
In a flywheel, most of the mass is concentrated at the rim. Explain why?
Answer:
Concentration of mass at the rim increases the moment of inertia and thereby brings uniform motion.

Question 7.
Does the radius of gyration depend upon the speed of rotation of the body?
Answer:
No, it depends only on the distribution of mass of the body.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 8.
Can the mass of body be taken to be concentrated at its centre of mass for the purpose of calculating its rotational inertia?
Answer:
No, the moment of inertia greatly depends on the distribution of mass about the axis of rotation.

Short answer type questions

Question 1.
Does angular momentum of a body in translatory motion is zero?
Solution:
Angular momentum of a body is measured with respect to certain origin.
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 1
So, a body in translatory motion can have angular momentum.
It will be zero, if origin lies on the line of motion of particle.

Question 2.
Figure shows momentum versus time graph for a particle moving along x – axis. In which region, force on the particle is large. Why?
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 2
Solution:
Net force is given by F = \(\frac{d p}{d t}\)
Also, rate of change of momentum = slope of graph.
As from graph, slope AB = slope CD
And slope (BC) = slope (DE) = 0
So, force acting on the particle is equal in regions AB and CD and in regions BC and DE (which is zero).

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 3.
Two cylindrical hollow drums of radii R and 2J2, and of a common height h, are rotating with angular velocities ω (anti-clockwise) and ω (clockwise), respectively.
Their axes, fixed are parallel and in a horizontal plane separated by (3R + δ). They are now brought in contact (δ → 0).
(i) Show the frictional forces just after contact.
(ii) Identify forces and torques external to the system just after contact.
(iii) What would be the ratio of final angular velocities when friction ceases? (NCERT Exemplar)
Solution:
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 3
(ii) F’ = F = F” where F and F” are external forces through support.
Fnet = 0
External torque = F x 3 R, anti-clockwise.

(iii) Let ω1 and ω2 be final angular velocities (anti-clockwise and clockwise respectively).
Finally, there will be no friction.
Hence, Rω1 = 2Rω2 ⇒ \(\frac{\omega_{1}}{\omega_{2}}\) = 2

Question 4.
Angular momentum of a system is conserved if its M.I. is changed. Is its rotational K. E. also conserved?
Solution:
Kinetic energy of rotation = \(\frac{1}{2}\)Iω2 = \(\frac{1}{2}\) (Iω)ω = \(\frac{1}{2}\)Lω

L = Iω is constant, if moment of inertia (I) of the system changes. It means as I changes, then ω also changes.
Hence K.E. of rotation also changes with the change in I. In other words, rotational K.E. is not conserved.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 5.
How much fraction of the kinetic energy of rolling is purely
(i) translational, (ii) rotational.
Solution:
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 4

Question 6.
Listening to the discussion on causes of pollution and due to which temperature on earth is rising, increase in temperature leads to melting of polar ice, Meenu realised that if each one of us contributed to create pollution free environment, then even small efforts can lead to big results. So, she decided to lead the step and instead of going to school by her car, she joined school bus and also asked her father to go to office using car pool.
(i) What do you think is mainly responsible for global warming?
(ii) If the ice on polar caps of the earth melts due to pollution, how will it affect the duration of the day?
Explain.
(iii) What values does Meenu show?
Answer:
(i) Pollution created by the people of world is the main cause of global warming.
(ii) Earth rotates about its polar axis. When ice of polar caps of earth melts, mass concentrated near the axis of rotation spreads out, therefore moment of inertia, I increases.
As no external torque acts,
∴ L = I = Iω = (\(\frac{2 \pi}{T}\)) = Constant
With increase of I, T will increase i.e., length of day will also increase,
(iii) Meenu is considerate towards environment and her thought of leading the steps to reduce pollution is commendable.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 7.
Explain how a cat is able to land on its feet after a fall taking the advantage of principle of conservation of angular momentum?
Answer:
When a cat falls to ground from a height, it stretches its body alongwith the tail so that its moment of inertia becomes high. Since, la is to remain constant, the value of angular speed a decreases and therefore the cat is able to’ land on the ground gently.

Question 8.
A uniform disc of radius R is resting on a table on its rim. The coefficient of friction between disc and table is μ (figure). Now, the disc is pulled with a force \(\overrightarrow{\boldsymbol{F}}\) as shown in the figure. What is the maximum value of \(\overrightarrow{\boldsymbol{F}}\) for which the disc rolls without slipping? (NCERT Exemplar)
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 5
Solution:
Let the acceleration of the centre of mass of disc be a, then
Ma = F – f
The angular acceleration of the disc is a = a/R (if there is no sliding).
Then, (\(\frac{1}{2}\)MR2)α = Rf
⇒ Ma = 2f
Thus, f =F/3. Since, there is no sliding.
⇒ f ≤ μ mg ⇒ F ≤ 3μ Mg

Question 9.
Two equal and opposite forces act on a rigid body. Under what condition will the body (i) rotate (ii) not rotate?
Answer:
(i) Two equal and opposite forces acting on a rigid body such that their lines of action do not coincide, constitute a couple. This couple produces the turning effect on the body. Hence, the rigid body will rotate.

(ii) If two equal and opposite forces act in such a way that their lines of action coincide, then these forces cancel out the effect of each other. Hence, the body will not rotate.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Long answer type questions

Question 1.
Find position of centre of mass of a semicircular disc of radius r. (NCERT Exemplar)
Solution:
As semicircular disc is symmetrical about its one of diameter, we take axes as shown. So, now we only have to calculate YCM (As XCM is zero by symmetry and choice of origin).
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 6
Now, for a small element OAB, as element is small and it can be treated as a triangle so,
Area of sector OAB = \(\frac{1}{2}\) x r x rdθ
Height of triangle = r
Base of triangle = AB = rdθ
So, its mass dm = \(\frac{1}{2}\)r2 dθ.ρ [∵ ρ = \(\frac{\text { mass }}{\text { area }}\)]
As centre of mass of a triangle is at a distance of \(\frac{2}{3}\) from its vertex (at centroid, intersection of medians). So, y = \(\frac{2}{3}\)rsinθ (location of CM of small sector AOB).
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 7
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 8
So, CM of disc is at a distance of \(\frac{4 r}{3 \pi}\)from its centre on its axis of symmetry.

PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion

Question 2.
Obtain an expression for linear acceleration of a cylinder rolling down an inclined plane and hence find the condition for the cylinder to roll down the inclined plane without slipping.
Solution:
When a cylinder rolls down on an inclind plane, then forces involved are (i) Weight mg (ii) Normal reaction N (iii) Friction f
From free body diagam,
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 9
From free body diagram,
N – mg cos θ = 0
or N = mg cosθ
Also, if a = acceleration of centre of mass down the plane, then
Fnet = ma = mgsin θ – f …………… (i)
As friction produces torque necessary for rotation,
τ = Iα = f R
PSEB 11th Class Physics Important Questions Chapter 7 System of Particles and Rotational Motion 10

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 9 Mechanical Properties of Solids Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Solids

PSEB 11th Class Physics Guide Mechanical Properties of Solids Textbook Questions and Answers

Question 1.
A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m2 under a given load. What is the ratio of the Young’s modulus of steel to that of copper?
Solution:
Given, length of the steel wire, L1 = 4.7 m
Area of cross-section of the steel wire,A1 = 3.0 x 10-5 m2
Length of the copper wire, L2 = 3.5 m
Area of cross-section of the copper wire, A2 = 4.0 x 10-5 m2

Change in length = ΔL1 = ΔL2 = ΔL
Force applied in both the cases = F
Young’s modulus of the steel wire,
Y1 = \(\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L_{1}} \)
= \(\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \) ………………………………. (i)
Young’s modulus of the copper wire,
Y2 = \(\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\) ………………………………. (ii)
Dividing eq. (i) by eq. (ii), we get:
\(\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}\) = 1.79:1
The ratio of Young’s modulus of steel to that of copper is 1.79: 1.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 2.
Figure given below shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strengths for this material?
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 1
Solution:
(a) It is clear from the given graph that for stress 150 x 106 N/m2, strain is 0.002.
∴ Young s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }}\)
= \(\frac{150 \times 10^{6}}{0.002}\) = 7.5 x 1010 N/m2
Hence, Young’s modulus for the given material is 7.5 x1010 N/m2

(b) The yield strength of a material is the maximum stress that the material can sustain without crossing the elastic limit. It is clear from the given graph that the approximate yield strength of this material is 300 x 106 N/m2 or 3 x 108 N/m2.

Question 3.
The stress-strain graphs for materials A and B are shown in figure given below.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 2
The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?
Solution:
(a) A, for a given strain, the stress for material A is more than it is for > material B, as shown in the two graphs.
Young’s modulus = \(\frac{\text { Stress }}{\text { Strain }}\)
For a given strain, if the stress for a material is more, then Young’s modulus is also greater for that material. Therefore, Young’s modulus for material A is greater than it is for material B.

(b) A, the amount of stress required for fracturing a material, corresponding to its fracture point, gives the strength of that material. Fracture point is the extreme point in a stress-strain curve. It can be observed that material A can withstand more strain than material B. Hence, material A is stronger than material B.

Question 4.
Read the following two statements below carefully and state, with reasons, if it is true or false.
(a) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.
Solution:
(a) False.
Reason: For a given stress, the strain in rubber is more than it is in steel.
Young’s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }} \)
For a constant stress Y ∝ \(\frac{1}{\text { Strain }}\)
Hence, Young’s modulus for rubber is less than it is for steel.

(b) True.
Reason: Shear modulus is the ratio of the applied stress to the change in the shape of a body. The stretching of a coil changes its shape. Hence, shear modulus of elasticity is involved in this process.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 5.
Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in figure given below. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m.
Compute the elongations of the steel and the brass wires.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 3
Solution:
Given, diameter of the wires, d = 0.25 cm
Hence, the radius of the wires, r = \(\frac{d}{2} \) = 0.125cm = 0.125 x 10-2m
Length of the steel wire, L1 = 1.5 m
Length of the brass wire, L2 = 1.0 m
Total force exerted on the steel wire,
F1 = (4 +6)g= 10×9.8 = 98N .

Young’s modulus for steel
Y1 = \(\frac{\left(\frac{F_{1}}{A_{1}}\right)}{\left(\frac{\Delta L_{1}}{L_{1}}\right)} \)
where, ΔL1 = Change in the length of the steel wire
A1 = Area of cross-section of the steel wire = πr²1

Young’s modulus of steel, Y1 = 2.0 x 1011 Pa
∴ ΔL1 = \(\frac{F_{1} \times L_{1}}{A_{1} \times Y_{1}}=\frac{F_{1} \times L_{1}}{\pi r_{1}^{2} \times Y_{1}}\)
= \(\frac{98 \times 1.5}{3.14\left(0.125 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}\)
= 1.5 x 10-4 m

Total force on the brass wire
F2 =6 x 9.8=58.8N
Young’s modulus for brass
Y2 = \(\frac{\left(\frac{F_{2}}{A_{2}}\right)}{\left(\frac{\Delta L_{2}}{L_{2}}\right)}\)

where, ΔL2 = Change in length of the steel wire
A2 = Area of cross-section of the brass wire
∴ ΔL2 = \(\frac{F_{2} \times L_{2}}{A_{2} \times Y_{2}}=\frac{F_{2} \times L_{2}}{\pi r_{2}^{2} \times Y_{2}}\)
= \(\frac{58.8 \times 1.0}{3.14 \times\left(0.125 \times 10^{-2}\right)^{2} \times\left(0.91 \times 10^{11}\right)}\)
= 1.3 x 10-4 m
Hence, elongation of the steel wire =1.49 x 10-4 m
and elongation of the brass wire = 1.3 x 10-4 m

Question 6.
The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a vertical wall. A mass of 100 kg Is the attached to the opposite face of the cube. The shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?
Solution:
Given, edge of the aluminium cube, L = 10cm = 0.1 m
The mass attached to the cube, m =100 kg
Shear modulus (ri) of aluminium = 25GPa =25 x 109 Pa
Shear modulus, η = \(\frac{\text { Shear stress }}{\text { Shear strain }}=\frac{\frac{F}{A}}{\frac{\Delta L}{L}}\)
where, F = Applied force = mg = 100 x 9.8 = 980 N
A = Area of one of the faces of the cube = 0.1 x 0.1 = 0.01 m2

ΔL = Vertical deflection of the cube
ΔL = \(\frac{F L}{A \eta}=\frac{980 \times 0.1}{10^{-2} \times\left(25 \times 10^{9}\right)}\)
= 3.92 x 10-7 m
The vertical deflection of this face of the cube is 3.92 x 10-7 m.

Question 7.
Four identical tblloW cylindrical columns of mild steel support a big structure of mass’50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
Solution:
Given, mass of the big structure, M = 50000 kg
Inner radius of the column, r = 30 cm = 0.3 m
Outer radius of the column, R = 60 cm = 0.6 m
Young’s modulus of steel, Y = 2 x 1011 Pa
Total force exerted, F =Mg = 50000 x 9.8N
Stress = Force exerted on a single column = \(\frac{50000 \times 9.8}{4}\) = 122500 N

Young’s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }} \)
Strain = \(\frac{F}{\frac{A}{Y}} \)
where, Area, A = π(R2 – r2) = π[(0.6)2 – (0.3)2]
Strain = \(\frac{122500}{3.14\left[(0.6)^{2}-(0.3)^{2}\right] \times 2 \times 10^{11}}\) = 7.22 x 10-7
Hence, the compressional strain of each column is 7.22 x 10-7.
∴Compressional strain of all columns is given by
= 7.22 x 10 -7 x 4 = 2.88 x 10-6.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 8.
A piece of copper having a rectangular cross-section of 15.2 minxes 19.2 mm is pulled in tension with 44,500 N force, producing only elastic deformation. Calculate the resulting strain?
Solution:
Given, cross-section area.of copper piece (A) = 15.2 mm x 19.1 mm
= (15.2 x 19.1) x 10 -6m2
Force applied (F) = 44500 N
Young’s modulus (Y) =1.1 x 1011 Nm-2

Young s modulus (Y) = \(=\frac{\text { Longitudinal stress }}{\text { Longitudinal strain }}\)
or Longitudinal strain = \(\frac{\text { Longitudinal stress }}{\text { Young’s modulus }}\)
Young’s modulus
= \(\frac{(F / A)}{Y}=\frac{F}{A Y}\)
= \(\frac{44500}{15.2 \times 19.1 \times 10^{-6} \times 1.1 \times 10^{11}}\)
= 0.0013934.

Question 9.
A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum stress is not to exceed 108 Nm -2, what is the maximum load the cable can support?
Solution:
Radius of the steel cable, r = 1.5cm = 0.015m
Maximum allowable stress = 108 N m-2
Maximum stress = \(\frac{\text { Maximum force }}{\text { Area of cross – section }} \)
∴ Maximum force = Maximum stress x Area of cross – section
= 108 x π (0.015)2
= 7.065 x 104 N
Hence, the cable can support the maximum load of 7.065 x 104 N.

Question 10.
A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each mid are of copper and the middle one is of iron. Determine the ratio of their diameters if each is to have the same tension.
Solution:
The tension force acting on each wire is the same. Thus, the extension in each case is the same. Since the wires are of the same length, the strain will also be the same.
The relation for Young’s modulus is given as:
Y = \(\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\text { Strain }}=\frac{\frac{4 F}{\pi d^{2}}}{\text { Strain }}\) ……………………………. (i)
where, F = Tension force
A = Area of cross-section
d = Diameter of the wire
It can be inferred from equation (i) that Y ∝ \(\frac{1}{d^{2}}\)
Young’s modulus for iron, Y1 = 190 x 109 Pa
Diameter of the iron wire = d1
Young’s modulus for copper, Y2 = 110 x 109 Pa
Diameter of the copper wire = d2
Therefore, the ratio of their diameters is given as:
\(\frac{d_{2}}{d_{1}}=\sqrt{\frac{Y_{1}}{Y_{2}}}=\sqrt{\frac{190 \times 10^{9}}{110 \times 10^{9}}}=\sqrt{\frac{19}{11}}\)
= 1.31:11.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 11.
A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle.
The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire when the mass is at the lowest point of its path.
Solution:
Given, mass, m = 14.5kg
Length of the steel wire, l = 1.0 m
Angular velocity, ω = 2 rev / s
Cross-sectional area of the wire, a = 0.065cm2 = 0.065 x 10-4 m2
Let δl be died elongation of the wire when the mass is at the lowest point of its path.
When the mass is placed at the position of the vertical circle, the total force on the mass is :
F = mg+mlω2 ,
= 14.5 x 9.8 +14.5x 1 x (2)2 = 200.1 N

Young’s modulus = \(\frac{\text { Stress }}{\text { Strain }} \)
Y = \(\frac{\frac{F}{A}}{\frac{\Delta l}{l}}=\frac{F}{A} \cdot \frac{l}{\Delta l}\)
∴ Δl = \(\frac{F l}{A Y}\)

Young’s modulus for steel = 2 x 1011 Pa
∴ Δl = \(\frac{200.1 \times 1}{0.065 \times 10^{-4} \times 2 \times 10^{11}} \) = 1539.23 x 10-7
= 1.539 x 10-4
Hence, the elongation of the wire is 1.539 x 10-4 m.

Question 12.
Compute the bulk modulus of water from the following data: Initial volume =100.0 litre, Pressure increase =100.0atm (1 atm = 1.013 x 105 Pa), Final volume = 100.5 litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.
Solution:
Initial volume, V1 = 100.0 l x 10-3 m3
Final volume, V2 = 100.5l = 100.5 x 10-3 m-3
Increase in volume, V = V2 — V1 = 0.5 x 10-3 m3
Increase in pressure, Δp =100.0 atm = 100 x 1.013 x 105 Pa
Bulk modulus = \( \frac{\Delta p}{\frac{\Delta V}{V_{1}}}=\frac{\Delta p \times V_{1}}{\Delta V}\)
= \(\frac{100 \times 1.013 \times 10^{5} \times 100 \times 10^{-3}}{0.5 \times 10^{-3}}\) = 2.206 x 109 Pa
Bulk modulus of air = 1.0 x 105 Pa
∴ \(\frac{\text { Bulk modulus of water }}{\text { Bulk modulus of air }}=\frac{2.026 \times 10^{9}}{1.0 \times 10^{5}}\)
= 2.026 x 104
This ratio is very high because air is more compressible than water.

Question 13.
What is the density of water at a depth where pressure is 80.0 atm, given that its density at the surface is 103 x 103 kgm-3?
Solution:
Let the given depth be h.
Pressure at the given depth, p = 80.0 atm = 80 x 1.01 x 105 Pa
Density of water at the surface, ρ1 = 1.03 x 103 kg m-3
Let ρ2 be the density of water at the depth h.
Let V1 be the volume of water of mass m at the surface.
Let V2 be the volumé of water of mass m at the depth h.
Let ΔV be the change in volume.

ΔV = V1 – V2 = \(m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)\)
∴ Volumetric strain= \(\frac{\Delta V}{V_{1}}=m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right) \times \frac{\rho_{1}}{m}\)
∴ \(\frac{\Delta V}{V_{1}}=1-\frac{\rho_{1}}{\rho_{2}}\) ………………………………. (i)

Bulk modulus, B = \(\frac{p V_{1}}{\Delta V}\)
\(\frac{\Delta V}{V_{1}}=\frac{p}{B}\)
Compressibility of water = \(\frac{1}{B}=45.8 \times 10^{-11} \mathrm{~Pa}^{-1}\)
∴ \(\frac{\Delta V}{V_{1}}=80 \times 1.013 \times 10^{5} \times 45.8 \times 10^{-11}\) = 3.71 x 10-3 ………….(ii)
From equations (i) and (ii), we get
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 4
Therefore, the density of water at the given depth (h) is 1.034 x 103 kg m-3.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 14.
Compute the fractional change in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm.
Solution:
Hydraulic pressure exerted on the glass slab, p = 10 atm = 10 x 1.013 x 105 Pa
Bulk modulus of glass, B = 37 x 109 Nm-2
Bulk modulus, B = \(\frac{p}{\frac{\Delta V}{V}}\)
where, \(\frac{\Delta V}{V}\) = Fractional change in volume
∴ \(\frac{\Delta V}{V}=\frac{p}{B}=\frac{10 \times 1.013 \times 10^{5}}{37 \times 10^{9}}\)
= 2.73 x 10-5
Hence, the fractional change in the volume of the glass slab is
2.73 x 10-5 = 2.73 x 10-3% = 0.0027%

Question 15.
Determine the volume contraction of a solid copper cube, 10 cm on an edge, when subjected to a hydraulic pressure of 7.0x 106 Pa.
Solution:
Length of an edge of the solid copper cube, l =10 cm = 0.1 m
Hydraulic pressure, p = 7.0 x 106 Pa
Bulk modulus of copper, B = 140 x 109 Pa
Bulk modulus, B = \(\frac{P}{\frac{P}{\Delta V}}\)
where, \(\frac{\Delta V}{V}\) = Volumetric strain
ΔV = Change in volume
V =,Original volume
ΔV = \(\frac{p V}{B}\)
Original volume of the cube, V = l3
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 5
Therefore, the volume contraction of the solid copper cube is 0.05 cm3.

Question 16.
How much should the pressure on a litre of water be changed to compress by 0.10%?
Solution:
Volume of water, V =1 L
It is given that water is to be compressed by 0.10%.
∴ Fractional change, \(\frac{\Delta V}{V}=\frac{0.1}{100 \times 1}=10^{-3}\)
Bulk modulus, B = \(\frac{p}{\frac{\Delta V}{V}}\)
p = B x \( \frac{\Delta V}{V}\)

Bulk modulus of water, B = 2.2 x 109 Nm-2
p = 22 x 109 x 10-3
=2.2 x 106 Nm-2
Therefore, the pressure on water should be 2.2 x 106 Nm-2.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Additional Exercises

Question 17.
Anvils made of single crystals of diamond, with the shape as shown in figure given below, are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 6
Solution:
Diameter of the cones at the narrow ends, d = 0.50 mm = 0.5 x 10-3m
radius, r = \( \frac{d}{2}\) = 0.25 x 10-3 m
Compressional force, F = 50000 N
Pressure at the tip of the anvil,
p = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{\pi r^{2}}\)
= \(\frac{50000}{3.14 \times\left(0.25 \times 10^{-3}\right)^{2}}\)
= 2.55 x 1011 Pa
Therefore, the pressure at the tip of the anvil is 2.55 x 1011 Pa.

Question 18.
A rod of length 1.05 m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in figure given below. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0mm2, respectively. At what point along the rod should a mass m he suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 7
Solution:
Given, cross-sectional area of wire A, a1 = 1.0 mm2 = 1.0 x 10-6 m2
Cross-sectional area of wire B, a2 = 2.0 mm2 = 2.0 x 10-6 m2
Young’s modulus for steel, Y1 = 2 x 1011 Nm-2
Young’s modulus for aluminium, Y2 = 7.0 x 1010 Nm-2

Let a small mass m be suspended to the rod at a distance y from the end where wire A is attached.
Stress in the wire = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{a}\)
If the two wires have equal stresses, then,
\( \frac{F_{1}}{a_{1}}=\frac{F_{2}}{a_{2}}\)
where, F1 = Force exerted on the steel wire

F2 = Force exerted on the aluminium wire
\(\frac{F_{1}}{F_{2}}=\frac{a_{1}}{a_{2}}=\frac{1}{2}\) …………………………. (i)
The situation is shown in the following figure.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 8
Taking torque about the point of suspension, we have
F1y = F2(1.05— y)
\(\frac{F_{1}}{F_{2}}=\frac{(1.05-y)}{y}\) ……………………….(ii)
Using equations (i) and (ii), we can write
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 9
In order to produce an equal stress in the two wires, the mass should be suspended at a distance of 0.7 m from the end where wire A is attached.

(b) Young s modulus = \(\frac{\text { Stress }}{\text { Strain }} \)
Strain = \(\frac{\text { Stress }}{\text { Young’s modulus }}=\frac{\frac{F}{a}}{Y}\)
If the strain in the two wires is equal, then,
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 10
Taking torque about the point where mass m, is suspended at a distance y1 from the side where wire A attached, we get
F1y1 =F2(1.05-y1)
\(\frac{F_{1}}{F_{2}}=\frac{\left(1.05-y_{1}\right)}{y_{1}}\) ……………………………. (iv)
Using equations (iii) and (iv), we get
\(\frac{\left(1.05-y_{1}\right)}{y_{1}}=\frac{10}{7}\)
7(1.05 – y1) = 10 y1
⇒ 17 y1 = 7.35
y1 = 0.432 m
In order to produce an equal strain in the two wires, the mass should be suspended at a distance of 0.432 m from the end where wire A is attached.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 19.
A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 10-2 cm2 is stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid-point of the wire. Calculate the depression at the mid-point.
Solution:
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 11
Length of the steel wire = 1.0 m
Area of cross-section, A = 0.50 x 10-2 cm2 = 0.50 x 10-6 m2
A mass 100 g is suspended from its mid-point.
m = 100 g = 0.1kg
Hence, the wire dips, as shown in the given figure.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 12
Original length = XZ
Depression = l
The length after mass m, is attached to the wire = XO +OZ
Increase in the length of the wire:
Δl = (XO + OZ)-XZ
Where
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 13
Expanding and neglecting higher terms, we get:
Δl = \(\frac{l^{2}}{0.5}\)
Strain = \(\frac{\text { Increase in length }}{\text { Original length }}\)
Let T be the tension in the wire.

∴ mg = 2Tcos θ
Using the figure, it can be written as
Cos θ = \(\frac{l}{\left[(0.5)^{2}+l^{2}\right]^{\frac{1}{2}}}=\frac{l}{(0.5)\left[1+\left(\frac{l}{0.5}\right)^{2}\right]^{\frac{1}{2}}}\)
Expanding the expression and eliminating the higher terms, we get
Cos θ = \(\frac{l}{(0.5)\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)}\)
\(\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)\) ≈ 1 for small l
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 14
Hence, the depression at the mid-point is 0.0107 m.

Question 20.
Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0 mm. What is the maximum tension’ that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed 6.9 x 107 Pa?
Assume that each rivet is to carry one-quarter of the load.
Solution:
Diameter of the metal strip, d = 6.0 mm = 6.0 x 10-3 m
Radius, r = \(\frac{d}{2}\) = 3.0 x 10-3 m
Maximum shearing stress = 6.9 x 107 Pa
Maximum stress = \(\frac{\text { Maximum load or force }}{\text { Area }}\)
Maximum force = Maximum stress x Area
= 6.9 x 107 x π x (r)2
= 6.9 x 107 x 3.14 x (3 x10-3)2
= 1949.94 N
Each rivet carries one quarter of the load.
∴ Maximum tension on each rivet = 4 x 1949.94 = 7799.76 N.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 21.
The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of the water. The water pressure at the bottom of the trench is about 1.1 x 108 Pa. A steel ball of initial volume 0.32m is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?
Solution:
Water pressure at the bottom, p = 1.1 x 108 Pa
Initial volume of the steel ball, V = 0.32 m3
Bulk modulus of steel, B = 1.6 x 1011 Nm-2
The ball falls at the bottom of the Pacific Ocean, which is 11 km beneath the surface.
Let the change in the volume of the ball on reaching the bottom of the trench be ΔV.
Bulk modulus, B = \( \frac{p}{\frac{\Delta V}{V}}\)
ΔV = \(\frac{p V}{B}=\frac{1.1 \times 10^{8} \times 0.32}{1.6 \times 10^{11}}\)
= 2.2 x 10-4 m3
Therefore, the change in volume of the ball on reaching the bottom of the trench is 2.2 x 10-4 m3.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 6 Work, Energy and Power Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 6 Work, Energy and Power

PSEB 11th Class Physics Guide Work, Energy and Power Textbook Questions and Answers

Question 1.
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
Solution:
(a) Positive
In the given case, force and displacement are in the same direction. Hence, the sign of work done is positive. In this case, the work is done on the bucket.

(b) Negative
In the given case, the direction of force (vertically downward) and displacement (vertically upward) are opposite to each other. Hence, the sign of work done is negative.

(c) Negative
Since the direction of frictional force is opposite to the direction of motion, the work done by frictional force is negative in this case.

(d) Positive
Here the body is moving on a rough horizontal plane. Frictional force opposes the motion of the body. Therefore, in order to maintain a uniform velocity, a uniform force must be applied to the body. Since the applied force acts in the direction of motion of the body, the work done is positive.

(e) Negative
The resistive force of air acts in the direction opposite to the direction of motion of the pendulum. Hence, the work done is negative in this case.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 2.
A body of mass 2 kg initially at rest moves under the action of an applied horizontal force of 7 N on a table with coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in 10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the body in 10 s,
(d) change in kinetic energy of the body in 10 s, and interpret your results.
Solution:
Mass of the body, m = 2 kg
Applied force, F = 7 N
Coefficient of kinetic friction, μ = 0.1
Initial velocity, u = 0
Time, t = 10 s
The acceleration produced in the body by the applied force is given by Newton’s second law of motion as:
a’ = \(\frac{F}{m}\) = \(\frac{7}{2}\) = 3.5 m/s2
Frictional force is given as:
f = μ mg = 0.1 × 2 × 9.8 = -1.96 N
The acceleration produced by the frictional force:
a” = –\(\frac{1.96}{2}\) = -0.98 m/s2
Total acceleration of the body:
a = a’ + a”
= 3.5 + (-0.98) = 2.52 m/s2
The distance travelled by the body is given by the equation of motion:
s = ut + \(\frac{1}{2}\) at2
= 0 + \(\frac{1}{2}\) × 2.52 × (10)2 = 126 m
(a) Work done by the applied force, Wa = F × s = 7x 126 = 882 J
(b) Work done by the frictional force, Wf = f × s = -1.96 × 126 = -247 J
(c) Net force = 7 + (-1.96) = 5.04 N
Work done by the net force, Wnet = 5.04 × 126 = 635 J
(d) From the first equation of motion, final velocity can be calculated as:
υ = u + at
= 0 + 2.52 × 10 = 25.2 m/s
Change in kinetic energy = \(\frac{1}{2}\) mυ 2 – \(\frac{1}{2}\) mu2
= \(\frac{1}{2}\) × 2(υ2 – u2) = (25.2)2 – 02 = 635 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 3.
Given in figure below are examples of some potential energy functions in one dimension. The total energy of the particle is indicated by a cross on the ordinate axis. In each case, specify the regions, if any, in which the particle cannot be found for the given energy. Also, indicate the minimum total energy the particle muqt have in each case. Think of simple physical contexts for which these potential energy shapes are relevant.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 1
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 2
Solution:
Total energy of a system is given by the relation:
E = P.E. + K.E.
> K.E. = E – P.E.
Kinetic energy of a body is a positive quantity. It cannot be negative. Therefore, the particle will not exist in a region where K.E. becomes negative.
(i) In the given case, the potential energy (V0) of the particle becomes greater than total energy (E) for x > a. Hence, kinetic energy becomes negative in this region. Therefore, the particle will not exist in this region. The minimum total energy of the particle is zero.

(ii) In the given case, the potential energy (V0) is greater than total energy (E) in all regions. Hence, the particle will not exist in this region.

(iii) In the given case, the condition regarding the positivity of K.E. is satisfied only in the region between x > a and x<b.
The minimum potential energy in this case is -V1. Therefore, K.E. = E-(-V1) = E + V1.
Therefore, for the positivity of the kinetic energy, the total energy of the particle must be greater than -Vj. So, the minimum total energy the particle must have is -V1.

(iv) In the given case, the potential energy (V0) of the particle becomes greater than the total energy (E) for –\(\frac{b}{2}\)< x <\(\frac{b}{2}\) and –\(\frac{a}{2}\)< x <\(\frac{a}{2}\).
Therefore, the particle will not exist in these regions.
The minimum potential energy in this case is -V1. Therefore, K.E. = E – (-V1 ) = E + V1. Therefore, for the positivity of the kinetic energy, the total energy of the particle must be greater than -V1. So, the minimum total energy the particle must have is -V1.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 4.
The potential energy function for a particle executing linear simple harmonic motion is given by V (x) = kx2 / 2, where k is the force constant of the oscillator. For k = 0.5 Nm-1, the graph of V (x) versus x is shown in figure below. Show that a particle of total energy 1 J moving under this potential must ‘turn back’ when it reaches x = ±2m.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 3
Solution:
Total energy of the particle, E = 1 J
Force constant, k = 0.5 Nm-1
Kinetic energy of the particle, K = \(\frac{1}{2}\)mυ2
According to the conservation law:
E = V + K
1 = \(\frac{1}{2}\)kx2 + \(\frac{1}{2}\)mυ 2
At the moment of ‘turn back’, velocity (and hence K) becomes zero.
> 1 = \(\frac{1}{2}\)kx2
\(\frac{1}{2}\) × 0.5 ×2 = 1
x2 = 4
x = ±2
Hence, the particle turns back when it reaches x = ±2 m.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 5.
Answer the following:
(a) The casing of a rocket in flight burns up due to friction. At whose expense is the heat energy required for burning obtained? The rocket or the atmosphere?
(b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet’s velocity in general. Yet the work done by the gravitational force over every complete orbit of the comet is zero. Why?
(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy gradually due to dissipation against atmospheric resistance, however small. Why then does its speed increase progressively as it comes closer and closer to the earth?
(d) In fig. (i) the man walks 2 m carrying a mass of 15 kg on his hands. In fig. (ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 4
Solution:
(a) The burning of the casing of a rocket in flight (due to friction) results in the reduction of the mass of the rocket.
According to the conservation of energy:
Total Energy (T.E.) = Potential energy (P.E.) + Kinetic energy (K.E.)
= mgh + \(\frac{1}{2}\) mυ2
The reduction in the rocket’s mass causes a drop in the total energy. Therefore, the heat energy required for the burning is obtained from the rocket.

(b) Gravitational force is a conservative force. Since the work done by a conservative force over a closed path is zero, the work done by the gravitational force over every complete orbit of a comet is zero.

(c) When an artificial satellite, orbiting around earth, moves closer to earth, its potential energy decreases because of the reduction in the height. Since the total energy of the system remains constant, the reduction in P.E. results in an increase in K.E. Hence, the velocity of the satellite increases. However, due to atmospheric friction, the total energy of the satellite decreases by a small amount.

(d) Case (i)
Mass, m = 15 kg
Displacement, s = 2 m
Work done, W = Fs cosθ
where, θ = Angle between force and displacement
= mgs cosθ = 15 × 2 × 9.8 cos 90°
= 0 ( cos90° = 0)

Case (ii)
Mass, m = 15 kg Displacement, s = 2 m
Here, the direction of the force applied on the rope and the direction of the displacement of the rope are same.
Therefore, the angle between them, θ =0°
Since, cos0° = 1
Work done, W = Fs cosθ = mgs
= 15 × 9.8 × 2 = 294J
Hence, more work is done in the second case.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 6.
Underline the correct alternative:
(a) When a conservative force does positive work on a body, the potential energy of the body increases/decreases/ remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/potential energy.
(c) The rate of change of total momentum of a many-particle system is proportional to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total energy of the system of two bodies.
Solution:
(a) Decreases, A conservative force does a positive work on a body when it displaces the body in the direction of force. As a result, the body advances toward the centre of force. It decreases the separation between the two, thereby decreasing the potential energy of the body.

(b) Kinetic energy, The work done against the direction of friction reduces the velocity of a body. Hence, there is a loss of kinetic energy of the body.

(c) External force, Internal forces, irrespective of their direction, cannot produce any change in the total momentum of a body. Hence, the total momentum of a many-particle system is proportional to the external forces acting on the system.

(d) Total linear momentum, The total linear momentum always remains conserved whether it is an elastic collision or an inelastic collision.

Question 7.
State if each of the following statements is true or false. Give reasons for your answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
(b) Total energy of a system is always conserved, no matter what internal and external forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system.
Solution:
(a) False, In an elastic collision, the total energy and momentum of both the bodies, and not of each individual body, is conserved.

(b) False, Although internal forces are balanced, they cause no work to be done on a body. It is the external forces that have the ability to do work. Hence, external forces are able to change the energy of a system.

(c) False, The work done in the motion of a body over a closed loop is zero for a conservation force only.

(d) True, In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system. This is because in such collisions, there is always a loss of energy in the form of heat, sound, etc.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 8.
Answer carefully, with reasons:
(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved during the short time of collision of the balls (i. e., when they are in contact)?
(b) Is the total linear momentum conserved during the short time of an elastic collision of two balls?
(c) What are the answers to (a) and (b) for an inelastic collision?
(d) If the potential energy of two billiard balls depends only on the separation distance between their centres, is the collision elastic or inelastic? (Note, we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).
Solution:
(a) No, In an elastic collision, the total initial kinetic eneigy of the bails will be equal to the total final kinetic energy of the balls. This kinetic energy is not conserved at the instant the two balls are in contact with each other. In fact, at the time of collision, the kinetic energy of the balls will get converted into potential energy.

(b) Yes, In an elastic collision, the total linear momentum of the system always remains conserved.

(c) No, In an inelastic collision, there is always a loss of kinetic energy, i. e., the total kinetic energy of the billiard balls before collision will always be greater than that after collision.
Yes, The total linear momentum of the system of billiards balls will remain conserved even in the case of an inelastic collision.

(d) Elastic, In the given case, the forces involved are conservation. This is because they depend on the separation between the centres of the billiard balls. Hence, the collision is elastic.

Question 9.
A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to
(i) \(t^{\frac{1}{2}}\)
(ii) t
(iii) \(t^{\frac{3}{2}}\)
(iv) t2
Solution:
(ii) t
Let a body of mass m which is initially at rest undergoes one-dimensional motion under a constant force F with a constant acceleration a.
Acceleration (a) = \(\frac{F}{m}\) …………. (i)
Using equation of motion, υ = u + at
⇒ υ = 0 + \(\frac{F}{m}\).t …………. (∵ u = 0)
⇒ υ = \(\frac{F}{m}\)t …………… (ii)
Power delivered (P) = Fυ
Substituting the value from eq. (ii), we get
⇒ P = F × \(\frac{F}{m}\) × t
⇒ P = \(\frac{F^{2}}{m}\)t
Dividing and multiplying by m in R.H.S.
P = \(\frac{F^{2}}{m^{2}}\) × mt= a2mt [Using eq.(i)]
As mass m and acceleration a are constant.
∴ P ∝ t

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 10.
A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time t is proportional to
(i) \(t^{\frac{1}{2}}\)
(ii) t
(iii) \(t^{\frac{3}{2}}\)
(iv) t2
Solution:
(iii) \(t^{\frac{3}{2}}\)
Power is given by the relation:
P = Fυ
= maυ = mυ \(\frac{d v}{d t}\) = Constant (say,k )
υ dv = \(\frac{k}{m}\) dt
Integrating both sides:
\(\frac{v^{2}}{2}=\frac{k}{m}\)t
υ = \(\sqrt{\frac{2 k t}{m}}\)
For displacement x of the body, we have:
υ = \(\frac{d x}{d t}=\sqrt{\frac{2 k}{m}} t^{\frac{1}{2}}\)
dx = k’\(t^{\frac{1}{2}}\)dt
where, k’ = \(\sqrt{\frac{2 k}{3}}\) = New constant
On integrating both sides, we get:
x = \(\frac{2}{3} k^{\prime} t^{\frac{3}{2}}\)
x ∝ \(t^{\frac{3}{2}}\)

Question 11.
A body constrained to move along the z-axis of a coordinate system is subject to a constant force F given by F = -î + 2ĵ + 3k̂N
where î, ĵ, k̂ are unit vectors along the x-, y- and z-axis of the system respectively. What is the work done by this force in moving the body a distance of 4 m along the z-axis?
Solution:
Force exerted on the body, F = -î + 2ĵ + 3k̂N
Displacement, s = 4 k̂ m
Work done, W = F.s
= (-î + 2ĵ + 3k̂).(4k̂)
= 0 + 0 + 3 × 4 = 12 J
Hence, 12 J of work is done by the force on the body.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 12.
An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10 keV, and the second with 100 keV. Which is faster, the electron or the proton? Obtain the ratio of their speeds, (electron mass = 9.11 × 10-31 kg, proton mass = 1.67 × 10-27 kg, 1 eV = 1.60 × 10-19 J).
Solution:
Mass of the electron, me = 9.11 × 10-31 kg
Mass of the proton, mp =1.67 × 10-27 kg
Kinetic energy of the electron, EKe =10 keV = 104 eV
= 104 × 1.60 × 10-19
1.60 × 10-15 J
Kinetic energy of the proton, EKp = 100 keV = 105 eV = 1.60 × 10-14 J
For the velocity of an electron ve, its kinetic energy is given by the relation:
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 5

Question 13.
A rain drop of radius 2 mm falls from a height of500 m above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original height, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done hy the gravitational force on the drop in the first and second half of its journey? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is 10 ms-1?
Solution:
Radius of the rain drop, r = 2 mm = 2 × 10 -3 m
Volume of the rain drop, V = \(\frac{4}{3}\) πr3
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 m-3
Density of water, ρ = 103 kgm-3
Mass of the rain drop, m = ρV
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103
Gravitational, F = mg
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 9.8N
The work done by the gravitational force on the drop in the first half of its journey.
W1 = Fs
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3 )3 × 103 × 9.8 × 250
= 0.082 J

This amount of work is equal to the work done by the gravitational force on the drop in the second half of its journey, i. e., WII, = 0.082 J.
As per the law of conservation of energy, if no resistive force is present, then the total energy of the rain drop will remain the same.
∴ Total energy at the top:
ET = mgh + 0
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 × 9.8 × 500
= 0.164 J
Due to the presence of a resistive force, the drop hits the ground with a velocity of 10 m/s.
∴ Total energy at the ground:
Eg = \(\frac{1}{2}\) mυ2 + 0
= \(\frac{1}{2}\) × \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 × 9.8 × (10)2
= 1.675 × 10-3 J = 0.001675
∴ Resistive force = Eg – Et = 0.001675 – 0.164 = -0.162 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 14.
A molecule in a gas container hits a horizontal wall with speed 200 m s-1 and angle 30° with the normal, and rebounds with the same speed. Is momentum conserved in the collision? Is the collision elastic or inelastic?
Solution:
Yes; Collision is elastic
The momentum of the gas molecule remains conserved Whether the collision is elastic or inelastic.
The gas molecule moves with a velocity of 200 m/s and strikes the stationary wall of the container, rebounding with the same speed.
It shows that the rebound velocity of the wall remains zero. Hence, the total kinetic energy of the molecule remains conserved during the collision. The given collision is an example of an elastic collision.

Question 15.
A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3 in 15 min. If the tank is 40 m above the ground, and the efficiency of the pump is 30%, how much electric power is consumed by the pump?
Solution:
Volume of the tank, V = 30 m3
Time of operation, t = 15 min = 15 × 60 = 900 s
Height of the tank, h = 40 m
Efficiency of the pump, η = 30%
Density of water, ρ = 103 kg/m3
Mass of water, m = ρ V = 30 × 103 kg
Output power can be obtained as:
P0 = \(\frac{\text { Work done }}{\text { Time }}=\frac{m g h}{t}\)
= \(\frac{30 \times 10^{3} \times 9.8 \times 40}{900}\) = 13.067 × 103 W
For input power Pi efficiency η, is given by the relation :
η = \(\frac{P_{o}}{P_{i}}\) = 30%
Pi = \(\frac{13.067}{30}\) × 100 103
= 0.436 × 102 W = 43.6 kW

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 16.
Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V. If the collision is elastic, which of the following figure is a possible result after collision?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 6
Solution:
It can be observed that the total momentum before and after collision in each case is constant.
For an elastic collision, the total kinetic energy of a system remains conserved before and after collision.
For mass of each ball bearing m, we can write:
Total kinetic energy of the system before collision:
= \(\frac{1}{2}\)mV2 + \(\frac{1}{2}\)(2m)0
= \(\frac{1}{2}\)mV2

Case (i)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\)m × 0 + \(\frac{1}{2}\)(2m) (\(\frac{V}{2}\))2
= \(\frac{1}{4}\)mV2
Hence, the kinetic energy of the system is not conserved in case (i).

Case (ii)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\) (2m) × 0 + \(\frac{1}{2}\)mV2
= \(\frac{1}{2}\) mV2
Hence, the kinetic energy of the system is conserved in case (ii).

Case (iii)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\)(3m) (\(\frac{V}{3}\))2
= \(\frac{1}{6}\) mV2
Hence, the kinetic energy of the system is not conserved in case (iii).

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 17.
The bob A of a pendulum released from 30° to the vertical hits another hob B of the same mass at rest on a table as shown in’ figure given below. How high does the bob A rise after the collision? Neglect the size of the bobs and assume the collision to be elastic.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 7
Solution:
Bob A will not rise at all
In an elastic collision between two equal masses in which one is stationary, while the other is moving with some velocity, the stationary mass acquires the same velocity, while the moving mass immediately comes to rest after collision. In this case, a complete transfer of momentum takes place from the moving mass to the stationary mass. Hence, bob A of mass m, after colliding with bob B of equal mass, will come to rest, while bob B will move with the velocity of bob A at the instant of collision.

Question 18.
The bob of a pendulum is released from a horizontal position. If the length of the pendulum is 1.5 m, what is the speed with which the bob arrives at the lowermost-point, given that it dissipated 5% of its initial energy against air resistance?
Solution:
Length of the pendulum, l = 1.5 m
Mass of the bob = m
Energy dissipated = 5%
According to the law of conservation of energy, the total energy of the system remains constant.

At the horizontal position:
Potential energy of the bob, EP = mgl
Kinetic energy of the bob, EK = 0
Total energy = mgl …………. (i)

At the lowermost point (mean position):
Potential energy of the bob, EP = 0
Kinetic energy of the bob, EK = \(\frac{1}{2}\)mυ2
Total energy, Ex = \(\frac{1}{2}\)mυ2 ………….. (ii)
As the bob moves from the horizontal position to the lowermost point, 5% of its energy gets dissipated.
The total energy at the lowermost point is equal to 95% of the total energy at the horizontal point, i. e.,
\(\frac{1}{2}\)mυ2 = \(\frac{95}{100}\) × mgl
υ = \(\sqrt{\frac{2 \times 95 \times 1.5 \times 9.8}{100}}\) = 5.28 m/s

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 19.
A trolley of mass 300 kg carrying a sandbag of 25 kg is moving uniformly with a speed of 27 km/h on a frictionless track. After a while, sand starts leaking out of ahole on the floor of the trolley at the rate of 0.05 kg s-1 . What is the speed of the trolley after the entire sand bag is empty?
Solution:
The sand bag is placed on a trolley that is moving with a uniform speed of 27 km/h. The external forces acting on the system of the sand bag and the trolley is zero. When the sand starts leaking from the bag, there will be no change in the velocity of the trolley. This is because the leaking action does not produce any external force on the system. This is in accordance with Newton’s first law of motion. Hence, die speed of the trolley will remain 27 km/h.

Question 20.
A body of mass 0.5 kg travels in a straight line with velocity υ = ax3/2 where a = 5 m-1/2s-1. What is the work done by the net force during its displacement from x = 0 to x = 2 m?
Solution:
Mass of the body, m = 0.5 kg
Velocity of the body is governed by the equation, υ = a \(x^{\frac{3}{2}}\) where,
a = 5m-1/2s-1
Initial velocity, u (at x = 0) = 0
Final velocity, υ (at x = 2 m) = 5 × (2)3/2 m/s = 10√2 m/s
Work done, W = Change in kinetic energy
= \(\frac{1}{2}\)m(υ2 – u2)
= \(\frac{1}{2}\) × 0.5[(10√2)2 – (0)2]
= \(\frac{1}{2}\) × 0.5 × 10 × 10 × 2
= 50 J

Question 21.
The blades of a windmill sweep out a circle of area A. (a) If the wind flows at a velocity v perpendicular to the circle, what is the mass of the air passing through it in time t? (b) What is the kinetic energy of the air? (c) Assume that the windmill converts 25% of the wind’s energy into electrical energy, and that A = 30 m2, υ = 36km/h and the density of air is 1.2 kg m-3. What is the electrical power produced?
Solution:
(a) Area of the circle swept by the windmill = A
Velocity of the wind = υ
Density of air = ρ
Volume of the wind flowing through the windmill per sec = Aυ
Mass of the wind flowing through the windmill per sec = ρ Aυ
Mass m, of the wind flowing through the windmill in time t = ρ A υ t

(b) Kinetic energy of air = \(\frac{1}{2}\) mυ2
= \(\frac{1}{2}\) (ρAυt)v2 = \(\frac{1}{2}\)ρ Aυ3t

(c) Area of the circle swept by the windmill, A = 30 m2
Velocity of the wind, υ =36 km/h = 36 × \(\frac{5}{18}\) m/s
= 10 m/s [1 km/s = \(\frac{5}{18}\) m/s]
Density of air, ρ = 1.2 kg m-3
Electric energy produced = 25% of the wind energy
= \(\frac{25}{100}\) ×Kinetic energy of air
= \(\frac{1}{8}\)ρAυ3t
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 8
\(\) = \(\frac{1}{8}\)ρAυ3
= \(\frac{1}{8}\) × 1.2 × 30 × (10)3
= 4.5 × 103 W = 4.5 kW

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 22.
A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a height of 0.5 m each time. Assume that the potential energy lost each time she lowers the mass is dissipated, (a) How much work does she do against the gravitational force? (b) Fat supplies 3.8 × 107 J of energy per kilogram which is converted to mechanical energy with a 20% efficiency rate. How much fat will the dieter use up?
Solution:
(a) Mass of the weight, m = 10 kg
Height to which the person lifts the weight, h = 0.5
m Number of times the weight is lifted, n = 1000
∴ Work done against gravitational force:
= n(mgh)
=1000 × 10 × 9.8 × 0.5
= 49 × 103 J = 49 kJ

(b) Energy equivalent of 1 kg of fat = 3.8 × 107 J
Efficiency rate = 20%
Mechanical energy supplied by the person’s body
= \(\frac{20}{100}\) × 3.8 × 107 J
= \(\frac{1}{5}\) × 3.8 × 107 J 5
Equivalent mass of fat lost by the dieter
= \(\frac{1}{\frac{1}{5} \times 3.8 \times 10^{7}}\) × 49 × 3
= \(\frac{245}{3.8}\)× 3.8 × 107
= × 10-4
= 6.45 × 10-3 kg

Question 23.
A family uses 8 kW of power, (a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per square meter. If 20% of this energy can be converted to useful electrical energy, how large an area is needed to supply 8 kW? (b) Compare this area to that of the roof of a typical house.
Solution:
(a) Power used by the family, P = 8 kW = 8 × 103 W
Solar energy received per square meter = 200 W
Efficiency of conversion from solar to electrical energy = 20%
Area required to generate the desired electricity = A
As per the information given in the question, we have
8 × 103 = 20% × (A × 200)
= \(\frac{20}{100}\) × A × 200
> A = \(\frac{8 \times 10^{3}}{40}\) = 200m2

(b) In order to compare this area to that of the roof of a typical house, let ‘a’ be the side of the roof
∴ area of roof =a × a = a2
Thus a2 = 200 m2
or a = \(\sqrt{200 \mathrm{~m}^{2}}\) = 14.14 m
∴ area of roof = 14.14 × 14.14 m2
Thus 200 m2 is comparable to the roof of a typical house of dimensions 14.14 m × 14.14 m = 14 m × 14 m.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 24.
A bullet of mass 0.012 kg and horizontal speed 70 ms-1 strikes a block of wood of mass 0.4 kg and instantly comes to rest with respect to the block. The block is suspended from the ceiling by means of thin wires. Calculate the height to which the block rises. Also, estimate the amount of heat produced in the block.
Solution:
Mass of the bullet, m = 0.012 kg
Initial speed of the bullet, ub = 70 m/s
Mass of the wooden block, M = 0.4 kg
Initial speed of the wooden block, uB = 0
Final speed of the system of the bullet and the block = υ
Applying the law of conservation of momentum,
mub +MUB = (m + M)υ
012 × 70 + 0.4 × 0 = (0.012 + 0.4)υ
∴ υ = \(\frac{0.84}{0.412}\) = 2.04 m/s

For the system of the bullet and the wooden block,
Mass of the system, m’ = 0.412 kg
Velocity of the system = 2.04 m/s
Height up to which the system rises = h
Applying the law of conservation of energy to this system,
Potential energy at the highest point
= Kinetic energy at the lowest point
m’ gh = \(\frac{1}{2}\)m’ υ2
h = \(\frac{1}{2}\)(\(\frac{v^{2}}{g}\))
= \(\frac{1}{2}\) (\(\frac{(2.04)^{2}}{9.8}\)) = 0.2123m
The wooden block will rise to a height of 0.2123 m.
Heat produced = Kinetic energy of the bullet
– Kinetic energy of the system
= \(\frac{1}{2}\) mub– \(\frac{1}{2}\)m’ υ2
= \(\frac{1}{2}\) × 0.012 × (70)2 – \(\frac{1}{2}\) × 0.412 × (2.04)2
= 29.4 – 0.857 = 28.54 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 25.
Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track (see figure). Will the stones reach the bottom at the same time? Will they reach there with the same speed? Explain. Given θ1 = 30°, θ2 = 60°and h = 10m, what are the speeds and times taken by the two stones?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 9
Solution:
No; the stone moving down the steep plane will reach the bottom first Yes; the stones will reach the bottom with the same speed The given situation can be shown as in the following figure:
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 10
Here, the initial height (AD) for both the stones is the same (h).
Hence, both will have the same potential energy at point A.
As per the law of conservation of energy, the kinetic energy of the stones at points B and C will also be the same, i. e.,
\(\frac{1}{2}\) mυ12 = \(\frac{1}{2}\)mυ22
υ1 = υ1 = υ, say
where,
m = Mass of each stone
υ = Speed of each stone at points B and C
Hence, both stones will reach the bottom with the same speed, υ.

For stone I: Net force acting on this stone is given by:
Fnet = ma1 = mgsinθ1
a1 = gsinθ1

For stone II: a2 = gsinθ2
∵ θ2 > θ1
∴ sinθ2 > sinθ1
∴ a2 > a1
Using the first equation of motion, the time of slide can be obtained as:
υ = u + at
∴ t = \(\frac{v}{a}\) (∵ u = 0)
For stone I: t1 = \(\frac{v}{a_{1}}\)
For stone II: t2 = \(\frac{v}{a_{2}}\)
∵ a2 > a1
∴ t2 < t1
Hence, the stone moving down the steep plane will reach the bottom first. The speed (υ) of each stone at points B and C is given by the relation obtained from the law of conservation of energy.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 11

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 26.
A1 kg block situated on a rough incline is connected to a spring of spring constant 100 Nm-1 as shown in figure given below. The block is released from rest with the spring in the unstretched position. The block moves 10 cm down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has a negligible mass and the pulley is frictionless.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 12
Solution:
Mass of the block, m = 1 kg
Spring constant, k = 100 N m-1
Displacement in the block, x = 10 cm = 0.1 m
The given situation can be shown as in the following figure.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 13
At equilibrium:
Normal reaction, R = mg cos 37°
Frictional force, f = μR = p mg cos 37°
where, μ is the coefficient of friction
Net force acting on the block = mg sin 3 7° – f
= mgsin37° – μmgcos37°
= mg (sin37° – μcos37°)
At equilibrium, the work done by the block is equal to the potential energy of the spring, i.e.,
mg (sin37° – μcos37°) x = \(\frac{1}{2}\)kx 2
1 × 9.8 (sin 37° – μcos37°) = \(\frac{1}{2}\) × 100 × 0.1
0.6018 – μ × 0.7986 = 0.5102
0.7986 μ = 0.6018 – 0.5102 = 0.0916
∴ μ = \(\frac{0.0916}{0.7986}\) = 0.115

Question 27.
A bolt of mass 0.3 kg falls from the ceiling of an elevator moving down with an uniform speed of 7 m-1. It hits the floor of the elevator (length of the elevator = 3m) and does not rebound. What is the heat produced by the impact? Would your answer be different if the elevator were stationary?
Solution:
Mass of the bolt, m = 0.3 kg
Speed of the elevator = 7 m/s
Height, h = 3 m
Since the relative velocity of the bolt with respect to the lift is zero, at the time of impact, potential energy gets converted into heat energy.
Heat produced = Loss of potential energy
= mgh = 0.3 × 9.8 × 3 = 8.82 J
The heat produced will remain the same even if the lift is stationary. This is because of the fact that the relative velocity of the bolt with respect to the lift will remain zero.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 28.
A trolley of mass 200 kg moves with a uniform speed of 36 km/h on a frictionless track. A child of mass 20 kg runs on the trolley from one end to the other (10 m away) with a speed of 4 m s-1 relative to the trolley in a direction opposite to the its motion, and jumps out of the trolley. What is the final speed of the trolley? How much has the trolley moved from the time the child begins to run?
Solution:
Mass of the trolley, M = 200 kg
Speed of the trolley, υ = 36 km/h = 36 × \(\frac{5}{18}\)m/s = 10 m/s
Mass of the boy, m = 20 kg
Initial momentum of the system of the boy and the trolley
= (M + m)υ
= (200 + 20) × 10
= 2200 kg-m/s
Let v’ be the final velocity of the trolley with respect to the ground.
Final velocity of the boy with respect to the ground = υ’ – 4
Final momentum = Mυ’ + m(υ’ – 4)
= 200 υ’ + 20υ’ – 80
= 220 υ’ – 80
As per the law of conservation of momentum,
Initial momentum = Final momentum
2200 =220 υ’ – 80
∴ υ’ = \(\frac{2280}{220}\) = 10.36 m/s
Length of the trolley, l = 10 m
Speed of the boy, υ” = 4 m/s
Time taken by the boy to run, t = \(\frac{10}{4}\) = 2.5 s
∴ Distance moved by the trolley = υ’ × t= 10.36 × 2.5 = 25.9 m

Question 29.
Which of the following potential energy curves in the given figure cannot possibly describe the elastic collision of two billiard balls? Here r is the distance between centres of the balls.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 14
Solution:
(i), (ii), (iii), (iv), and (vi)
The potential energy of a system of two masses is inversely proportional to the separation between them. In the given case, the potential energy of the system of the two balls will decrease as they come closer to each other. It will become zero [i.e., V (r) = 0] when the two balls touch each other, i.e., at r = 2R, where R is the radius of each billiard ball. The potential energy curves given in figures (i), (ii), (iii), (iv), and (vi) do not satisfy these two conditions. Hence, they do not describe the elastic collisions between them.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 30.
Consider the decay of a free neutron at rest: n → p + e. Show that the two-body decay of this type must necessarily give an electron of fixed energy and, therefore, cannot account for the observed continuous energy distribution in the β-decay of a neutron or a nucleus (see figure).
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 15
[Note: The simple result of this exercise was one among the several arguments advanced by W. Pauli to predict the existence of a third particle in the decay products of P-decay. This particle is known as
neutrino. We now know that it is a particle of intrinsic spin \(\frac{1}{2}\) (like e, p or n), but is neutral, and either massless or having an extremely small mass
(compared to the mass of electron) and which interacts very weakly with matter. The correct decay process of neutron is: n → p + e + υ]
Solution:
The decay process of free neutron at rest is given as:
n → p + e
From Einstein’s mass-energy relation, we have the energy of electron as
Δ𝜏 mc2
where,
Δ𝜏 m = Mass defect
= Mass of neutron – (Mass of proton + Mass of electron)
c = Speed of light
Δ𝜏 m and c are constants. Hence, the given two-body decay is unable to explain the continuous energy distribution in the p-decay of a neutron or a nucleus. The presence of neutrino v on the LHS of the decay correctly explains the continuous energy distribution.
Here, Δ𝜏 m= mass of neutron – (mass of proton + mass of electron)
= 1.6747 × 10-24 -(1.6724 × 10-24 + 9.11 × 10-28)
= (1.6747 – 1.6733) × 10-24
= 0.0014 × 10-24 gms ‘
∴ E = 0.0014 × 10-24 × (3 × 1010)2 ergs
= 0.0126 × 10-4 ergs
= [Latex]\frac{0.0126 \times 10^{-4}}{1.6 \times 10^{-12}}[/Latex]
( ∵ 1 eV = 1.6 × 10-19 J = 1.6 × 10-19 × 107 ergs)
= 0.007875 × 10 8 eV
= 0.7875 × 106 eV
= 0.79 MeV

A positron has the same mass as an electron but an opposite charge of+e. When an electron and a positron come close to each other, they destroy each other. Their masses, are converted into energy according to Einstein’s relation and the energy so obtained is released in the form of y-rays and is given by
E’ = mc2 = 2 × 9.1 × 10-31 kgx (3 × 108 ms-1)2
= 1.638 × 10-13 J
= \(\frac{1.638 \times 10^{-13}}{1.6 \times 10^{-13}}\) MeV
= 1.02MeV (∵1 MeV = 1.6 × 10-13 eV)
= Minimum energy a photon must possess for pair production.

Alternate method
Decay of a free neutron at rest,
n → p + e
Let Δ m be the mass defect during this process.
∴ Mass defect (Δ m) = (Mass of neutron) – (Mass of proton and electron) This mass defect is fixed and hence electron of fixed energy should be produced. Therefore, two-body decay of this type cannot explain the observed continuous energy distribution in the (3-decay of a neutron in a nucleus.

PSEB 11th Class Physics Important Questions Chapter 8 Gravitation

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 8 Gravitation Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 8 Gravitation

Very Short Answer Type Questions

Question 1.
By which law is the Kepler’s law of areas identical?
Answer:
The law of conservation of angular momentum.

Question 2.
Draw areal velocity versus time graph for mars. (NCERT Exemplar)
Answer:
Areal velocity of planet revolving around the Sun is constant with time (Kepler’s second law).
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 1

Question 3.
At what factor between the two particles gravitational force does not depend?
Answer:
Gravitational force does not depend upon the medium between the two particles.

Question 4.
Two particles of masses m1 and m2 attract each other gravitationally and are set in motion under the influence of the gravitational force? Will the centre of mass move?
Answer:
Since the gravitational force is an internal force, therefore the centre of mass would not move.

Question 5.
Work done in moving a particle round a closed path under the action of gravitation force is zero. Why?
Answer:
Gravitational force is a conservative force which means that work done by it, is independent of path followed.

Question 6.
What would happen if the force of gravity were to disappear suddenly?
Answer:
The universe would collapse. We would be thrown away because of the centrifugal force. Eating, drinking and in fact all activities would become impossible.

Question 7.
Why a body weighs more at poles and less at equator?
Answer:
The value of g is more at poles than at the equator. Therefore, a body weighs more at poles than at equator.

Question 8.
Give a method for the determination of the mass of the moon.
Solution:
Soli By making use of the relation, gm = \(\frac{G M_{m}}{R_{m}^{2}} \)

Short Answer Type Questions

Question 1.
A planet moving along an elliptical orbit is closest to the Sim at a distance r1 and farthest away at a distance of r2.
If v1 and v2 are the linear velocities at these points respectively, then find the ratio \(\frac{v_{1}}{v_{2}}\).
Solution:
From the law of conservation of angular momentum
mr1v1 = mr2v2
⇒ r1v1 = r2v2 or
\(\frac{v_{1}}{v_{2}}=\frac{r_{2}}{r_{1}}\)

Question 2.
A mass M is broken into two parts, m and (M – m). How is m related to M so that the gravitational force between two parts is maximum?
Solution:
Let =m,m2 =M – m
F = G\(\frac{m(M-m)}{r^{2}}=\frac{G}{r^{2}}\left(M m-m^{2}\right)\)
Differentiating w.r:t. m, \(\frac{d F}{d m}=\frac{G}{r^{2}}(M-2 m)\)
For F to be maximum, \(\frac{d F}{d m}\) = 0
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 2
m1 = m2 = M/2

Question 3.
Two stationary particles of masses M1 and M2 are a distance d apart. A third particle lying on the line joining the particles, experiences no resultant gravitational force. What is the distance of this particle from M1?
Solution:
The force on m towards Mi is F =G \(\frac{M_{1} m}{r^{2}}\)
The force on m towards Mi is F = G \(\frac{M_{2} m}{(d-r)^{2}} \)

Equating two forces, we have
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 4
So, distance of an particle from m is . r = d
r = d \(\left(\frac{\sqrt{M_{1}}}{\sqrt{M_{1}}+\sqrt{M_{2}}}\right)\).

Question 4.
Aspherical planet has mass Mp and clinometer Dp. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to whom?
Solution:
Force is given by
F = \(-\frac{G M m}{R^{2}}=\frac{G M_{p} m}{\left(D_{P} / 2\right)^{2}}=\frac{4 G M_{P} m}{D_{P}^{2}}\)
\(\frac{F}{m}=\frac{4 G M_{P}}{D_{P}^{2}}\)

Question 5.
What is the gravitational potential energy of a body at height h from the Earth surface?
Solution:
Gravitational potential energy, i. e.,
Uh = \(-\frac{G M m}{R+h}=-\frac{g R^{2} m}{R+h}\)
[where g = \(\frac{G M}{R^{2}}\) ]
= – \(\frac{g R^{2} m}{R\left(1+\frac{h}{R}\right)}=-\frac{m g R}{1+\frac{h}{R}}\)
.
Question 6.
An artificial satellite is moving in a circular orbit around the Earth with a speed equal to half the magnitude of escape velocity from Earth.
Determine
(i) the height of satellite above Earth’s surface.
(ii) if the satellite is suddenly stopped, find the speed with
which the satellite will hit the Earth’s surface after falling down.
Solution:
Escape velocity = \(\sqrt{2 g R}\), where g is acceleration due to gravity on surface of Earth and R the radius of Earth.
Orbital velocity = \(\frac{1}{2} v_{e}=\frac{1}{2} \sqrt{2 g R}=\sqrt{\frac{g R}{2}} \) …………………. (i)

(i) If h is the height of satellite above Earth
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 5
h=R
(ii) If the satellite is stopped in orbit, the kinetic energy is zero and its
potential energy is – \(\frac{G M m}{2 R}\)
Total energy =-\(\frac{G M m}{2 R}\)

Let v be its velocity when it reaches the Earth.
Hence the kinetic energy = \(\frac{1}{2} m v^{2}\)
Potential energy = – \(\frac{G M m}{2 R}\)
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 6

Question 7.
Why do different planets have different escape velocities?
Solution:
Escape velocity, v = \(\sqrt{2 g R}=\sqrt{\frac{2 G M}{R}}\)
Thus escape velocity of a planet depends upon (i) its mass (M) and
(ii) its size (R).
As different planets have different masses and sizes, so they have different escape velocities.

Question 8.
Under what circumstances would your weight become zero?
Answer:
The weight will become zero under the following circumstances
(i) during free fall
(ii) at the centre of the Earth
(iii) in an artificial satellite
(iv) at a point where gravitational pull of Earth is equal to the gravitational pull of the Moon.

Long Answer Type Questions

Question 1.
A mass m is placed at P, a distance h along the normal through the centre O of a thin circular ring of mass M and radius r. If the mass is removed further away such that OP becomes 2h, by what factor the force of gravitation will decrease, if h = r? (NCERT Exemplar)
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 7
Solution:
Consider a small element of the ring of mass dM, gravitational force between dM and m, distance x apart in figure i.e.,
dF = \(\frac{G(d m) m}{x^{2}}\)
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 8
dF can be resolved into two rectangular components.
(i) dF cos θ along PO and
(ii) dF sinθ perpendicular to PO (given figure)
The total force (F) between the ring and mass (m) can be obtained by integrating the effects of all the elements forming the ring, whereas all the components perpendicular to PO cancel out i.e., ∫dFsinθ=O, the component along PO add together to give F i.e.,
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 9

Question 2.
A satellite is to be placed in equatorial geostationary orbit around the Earth for communication.
(i) Calculate height of such a satellite.
(ii) Find out the minimum number of satellites that are needed to cover entire Earth so that at least one of satellite is visible from any point on the equator.
[M = 6 x 10 24 kg, R = 6400 km, T = 24 h, G = 6.67 x 10-11SI (NCERT Exemplar)
Solution:
(i) As, according co Kepler’s third law, we get
T2 = \(\frac{4 \pi^{2} r^{3}}{G M}\)
⇒ r = \( \left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}\)
PSEB 11th Class Physics Important Questions Chapter 8 Gravitation 10
As we known =R +h
h=r-R
h=4.23 x 107 m – 6.4 x 106 m
h = 3.59 x 107 m

(ii) In ΔOES,cos θ = \(\frac{O A}{O S}=\frac{R}{R+h}\)
= \(\frac{1}{\left(1+\frac{h}{R}\right)}\)
= \(\frac{1}{(1+5.609)}\)
=0.1513
(as,\(\frac{h}{R}=\frac{3.59 \times 10^{7} \mathrm{~m}}{6.4 \times 10^{6} \mathrm{~m}}\) = 5.609)
where, θ ≈ 81° or 2θ = 162°
Number of satellites required to cover entire the Earth.
= \(\frac{360^{\circ}}{162^{\circ}}=2.2\) ≈ 3.

PSEB 11th Class Biology Solutions Chapter 2 Biological Classification

Punjab State Board PSEB 11th Class Biology Book Solutions Chapter 2 Biological Classification Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Biology Chapter 2 Biological Classification

PSEB 11th Class Biology Guide Biological Classification Textbook Questions and Answers

Question 1.
Discuss how classification systems have undergone several changes over a period of time?
Answer:
(i) Linnaeus proposed a two kingdom system of classification with Plantae and Animalia kingdoms was developed that included all plants and animals respectively. But as this system did not distinguish between the eukaryotes and prokaryotes, unicellular and multicellular organisms and photosynthetic (green algae) and non-photosynthetic (fungi) organisms, so scientists found it an inadequate system of classification. Classification systems for the living organisms have hence, undergone several changes over time.

(ii) The two kingdom system of classification was replaced by three kingdom system, then by four and finally by five kingdom system of classification of RH Whittaker (1969).

(iii) The five kingdoms included Monera, Protista, Fungi, Plantae and Animalia. This is the most accepted system of classification of living organisms.

(iv) But, Whittaker has not described viruses and lichens. Then Stanley described viruses, viroids, etc.
Thus, over a period of time, classification systems have undergone several changes.

PSEB 11th Class Biology Solutions Chapter 2 Biological Classification

Question 2.
State two economically important uses of:
(a) Heterotrophic bacteria
(b) Archaebacteria
Answer:
(a) Heterotrophic Bacteria

  • Maintain soil fertility by nitrogen fixation, ammonification and nitrification, e.g., Rhizobium bacteria (in the root nodules of legumes).
  • The milk products such as butter, cheese, curd, etc., are obtained by the action of bacteria. The milk contains bacterial forms like Streptococcus lacti, Escherichia coli, Lactobacillus lactis and Clostridium sp., etc.

(b) Archaebacteria

  • Methanogens are responsible for the production of methane (biogas) from the dung of animals.
  • Archaebacteria help in the degradation of waste materials.

Question 3.
What is the nature of cell walls in diatoms?
Answer:
In case of diatoms, the cell wall forms two thin overlapping cells, which fit together as in a soap box. The cell wall is made up of silica. Due to siliceous nature of cell wall, it is known as diatomite or diatomaceous Earth. Diatomaceous Earth is a whitish, highly porous, chemically inert, highly absorbant and fire proof substance.

Question 4.
Find out what do the terms ‘algal bloom’ and ‘red tides’ signify?
Answer:
Sometimes, greqn algae such as Chlorella, Scenedesmus and Spirogyra, etc,, grow in excess in water bodies and impart green colour to the water. These are called algal blooms. Red dianoflagellates (Gonyaulax) grow in abundance in sea and impart red colour to the ocean. This looks like red tides. Both due to algal blooms and ‘red tide’ the animal life declines due to toxins and deficiency of oxygen inside water.

Question 5.
How are viroids different from viruses?
Answer:
Viroids different from viruses as follows:

Virus Viroids
1. These are smaller than bacteria. Smaller than viruses.
2. Both RNA and DNA present. Only RNA is present.
3. Protein coat present. Protein coat absent.
4. Causes diseases like mumps and AIDS. Causes plant diseases like spindle tuber diseases – potato.

PSEB 11th Class Biology Solutions Chapter 2 Biological Classification

Question 6.
Describe briefly the four major groups of Protozoa.
Answer:
Protozoans are divided into four phyla on the basis of locomotory organelles – Zooflagellata, Sarcodina, Sporozoa and Ciliates.
(i) Zooflagellates: These protozoans possess one to several flagella for locomotion. Zooflagellates are generally uninucleate, occasionally multinucleate.
The body is covered by a firm pellicle. There is also present cyst formation.
Examples: Giardia, Trypanosoma, Leishmania and Trichonympha, etc.

(ii) Sarcodines: These protozoans possess pseudopodia for locomotion. Pseudopodia are of four types, i.e., lobopodia, filopodia, axopodia and reticulopodia. Pseudopodia are also used for engulfing food particles. Sarcodines are mostly free living, found in freshwater, sea water and on damp soil only a few are parasitic. Nutrition is commonly holozoic. Sarcodines are generally uninucleates. Sarcodines are of four types – Amoeboids (i.e.,Amoeba, etc.), radiolarians (i.e., Acanthometra, etc.), foraminiferans (i.e., Elphidium, etc.) and heliozoans (i.e., Actinophrys, etc.).

(iii) Sporozoans: All of them are endoparasites. Locomotoryorganelles (cilia, flagella, pseudopodia, etc.) are absent. Nutrition is parasitic (absorptive), Phogotrophy is rare. The body is covered with an elastic pellicle or cuticle. Nucleus is single. Contractile vacuoles are absent. Life cyle consists of two distinct asexual and sexual phases. They may be passed in one (monogenetic) or two different hosts (digenetic),e.g., Plasmodium, Monocystis, etc.

(iv) Ciliates: These are aquatic, actively moving organisms because of the presence of thousands of cilia. They have a cavity (gullet) that opens to the outside of the cell surface. The coordinated movements of rows of cilia causes the water laden with food to enter into the gullet, e.g., Paramecium.

Question 7.
Plants are autotrophic. Can you think of some plants that are partially heterotrophic?
Answer:
Plants are autotrophs, i.e., they prepare their own food through the process of photosynthesis. But, in nature there are also some other plants which are partjally heterotrophic, i.e., they partially depend upon another organisms for food requirements, e.g.,
(i) Loranthus and Viscum are partial stem parasites which have leathery leaves. They attack several fruit and forest trees and with the help of their haustoria draw sap from the xylem tissue of the host.

(ii) Insectivorous plants have special leaves to trap insects. The trapped insects are killed and digested by proteolytic enzymes secreted by the epidermis of the leaves, e.g., pitcher plant.

(iii) Parasitic plant, e.g., Cuscutta develops haustoria, which penetrate, the vascular bundles of the host plant to absorb water and solutes.

Question 8.
What do the terms phycobiont and mycobiont signify?
Answer:
In case of lichens (t. e., an association of algae and fungi), the algal partner which is capable of carrying out photosynthesis is known as phycobiont, whereas the fungal partner which is heterotrophic in nature is known as mycobiont.

PSEB 11th Class Biology Solutions Chapter 2 Biological Classification

Question 9.
Give a comparative account of the classes of Kingdom Fungi under the following:
(i) Mode of nutrition
(ii) Mode of reproduction

Fungal Class Mode of Nutrition Mode of Reproduction
Myxomycetes Heterotrophic and mostly saprophytic Asexual and sexual reproduction
Phycomycetes Mostly parasites Asexual and sexual methods
Zygomycetes Mostly saprophytic Asexual and sexual reproduction
Ascomycetes Saprophytes or parasites Asexual and sexual reproduction
Basidiomycetes Saprophytes or parasites Asexual and sexual method
Deuteromycetes Saprophytes or parasites Only asexual reproduction

Question 10.
What are the characteristic features of Euglenoids?
Answer:
The characteristic features of euglenoids are as follows :

  • They occur in freshwater habitats and damp soils.
  • A single long flagella present at the anterior end.
  • Creeping movements occur by expansion and expansion of their body known as euglenoid movements.
  • Mode of nutrition is holophytic, saprobic or holozoic.
  • Reserve food material is paramylum.
  • Euglenoids are known as plant and animal.
    Plant characters of them are as follows:
    (a) Presence of chloroplasts with chlorophyll.
    (b) Holophytic nutrition
    Animal characters of them are as follows:
    (a) Presence of pellicle, which is made up of proteins and not a cellulose.
    (b) Presence of stigma.
    (c) Presence of contractile vacuole.
    (d) Presence of longitudinal binary fission.
  • Under favourable conditions euglenoids multiply by longitudinal binary fission, e.g., Euglena, Phacus, Paranema, etc.

Question 11.
Give a brief account of viruses with respect to their structure ’ and nature of genetic material. Also name four common viral diseases.
Answer:
Viruses are non-cellular, ultramicroscopic, infectious particles. They are made up of envelope, capsid, nucleoid and occasionally one or two enzymes. Viruses possess an outer thin loose covering called envelope. The central portion of nucleoid is surrounded by capsid that is made up of ( smaller sub-units known as capsomeres.

The nucleic acid present in the viruses is known as nucleoid. It is the r infective part of the virus which utilises the host cell machinery. The
genetic material of viruses is of four types –

(i) Double stranded DNA (dsDNA) as found in pox virus, hepatitis-B virus and herpes virus, etc.
(ii) Single stranded DNA (ssDNA) occur in coliphage Φ, coliphage Φ x 174.
(iii) Double stranded RNA (dsRNA) occur in Reo virus,
(iv) Single stranded RNA (ssRNA) occur in TMV virus, polio virus, etc.
Four common viral diseases are – (i) Polio, (ii) AIDS, (iii) Hepatitis-B (iv) Rabies.

PSEB 11th Class Biology Solutions Chapter 2 Biological Classification

Question 12.
Organise a discussion in your class on the topic—Are viruses living or non-living?
Answer:
Viruses are intermediate between living and non-living objects. They resemble non-living objects in:

  • Lacking protoplast. ‘
  • Ability to get crystallised.
  • High specific gravity which is found only in non-living objects.
  • Absence of respiration and energy storing system.
  • Absence of growth and division.
  • Cannot live independent of a living cell.

They resemble living objects in:

  • Presence of genetic material (DNA or RNA).
  • Property of mutation.
  • Irritability.
  • Can grow and multiply inside the host cell.

PSEB 11th Class Physics Solutions Chapter 8 Gravitation

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 8 Gravitation Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 8 Gravitation

PSEB 11th Class Physics Guide Gravitation Textbook Questions and Answers

Question 1.
Answer the following:
(a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?
(b) An astronaut inside a small spaceship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity?
(c) If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun’s pull is greater than the moon’s pull. (You can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moon’s pull is greater than the tidal effect of sun. Why?
Answer:
(a) No, Gravitational influence of matter on nearby objects cannot be screened by any means. This is because gravitational force unlike electrical forces is independent of the nature of the material medium. Also, it is independent of the status of other objects.

(b) Yes, If the size of the space station is large enough, then the astronaut will detect the change in Earth’s gravity (g).

(c) Tindal effect depends inversely upon the cube of the distance while gravitational force depends inversely on the square of the distance. Since the distance between the Moon and the Earth is smaller than the distance between the Sun and the Earth, the tidal effect of the Moon’s pull is greater than the tidal effect of the Sun’s pull.

Question 2.
Choose the correct alternative:
(a) Acceleration due to gravity increases/decreases with increasing altitude.
(b) Acceleration due to gravity increases/decreases with increasing depth (assume the earth to be a sphere of uniform density).
(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.
(d) The formula -G Mm(1 /r2 -1/r1) is more/less accurate than the formula mg (r2 – r1) for the difference of potential energy between two points r2 and r1 distance away from the centre of the earth.
Solution:
(a) Decreases,
Explanation : Acceleration due to gravity at altitude h is given by the relation:
gh = \(\left(1-\frac{2 h}{R_{e}}\right) g\)
where, Re = Radius of the Earth
g = Acceleration due to gravity on the surface of the Earth
It is clear from the given relation that acceleration due to gravity decreases with an increase in height.

(b) Decreases,
Explanation : Acceleration due to gravity at depth d is given by the relation:
gd = \(\left(1-\frac{d}{R_{e}}\right) g\)
It is clear from the given relation that acceleration due to gravity decreases with an increase in depth.

(c) Mass of the body,
Explanation : Acceleration due to gravity of body of mass m is given by the relation:
g = \(\frac{G M_{e}}{R^{2}}\)
where, G = Universal gravitational constant
Me = Mass of the Earth
Re = Radius of the Earth
Hence, it can be inferred that acceleration due to gravity is independent of the mass of the body.

(d) More,
Explanation : Gravitational potential energy of two points r2 and r1 distance away from the centre of the Earth is respectively given by:
V(r1) = -GmM
V(r2) = – \(\frac{G m M}{r_{2}}\)
V = V (r2) – V(r1) = -GmM\(\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)\).
Hence, this formula is more accurate than the formula mg (r2 – r1).

Question 3.
Suppose there existed a planet that went around the Sun twice as fast as the Earth. What would be its orbital size as compared to that of the Earth?
Solution:
Time taken by the Earth to complete one revolution around the Sun,
Te = 1 year
Orbital radius of the Earth in its orbit, Re = 1 AU
Time taken by the planet to complete one revolution around the Sun,
Tp = \(\frac{1}{2} T_{e}=\frac{1}{2}\) year
Orbital radius of the planet = Rp
From Kepler’s third law of planetary motion, we can write
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 1
Hence, the orbital radius of the planet will be 0.63 times smaller than that of the Earth.

Question 4.
I0, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius of the orbit is 4.22 x 108 m. Show that the mass of Jupiter is about one-thousandth that of the sun.
Solution:
Orbital period of I0, TI0 = 1.769 days = 1.769 x 24 x 60 x 60 s
Orbital radius of II0, RI0 = 4.22 x 108 m
Satellite I0 is revolving around the Jupiter Mass of the latter is given by the relation:
Mj = \(\frac{4 \pi^{2} R_{I_{O}}^{3}}{G T_{I_{O}}^{2}}\) ……………………….. (i)

where Mj = Mass of Jupiter
G = Universal gravitational constant Orbital period of the Earth,
Te = 365.25 days = 365.25 x 24 x 60 x 60 s Orbital radius of the Earth,
Re =1 AU = 1.496 x 1011 m
Mass of Sun is given as:
Ms = \(\frac{4 \pi^{2} R_{e}^{3}}{G T_{e}^{2}}\) ………………………. (ii)
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 2
= 1045.04
∴ \(\frac{M_{s}}{M_{j}} \sim 1000\)
\(M_{s} \sim 1000 \times M_{j}\)
Hence, it can be inferred that the mass of Jupiter is about one thousandth that of the Sun.

Question 5.
Let us assume that our only consists of 2.5 x 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic center take to complete one revolution? Take the diameter of the Milky Way to be 105 ly.
Solution:
Number of stars in our galaxy, = 2.5 x 1011
Mass of each star = one solar mass =2 x 1030 kg
Mass of our galaxy,M =2.5 x 1011 x 2 x 1030 = 5 x 1041 kg
Diameter of Milky Way, d = 105 ly
Radius of Milky Way,r= 5 x 104 ly
∵ 1 ly=946 x 1015m
∴ r=5 x 104 x 9.46 x 1015
=4.73 x 1020m

Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:
T = \(\left(\frac{4 \pi^{2} r^{3}}{G M}\right)^{1 / 2}\)
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 3
1 year = 365 x 324 x 60 x 60 s
∵ 1 s = \(\frac{1}{365 \times 24 \times 60 \times 60} \) years
∴ 1.12 x 1016 s = \(\frac{1.12 \times 10^{16}}{365 \times 24 \times 60 \times 60}\) = 3.55 x 10 8 years

Question 6.
Choose the correct alternative:
(a) If the zero of potential energy Is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potential energy.
(b) The energy required to launch an orbiting satellite out of Earth’s gravitational influence Is more/less than the energy required to project a stationary object at the same height (as the satellite) out of Earth’s influence.
Solution:
(a) Kinetic energy
Explanation: Total mechanical energy of a satellite is the sum of its kinetic energy (always positive) and potential energy (maybe negative). At infinity, the gravitational potential energy of the satellite is zero. As the Earth-satellite system is a bound system, the total energy of the satellite is negative.

Thus, the total energy of an orbiting satellite at infinity is equal to the negative of its kinetic energy.

(b) Less
Explanation: An orbiting satellite acquires certain amount of energy that enables it to revolve around the Earth. This energy is provided by its orbit. It requires relatively lesser energy to move out of the influence of the Earth’s gravitational field than a stationary object on the Earth’s surface that initially contains no energy.

Question 7.
Does the escape speed of a body from the Earth depend on
(a) the mass of the body,
(b) the location from where it is projected,
(c) the direction of projection,
(d) the height of the location from where the body is launched?
Answer:
(a) No, we know that the escape velocity of the body is given by
Ve = \(\sqrt{\frac{2 G M}{R}} \) , where M and R are mass and radius of Earth. Thus clearly, it does not depend on the grass of the body as Ve is independent of it.

(b) Yes, we know that Ve depends upon the gravitational potential at the point from where the body is launched. Since the gravitational potential depends on the latitude and height of the point, therefore the escape velocity depends on the location of the point from where it is projected. It can also be experienced as:
Ve = \(\sqrt{2 g r}\) . As g has different values at different heights. Therefore, Ve depends upon the height of location.

(c) No, it does not depend on the direction of projection as Ve is independent of the direction of projection.

(d) Yes, it depends on the height of location from where the body is launched as explained in (b).

Question 8.
A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant
(a) linear speed,
(b) angular speed,
(c) angular momentum,
(d) kinetic energy,
(e) potential energy,
(f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.
Solution:
(a) No, according to law of conservation of linear momentum L = mvr constant, therefore the comet moves faster when it is close to the sun and moves slower when it is farther away from the sun. Therefore, the speed of the comet does not remain constant.

(b) No, as the linear speed varies, the angular speed also varies. Therefore, angular speed of the comet does not remain constant.

(c) Yes, as no external torque is acting on the comet, therefore, according to law of conservation of angular momentum, the angular momentum of the comet remain constant.

(d) No, kinetic energy of the comet = \(\frac{1}{2}\) mν2 As the linear speed of the comet changes as its kinetic energy also changes. Therefore, its KE does not remains constant.

(e) No, potential energy of the comet changes as its kinetic energy changes.

(f) Yes, total energy of a comet remain constant throughout its orbit.

Question 9.
Which of the following symptoms is likely to afflict an astronaut in space
(a) swollen feet,
(b) swollen face,
(c) headache,
(d) orientational problem?
Answer:
(b), (c), and (d)
Explanations:
(a) Legs hold the entire mass of a body in standing position due to gravitational pull. In space, an astronaut feels weightlessness because of the absence of gravity. Therefore, swollen feet of an astronaut do not affect him/her in space.

(b) A swollen face is caused generally because of apparent weightlessness in space sense organs such as eyes, ears, nose, and mouth constitute a person’s face. This symptom can affect an astronaut in space.

(c) Headaches are caused because of mental strain. It can affect the working of an astronaut in space.

(d) Space has different orientations. Therefore, orientational problems can affect an astronaut in space.

Question 10.
In the following two exercises, choose the correct answer from among the given ones:
The gravitational intensity at the center of a hemispherical shell of uniform mass density has the direction indicated by the arrow (see figure) (i) a, (ii) b, (iii) c, (iv) 0.
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 4
Solution:
(iii) Gravitational potential (V) is constant at all points in a spherical shell.
Hence, the gravitational potential gradient \(\left(\frac{d V}{d r}\right)\) is zero everywhere inside the spherical shell. The gravitational potential gradient is equal to the negative of gravitational intensity. Hence, intensity is also zero at all points inside the spherical shell. This indicates that gravitational forces acting at a point in a spherical shell are symmetric.

If the upper half of a spherical shell is cut out (as shown in the given figure), then the net gravitational force acting on a particle located at center O will be in the downward direction.
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 5
Since gravitational intensity at a point is defined as the gravitational force per unit mass at that point, it will also act in the downward direction. Thus, the gravitational intensity at center O of the given hemispherical shell has the direction as indicated by arrow c.

Question 11.
For the above problem, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow
(i) d,
(ii) e,
(iii) f,
(iv) g.
Solution:
(ii) Gravitational potential (V) is constant at all points in a spherical shell.
Hence, the gravitational potential gradient \(\left(\frac{d V}{d r}\right)\) inside the spherical shell. The gravitational potential gradient is equal to the negative of gravitational intensity. Hence, intensity is also zero at all points inside the spherical shell. Ibis indicates that gravitational forces acting at a point in a spherical shell are symmetric. If the upper half of a spherical shell is cut out (as shown in the given figure), then the net gravitational force acting on a particle at an arbitrary point P will be in the downward direction.
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 6
Since gravitational intensity at a point is defined as the gravitational force per unit mass at that point, it will also act in the downward direction. Thus, the gravitational intensity at an arbitrary point P of the hemispherical shell has the direction as indicated by arrow e.

Question 12.
A rocket Is fired from the Earth towards the Sun. At what distance from the Earth’s centre is the gravitational force on the rocket zero? Mass of the Sun = 2 x 1030kg, mass of the Earth = 6 x 1024 kg. Neglect the effect of other planets etc. (orbital radius = 1.5 x 1011 m)
Solution:
Mass of the Sun, Ms = 2 x 1030 kg
Mass of the Earth, Me = 6 x 10 24 kg
Orbital radius, r = 1.5 x 1011 m
Mass of the rocket = m
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 7
Let x be the distance from the center of the Earth where the gravitational force acting on satellite P becomes zero.
From Newton’s law of gravitation, we can equate gravitational forces acting on satellite P under the influence of the Sun and the Earth as:
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 8
= 2.59 x 108 m

Question 13.
How will you ‘weigh the Sun’, that is estimate its mass? The mean orbital radius of the Earth around the Sun is 1.5 x 108 km.
Solution:
Orbital radius of the Earth around the Sun, r = 1.5 x 108 km = 1.5 x 1011 m
Time taken by the Earth to complete one revolution around the Sun,
T = 1 year = 365.25 days = 365.25 x 24 x 60 x 60 s
Universal gravitational constant, G = 6.67 x 10-11N-m2 kg-2
Thus, mass of the Sun can be calculated using the relation,
M = \(\frac{4 \pi^{2} r^{3}}{G T^{2}}\)
= \(\frac{4 \times(3.14)^{2} \times\left(1.5 \times 10^{11}\right)^{3}}{6.67 \times 10^{-11} \times(365.25 \times 24 \times 60 \times 60)^{2}}\)
= \(\frac{133.24 \times 10^{33}}{6.64 \times 10^{4}}\) = 2.0 x 1030kg
Hence, the mass of the Sun is 2.0 x 1030 kg.

Question 14.
A Saáurn year is 29.5 times the Earth year. How far is the Saturn from the Sun if the Earth is 1.5 x 108 km away from the Sun?
Solution:
Distance of the Earth from the Sun, re = 1.5x 108 km= 1.5 x 1011 m
Time period of the Earth = Te
Time period of Saturn, Ts = 29.5 Te
Distance of Saturn from the Sun = rs
From Kepler’s third law of planetary motion, we have
T=\(\left(\frac{4 \pi^{2} r^{3}}{G M}\right)^{\frac{1}{2}}\)
For Saturn and Sun, we can write
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 9
= 1.43 x 1012 m

Question 15.
A body weigths 63 N on the surface of the Earth. What is the gravitational force on it due to the Earth at a height equal to half the radius of the Earth?
Solution:
Weight of the body, W =63 N
Acceleration due to gravity at height h from the Earth’s surface is given by the relation:
g’ = \(\frac{g}{\left(1+\frac{h}{R_{e}}\right)^{2}}\)
where, g = Acceleration due to gravity on the Earth’s surface
Re =Radius of the Earth
For h= \(\frac{R_{e}}{2}\)
g’ = \(\frac{g}{\left(1+\frac{R_{e}}{2 \times R_{e}}\right)^{2}}=\frac{g}{\left(1+\frac{1}{2}\right)^{2}}=\frac{4}{9} g\)

Weight of a body of mass m at height h is given as
W’ = mg’
= m x \(\frac{4}{9}\) g = \(\frac{4}{9}\) x mg
= \(\frac{4}{9}\) W
= \(\frac{4}{9}\) x 63 =28 N

Question 16.
Assuming the Earth to be a sphere of uniform mass density, how much would a body weigh halfway down to the centre of the Earth if it weighed 250 N on the surface?
Solution:
Weight of a body of mass m at the Earth’s surface, W = mg = 250 N
Body of mass m is located at depth, d = \(\frac{1}{2}\) Re
where, Re = Radius of the Earth
Acceleration due to gravity at depth d is given by the relation
g’ = \(\left(1-\frac{d}{R_{e}}\right) g=\left(1-\frac{R_{e}}{2 \times R_{e}}\right) g=\frac{1}{2} g\)
Weight of the body at depth d,
W’ = mg’
= m x \(\frac{1}{2} g=\frac{1}{2}\) mg = \(\frac{1}{2}\) W
= \(\frac{1}{2}\) x 250 = 125 N

Question 17.
A rocket is fired vertically with a speed of 5 km s-1 from the Earth’s surface. How far from the Earth does the rocket ‘ go before returning to the earth? Mass of the Earth = 6.0 x 1024 kg; mean radius of the Earth = 6.4 x 106 m;
G = 6.67 x 10 -11 N-m2 kg-2.
Solution:
Velocity of the rocket, ν = 5 km/s = 5 x 103 m/s
Mass of the Earth, Me = 6.0 x 1024 kg
Radius of the Earth, Re = 6.4 x 106 m
Height reached by rocket mass, m = h

At the surface of the Earth,
Total energy of the rocket = Kinetic energy + Potential energy
= \(\frac{1}{2} m v^{2}+\left(\frac{-G M_{e} m}{R_{e}}\right)\)
At highest point h,
ν = 0
and, Potential energy = – \(\frac{G M_{e} m}{R_{e}+h}\)
Total energy of the rocket = 0+ \(\left(-\frac{G M_{e} m}{R_{e}+h}\right)=-\frac{G M_{e} m}{R_{e}+h}\)
From the law of conservation of energy, we have
Total energy of the rocket at the Earth’s surface=Total energy at height h
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 10
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 11
Height achieved by the rocket with respect to the centre of the Earth = Re +h
= 6.4 x 106 +1.6 x 106 = 8.0 x 106 m

Question 18.
The escape speed of a projectile on the Earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the Earth? Ignore the presence of the Sun and other planets.
Solution:
Escape velocity of a projectile from the Earth, υesc = 11.2 km/s
Projection velocity of the projectile, vp = 3 vesc
Mass of the projectile = m
Velocity of the projectile far away from the Earth = vf
Total energy of the projectile on the Earth = \(\frac{1}{2} m v_{p}^{2}-\frac{1}{2} m v_{\mathrm{esc}}^{2}\)
The gravitational potential energy of the projectile far away from the Earth is zero.
Total energy of the projectile far away from the Earth = \(\frac{1}{2}\) mv2f
From the law of conservation of energy, we have
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 12

Question 19.
A satellite orbits the Earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out Of the Earth’s gravitational influence? Mass of the satellite = 200 kg mass of the Earth = 6.0 x 1024 kg; radius of the Earth=6.4x 106 m;G=6.67 x 10-11 N-m2 kg-2.
Solution:
Mass of the Earth, Me =6.0 x 1024 kg
Mass of the satellite, m = 200 kg
Radius of the Earth, Re = 6.4 x 106 m
Universal gravitational constant, G = 6.67 x 10-11 N-m2kg2
Heightofthesatellite,h =400 km=4 x 105 m=0.4 x 106 m

Total energy of the satellite at height h = \(\frac{1}{2} m v^{2}+\left(\frac{-G M_{e} m}{R_{e}+h}\right)\)
Orbital velocity of the satellite, ν = \(\sqrt{\frac{G M_{e}}{R_{e}+h}}\)
Total energy of height, h = \(\frac{1}{2} m\left(\frac{G M_{e}}{R_{e}+h}\right)-\frac{G M_{e} m}{R_{e}+h}=-\frac{1}{2}\left(\frac{G M_{e} m}{R_{e}+h}\right) \)

The negative sign indicates that the satellite is bound to the Earth. This is called bound energy of the satellite.
Energy required to send the satellite out of its orbit = – (Bound energy)
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 13

Question 20.
Two stars each of one solar mass (= 2x 1030 kg) are approaching each other for a head-on collision. When they are a distance 109 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104 km. Assume the stars to remain undistorted until they collide. (Use the known value of G).
Solution:
Mass of each star, M = 2 x 1030 kg
Radius of each star, R = 104 km = 107 m
Distance between the stars, r = 109 km = 1012 m
For negligible speeds, ν = 0 total energy of two stars separated at distance r
= \(\frac{-G M M}{r}+\frac{1}{2} m v^{2}\)
= \(\frac{-G M M}{r}+0\) = 0 ………………………… (i)

Now, consider the case when the stars are about to collide:
The velocity of the stars = ν
Distance between the centers of the stars = 2R
Total kinetic energy of both stars = \(\frac{1}{2} M v^{2}+\frac{1}{2} M v^{2}\) = Mv2
Total potential energy of both stars = \(\frac{-G M M}{2 R}\)
Total energy of the two stars = Mv2 – \(\frac{-G M M}{2 R}\) ………………………. (ii)
Using the law of conservation of energy, we can write
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 14

Question 21.
Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on a horizontal table. What is the gravitational force and potential at the midpoint of the line joining the centers of the spheres? Is an object placed at that point in equilibrium? If so, is the equilibrium stable or unstable?
Solution:
The situation is represented in the following figure :
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 15
Mass of each sphere, M = 100 kg
Separation between the spheres, r = 1 m
X is the mid-point between the spheres. Gravitational force at point X will be zero. This is because gravitational force exerted by each sphere will act in opposite directions. Gravitational potential at point X
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 16
Any object placed at point X will be in equilibrium state, but the equilibrium is unstable. This is because any change in the position of the object will change the effective force in that direction.

Additional Exercises

Question 22.
As you have learnt in the text, a geostationary satellite orbits the Earth at a height of nearly 36,000 km from the surface of the Earth. What is the potential due to Earth’s gravity at the site of this satellite? (Take the potential energy at infinity to be zero). Mass of the Earth = 6.0 x 1024 kg, radius = 6400 km.
Solution:
Mass of the Earth, M = 6.0 x 1024 kg
Radius of the Earth, R = 6400 km = 6.4 x 106 m
Height of a geostationary satellite from the surface of the Earth,
h = 36000 km = 3.6 x 107m
Gravitational potential energy due to Earth’s gravity at height h,
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 17

Question 23.
A star 2.5 times the mass of the Sun and collapsed to a size of 12 km rotates with a speed of 1.2 revs. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity? (Mass of the Sun = 2 x 1030 kg).
Solution:
Yes, A body gets stuck to the surface of a star if the inward gravitational force is greater than the outward centrifugal force caused by the rotation of the star.
Gravitational force, fg = \(\frac{G M m}{R^{2}}\)
where,M =Mass of the star=2.5 x 2 x 1030 = 5 x 1030 kg
m = Mass of the body

R=Radiusofthestar=12 km=1.2 x 104 m
∴ fg = \(\frac{6.67 \times 10^{-11} \times 5 \times 10^{30} \times m}{\left(1.2 \times 10^{4}\right)^{2}}\)
= 2.31 x 1012 mN
Centrifugal force, fc = mrω2

where, ω = Angular speed = 2 πv
ν = Angular frequency = 1.2 rev s-1
f c=mR(2πv)2
= m x (1.2 x 104) x 4 x(3.14)2 x (1.2)2 = 1.7 x 105 mN
Since fg > fc, the body will remain stuck to the surface of the star.

Question 24.
A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system? Mass of the spaceship = 1000 kg; mass of the Sun = 2 x 1030 kg; mass of mars = 6.4 x 1023 kg; radius of mars = 3395 km; radius of the orbit of mars = 2.28 x 108 km;
G = 6.67 x 10-11 N-m2kg-2.
Solution:
Given, mass of the Sun, M = 2 x 1030 kg
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 18
Mass of the mars, m = 6.4 x 1023 kg
Mass of spaceship, Δm = 1000 kg
Radius of orbit of the mars, r0 = 2.28 x 1011
Radius of the mars, r = 3.395 x 106 m
If v is the orbital velocity of mars, then
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 19
Since the velocity of the spaceship is the same as that of the mars, Kinetic energy of the spaceship,
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 20
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 21
Total potential energy of the spaceship,
U = Potential energy of the spaceship due to its being in the gravitational
field of the mars + potential energy of the spaceship due to its being in the gravitational field of the Sun.
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 22
Total energy of the spaceship E=K +U = 2.925 x 1011 J – 5.977 x 1011J
= – 3.025 x 1011 J = -3.1 x 1011 J
Negative energy denotes that the spaceship is bound to the solar system. Thus, the energy needed by the spaceship to escape from the solar system = 3.1 x 1011 J.

Question 25.
A rocket is fired ‘vertically’ from file surface of mars with a speed of 2 kms-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of Mars before returning to it?
Mass of mars = 6.4x 1023 kg; radius of mars = 3395 km;
G = 6.67 x 10-11 N-m2 kg2.
Solution:
Initial velocity of the rocket, ν = 2 km/s = 2 x 103 m/s
Mass of Mars, M = 6.4 x 1023 kg .
Radius of Mars, R = 3395 km = 3.395 x 106 m
Universal gravitational constant, G = 6.67 x 10-11 N-m2 kg-2
Mass of the rocket = m
Initial kinetic energy of the rocket = \(\frac{1}{2} m v^{2}\)
Initial potential energy of the rocket = \(\frac{-G M m}{R}\)
Total initial energy = \(\frac{1}{2} m v^{2}-\frac{G M m}{R}\)

If 20 % of initial kinetic energy is lost due to martian atmospheric resistance, then only 80 % of its kinetic energy helps in reaching a height.
Total initial energy available = \(\frac{80}{100} \times \frac{1}{2} m v^{2}-\frac{G M m}{R}=0.4 m v^{2}-\frac{G M m}{R} \)
Maximum height reached by the rocket = h
At this height, the velocity and hence, the kinetic energy of the rocket will become zero.
Total energy of the rocket at height h = \(-\frac{G M m}{(R+h)}\)
Applying the law of conservation of energy for the rocket, we can write
PSEB 11th Class Physics Solutions Chapter 8 Gravitation 23
= 495 x 103 m = 495 km

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Punjab State Board PSEB 11th Class Biology Important Questions Chapter 1 The Living World Important Questions and Answers.

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Very short answer type questions

Question 1.
Define living things.
Answer:
The organisms exhibiting growth, development, metabolism, response to stimuli, reproduction and other characteristics such as movement, etc., are called living things.

Question 2.
In which organisms reproduction is synonymous with growth?
Answer:
In unicellular organisms like Amoeba, bacteria and unicellular algae, reproduction is synonymous with growth, i. e., increase in number of cells.

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Question 3.
Amoeba multiplies by mitotic cell division. Is this phenomenon growth or reproduction? Explain. [NCERT Exemplar]
Answer:
The phenomenon is reproduction in which unicellular organisms like Amoeba, cell division is a means of multiplication, while in multicellular organisms, it is a means of growth.

Question 4.
Can we relate metabolism with growth of the body?
Answer:
Metabolism occurs due to two phenomena, i.e., anabolism and catabolism. While growth of living things occur when quantity of anabolic reactions exceeds quantity of catabolic reactions.

Question 5.
Linnaeus is considered as father of taxonomy. Name two other botanists known for their contribution to the field of taxonomy. [NCERT Exemplar]
Answer:
John Ray and Bentham and Hooker.

Question 6.
What does ICZN stand for? [NCERT Exemplar]
Answer:
ICZN: International Code of Zoological Nomenclature

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Question 7.
How is diversity in living world related to taxonomy?
Answer:
The spectrum of diversity in the living world can be known only through the study of taxonomy.

Question 8.
Which is the largest botanical garden in the world? Name a few well known botanical gardens in India. [NCERT Exemplar]
Answer:
Largest botanical garden in the world is Royal Botanical Garden, Kew
(London). Some well known botanical gardens in India are as follows:

  • National Botanical Garden, Lucknow
  • Lloyed Botanical Garden, Darjeeling
  • Indian Botanical Garden Sibpur, Kolkata

Question 9.
The concept of new systematics was developed by which scientist?
Answer:
Julian Huxley (1940)

Question 10.
How correlated characters help in defining genus?
Answer:
Correlated characters are those common features, which are used in delimitation of a taxon above the rank of species.

Short answer type questions

Question 1.
What do you know about herbarium?
Answer:
Herbarium is a store house of collected plant specimens that are dried, pressed and preserved on sheets. Further, these sheets are arranged according to k universally accepted system of classification. These specimens, along with their descriptions on herbarium sheets, become a store house or repository for future use. The herbarium sheets also carry a label providing information about date and place of collection, English, local and botanical names, family, collector’s name, etc. Herbaria also serve as quick referral systems in taxonomical studies.

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Question 2.
How is botanical garden useful for scientists?
Answer:
In a botanical garden various plant species are reared. Special artificial climate is created for a plant’s specific needs. The purpose of botanical garden is to maintain a rich flora of diverse species. Since, they are live specimens so they help scientists in studying physiology and anatomy over a long duration. Imagine if Mendel were given a botanical garden full of variety of species. He could have done experiment on so many plants and may have come with more insights.

Question 3.
Write a short note on museum.
Answer:
Museums are those places which have collections of preserved animals and plants for taxonomic studies. The organisms are exhibited in the following manners:

  • The plant and animal specimens are kept in chemical solutions and are preserved for longer duration.
  • Plant and animal specimens may also be preserved as dry specimens.
  • Insects are preserved in insect boxes; the collected insects are dried and pinned in these boxes.
  • Larger animals like birds and mammals are usually preserved as stuffed specimens.
  • Skeletons of animals are also collected in the museums.

Question 4.
How is a zoological park helpful to scientists?
Answer:
It is difficult and dangerous to study ferocious animals in their natural habitats. Further, it is cruel to study them in captivity. So zoological park is a better option. Scientists can study different behavioural patterns, like feeding habits, mating rituals. This can help in a better understanding about them.

Long answer type questions

Question 1.
A student of taxonomy was puzzled when told by his professor to look for a key to identify a plant. He went to his friend to clarify what key the professor was referring to? What would the friend explain to him? [NCERT Exemplar]
Answer:
The key for identification of plants is a taxonomic key. It is a important taxonomic aid. Key can be defined as a set of alternate characters arranged in such a manner that by selection and elimination one can quickly find out the name of an organism. Depending upon the category, a key may be class key, order key, family key, genus key and species key.

Taxonomic keys can be of following two types:
(i) Indented or Yolked key
(ii) Bracketed key
Indented key, provides a sequence of two or more alternate characters from which selection and elimination are carried out. In bracketed key, the alternate characters are given numbers in brackets. For example, take four genera of family – Ranunculaceae to explain this,
(i) Ranunculus: Leaves alternate or radical, flowers not subtended by involucre, carpels ovuled, fruit achenes.
(ii) Clematis: Leaves opposite, compound petals absent, sepals 4, carpels uniovulated and fruit achenes.
(iii) Nigella: Flowers regular, carpels united at base, many ovulated, fruit follicles.
(iv) Anemone: Leaves alternate or radical, flowers subtended by involucre, carpels 1-ovulated, fruit achenes.

PSEB 11th Class Biology Important Questions Chapter 1 The Living World

Question 2.
Some of the properties of tissues are not the properties of constituents of its cells. Give three examples to support the statement. [NCERT Exemplar]
Answer:
A living thing has multiple level of organisation. Each level of organisaton i has its own properties, which are not found in its constituents.
Examples of three tissues supporting the statements are
(i) Cardiac muscle tissue: It is a contractile tissue present only in heart. Cell junctions fuse the plasma membrane of cardiac muscle cells and make them stick together. When one cell receives a signal to contract, its neighbours also starts to contract. It means a single cell cannot contract, while there are some fusion points, which allow the cells to contract as a unit.

(ii) Blood: It is a fluid connective tissue. The individual components of blood, i.e., RBCs, WBCs and platelets have different properties but as a unit they make the blood, a tissue serving many functions.

(iii) Bone: It is a hard connective tissue that forms the framework of the body. The individual cells inside the bone do not have this property.

PSEB 11th Class Biology Solutions Chapter 1 The Living World

Punjab State Board PSEB 11th Class Biology Book Solutions Chapter 1 The Living World Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Biology Chapter 1 The Living World

PSEB 11th Class Biology Guide The Living World Textbook Questions and Answers

Question 1.
Why are living organisms classified?
Answer:
Living organisms are classified because:

  • there are millions of organisms on the earth, which need a proper system of classification for identification.
  • a number of new organisms are discovered each year. They require a particular system to be identified and to find out their correct position in a group.

Question 2.
Why are the classification systems changing every now and then?
Answer:
Evolution is the major factor responsible for the change in classification systems. Since, evolution still continues, so many different species of plants and animals are added in the already existed biodiversity. These newly discovered plant and animal specimens are then identified, classified and named according to the already existing classification systems. Due to evolution, animal and plant species keep on changing, so necessary changes in the already existed classification systems are necessary to place every newly discovered plant and animal in their respective ranks.

PSEB 11th Class Biology Solutions Chapter 1 The Living World

Question 3.
What different criteria would you choose to classify people that you meet often?
Answer:
The different scientific criteria to classify people that we meet often would be :
(i) Nomenclature: It is the science of providing distinct and proper names to the organisms. It is the determination of correct name as per established universal practices and rules.

(ii) Classification: It is the arrangement of organisms into categories based on systematic planning. In classification various categories used are class, order, family, genus and species.

(iii) Identification: It is the determination of correct name and place of an organism. Identification is used to tell that a particular species is similar to other organism of known identity. This includes assigning an organism to a particular taxonomic group.
The same criteria can be applied to the people we meet daily. We can identify them will their names classify them according to their living areas, profession, etc.

Question 4.
What do we learn from identification of individuals and populations?
Answer:
Identification of individuals and population categorized it into a species. Each species has unique characteristic features. On the basis of these features, it can be distinguished from other closely related species, e. g.,
PSEB 11th Class Biology Solutions Chapter 1 The Living World 1

Question 5.
Given below is the scientific name of Mango. Identify the correctly written name.
(i) Mangifera Indica
(ii) Mangifera indica.
Answer:
(ii) Mangifera indica (the name of species can never begins with a capital letter).

PSEB 11th Class Biology Solutions Chapter 1 The Living World

Question 6.
Define a taxon. Give some examples of taxa at different hierarchical levels.
Answer:
Taxon is a grouping of organisms of any level in hierarchical classification, which is based on some common characteristics, e.g., insects represent a class of phylum – Arthropoda. All the insects possess common characters of three pairs of jointed legs. The term ‘taxon’ was introduced by ICBN in 1956. Examples of taxa are kingdom, phylum or division, class, order, family, genus and species. These taxa form taxonomic hierarchy, e.g., taxa for human :
Phylum – Chordata
Class – Mammalia
Order – Primata
Family – Hominidae
Genus – Homo
Species – sapiens

Question 7.
Can you identify the correct sequence of taxonomical categories?
(a) Species → Order → Phylum → Kingdom
(b) Genus → Species → Order → Kingdom
(c) Species → Genus → Order → Phylum
Answer:
The correct sequence of taxonomical categories is as follows :
Species → Genus → Order → Phylum

Question 8.
Try to collect all the currently accepted meanings for the word ‘species’. Discuss with your teacher the meanings of species in case of higher plants and animals on one hand, and bacteria on the other hand.
Answer:
A group of individual organisms with fundamental similarities is called species. It can be distinguished from other closely related species on the basis of distinct morphological differences.
In case of higher plants and animals, one genus may have one or more than one species, e.g.,Panthera leo (lion) and Panthera tigris (tiger).
In this example, Panthera is genus, which includes leo (lion) and tigris (tiger) as species.
In case of bacteria, different categories are present on the basis of shape. These are spherical, coccus, rod-shaped, comma and spiral-shaped. Thus, meaning of species in case of higher organisms and bacteria are different.

PSEB 11th Class Biology Solutions Chapter 1 The Living World

Question 9.
Define and understand the following terms:
(i) Phylum,
(ii) Class,
(iii) Family,
(iv) Order,
(v) Genus.
Answer:
(i) Phylum: Phylum comes next to Kingdom in the taxonomical hierarchy. All broad characteristics of an animal or plant are defined in a phylum. For example all chordates have a notochord and gill at some stage of life cycle. Similarly all arthropods have jointed legs made of chitin.

(ii) Class: The category class includes related orders. It is higher than order and lower than phylum. For example, class – Mammalia has order – Carnivora, Primata, etc.

(iii) Family: It is the category higher than genus and lower than order, which has one or more related genera having some common features. For example, Felidae, Canidae, etc.

(iv) Order: Order further zeroes down on characteristics and includes related genus. For example humans and monkeys belong to the order primates. Both humans and monkeys can use their hands to manipulate objects and can walk on their hind legs.

(v) Genus: It comprises a group of related species which has more characters in common in comparison to species of other genera. We can say that genera are aggregates of closely related species. For example, j potato, tomato and brinjal are three different species but all belong to the genus Solatium. Lion (Panthera leo), leopard (P. pardus) and tiger (P. tigris) with several common features, are all species of the genus Panthera. This genus differs from another genus Felis which includes cats.

Question 10.
How is a key helpful in the identification and classification of an
organism?
Answer:
Key is a device (scheme) of diagnostic alternate (contrasting) characters, which provide an easy means for the identification of unknown organism. The keys are taxonomic literature based on the contrasting characters generally a pair called couplet. Each statement in the key is called a lead. Separate taxonomic keys are required for each taxonomic category such as family, genus and species for identification purposes. Being analytical ‘ in nature, two types of keys are commonly used-indented key and bracketed key.

(i) Indented key provides sequence of choice between two or more statements of characters of species. The user has to make correct choise for identification.

(ii) Bracketed key (1) are used for contrasting characters like indented key but they are not repeated by intervening sub-dividing character and each character is given a number in brackets.
PSEB 11th Class Biology Solutions Chapter 1 The Living World 2

PSEB 11th Class Biology Solutions Chapter 1 The Living World

Question 11.
Illustrate the taxonomical hierarchy with suitable examples of a plant and an animal.
Answer:
PSEB 11th Class Biology Solutions Chapter 1 The Living World 3
Taxonomical hierarchy is the system of arrangement of taxonomic categories in a descending order depending upon their relative dimensions. It was introduced by Linnaeus (1751) and is therefore, also called Linnaeus hierarchy. Each category, referred to as a unit of classification commonly called as taxon (pi. taxa), e.g., taxonomic categories and hierarchy can be illustrated by a group of organisms, i.e., insects. The common features of insects is ‘three pair of jointed legs’. It means insects are recognisable objects which can be classified, so given a rank or category.
Category further denotes a rank. Each rank or taxon, represents a unit of classification taxonomic studies of all plants and animals led to the development of common categories such as kingdom, phylum or division (for plants), class, order, family, genus and species. All organisms, including those in the plant and animal, kingdoms have ‘species’ as the lowest category.

To place an organism in various categories is to have the knowledge of characters of an individual or group of organism. This helps to identify similarities and dissimilarities among the individual of the same kind of organisms as well as of other kinds of organism. Some organisms with their taxonomical categories are given in following table:
PSEB 11th Class Biology Solutions Chapter 1 The Living World 4

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Very Short Answer Type Questions

Question 1.
Is it correct to call heat as the energy in transit?
Answer:
Yes, it is perfect correct to call heat as the energy in transit because it is continuously flowing on account of temperature differences between bodies or parts of a system.

Question 2.
Why should a thermometer bulb have a small heat capacity?
Answer:
The thermometer bulb having small heat capacity will absorb less heat from the body whose temperature is to be measured. Hence, the temperature of that body will practically remain unchanged.

Question 3.
Why is a gap left between the ends of two railway lines in a railway track?
Answer:
It is done to accommodate the linear expansion of railway line during summer. If the gap is not left in summer, the lines will bend causing a threat of derailment.

Question 4.
Why water is used as an coolant in the radiator of cars?
Answer:
Because specific heat of water is very high due to this it absorbs a large amount of heat. This helps in maintaining the temperature of the engine low.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 5.
Black body radiation is white. Comment.
Answer:
The statement is true. A black body absorbs radiations of all wavelengths. When heated to a suitable temperature, it emits radiations of all wavelengths. Hence, a black body radiation is white.

Question 6.
White clothes are more comfortable in summer while colourful clothes are more comfortable in winter. Why?
Answer:
White clothes absorb very little heat radiation and hence they are comfortable in summer. Coloured clothes absorb almost whole of the incident radiation and keep the body warm in winter.

Question 7.
Can we boil water inside in the earth satellite?
Answer:
No, the process of transfer of heat by convection is based on the fact that a liquid becomes lighter on becoming hot and rise up. In condition of weightlessness, this is not possible. So, transfer of heat by convection is not possible in the earth satellite.

Question 8.
What is the difference between the specific heat and the molar specific heat?
Answer:
The specific heat is the heat capacity per unit mass whereas the molar specific heat is the heat capacity per mole.

Question 9.
Calorimeters are made of metals not glass. Why?
Answer:
This is because metals are good conductors of heat and have low specific heat capacity.

Question 10.
Calculate the temperature which has numeral value of Celsius and Fahrenheit scale. (NCERT Exemplar)
Answer:
Let Q be the value of temperature having same value an Celsius and Fahrenheit scale.
\(\frac{{ }^{\circ} F-32}{180}=\frac{{ }^{\circ} C}{100}\)
⇒ Let F = C = Q
⇒ \(\frac{Q-32}{180}=\frac{Q}{100}\) = Q= 40°C or -40°F

Short Answer Type Questions

Question 1.
In what ways are the gas thermometers superior to mercury thermometers?
Answer:
A gas thermometer is more superior to a mercury thermometer, as its working is independent of the nature of gas (working substance) used. As the variation of pressure (or volume) with temperature is uniform, the range, in which temperature can be measured with a gas thermometer is quite large. Further, a gas thermometer is more sensitive than mercury thermometer.

Question 2.
The difference between length of a certain brass rod and that of a steel rod is claimed to be constant at all temperatures. Is this possible?
Solution:
Yes, it is possible to describe the difference of length to remain constant. So, the change in length of each rod must be equal at all temperature. Let αb and αs be the length of the brass and the steel rod and a band as be the coefficients of linear expansion of the two metals. Let there is change in temperature be ΔT.
Then, αbLbΔT = αsLsΔT
or αbLbsLs => Lb/Lssb
Hence, the lengths of the rods must be in the inverse ratio of the coefficient of linear expansion of their materials.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 3.
Two identical rectangular strips-one of copper and the other of steel are riveted to form a bimetallic strip. What will happen on heating?
Solution:
The coefficient of linear expansion of copper is more than steel. On heating, the expansion in copper strip is more than the steel strip. The bimetallic strip will bend with steel strip on inner (concave) side.

Question 4.
What kind of thermal conductivity and specific heat requirements would you specify for cooking utensils?
Solution:
A cooking utensil should have (i) high conductivity, so that it can conduct heat through itself and transfer it to the contents quickly, (ii) low specific heat, so that it immediately attains the temperature of the source.

Question 5.
Woollen clothes are warm in winter. Why?
Solution:
Woollen fibres enclose a large amount of air in them. Both wool and air are bad conductors of heat. The small coefficient of thermal conductivity prevents the loss of heat from our body due to conduction. So, we feel warm in woollen clothes.

Question 6.
Why rooms are provided with the ventilators near the roof?
Solution:
It is done so to remove the harmful impure air and to replace it by the cool fresh air. The air we breathe out is warm and so it is lighter. It rises upwards and can go out through the ventilator provided near the roof. The cold fresh air from outside enters the room through the doors and windows. Thus, the convection current is set up in the air.

Question 7.
Why it is much hotter above a fire than by its side?
Solution:
Heat carried away from a fire sideways mainly by radiation. Above the fire, heat is carried by both radiation and convection of air but convection carries much more heat than radiation. So, it is much hotter above a fire than by its sides.

Question 8.
How does tea in a Thermo flask remain hot for a long time?
Solution:
The air between the two walls of the Thermo flask is evacuated. This prevents heat loss due to conduction and convection. The loss of heat due to radiation is minimised by silvering the inside surface of the double wall. As the loss of heat due to the three prócesses is minimised and the tea remains hot for a long time.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 9.
100 g of water is supercooled to -10°C. At this point, due to some disturbance mechanised or otherwise, some of it suddenly freezes to ice. What will be the temperature of the resultant mixture and how much mass would freeze? [Sw = 1 cal/g/°C and Lwfusion =80 cal/g/°C] (NCERT Exemplar)
Answer:
Gwen, mass of water (m) = 100
Change in temperature, ΔT =0 – (-10) = 10°C
Specific heat of water (Sw) =1 cal/g/°C
Latent heat of fusion of water Lwfusion = 80 cal/g
Heat required to bring water in supercooling from —10° C to 0°C.
Q = mswΔT
=100 x 1 x 10 = 1000cal
Let m gram of ice be melted.
∴ Q = mL
or m= \(\frac{Q}{L}\) = \(\frac{1000}{80}\) =12.5g
As small mass of ice is melted, therefore the temperature of the mixture will remain 0°C.

Long Answer Type Questions

Question 1.
Show that the coefficient of volume expansion for a solid substance is three times its coefficient of linear expansion.
Solution:
Consider a solid in the form of a rectangular parallelopiped of sides a, b and c respectively so that its volume V = abc.
If the solid is heated so that its temperature rises by ΔT, then increase in its sides will be
Δa=a.αΔT, Δb=b.α.ΔT and Δc=c. α . ΔT
or a’ =a+Δa =a(1 +α ΔT)
b’=b+Δb = b(l +α ΔT)
and c’ =c + Δc=c (1 +a.ΔT)
∵ New volume, V’ = V + ΔV = a’ b’ c’ = abc (1+ α . Δ T)3
∴ Increase in volume,
ΔV=V’ -V=[abc(1+α ΔT)3 -abc]
∴ Coefficient of volume expansion,
PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter 1
However, as a has an extremely small value for solids, hence terms containing higher powers of a may be neglected. Therefore, we obtain the relation γ =3 α i. e., coefficient of volume expansion of a solid is three times of its coefficient of linear expansion.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 2.
Distinguish between conduction, convection and radiation.
Solution:

Conduction Convection Radiation
1. It is the transfer of heat by direct physical contact. 1. It is the transfer of heat by the motion of a fluid. 1. It is the transfer of heat by electromagnetic waves.
2. It is due to temperature differences. Heat flows from high-temperature region to low temperature region. 2. It is due to difference in density. Heat flows from low-density region to high-density region. 2. It occurs from all bodies at temperatures above 0 K.
3. It occurs in solids through molecular collisions, without actual flow of matter. 3. It occurs in fluids by actual flow of matter. 3. It can take place at large distances and does not heat the intervening medium.
4. It is a slow process. 4. It is also a slow process. 4. It propagates at the speed of light.
5. It does not obey the laws of reflection and refraction. 5. It does not obey the laws of reflection and refraction. 5. It obeys the laws of reflection and
refraction.