PSEB 8th Class Maths Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5

Punjab State Board PSEB 8th Class Maths Book Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 8 Maths Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Exercise 2.5

ਪਾਠ-ਪੁਸਤਕ ਅਭਿਆਸ 25 ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਰੇਖੀ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ ।

ਪ੍ਰਸ਼ਨ 1.
\(\frac{x}{2}\) – \(\frac{1}{5}\) = \(\frac{x}{3}\) + \(\frac{1}{4}\).
ਉੱਤਰ:
\(\frac{x}{2}\) – \(\frac{1}{5}\) = \(\frac{x}{3}\) + \(\frac{1}{4}\)
⇒ \(\frac{x}{2}\) – \(\frac{x}{3}\) = \(\frac{1}{4}\) + \(\frac{1}{5}\) (ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ)
⇒ \(\frac{3x-2x}{6}\) = \(\frac{5+4}{20}\)
⇒ \(\frac{x}{6}\) = \(\frac{9}{20}\)
⇒ 20x = 9 × 6 (ਤਿਰਛੀ ਗੁਣਾ ਦੁਆਰਾ)
x = \(\frac{9×6}{20}\) = \(\frac{54}{20}\) = \(\frac{27}{10}\) = 2.7

ਪ੍ਰਸ਼ਨ 2.
\(\frac{n}{2}\) – \(\frac{3n}{4}\) + \(\frac{5n}{6}\) = 21.
ਹੱਲ:
\(\frac{n}{2}\) – \(\frac{3n}{4}\) + \(\frac{5n}{6}\) = 21
\(\frac{6n-9n+10n}{12}\) = 21
⇒ \(\frac{7n}{12}\) = 21 (ਤਿਰਛੀ ਗੁਣਾ ਦੁਆਰਾ)
⇒ 7n = 21 × 12
⇒ n = \(\frac{21×12}{7}\) = 3 × 12
= 36
⇒ n = 36.

PSEB 8th Class Maths Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5

ਪ੍ਰਸ਼ਨ 3.
x + 7 – \(\frac{8x}{3}\) = \(\frac{17}{6}\) – \(\frac{5x}{2}\)
ਹੱਲ:
x + 7 – \(\frac{8x}{3}\) = \(\frac{17}{6}\) – \(\frac{5x}{2}\) [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ x + \(\frac{5x}{2}\) – \(\frac{8x}{3}\) = \(\frac{17}{6}\) – 7
⇒ \(\frac{6x+15x-16x}{6}\) = \(\frac{17-42}{6}\)
⇒ \(\frac{5x}{6}\) = \(\frac{-25}{6}\)
⇒ 5x = -25
⇒ x = \(\frac{-25}{5}\) = -5

ਪ੍ਰਸ਼ਨ 4.
\(\frac{x-5}{3}\) = \(\frac{x-3}{5}\).
ਉੱਤਰ:
\(\frac{x-5}{3}\) = \(\frac{x-3}{5}\) (ਤਿਰਛੀ ਗੁਣਾ ਦੁਆਰਾ)
⇒ 5 (x – 5) = 3 (x – 3)
⇒ 5x – 25 = 31 – 9
⇒ 5x – 3x = 25 – 9
⇒ 2x = 16
⇒ x = 8

PSEB 8th Class Maths Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5

ਪ੍ਰਸ਼ਨ 5.
\(\frac{3t-2}{4}\) – \(\frac{2t+3}{3}\) = \(\frac{2}{3}\) – t.
ਉੱਤਰ:
\(\frac{3t-2}{4}\) – \(\frac{2t+3}{3}\) = \(\frac{2}{3}\) – t
⇒ \(\frac{3t-2}{4}\) – \(\frac{2t+3}{3}\) + \(\frac{t}{1}\) = \(\frac{2}{3}\) [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ \(\frac{3(3t-2)-4(2t+3)+12t}{12}\) = \(\frac{2}{3}\)
⇒ \(\frac{9t-6-8t-12+12t}{12}\) = \(\frac{2}{3}\)
⇒ \(\frac{13t-18}{12}\) = \(\frac{2}{3}\) [ਤਿਰਛੀ ਗੁਣਾ ਦੁਆਰਾ ‘ਤੇ]
⇒ 3(3t – 18) = 2 (12)
⇒ 39t – 54 = 24
⇒ 39t = 24 + 54 [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ 39t = 78
⇒ t = 2

ਪ੍ਰਸ਼ਨ 6.
m – \(\frac{m-1}{2}\) = 1 – \(\frac{m-2}{3}\).
ਹੱਲ:
m – \(\frac{m-1}{2}\) = 1 – \(\frac{m-2}{3}\)
⇒ \(\frac{m}{1}\) – \(\frac{m-1}{2}\) + \(\frac{m-2}{3}\) = 1 [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ \(\frac{6m-3(m-1)+2(m-2)}{6}\) = 1
⇒ \(\frac{6m-3m+3+2m-4}{6}\) = 1
⇒ \(\frac{5m-1}{6}\) = \(\frac{1}{1}\) [ਤਿਰਛੀ ਗੁਣਾ ਦੁਆਰਾ]
⇒ 5m – 1 = 6
⇒ 5m = 6 + 1 = 7
⇒ m = \(\frac{7}{5}\).

PSEB 8th Class Maths Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5

ਹੇਠਾਂ ਲਿਖੀਆਂ ਨੂੰ ਸਰਲ ਰੂਪ ਵਿਚ ਬਦਲਦੇ ਹੋਏ ਹੱਲ ਕਰੋ :

ਪ੍ਰਸ਼ਨ 7.
3 (t – 3) = 5 (2t + 1).
ਹੱਲ:
3 (t – 3) = 5 (2t + 1)
∴ 3t – 9 = 10t + 5
⇒ 3t – 10t = 5 + 9 [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ – 7t = 14
⇒ t = \(\frac{14}{-7}\) = – 2.

ਪ੍ਰਸ਼ਨ 8.
15 (y – 4) – 2(y – 9) + 5 (y + 6) = 0.
ਹੱਲ:
15 (y – 4) – 2 (y – 9) + 5 (y + 6) = 0
⇒ 15y – 60 – 2y + 18 + 5y + 30 = 0
⇒ 15y – 2y + 5y = 60 – 18 – 30 [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤੇ]
⇒ 20y – 2y = 60 – 48
⇒ 18y = 12
⇒ y = \(\frac{12}{18}\) = \(\frac{2}{3}\).

PSEB 8th Class Maths Solutions Chapter 2 ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ Ex 2.5

ਪ੍ਰਸ਼ਨ 9.
3 (5z – 7) – 2 (9z – 11) = 4 (8z – 13) – 17.
ਹੱਲ:
3 (5z – 7) – 2 (9z – 11) = 4 (8z – 13) – 17.
15z – 21 – 18z + 22 = 32z – 52 – 17
⇒ 15z – 18z – 32z = -52 – 17 – 22 + 21
⇒ 15z – 50z = – 91 + 21
⇒ -35z = – 70
⇒ z = \(\frac{-70}{-35}\) = 2.

ਪ੍ਰਸ਼ਨ 10.
0.25 (4f – 3) = 0.05 (10f – 9).
ਹੱਲ:
0.25 (4f – 3) = 0.05 (10f – 9)
1.00 f – 0.75 = 0.5f – 0.45
⇒ 1.00f – 0.5f = 0.75 – 0.45 [ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ ‘ਤ]
⇒ 0.5f = 0.30
⇒ f = \(\frac{0.30}{0.5}\) = 0.6

Leave a Comment