Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.6 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6
Question 1.
The circumference of the base of a 7 cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold? (1000 cm3 = 1l)
Answer:
For the given cylindrical vessel, height h = 25 cm and circumference of the base = 132 cm.
Circumference of base = 2πr
∴ 132 cm = 2 × \(\frac{22}{7}\) × r cm
∴ r = \(\frac{132 \times 7}{2 \times 22}\) cm
∴ r = 21 cm
Hence, for the cylindrical vessel, radius r = 21 cm
Capacity of cylindrical vessel
= Volume of cylinder
= πr2h
= \(\frac{22}{7}\) × 21 × 21 × 25 cm3
= 34650 cm3
= \(\frac{34650}{1000}\) liters
= 34.65 litres
Thus, the cylindrical vessel can hold 34.65 litres of water.
Question 2.
The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm. The length of the pipe is 35 cm. Find the mass of the pipe, if 1 cm3 of wood has a mass of 0.6 g.
Answer:
For the cylindrical wooden pipe,
outer radius R = \(\frac{\text { diameter }}{2}\) = \(\frac{28}{2}\) cm = 14 cm,
inner radius r = \(\frac{\text { diameter }}{2}\) = \(\frac{24}{2}\) cm = 12 cm and
height (length) h = 35 cm.
Volume of the cylindrical wooden pipe
= Volume of outer cylinder – Volume of inner cylinder
= πR2h – πr2h
= πh (R2 – r2)
= πh (R + r) (R – r)
= \(\frac{22}{7}\) × 35 × (14 + 12) (14 – 12) cm3
= 110 × 26 × 2 cm3
= 5720 cm3
Now, mass of 1 cm3 of wood = 0.6 g
∴ Mass of 5720 cm3 of wood = 5720 × 0.6 g
= 3432 g
= 3.432 kg
Thus, the mass of the given pipe is 3.432 kg.
Question 3.
A soft drink is available in two packs
(i) a tin can with a rectangular base of length 5 cm and width 4 cm, having a height of 15 cm and
(ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm.
Which container has greater capacity and by how much?
Answer:
(i) For the cuboidal container with rectangular base, length l = 5 cm; breadth b = 4 cm and height h = 15 cm.
Capacity of the cuboidal container
= Volume of cuboid
= l × b × h
= 5 × 4 × 15 cm3
= 300 cm3
(ii) For the cylindrical container,
radius r = \(\frac{\text { diameter }}{2}\) = \(\frac{7}{2}\) cm and
height h = 10 cm.
Capacity of the cylindrical container = Volume of cylinder
= πr2h
= \(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\) × 10 cm3
= 385 cm3
Hence, the capacity of the cylindrical container is more than the cuboidal container by 385 – 300 = 85 cm3.
Question 4.
If the lateral surface area of a cylinder is 94.2 cm2 and its height is 5 cm, then find
(i) radius of its base and
(ii) its volume. (Use π = 3.14)
Answer:
(i) For the given cylinder, height h = 5 cm and lateral (curved) surface area = 94.2 cm2.
Curved surface area of a cylinder = 2 πrh
∴ 94.2 cm2 = 2 × 3.14 × r × 5 cm2
∴ r = \(\frac{94.2}{2 \times 3.14 \times 5}\) cm
∴ r = 3 cm
Thus, the radius of the cylinder is 3 cm.
(ii) Volume of a cylinder
= πr2h
= 3.14 × 3 × 3 × 5 cm3
= 141.3 cm3
Thus, the volume of the cylinder is 141.3 cm3.
Question 5.
It costs ₹ 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of ₹ 20 per m2, find
(i) inner curved surface area of the vessel,
(ii) radius of the base and
(iii) capacity of the vessel.
Answer:
(i) Area of the region painted at the cost of ₹ 20 = 1 m2
∴ Area of the region painted at the cost of ₹ 2200 = \(\frac{2200}{20}\) m2 = 110m2
Thus, the inner curved surface area of the vessel is 110 m2.
(ii) For the cylindrical vessel, height (depth) h- 10 m and curved surface area = 110 m2.
Curved surface area of cylindrical vessel = 2πrh
∴ 110 m2 = 2 × \(\frac{22}{7}\) × r × 10 m2
∴ r = \(\frac{110 \times 7}{2 \times 22 \times 10}\) m
∴ r = \(\frac{7}{4}\) m
∴ r = 1.75 m
Thus, the radius of the cylindrical vessel is 1.75 m.
(iii) Capacity of the cylindrical vessel
= Volume of a cylinder
= πr2h
= \(\frac{22}{7}\) × 1.75 × 1.75 × 10 m3
= 96.25 m3
= 96.25 kilolitres
Thus, the capacity of the cylindrical vessel is 96.25 kilolitres.
Question 6.
The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of metal sheet would be needed to make it ?
Answer:
For the closed cylindrical vessel, height h = 1 m and capacity = 15.4 litres
∴ Volume of the vessel = 15.4 litres
= \(\frac{15.4}{1000}\) m3
= 0.0154 m3
Volume of cylindrical vessel = πr2h
∴ 0.0154 m3 = \(\frac{22}{7}\) × r2 × 1 m3
∴ r2 = \(\frac{154}{10000} \times \frac{7}{22}\) m2
∴ r2 = \(\frac{49}{10000}\) m2
∴ r2 = \(\frac{7}{100}\) m
∴ r = 0.07 m
Thus, the radius of the cylindrical vessel is 0. 07 m.
Area of the metal sheet required to make closed cylindrical vessel
= Total surface area of a cylinder
= 2πr (r + h)
= 2 × \(\frac{22}{7}\) × 0.07 (0.07 + 1) m2
= 0.44 × 1.07 m2
= 0.4708 m2
Thus, 0.4708 m2 of metal sheet would be needed to make the closed cylindrical vessel.
Question 7.
A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm. If the length of the pencil is 14 cm, find the volume of the wood and that of the graphite.
Answer:
For the solid cylinder of graphite,
radius r = \(\frac{\text { diameter }}{2}\) = \(\frac{1}{2}\) mm = \(\frac{1}{20}\) cm and
height h = 14 cm.
Volume of cylinder of graphite
= πr2h
= \(\frac{22}{7}\) × \(\frac{1}{20}\) × \(\frac{1}{20}\) × 14 cm3 = 011 cm3
For the hollow cylinder of wood,
outer radius R = \(\frac{\text { diameter }}{2}\) = \(\frac{7}{2}\) mm = \(\frac{7}{20}\) cm,
inner radius r = \(\frac{1}{20}\) cm and height h = 14 cm.
Volume of hollow cylinder of wood
= πR2h – πr2h
= πh (R2 – r2)
= πh (R + r) (R – r)
= \(\frac{22}{7}\) × 14 \(\left(\frac{7}{20}+\frac{1}{20}\right)\left(\frac{7}{20}-\frac{1}{20}\right)\) cm3
= 44 × \(\frac{8}{20}\) × \(\frac{8}{20}\) cm3
= \(\frac{528}{100}\) cm3
= 5.28 cm3
Thus, in the given pencil, the volume of wood is 5.28 cm3 and the volume of graphite is 0.11cm3.
Question 8.
A patient in a hospital is given soup daily in a cylindrical howl of diameter 7 cm. If the bowl is Oiled with soup to a height of 4 cm, how much soup the hospital has ‘ to prepare daily to serve 250 patients ?
Answer:
For the soup served in cylindrical bowl, radius r = \(\frac{\text { diameter }}{2}\) = \(\frac{7}{2}\) cm and height h = 4 cm.
Volume of soup served to one patient = Volume of a cylinder
= πr2h
= \(\frac{22}{7}\) × \(\frac{7}{2}\) × \(\frac{7}{2}\) × 4 cm3
= 154 cm3
Thus, the volume of soup served to 1 patient =154 cm3
∴ The volume of soup served to 250 patients
= 154 × 250 cm3
= 38500 cm3
= \(\frac{38500}{1000}\) litres
= 38.5 litres
Thus, the hospital has to prepare 38500 cm3, i.e., 38.5 litres of soup daily.