Processing math: 100%

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 4 Determinants Ex 4.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2

Direction (1 – 5): Using the property of determinants and without expanding.

Question 1.
\left|\begin{array}{lll} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{array}\right| = 0
Solution.
We have, \left|\begin{array}{lll} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{array}\right|=\left|\begin{array}{lll} x & a & a \\ y & b & b \\ z & c & c \end{array}\right| = 0 [applying C3 → C3 – C1]

[Since, the two columns of the determinants are identical.]

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 2.
\left|\begin{array}{lll} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{array}\right| = 0
Solution.
∆ = \left|\begin{array}{lll} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{array}\right|

[applying R1 → R + R2]

∆ = \left|\begin{array}{ccc} a-c & b-a & c-b \\ b-c & c-a & a-b \\ -(a-c) & -(b-a) & -(c-b) \end{array}\right|=-\begin{array}{ccc} a-c & b-a & c-b \\ b-c & c-a & a-b \\ a-c & b-a & c-b \end{array} \mid = 0
[Since the two rows R1 and R3 are identical].

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 3.
\left|\begin{array}{lll} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{array}\right| = 0
Solution.
\left|\begin{array}{lll} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{array}\right|=\left|\begin{array}{lll} 2 & 7 & 2 \\ 3 & 8 & 3 \\ 5 & 9 & 5 \end{array}\right| = 0 (applying C3 → C3 – 9 C2)
[Since, two columns are identical]

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 4.
\left|\begin{array}{lll} 1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b) \end{array}\right| = 0
Solution.
∆ = \left|\begin{array}{lll} 1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b) \end{array}\right|

∆ = \left|\begin{array}{lll} 1 & b c & a b+b c+c a \\ 1 & c a & a b+b c+c a \\ 1 & a b & a b+b c+c a \end{array}\right| (applying C3 → C3 – 9 C2)

On taking (ab + bc + ca) common from C3, we have

∆ = (ab + bc + ca) \left|\begin{array}{ccc} 1 & b c & 1 \\ 1 & c a & 1 \\ 1 & a b & 1 \end{array}\right|
= 0 × (ab + bc + ca) = 0
[Since, two columns C1 and C3 are identical]

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 5.
\left|\begin{array}{lll} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{array}\right|=2\left|\begin{array}{lll} a & p & x \\ b & q & y \\ c & r & z \end{array}\right|
solution.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 1

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 2

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Direction (6 – 14): By using properties of determinants.

Question 6.
\left|\begin{array}{ccc} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{array}\right| = 0
Solution.
We have, ∆ = \left|\begin{array}{ccc} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{array}\right|

∆ = =\frac{1}{c}\left|\begin{array}{ccc} 0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0 \end{array}\right| (applying R1 → cR1)

∆ = \frac{1}{c}\left|\begin{array}{ccc} a b & a c & 0 \\ -a & 0 & -c \\ b & c & 0 \end{array}\right|=\frac{a}{c}\left|\begin{array}{ccc} b & c & 0 \\ -a & 0 & -c \\ b & c & 0 \end{array}\right| = 0
(applying R1 → R1 – bR2)
[Since, the two rows R1 and R3 are identical].

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 7.
\left|\begin{array}{ccc} -a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2} \end{array}\right| = 4 a2 b2 c2
Solution.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 3

[Applying R2 → R2 + R1 and R3 R3 + R1], we have

∆ = a2 b2 c2 \left|\begin{array}{ccc} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{array}\right|

= a2 b2 c2 \left|\begin{array}{ll} 0 & 2 \\ 2 & 0 \end{array}\right|
= a2 b2 c2 (0 – 4)
= 4 a2 b2 c2 = R.H.S.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 8.
(i) \left|\begin{array}{lll} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{array}\right| = (a – b) (b – c) (c – a)

(ii) \left|\begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{array}\right| = (a – b) (b – c) (c – a) (a + b + c)
Solution.
(i) PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 4

By expanding along C1, we have

∆ = (a – b) (b – c) (c – a) \left|\begin{array}{cc} 0 & -1 \\ 1 & b+c \end{array}\right|
= (a – b) (b – c) (c – a)

(ii) Let ∆ = \left|\begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{array}\right|
Applying C1 → C1 – C3, C2 → C2 – C3, we have

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 5

By expanding along C1, we have
∆ = (a – b) (b – c) (c – a) (a + b + c) (- 1) \left|\begin{array}{cc} 0 & 1 \\ 1 & c \end{array}\right|
= (a – b) (b – c) (c – a) (a + b + c)

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 9.
\left|\begin{array}{lll} x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y \end{array}\right| = (x – y) (y – z) (z – x) (xy + yz + zx)
Solution.
L.H.S = \mid \begin{array}{lll} x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y \end{array}

Applying R2 → R2 – R1 and R3 → R3 – R1, we have

∆ = \left|\begin{array}{ccc} x & x^{2} & y z \\ y-x & y^{2}-x^{2} & z x-y z \\ z-x & z^{2}-x^{2} & x y-y z \end{array}\right|

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 6

= (x – y) (z – x) (z – y) [(- xz – yz) + (- x2 – xy + x2)]
= – (x – y) (z – x) (z – y) (xy + yz + zx)
= (x – y) (y – z) (z – x) (xy + yz + zx) = R.H.S.
Hence, the given result is proved.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 10.
(i) \left|\begin{array}{ccc} x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4 \end{array}\right| = (5x + 4) (4 – x)2

(ii) \left|\begin{array}{ccc} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{array}\right| = k2 (3y + k)
Solution.
(i) PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 7

= (5x + 4)(4 – x) (4 – x) \left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 x & 1 & 0 \\ 2 x & 0 & 1 \end{array}\right|
By expanding along C3, have
∆ = (5x + 4) (4 – x)2 \left|\begin{array}{cc} 1 & 0 \\ 2 x & 1 \end{array}\right|
= (5x + 4) (4 – x)2
Hence, the given result is proved.

(ii) PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 8

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 11.
(i) \left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| = (a + b + c)2

(ii) \left|\begin{array}{ccc} x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y \end{array}\right| = 2(x + y + z)2
Solution.
(i) Let ∆ = \left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|

Applying R1 → R1 + R2 + R3, we have
∆ = \left|\begin{array}{ccc} a+b+c & a+b+c & a+b+c \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|

= (a + b + c) \left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| (Taking out (a + b+ c) common from R1)

Applying C2 → C2 – C1 and C3 → C3 – C1, we have
∆ = (a + b + c) \left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{array}\right|

= (a + b + c)3 \left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -1 & 0 \\ 2 c & 0 & -1 \end{array}\right|

By expanding along C3, we have
∆ = (a + b + c)3 (- 1) (- 1) = (a + b + c)3
Hence, the given result is proved.

(ii) PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 9

By expanding along R3, we have
= 2(x + y+ z)2 (1)(1 – 0) = 2(x + y+ z)3
Hence, the given result is proved.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 12.
\left|\begin{array}{ccc} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right| = (1 – x3)2
Solution.
∆ = \left|\begin{array}{ccc} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right|

Applying R1 → R1 + R2 + R3, we have

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 10

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 13.
\left|\begin{array}{ccc} 1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right| = (1 + a2 + b2)3
Solution.
Let ∆ = \left|\begin{array}{ccc} 1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right|

Applying R1 → R1 + bR2 and R2 → R2 – aR3

∆ = \left|\begin{array}{ccc} 1+a^{2}+b^{2} & 0 & -b\left(1+a^{2}+b^{2}\right) \\ 0 & 1+a^{2}+b^{2} & a\left(1+a^{2}+b^{2}\right) \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right|

= (1 + a2 + b2)2 \left|\begin{array}{ccc} 1 & 0 & -b \\ 0 & 1 & a \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right|

By expanding along R1, we have
∆ = (1 + a2 + b2)2 \left[(1)\left|\begin{array}{cc} 1 & a \\ -2 a & 1-a^{2}-b^{2} \end{array}\right|-b\left|\begin{array}{cc} 0 & 1 \\ 2 b & -2 a \end{array}\right|\right]

= (1 + a2 + b2)2 [1 – a2 – b2 + 2a2 – b(- 2b)]
= (1 + a2 + b2)2 (1 + a2 + b2)
= (1 + a2 + b2)3

Hence, the given result is proved.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 14.
\left|\begin{array}{ccc} a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1 \end{array}\right| = 1 + a2 + b2 + c2
Solution.

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 11

By expanding along R3, we have
∆ = -1\left|\begin{array}{cc} b^{2} & c^{2} \\ 1 & 0 \end{array}\right|+1\left|\begin{array}{cc} a^{2}+1 & b^{2} \mid \\ -1 & 1 \end{array}\right|

= – 1(- c2) + (a2 + 1 + b2)
= 1 + a2 + b2 + c2

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Direction (15 – 16): Choose the correct answer in the following questions.

Question 15.
Let A be a square matrix of order 3 × 3 then |KA| is equal to
(A) k |A|
(B) k2 |A|
(C) k3 |A|
(D) 3k |A|
Solution.
A is a square matrix of order 3 × 3. (Given)

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2 12

PSEB 12th Class Maths Solutions Chapter 4 Determinants Ex 4.2

Question 16.
Which of the following is correct?
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these
Solution.
We know that to every square matrix, A [aij] of order n. We can associate a number called the determinant of square matrix A, where aij = (i, j)th element of A.
Thus, the determinant is a number associated to a square matrix. Hence, the correct answer is (C).

Leave a Comment