PSEB 7th Class Science Notes Chapter 9 ਮਿੱਟੀ

This PSEB 7th Class Science Notes Chapter 9 ਮਿੱਟੀ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 9 ਮਿੱਟੀ

→ ਧਰਤੀ ਦੀ ਸਭ ਤੋਂ ਉੱਪਰਲੀ ਪਰਤ ਜਿਸ ਵਿੱਚ ਪੌਦੇ ਜਾਂ ਫ਼ਸਲਾਂ ਉੱਗ ਸਕਦੀਆਂ ਹਨ, ਮਿੱਟੀ ਕਹਾਉਂਦੀ ਹੈ ।

→ ਮਿੱਟੀ, ਟੁੱਟੀਆਂ ਚੱਟਾਨਾਂ, ਕਾਰਬਨਿਕ ਪਦਾਰਥ, ਜੰਤੂ, ਪੌਦੇ ਅਤੇ ਸੂਖਮਜੀਵਾਂ ਤੋਂ ਬਣੀ ਹੁੰਦੀ ਹੈ ।

→ ਮਿੱਟੀ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਪਰਤਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਮਿੱਟੀ ਦੇ ਖਾਤੇ ਵਿੱਚ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

→ ਮਿੱਟੀ ਕਾਰਬਨਿਕ ਅਤੇ ਅਕਾਰਬਨਿਕ ਦੋਨੋਂ ਤਰ੍ਹਾਂ ਦੇ ਘਟਕਾਂ ਤੋਂ ਬਣੀ ਹੁੰਦੀ ਹੈ ।

→ ਪੌਦਿਆਂ ਦੇ ਮ੍ਰਿਤ ਅਤੇ ਗਲੇ ਸੜੇ ਪੱਤੇ ਜਾਂ ਪੌਦੇ, ਕੀਟ ਜਾਂ ਮ੍ਰਿਤ ਜੰਤੂਆਂ ਦੇ ਮਿੱਟੀ ਵਿੱਚ ਦੱਬੇ ਸਰੀਰ, ਪਸ਼ੂਆਂ ਦਾ ਗੋਬਰ ਆਦਿ ਮਿਲ ਕੇ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਮੱਲ੍ਹੜ (ਹਿਯੂਮਸ) ਕਹਿੰਦੇ ਹਨ ।

→ ਮਿੱਟੀ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨਿਕ ਅਤੇ ਅਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ, ਫ਼ਸਲਾਂ ਲਈ ਜ਼ਿਆਦਾ ਲਾਹੇਵੰਦ ਹੁੰਦੀ ਹੈ ।

→ ਕਣਾਂ ਦੇ ਆਕਾਰ ਦੇ ਆਧਾਰ ਤੇ ਮਿੱਟੀ ਚੀਕਣੀ, ਰੇਤਲੀ, ਪੱਥਰੀਲੀ ਅਤੇ ਦੋਮਟ ਹੁੰਦੀ ਹੈ ।

→ ਰਸਾਇਣਿਕ ਸੁਭਾਅ ਦੇ ਆਧਾਰ ‘ਤੇ ਮਿੱਟੀ ਤੇਜ਼ਾਬੀ, ਖਾਰੀ ਜਾਂ ਉਦਾਸੀਨ ਹੋ ਸਕਦੀ ਹੈ ।

→ ਤੇਜ਼ਾਬੀ ਮਿੱਟੀ ਦੀ pH 1 ਤੋਂ 6 ਤੱਕ ਹੁੰਦੀ ਹੈ ।

→ ਖਾਰੀ ਮਿੱਟੀ ਦੀ pH 8 ਤੋਂ 14 ਤੱਕ ਹੁੰਦੀ ਹੈ ।

→ ਉਦਾਸੀਨ ਮਿੱਟੀ ਦੀ pH 7 ਹੁੰਦੀ ਹੈ ।

→ ਮਿੱਟੀ ਦਾ ਸੁਭਾਅ ਪਤਾ ਕਰਨ ਲਈ pH ਪੇਪਰ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।

→ ਕਾਲੀ ਮਿੱਟੀ ਵਿੱਚ ਲੋਹੇ ਦੇ ਲੂਣ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹ ਕਪਾਹ ਉਗਾਉਣ ਲਈ ਵਧੀਆ ਹੁੰਦੀ ਹੈ ।

→ ਜਿਸ ਮਿੱਟੀ ਵਿੱਚ ਗੰਧਕ ਹੁੰਦੀ ਹੈ ਉਹ ਮਿੱਟੀ ਪਿਆਜ਼ ਉਗਾਉਣ ਲਈ ਚੰਗੀ ਹੁੰਦੀ ਹੈ ।

→ ਭਿੰਨ-ਭਿੰਨ ਫ਼ਸਲਾਂ ਉਗਾਉਣ ਲਈ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀ ਮਿੱਟੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।

→ ਮਿੱਟੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਬਣਨ ਨੂੰ ਕਈ ਸਾਲ ਲਗਦੇ ਹਨ ।

→ ਹੜਾਂ, ਹਨੇਰੀਆਂ, ਤੂਫ਼ਾਨਾਂ ਅਤੇ ਖਾਨਾਂ ਪੁੱਟਣ ਕਾਰਨ ਮਿੱਟੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਨਸ਼ਟ ਹੋ ਜਾਣ ਨੂੰ ਕੌਂ-ਖੋਰ ਕਹਿੰਦੇ ਹਨ ।

→ ਖਾਨਾਂ ਪੁੱਟਣ ਨਾਲ, ਚਰਨ ਵਾਲੇ ਪਸ਼ੂਆਂ ਦੇ ਖੁਰਾਂ ਨਾਲ ਮਿੱਟੀ ਪੋਲੀ ਹੋ ਜਾਂਦੀ ਅਤੇ ਹਨੇਰੀ, ਪਾਣੀ ਨਾਲ ਪੋਲੀ ਹੋਈ ਮਿੱਟੀ ਦਾ ਛੇਤੀ ਕੌਂ-ਖੋਰ ਹੋ ਜਾਂਦਾ ਹੈ ।

→ ਰੁੱਖ ਉਗਾ ਕੇ, ਚੈੱਕ ਡੈਮ ਬਣਾ ਕੇ, ਖੇਤਾਂ ਦੀਆਂ ਵੱਟਾਂ ਤੇ ਘਾਹ ਲਗਾ ਕੇ ਅਤੇ ਨਦੀਆਂ ਜਾਂ ਨਹਿਰਾਂ ਦੇ ਕਿਨਾਰੇ , ਪੱਕੇ ਕਰਕੇ ਕੌਂ-ਖੋਰ ਨੂੰ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  1. ਮਿੱਟੀ-ਮਿੱਟੀ ਚੱਟਾਨ ਦੇ ਕਣਾਂ ਅਤੇ ਹਿਊਮਸ ਦਾ ਮਿਸ਼ਰਣ ਮਿੱਟੀ ਕਹਾਉਂਦਾ ਹੈ ।
  2. ਮਿੱਟੀ ਖਾਕਾ-ਮਿੱਟੀ ਖਾਕਾ ਵੱਖ-ਵੱਖ ਤਹਿਆਂ ਵਿੱਚੋਂ ਲੰਘਦੀ ਖੜੇ ਦਾਅ ਕਾਟ ਮਿੱਟੀ ਖਾਕਾ ਅਖਵਾਉਂਦੀ ਹੈ ।
  3. ਹਿਉਮਸ-ਮਿੱਟੀ ਵਿੱਚ ਮੌਜੂਦ ਸੜੇ-ਗਲੇ ਜੈਵ ਪਦਾਰਥ ਹਿਉਮਸ ਅਖਵਾਉਂਦੇ ਹਨ ।
  4. ਮਿੱਟੀ ਨਮੀ-ਮਿੱਟੀ ਆਪਣੇ ਵਿੱਚ ਪਾਣੀ ਨੂੰ ਰੋਕ ਕੇ ਰੱਖਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਮਿੱਟੀ ਨਮੀ ਕਹਿੰਦੇ ਹਨ ।
  5. ਭੋਂ-ਖੋਰ-ਪਾਣੀ, ਪੌਣ ਜਾਂ ਬਰਫ਼ ਦੇ ਦੁਆਰਾ ਮਿੱਟੀ ਦੀ ਉੱਪਰਲੀ ਤਹਿ ਦਾ ਹਟਣਾ ਕੌਂ-ਖੋਰ ਅਖਵਾਉਂਦਾ ਹੈ ।
  6. ਛਿੱਜਣ-ਉਹ ਵਿਧੀ ਜਿਸ ਵਿੱਚ ਪੌਣ-ਪਾਣੀ ਤੇ ਜਲਵਾਯੂ ਦੀ ਕਿਰਿਆ ਨਾਲ ਚੱਟਾਨਾਂ ਦੇ ਟੁੱਟਣ ਨਾਲ ਮਿੱਟੀ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ, ਛਿੱਜਣ ਅਖਵਾਉਂਦੀ ਹੈ ।

PSEB 7th Class Science Notes Chapter 8 ਪੌਣ, ਤੂਫ਼ਾਨ ਅਤੇ ਚੱਕਰਵਾਤ

This PSEB 7th Class Science Notes Chapter 8 ਪੌਣ, ਤੂਫ਼ਾਨ ਅਤੇ ਚੱਕਰਵਾਤ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 8 ਪੌਣ, ਤੂਫ਼ਾਨ ਅਤੇ ਚੱਕਰਵਾਤ

→ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਹਵਾ ਦਬਾਓ ਪਾਉਂਦੀ ਹੈ ।

→ ਗਤੀਸ਼ੀਲ ਹਵਾ ਨੂੰ ਪੌਣਹਨੇਰੀ ਕਹਿੰਦੇ ਹਨ ।

→ ਬਹੁਤ ਤੇਜ਼ ਹਵਾ ਚੱਲਣ ਨਾਲ ਦਬਾਓ ਘੱਟਦਾ ਹੈ ।

→ ਗਰਮ ਹੋਣ ਤੇ ਹਵਾ ਫੈਲਦੀ ਹੈ ਅਤੇ ਠੰਢੀ ਹੋਣ ਤੇ ਸੁੰਗੜਦੀ ਹੈ ।

→ ਠੰਢੀ ਹਵਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਗਰਮ ਹਵਾ ਹਲਕੀ ਹੁੰਦੀ ਹੈ ।

→ ਹਵਾ ਵੱਧ ਦਬਾਉ ਵਾਲੇ ਖੇਤਰਾਂ ਤੋਂ ਘੱਟ ਦਬਾਓ ਵਾਲੇ ਖੇਤਰਾਂ ਵੱਲ ਚੱਲਦੀ ਹੈ ।

→ ਹਵਾ ਦੀ ਗਤੀ ਅਨੀਮੋਮੀਟਰ ਯੰਤਰ ਨਾਲ ਮਾਪੀ ਜਾਂਦੀ ਹੈ ।

→ ਹਵਾ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਪੌਣ-ਕੁੱਕੜਵਿੰਡ ਵੇਨ (Wind Vane) ਨਾਲ ਮਾਪੀ ਜਾਂਦੀ ਹੈ ।

→ ਪੌਣ ਧਾਰਾਵਾਂ ਪ੍ਰਿਥਵੀ ਦੇ ਅਸਮਾਨ ਰੂਪ ਦੇ ਗਰਮ ਹੋਣ ਦੇ ਕਾਰਨ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ ।

→ ਮਾਨਸੂਨੀ ਪੌਣਾਂ ਜਲ ਨਾਲ ਭਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਵਰਖਾ ਲਿਆਉਂਦੀਆਂ ਹਨ ।

→ ਚੱਕਰਵਾਤ ਵਿਨਾਸ਼ਕਾਰੀ ਹੁੰਦੇ ਹਨ ।

→ ਉੜੀਸਾ ਦੇ ਤਟ ਨੂੰ 18 ਅਕਤੂਬਰ, 1999 ਵਿੱਚ ਇੱਕ ਚੱਕਰਵਾਤ ਨੇ ਪਾਰ ਕੀਤਾ ਸੀ ।

→ ਚੱਕਰਵਾਤ ਦਾ ਪੌਣ ਵੇਗ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ ।

→ ਚੱਕਰਵਾਤ, ਬਹੁਤ ਹੀ ਸ਼ਕਤੀਸ਼ਾਲੀ ਘੁੰਮਣਘੇਰੀ ਵਾਲੀ ਹਵਾ ਵਾਲਾ ਤੁਫ਼ਾਨ ਹੁੰਦਾ ਹੈ ਜੋ ਬਹੁਤ ਹੀ ਘੱਟ ਦਬਾਉ ਵਾਲੇ ਕੇਂਦਰ ਦੁਆਲੇ ਘੁੰਮਦਾ ਹੈ ।

→ ਕੀਪ ਆਕਾਰ ਦੇ ਬੱਦਲ ਨਾਲ ਘੁੰਮਦੀਆਂ ਤੇਜ਼ ਹਵਾਵਾਂ ਵਾਲੇ ਭਿਆਨਕ ਤੂਫ਼ਾਨ ਨੂੰ ਝੱਖੜ ਕਹਿੰਦੇ ਹਨ ।

→ ਅਸਮਾਨੀ ਬਿਜਲੀ (Lightning) ਸਮੇਂ ਪੈਦਾ ਹੋਈ ਉੱਚੀ ਆਵਾਜ਼ ਨੂੰ ਗਰਜਨ (Thunder) ਕਹਿੰਦੇ ਹਨ ।

→ ਤੇਜ਼ ਹਨੇਰੀ ਨਾਲ ਆਉਣ ਵਾਲੇ ਭਾਰੀ ਮੀਂਹ ਨੂੰ ਤੁਫ਼ਾਨ (Storm) ਕਹਿੰਦੇ ਹਨ ।

→ ਅਮਰੀਕਾ ਦਾ ਹਰੀਕੇਨ ਅਤੇ ਜਾਪਾਨ ਦਾ ਟਾਈਫੁਨ ਚੱਕਰਵਾਤ ਹੀ ਹੈ ।

→ ਟੱਰਨੇਡੋ ਗੂੜੇ ਰੰਗ ਦੇ ਕੀਪ ਵਰਗੇ ਬੱਦਲ ਹੁੰਦੇ ਹਨ, ਜਿਹੜੇ ਧਰਤੀ ਦੇ ਤਲ ਅਤੇ ਆਕਾਸ਼ ਦੇ ਵਿਚਾਲੇ ਸਮਾਉਂਦੇ ਹਨ ।

→ ਹਰ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪਾਕ੍ਰਿਤਿਕ ਆਫ਼ਤਾਂ ਜਿਵੇਂ ਕਿ ਚੱਕਰਵਾਤ, ਟੱਰਨੇਡੋ, ਆਦਿ ਸੰਪੱਤੀ, ਤਾਰਾਂ, ਸੰਚਾਰ ਪ੍ਰਣਾਲੀਆਂ ਅਤੇ ਰੁੱਖਾਂ ਦਾ ਵਿਨਾਸ਼ ਕਰਦੀਆਂ ਹਨ ।

→ ਆਫ਼ਤਾਂ ਦੇ ਸਮੇਂ ਵਿਸ਼ੇਸ਼ ਨੀਤੀਆਂ ਅਪਣਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ।

→ ਉਪਗ੍ਰਹਿ ਅਤੇ ਰਾਡਾਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚੱਕਰਵਾਤ ਚੇਤਾਵਨੀ 48 ਘੰਟੇ ਪਹਿਲਾਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ।

→ ਖ਼ੁਦ ਦੀ ਸਹਾਇਤਾ ਸਭ ਤੋਂ ਚੰਗੀ ਸਹਾਇਤਾ ਹੈ । ਇਸ ਲਈ ਕਿਸੇ ਵੀ ਚੱਕਰਵਾਤ ਦੇ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਹੀ ਆਪਣੀ ਸੁਰੱਖਿਆ ਦੀ ਯੋਜਨਾ ਬਣਾ ਲੈਣੀ ਅਤੇ ਸੁਰੱਖਿਆ ਦੇ ਉਪਾਵਾਂ ਨੂੰ ਤਿਆਰ ਰੱਖਣਾ ਲਾਹੇਵੰਦ ਰਹਿੰਦਾ ਹੈ ।

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  • ਪੌਣ-ਗਤੀਸ਼ੀਲ ਹਵਾ ਪੌਣ ਅਖਵਾਉਂਦੀ ਹੈ ।
  • ਮਾਨਸੂਣ ਪੌਣ-ਸਮੁੰਦਰ ਤੋਂ ਆਉਣ ਵਾਲੀ ਪੌਣ ਜੋ ਜਲਵਾਸ਼ਪਾਂ ਨਾਲ ਭਰੀ ਹੁੰਦੀ ਹੈ, ਮਾਨਸੂਨ ਪੌਣ ਅਖਵਾਉਂਦੀ ਹੈ ।
  • ਟੱਰਨੇਡੋ-ਗੂੜ੍ਹੇ ਰੰਗ ਦੇ ਕੀਪ ਦੇ ਬੱਦਲ ਜਿਨ੍ਹਾਂ ਦੀ ਕੰਪਦਾਰ ਸੰਰਚਨਾ ਆਕਾਸ਼ ਤੋਂ ਧਰਤੀ ਤਲ ਦੇ ਵਲ ਆਉਂਦੀ ਜਾਪਦੀ ਹੈ, ਟੱਰਨੇਡੋ ਅਖਵਾਉਂਦੀ ਹੈ ।
  • ਚੱਕਰਵਾਤ-ਉੱਚ ਵੇਗ ਨਾਲ ਹਵਾ ਦੀਆਂ ਅਨੇਕ ਪਰਤਾਂ ਦਾ ਕੁੰਡਲੀ ਦੇ ਰੂਪ ਵਿੱਚ ਘੁੰਮਣਾ ਚੱਕਰਵਾਤ ਅਖਵਾਉਂਦਾ ਹੈ ।

PSEB 7th Class Science Notes Chapter 7 ਮੌਸਮ, ਜਲਵਾਯੂ ਅਤੇ ਜਲਵਾਯੂ ਅਨੁਸਾਰ ਜੰਤੂਆਂ ਵਿੱਚ ਅਨੁਕੂਲਨ

This PSEB 7th Class Science Notes Chapter 7 ਮੌਸਮ, ਜਲਵਾਯੂ ਅਤੇ ਜਲਵਾਯੂ ਅਨੁਸਾਰ ਜੰਤੂਆਂ ਵਿੱਚ ਅਨੁਕੂਲਨ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 7 ਮੌਸਮ, ਜਲਵਾਯੂ ਅਤੇ ਜਲਵਾਯੂ ਅਨੁਸਾਰ ਜੰਤੂਆਂ ਵਿੱਚ ਅਨੁਕੂਲਨ

→ ਕਿਸੇ ਥਾਂ ਦਾ ਮੌਸਮ ਦਿਨ-ਪ੍ਰਤੀਦਿਨ ਅਤੇ ਹਫ਼ਤੇ-ਦਰ-ਹਫ਼ਤੇ ਬਦਲਦਾ ਰਹਿੰਦਾ ਹੈ ।

→ ਮੌਸਮ ਤਾਪਮਾਨ, , ਨਮੀ ਅਤੇ ਵਰਖਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ।

→ ਨਮੀ, ਹਵਾ ਵਿਚਲੇ ਜਲਵਾਸ਼ਪਾਂ ਦਾ ਮਾਪ ਹੈ ।

→ ਭਾਰਤੀ ਮੌਸਮ ਵਿਭਾਗ, ਮੌਸਮ ਦੇ ਪੂਰਵ ਅਨੁਮਾਨ ਦੇ ਲਈ ਪ੍ਰਤੀਦਿਨ ਵਿਭਿੰਨ ਥਾਵਾਂ ਦੇ ਤਾਪ, ਹਵਾ ਵੇਗ ਆਦਿ ਦੇ ਅੰਕੜੇ ਇਕੱਠੇ ਕਰਦਾ ਹੈ ।

→ ਕਿਸੇ ਥਾਂ ਦੇ ਤਾਪਮਾਨ, ਨਮੀ, ਮੀਂਹ, ਹਵਾ ਗਤੀ ਆਦਿ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਹਵਾ-ਮੰਡਲ ਦੀ ਪਰਿਸਥਿਤੀ ਉਸ ਥਾਂ ਦਾ ਮੌਸਮ ਕਹਾਉਂਦੀ ਹੈ ।

→ ਮੌਸਮ ਪਲ ਵਿੱਚ ਹੀ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦਾ ਹੈ ।

→ ਉਹ ਕਾਰਕ ਜਿਨ੍ਹਾਂ ਉੱਤੇ ਮੌਸਮ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਮੌਸਮ ਦੇ ਘਟਕ ਕਹਾਉਂਦੇ ਹਨ ।

→ ਤਾਪਮਾਨ ਮਾਪਣ ਦੇ ਲਈ ਵਿਸ਼ੇਸ਼ ਉੱਚਤਮ-ਨਿਊਨਤਮ ਤਾਪਮਾਪੀ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਏ ਜਾਂਦੇ ਹਨ ।

→ ਦਿਨ ਦਾ ਉੱਚਤਮ ਤਾਪਮਾਨ ਆਮ ਤੌਰ ‘ਤੇ ਦੁਪਹਿਰ ਤੋਂ ਬਾਅਦ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਿਊਨਤਮ ਤਾਪਮਾਨ ਆਮ ਤੌਰ ‘ਤੇ ਸਵੇਰ ਵੇਲੇ ਹੁੰਦਾ ਹੈ ।

→ ਮੌਸਮ ਵਿੱਚ ਸਾਰੇ ਪਰਿਵਰਤਨ ਸੂਰਜ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ।

→ ਸਰਦੀਆਂ ਵਿੱਚ ਦਿਨ ਦੀ ਲੰਬਾਈ ਘੱਟ ਹੁੰਦੀ ਹੈ ਅਤੇ ਰਾਤ ਜਲਦੀ ਹੋ ਜਾਂਦੀ ਹੈ ।

→ ਕਿਸੇ ਥਾਂ ਦੇ ਮੌਸਮ ਦੀ ਲੰਬਾਈ, ਉਸ ਥਾਂ ਵਿੱਚ ਇਕੱਠੇ ਅੰਕੜਿਆਂ ਦੇ ਆਧਾਰ ਉੱਤੇ ਬਣਿਆ ਮੌਸਮ ਦਾ ਪੈਟਰਨ, ਉਸ ਥਾਂ ਦੀ ਜਲਵਾਯੂ ਕਹਾਉਂਦਾ ਹੈ ।

→ ਵਿਭਿੰਨ ਸਥਾਨਾਂ ਦਾ ਜਲਵਾਯੂ ਅੱਡ-ਅੱਡ ਕਿਸਮ ਦਾ ਹੁੰਦਾ ਹੈ । ਇਹ ਗਰਮ ਅਤੇ ਖ਼ੁਸ਼ਕ ਤੋਂ ਗਰਮ ਅਤੇ ਨਮੀ ਤਕ ਬਦਲਦਾ ਹੈ ।

→ ਜਲਵਾਯੂ ਦਾ ਜੀਵਾਂ ਉੱਤੇ ਬਹੁਤ ਪ੍ਰਭਾਵ ਹੈ ।

→ ਜੰਤੂ ਉਹਨਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਜਿਉਣ ਦੇ ਲਈ ਅਨੁਕੂਲਿਤ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਉਹ ਰਹਿੰਦੇ ਹਨ ।

→ ਧਰੁਵੀ ਖੇਤਰ, ਧਰੁਵਾਂ ਦੇ ਨੇੜੇ ਸਥਿਤ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ-ਉੱਤਰੀ ਧਰੁਵ ਅਤੇ ਦੱਖਣੀ ਧਰੁਵ ॥

→ ਕੈਨੇਡਾ, ਗਰੀਨਲੈਂਡ, ਆਈਸਲੈਂਡ, ਨਾਰਵੇ, ਸਵੀਡਨ, ਫਿਨਲੈਂਡ, ਅਮਰੀਕਾ ਵਿੱਚ ਅਲਾਸਕਾ ਅਤੇ ਅਲਾਸਕਾ ਅਤੇ ਰੂਸ ਦੇ ਸਾਈਬੇਰੀਆਈ ਖੇਤਰ ਧਰੁਵੀ ਖੇਤਰ ਹਨ ।

→ ਭਾਰਤ, ਮਲੇਸ਼ੀਆ, ਇੰਡੋਨੇਸ਼ੀਆ, ਬਾਜ਼ੀਲ, ਕਾਂਗੋ ਗਣਤੰਤਰ, ਕੀਨੀਆ, ਯੁਗਾਂਡਾ ਅਤੇ ਨਾਈਜੀਰੀਆ ਵਿੱਚ ਊਸ਼ਣ-ਕਟੀਬੰਧ ਵਰਖਾ ਵਣ ਮਿਲਦੇ ਹਨ |

→ ਧਰੁਵੀ ਖੇਤਰਾਂ ਵਿੱਚ ਸਰਦ ਜਲਵਾਯੂ ਪਾਈ ਜਾਂਦੀ ਹੈ ।

→ ਪੈਨਗੁਇਨ ਅਤੇ ਧਰੁਵੀ ਰਿੱਛ, ਧਰੁਵੀ ਖੇਤਰਾਂ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ !

→ ਧਰੁਵੀ ਖੇਤਰ ਸਫ਼ੈਦ ਬਰਫ਼ ਨਾਲ ਢੱਕੇ ਰਹਿੰਦੇ ਹਨ । ਧਰੁਵੀ ਰਿੱਛ ਦੇ ਸਰੀਰ ਉੱਪਰ ਸਫ਼ੈਦ ਵਾਲ ਉਸਦੀ ਰੱਖਿਆ ਅਤੇ ਸ਼ਿਕਾਰ ਫੜਨ ਵਿੱਚ ਮੱਦਦ ਕਰਦੇ ਹਨ ।

→ ਪੈਨਗੁਇਨ ਵੀ ਚੰਗੇ ਤਾਰੁ ਹੁੰਦੇ ਹਨ । ਇਸ ਲਈ ਇਹ, ਆਸਾਨੀ ਨਾਲ ਸਫ਼ੈਦ ਪਿੱਠਭੂਮੀ ਵਿੱਚ ਮਿਲ ਜਾਂਦੇ ਹਨ ।

→ ਧਰੁਵੀ ਰਿੱਛ ਅਤੇ ਪੈਨਗੁਇਨ ਦੇ ਨਾਲ-ਨਾਲ ਕਈ ਹੋਰ ਜੰਤੂ ਵੀ ਧਰੁਵੀ ਖੇਤਰਾਂ ਵਿੱਚ ਪਾਏ ਜਾਂਦੇ ਹਨ |

→ ਕਈ ਮੱਛੀਆਂ ਠੰਡੇ ਪਾਣੀ ਵਿੱਚ · ਰਹਿ ਸਕਦੀਆਂ ਹਨ ।

→ ਊਸ਼ਣ-ਕਟੀਬੰਧ ਖੇਤਰਾਂ ਦੀ ਜਲਵਾਯੂ ਆਮ ਤੌਰ ਤੇ ਗਰਮ ਹੁੰਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਖੇਤਰ ਭੂ-ਮੱਧ ਰੇਖਾ ਦੇ ਨੇੜੇਤੇੜੇ ਸਥਿਤ ਹੁੰਦੇ ਹਨ । ਇਹਨਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਤਾਪਮਾਨ 15°C ਤੋਂ 40°C ਤਕ ਬਦਲਦਾ ਰਹਿੰਦਾ ਹੈ ।

→ ਭੂ-ਮੱਧ ਰੇਖਾ ਦੇ ਨੇੜੇ-ਤੇੜੇ ਖੇਤਰਾਂ ਵਿੱਚ ਸਾਲ ਭਰ ਰਾਤ ਅਤੇ ਦਿਨ ਦੀ ਲੰਬਾਈ ਲਗਭਗ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ।

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  1. ਮੌਸਮ-ਕਿਸੇ ਸਥਾਨ ‘ਤੇ ਤਾਪਮਾਨ, ਨਮੀ, ਵਰਖਾ, ਹਵਾ ਗਤੀ ਆਦਿ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਦੀ ਹਰ ਰੋਜ਼ ਦੀ ਅਵਸਥਾ, ਉਸ ਥਾਂ ਦਾ ਮੌਸਮ ਅਖਵਾਉਂਦੀ ਹੈ ।
  2. ਜਵਲਾਯੂ-ਕਿਸੇ ਸਥਾਨ ਦੀ ਲੰਮੇ ਸਮੇਂ, ਜਿਵੇਂ 25 ਸਾਲਾਂ ਵਿੱਚ ਇਕੱਠੇ ਅੰਕੜਿਆਂ ਦੇ ਆਧਾਰ ‘ਤੇ ਬਣਿਆ ਮੌਸਮ ਦਾ ਪੈਟਰਨ ਉਸ ਥਾਂ ਦੀ ਜਲਵਾਯੂ ਅਖਵਾਉਂਦਾ ਹੈ ।
  3. ਅਨੁਕੂਲਨ-ਪੌਦੇ ਅਤੇ ਜੀਵਾਂ ਦੇ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਅਰਥਾਤ ਸੁਭਾਅ ਜਿਹੜਾ ਉਨ੍ਹਾਂ ਨੂੰ ਇੱਕ ਆਵਾਸ ਵਿੱਚ ਰਹਿਣ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਂਦਾ ਹੈ, ਨੂੰ ਅਨੁਕੂਲਣ ਕਹਿੰਦੇ ਹਨ ।
  4. ਪ੍ਰਵਾਸ-ਜੰਤੂਆਂ ਦੁਆਰਾ ਸਖ਼ਤ ਜਲਵਾਯੂ ਪਰਿਸਥਿਤੀਆਂ ਤੋਂ ਬਚਣ ਦੇ ਲਈ ਇੱਕ ਥਾਂ ‘ਤੋ ਦੁਸਰੇ ਥਾਂ ਦਾ ਸਥਾਨਾਂਤਰਨ, ਪ੍ਰਵਾਸ ਕਹਾਉਂਦਾ ਹੈ ।

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Punjab State Board PSEB 11th Class Maths Book Solutions Chapter 10 Straight Lines Miscellaneous Exercise Questions and Answers.

PSEB Solutions for Class 11 Maths Chapter 10 Straight Lines Miscellaneous Exercise

Question 1.
Find the values of k for which the line (k – 3) x – (4 – k2)y + k2 – 7k + 6 = 0 is
(a) Parallel to the x-axis
(b) Parallel to the y-axis
(c) Passing through the origin.
Answer.
The given equation of line is
(k – 3) x – (4 – k2)y + k2 – 7k + 6 = 0
(a) If the given line is parallel to the x-axis, then
Slope of the given line = Slope of the x-axis The given line can be written as
(4 – k2)y = (k – 3)x + k2 – 7k + 6 = 0
y =\(\frac{(k-3)}{\left(4-k^{2}\right)} x+\frac{k^{2}-7 k+6}{\left(4-k^{2}\right)}\), which is of the form y = mx + c.

Slope of the given line = \(\frac{(k-3)}{\left(4-k^{2}\right)}\)

Slope of the x-axis = 0
\(\frac{(k-3)}{\left(4-k^{2}\right)}\) = 0

⇒ k – 3 = 0
⇒ k = 3
Thus, if the given line is parallel to the x-axis, then the value of k is 3.

(b) If the given line is parallel to the y-axis, it is vertical. Hence, its slope will be undefined.
The slope of the given line is \(\frac{(k-3)}{\left(4-k^{2}\right)}\)

Now, \(\frac{(k-3)}{\left(4-k^{2}\right)}\) is undefined at k2 = 4

k2 = 4
⇒ k = ± 2
Thus, if the given line is parallel to the y-axis, then the value of k is ± 2.

(c) If the given line is passing through the origin, then point (0, 0) satisfies the given equation of line.
(k – 3) (0) – (4 – k2) (0) + k2 – 7k + 6 = 0
k2 – 7k + 6 = 0
k2 – 6k – k + 6 = 0
(k – 6) (k – 1) = 0 k = 1 or 6
Thus, if the given line is passing through the origin, then the value of k is either 1 or 6.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 2.
Find the value of 6 and p, if the equation x cos θ + y sin θ = p is the normal form of the line √3x + y + 2 = 0.
Answer.
The equation of the given line is √3x + y + 2 = 0.
This equation can be reduced as √3x + y + 2 = 0
⇒ On dividing both sides by \(\frac{-\sqrt{3} x-y=2}{(-\sqrt{3})^{2}+(-1)^{2}}\) = 2, we obtain

\(-\frac{\sqrt{3}}{2} x-\frac{1}{2} y=\frac{2}{2}\)

⇒ \(\left(-\frac{\sqrt{3}}{2}\right) x+\left(-\frac{1}{2}\right) y\) = 1

On comparing equation (i) to x cos θ + y sin θ = p, we obtain
cos θ = – \(\frac{\sqrt{3}}{2}\), sin θ = – \(\frac{1}{2}\) and p = 1
Since the values of sin θ and cos θ are negative, θ = π + \(\frac{\pi}{6}\) = \(\frac{7 \pi}{6}\).
Thus, the respective values of θ and p are \(\frac{7 \pi}{6}\) and 1.

Question 3.
Find the equation of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6, respectively.
Answer.
Let the intercepts form of line be \(\frac{x}{a}+\frac{y}{b}\) = 1,
then a + b = 1 and ab = – 6.
b = 1 – a and a (1 – a) = – 6
⇒ a2 – a – 6 = 0
⇒ (a – 3) (a + 2) = 0
∴ a = 3, – 2

Case I:
If a = 3, then b = – \(\frac{6}{a}\)
= – \(\frac{6}{3}\) = – 2
∴ Equation of line is \(\frac{x}{3}+\frac{y}{-2}\) = 1
⇒ 2x – 3y – 6 = 0.

Case II:
If a = – 2, then b = \(\frac{-6}{-2}\) = 3
∴ Equation of line is \(\frac{x}{-2}+\frac{y}{3}\) = 1
⇒ 3x – 2y + 6 = 0.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 4.
What are the points on the y-axis whose distance from the line \(\frac{x}{3}+\frac{y}{4}\) = 1 is 4 units.
Answer.
Let (0, b) be the point on they-axis whose distance from line \(\frac{x}{3}+\frac{y}{4}\) = 1 is 4 units.
The given line can be written as 4x + 3y – 12 = 0 ……………..(i)
On comparing equation (i) to the general equation of line Ax + By + C = 0,we obtain A = 4, B = 3 and C = – 12.
It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by
d = \(\)
Therefore, if (0, b) is the point on the y-axis whose distance from line \(\frac{x}{3}+\frac{y}{4}\) = 1 is 4 units, then:
4 = \(\frac{|4(0)+3(b)-12|}{\sqrt{4^{2}+3^{2}}}\)

4 = \(\frac{|3 b-12|}{5}\)
⇒ 20 = |3b – 12|
20 = ±(3b – 12)
20 = (3b – 12) or 20 = – (3b – 12)
3b = 20 + 12 or 3b = – 20 + 12
b = \(\frac{32}{3}\) or b = \(\frac{8}{3}\).
Thus, the required points are (o, \(\frac{32}{3}\)) and (o, \(\frac{8}{3}\)).

Question 5.
Find perpendicular distance from the origin of the line joining the points (cos θ, sin θ) and (cos Φ, sin Φ).
Answer.
Equation of the line joining the points (cos θ, sin θ) are (cos Φ, sin Φ) is given by

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 1

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 6.
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x – 7y + 5 = 0 and 3x + y = 0.
Answer.
The point of intersection (x1, y1) of the lines x – 7y + 5 = 0 and 3x + y = 0 is obtained by solving these equations.
Putting y = – 3x in x – 7y + 5 = 0
⇒ x – 7 (- 3x) + 5 = 0,
⇒ x + 21x + 5 = 0
⇒ 22x + 5 = 0
⇒ x = \(\frac{5}{22}\)
Also, y = \(\frac{15}{12}\)
⇒ (x1, y1) = \(\left(\frac{-5}{22}, \frac{15}{12}\right)\)
Let a line parallel to y-axis through the point (x1, y1) is x = x1
Here x1 = – \(\frac{5}{22}\)
∴ The equation of the line parallel to y-axis passing through the point of intersection (x1, y1) of given lines is x = – \(\frac{5}{22}\) or 22x + 5 = 0.

Question 7.
Find the equation of a line drawn perpendicular to the line \(\frac{x}{4}+\frac{y}{6}\) = 1 through the point, where It meets the y-axis.
Answer.
Given equation of line is \(\frac{x}{4}+\frac{y}{6}\) = 1

\(\frac{3 x+12}{12}\) = 1

3x + 2y = 12 ……………..(i)
If line (i) meet the Y-axis, then put x = 0 in eq. (i), we get
0 + 2y = 12
⇒ y = 6
∴ Point is (0, 6).
Slope of line (i) is, m1 = – \(\frac{3}{2}\)
Slope of line perpendicular to line (i) is,
m2 = – \(-\frac{1}{m_{1}}=\frac{-1}{(-3 / 2)}=\frac{2}{3}\)

Now, equation of line having slope and passing through (0, 6) is given by
y – y1 = m (x – x1)
⇒ y – 6 = \(\frac{2}{3}\) (x – 0)
⇒ 3y – 18 = 2x
⇒ 2x – 3y + 18 = 0
Which is required equation of line.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 8.
Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k= 0.
Answer.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 2

Let ABC be the triangle, whose sides are
AB: x – k = 0 ……………..(i)
BC: y – x = 0 ………………(ii)
and AC: x + y = 0 ………………(iii)
On solving eqs. (i) and (iii), we get Coordinates of A i.e.,(k, – k)
On solving eqs. (i) and (ii), we get Coordinates of B i.e.,(k, k)
On solving eqs. (ii) and (iii), we get Coordinates of C i.e. (0, 0)
∴ Area of ∆ABC = \(\frac{1}{2}\) {x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)
= \(\frac{1}{2}\) {k (k – 0) + k (0 + k) + 0 (- k – k)}
[∵ (x1, y1) = (k,- k), (x2, y2) = (k, k) and (x3, y3) = (0, 0)]
= \(\frac{1}{2}\) {k2 + k2} = \(\frac{1}{2}\) k2
= k2

Question 9.
Find the value of p so that the three lines 3x + y – 2 = 0 px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.
Answer.
The equations of the given lines are
3x + y – 2 = 0 …………(i)
px + 2y – 3 = 0 …………..(ii)
2x – y – 3 = 0 ……………..(iii)
On solving equations (i) and (iii), we obtain x = 1 and y = – 1.
Since these three lines may intersect at one point, the point of intersection of lines (i) and (iii) will also satisfy line (ii). p(1) + 2(- 1) – 3 = 0
p – 2 – 3 = 0
⇒ p = 5
Thus, the required value of p is 5.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 10.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1 (c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Answer.
The equations of the given lines are
y = m1x + c1 ………………(i)
y = m2x + c2 ……………..(ii)
y = m3x + c3 ………………(iii)
On subtracting equation (i) from (ii), we obtain 0 = (m2 – m1) x + (c2 – c1)
⇒ (m1 – m2)x = c2 – c1
⇒ x = \(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\)

On substituting this value of x in eq. (i), we obtain

y = \(m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1}=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1}\)

= \(\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\)

∴ \(\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)\) is the point of intersection of lines (i) and (ii).

It is given that lines (i), (ii) and (iii) are concurrent.
Hence the point of intersection of lines (i) and (ii) will also satisfy equation (iii).

\(\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3}\) \(\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}-m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}}\)

m1c2 – m2c1 – m3c1 – c3m1 + c3m2 = 0

m1 (c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Hence proved.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 11.
Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x – 2y = 3.
Answer.
Let the slope of the required line be m1.
The given line can be written as y = \(\frac{1}{2} x-\frac{3}{2}\) which is of the form y = mx + c.
Slope of the given line = m2 = \(\frac{1}{2}\)
It is given that the angle between the required line and line x – 2y = 3 is 45°
We know that if θ is the acute angle between lines l1 and l2 with slopes m1 and m2 respectively, then

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 3

Case I : m1 = 3
The equation of the line passing through (3, 2) and having a slope of 3 is:
y – 2 = 3 (x – 3)
y – 2 = 3x – 9
3x – y = 7

Case II: m1 = – \(\frac{1}{3}\).
The equation of the line passing through (3, 2) and having a slope of – \(\frac{1}{3}\) is
y – 2 = – \(\frac{1}{3}\) (x – 3)
3y – 6 = – x + 3
x + 3y = 9.
Thus, the equations of the lines are 3x – y = 7 and x + 3y = 9.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 12.
Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
Answer.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 4

The given lines are
2x – 3y = – 1 …………….(i)
4x + 7y = 3 ……………(ii)
Multiplying eq. (i) by 2
4x – 6y = – 2 ………….(iii)
Subtracting eq. (iii) from eq. (ii), we get
13y = 5
⇒ y = \(\frac{13}{5}\)
Putting the value of y in eq. (i),
2x – \(\frac{3 \times 5}{13}\) = – 1
2x = – 1 + \(\frac{15}{13}=\frac{2}{13}\)
x = \(\frac{1}{13}\)
∴ Given lines intersect at P(\(\frac{1}{13}\), \(\frac{5}{13}\))
PA and PB are the lines that make equal intercepts on the axes.
They make angles of 135° with positive direction of x-axis.
Their slopes are tan 135° and tan 45° i.e., – 1 and 1 respectively.
∴ Equation of PA is y – \(\frac{5}{13}\) = (- 1) × (x – \(\frac{1}{13}\))
or 13y – 5 = – 13x + 1
13x + 13y – 6 = 0
Similarly, equation of PB is y – \(\frac{5}{13}\) = 1 × (x – \(\frac{5}{13}\))
⇒ 13y – 5 = 13x – 1
13x – 3y + 4 = 0.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 13.
Show that the equation of the line passing through the origin and nisildng an angle θ with the line y = mx + c is
\(\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}\)
Answer.
Slope of line y = mx + c is m.
Let M be the slope of required line, then
tan θ = \(\left|\frac{M-m}{1+m M}\right|=\pm\left(\frac{M-m}{1+M m}\right)\)

Case I:
Taking ‘+‘ sign,
tan θ = \(\frac{M-m}{1+m M}\)
Then, tan θ + Mm . tan θ = M – m

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 5

Question 14.
In what ratio, the line joining (- 1, 1) and (5, 7) is divided by the line x + y = 4?
Answer.
The equation of the line joining the points (- 1, 1) and (5, 7) is given by
y – 1 = \(\frac{7-1}{5+1}\) (x + 1)
= \(\frac{6}{6}\) (x + 1)
x – y + 2 = 0 ………….(i)
The equation of the given line is x + y – 4 = 0 ……………..(ii)
The point of intersection of lines (i) and (ii) is given by x = 1 and y = 3.
Let point (1, 3) divide the line segment joining (- 1, 1) and (5, 7) in the ratio 1 : k. Accordingly, by section formula.
(1, 3) = \(\left(\frac{k(-1)+1(5)}{1+k}, \frac{k(1)+1(7)}{1+k}\right)\)

(1, 3) = \(\left(\frac{-k+5}{1+k}, \frac{k+7}{1+k}\right)\)

\(\frac{-k+5}{1+k}\) = 1

∴ – k + 5 = 1 + k
⇒ 2k = 4
⇒ k = 2.
Thus, the line joining the points (- 1, 1) and (5, 7) is divided by line x + y = 4 in the ratio 1 : 2.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 15.
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Answer.
The given lines are
2x – y = 0 ………………..(i)
4x + 7y + 5 = 0 ………………..(ii)
A(1, 2) is a point on line (i).
Let B be the point of intersection of lines (i) and (ii).
On solving equations (i) and (ii), we obtain x = – \(\frac{5}{18}\) and y = – \(\frac{5}{9}\).
∴ Coordnates of point B = (- \(\frac{5}{18}\), – \(\frac{5}{9}\))

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 6

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 7

Thus, the required distance is \(\frac{23 \sqrt{5}}{18}\) units.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 16.
Find the direction in which a straight line must be drawn through the point (- 1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
Answer.
Any line passing through P(- 1, 2) is
y – 2 = m(x + 1)
where m is its slope
y = mx + m + 2 ……………(i)
Putting the value of ‘y’ in x + y = 4, we get
x + mx +m + 2 = 4
⇒ (1 + m) x = 4 – 2 – m
⇒ x = \(\frac{2-m}{1+m}\)
From eq.(i),
y = m (\(\frac{2-m}{1+m}\)) + m + 2
Now from the diagram, it is clear that the point of intersection of the other two legs of the right triangle having AB as the hypotenuse can be either P or Q.

Case I: When ∠APB is taken,
The perpendicular sides in ∠APB are AP and PB.
Now, side PB is parallel to x-axis and at a distance of 1 unit above x-axis.
So, equation of PB is y = 1 or y – 1 = 0.
The side AP is parallel to y-axis and at a distance of 1 unit on the right of y-axis.
So, equation of AP is x = 1 or x – 1 = 0.

Case II: When ∠AQB is taken.
The perpendicular sides in ∠AQB are AQ and QB.
Now, side AQ is parallel to x-axis and at a distance of 3 units above x – axis.
So, equation of AQ is y = 3 or y – 3 = 0.
The side QB is parallel to y-axis and at a distance of 4 units on the left of y-axis.
So, equation of QB is x = – 4 or x + 4 = 0.
Hence, the equation of the legs are: x = 1, y = 1 or x = – 4, y = 3.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 18.
Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
Answer.
Let AB be the line x + 3y = 7 and the image P(3, 8) of P(3, 8) be Q(x1, y1)middle point at PQ

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 8

M \(\left(\frac{x_{1}+3}{2}, \frac{y_{1}+8}{2}\right)\) lies on AB.

∴ \(\left(\frac{x_{1}+3}{2}\right)+3\left(\frac{y_{1}+8}{2}\right)\) = 7
x1 + 3 + 3y1 + 24 = 14
⇒ x1 + 3y1 + 13 = 0 ……………….(i)
slope of AB = – \(\frac{1}{3}\),
Slope of PQ = \(\frac{y_{1}-8}{x_{1}-3}\)
AB ⊥ PQ

\(\left(-\frac{1}{3}\right)\left(\frac{y_{1}-8}{x_{1}-3}\right)\) = – 1

⇒ y1 – 8 = 3 (x1 – 3) = 3x1 – 9
⇒ y1 = 3x1 – 1 ………….(ii)
Putting the value of y1 in eq. (1), we get
x1 + 3 (3x1 – 1) + 13 = 0
10x1 + 10 = 0
x1 = – 1
Putting the value of x1 in (ii), we get
y1 = – 3 – 1 = – 4
∴ The point Q, the image of P is (- 1, 4).

Question 19.
If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.
Answer.
The equations of the given lines are
y = 3x + 1
2y = x + 3 …………..(ii)
y = mx + 4 …………….(iii)
Slope of line (i), m1 = 3.
Slope of line (ii), m2 = \(\frac{1}{2}\)
Slope of line (iii), m3 = m.
It is given that lines (i) and (ii) are equally inclined to line (iii).
This means that the angle between lines (i) and (iii) equals the angles between lines (ii) and (iii).

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 9

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 20.
If sum of the perpendicular distances of a variable point P(x, y) from the lines x + y – 5 = 0 and 3x – 2y + 7 = 0 is always 10. Show that P must move on a line.
Answer.
The equations of the given lines are
x + y – 5 = 0 …………….(i)
3x – 2y + 7 = 0 ………………(ii)
The perpendicular distances of P(x, y) from lines (j) and (ii) are respectively given by
d1 = \(\frac{|x+y-5|}{\sqrt{(1)^{2}+(1)^{2}}}\) and

d2 = \(\frac{|3 x-2 y+7|}{\sqrt{(3)^{2}+(-2)^{2}}}\)

i.e., d1 = \(\frac{|x+y-5|}{\sqrt{2}}\)

d2 = \(\frac{|3 x-2 y+7|}{\sqrt{13}} .\)

It is given that d1 + d2 = 10

∴ \(\frac{|x+y-5|}{\sqrt{2}}+\frac{|3 x-2 y+7|}{\sqrt{13}}\) = 10

⇒ √13 |x + y – 5| + √2 |3x – 2y + 7| – 10√26 = 0
⇒ √13 (x + y – 5) + √2 (3x – 2y + 7) – 10√26 = 0
[Assuming (x + y – 5) and (3x – 2y + 7) are positive]
⇒ √13x + √13y – 5√13 + 3√2x – 2√2y + 7√2 – 10√26 = 0
⇒ x (√13 + 3√2) + y (√13 – 2√2) + (7√2 – 5√13 – 10√26) = 0
which is the equation of a line.
Similarly, we can obtain the equation of line for any signs of (x + y – 5) and (3x – 2y + 7).
Thus, point P must move on a line.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 21.
Find equation of the line which is equidistant from parallel lines 9x+6y – 7 = 0 and 3x + 2y + 6 = 0.
Answer.
The given parallel lines are
9x + 6y – 7 = 0 …………….(i)
and 3x + 2y + 6 = 0 …………….(ii)
Multiplying (ii) by 3, we get
9x + 6y + 18 = 0 ………………….(iii)
Let the equations of (ii) line parallel to the lines (i) and (iii) is
9x + 6y + c = 0 …………..(iv)
Distance between (i) and (iv)
= \(\frac{|-7-c|}{\sqrt{9^{2}+6^{2}}}=\frac{|7+c|}{\sqrt{117}}\)
Distance between (iii) and (iv)
= \(\frac{|18-c|}{\sqrt{9^{2}+6^{2}}}\)
The third line being equidistant from the given two lines.
\(\frac{|7+c|}{\sqrt{117}}=\frac{|c+18|}{\sqrt{117}}\) or 2c = 11 or c = \(\frac{11}{2}\)
Putting this values of c in eq. (iv), we get
9x + 6y + \(\frac{11}{2}\) = 0
or 18x + 12y + 11 = 0
which is the equation of required line.

Question 22.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Answer.
In the figure, PA is the incident ray and AR is the reflected ray, which makes an angle 0 from the X-axis.

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 10

It is clear from the figure that AS ⊥ OX
It means AS bisect the ∠PAR.
Then, ∠PAS = ∠RAS
⇒ ∠RAX = ∠PAO = θ (let)
⇒ ∠XAP = 180° – θ
Slope of AR = tan θ
= \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{3-0}{5-k}\) …………….(i)
[where, point A is (k, 0)]
Slope of AP = tan (180 – θ)
= – tan θ
= \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-0}{1-k}\) ……………(ii)
From eqs. (i) and (ii), we get
\(\frac{3}{5-k}=-\frac{2}{1-k}\)

⇒ 3 – 3k = – 10 + 2k
⇒ 5k = 13
⇒ k = \(\frac{13}{5}\)
Hence, the coordinates of A are (\(\frac{13}{5}\). 0).

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 23.
Prove that the product of the lengths of the perpendiculars drawn from the points (\(\sqrt{a^{2}-b^{2}}\), 0) and (- \(\sqrt{a^{2}-b^{2}}\), 0) to the line \(\frac{x}{a}\) cos θ + \(\frac{y}{4}\) sin θ = 1 is b2.
Answer.
The equation of the given line is \(\frac{x}{a}\) cos θ + \(\frac{y}{4}\) sin θ = 1
or bx cos θ + ay sin θ – ab = 0 ……………….(i)
Length of the perpendicular from point (\(\sqrt{a^{2}-b^{2}}\), 0) to the line (i) is
P1 = \(\frac{\mid b \cos \theta\left(\sqrt{\left.a^{2}-b^{2}\right)}+a \sin \theta(0)-a b \mid\right.}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)

= \(\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\) ……………….(ii)
Length of the perpendicular from point (- \(\sqrt{a^{2}-b^{2}}\), 0) to line (ii) is
P1 = \(\frac{b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)

= \(\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)

On multiplying equations (ii) and (iii), we obtain

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise 11

PSEB 11th Class Maths Solutions Chapter 10 Straight Lines Miscellaneous Exercise

Question 24.
A person standfing at the junction (crossing) of two straight paths represented by the equations 2x – 3y + 4 = O and
3x + 4y – 5 = 0 wants to reach the path whose equation Is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.
Answer.
The equations of the given lines are
2x – 3y + 4 = 0
3x + 4y – 5 = 0 …………..(ii)
6x – 7y + 8 = 0 …………(iii)
The person is standing at the junction of the paths represented by lines (i) and (ii).
On solving equations (i) and (ii), we obtain x = – \(\frac{1}{17}\) and y = \(\frac{22}{17}\)
Thus, the person is standing at point (- \(\frac{1}{17}\), \(\frac{22}{17}\))
The person can reach path (iii) in the least time if he walks along the perpendicular line to (iii) from point (- \(\frac{1}{17}\), \(\frac{22}{17}\)).
Slope of the line (iii) = \(\frac{6}{7}\).
∴ Slope of the line perpendicular to line (iii) = \(-\frac{1}{\left(\frac{6}{7}\right)}=-\frac{7}{6}\)
The equation of the line passing through and having a slope (- \(\frac{1}{17}\), \(\frac{22}{17}\)) and having a slope of – \(\frac{7}{6}\) is given by
\(\left(y-\frac{22}{17}\right)=-\frac{7}{6}\left(x+\frac{1}{17}\right)\)
6 (17y – 22) = – 7 (17x + 1)
102y – 132 = – 119x – 7
119x + 102y = 125
Hence, the path that the person should follow is 119x + 102y = 125.

PSEB 7th Class Science Notes Chapter 6 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ

This PSEB 7th Class Science Notes Chapter 6 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 6 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ

→ ਪਰਿਵਰਤਨ ਜੀਵਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਹੈ । ਸਾਡੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਕਈ ਪਰਿਵਰਤਨ ਹੁੰਦੇ ਹਨ ।

→ ਪਰਿਵਰਤਨ ਦੋ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ-
(i) ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਅਤੇ
(ii) ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ।

→ ਪਰਿਵਰਤਨ ਦਾ ਹਮੇਸ਼ਾ ਕੋਈ ਕਾਰਨ ਹੁੰਦਾ ਹੈ ।

→ ਕੁੱਝ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਕੰਟਰੋਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਕੁੱਝ ਹੋਰਨਾਂ ਨੂੰ ਕੰਟਰੋਲ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

→ ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਵਿੱਚ ਕੋਈ ਨਵਾਂ ਪਦਾਰਥ ਨਹੀਂ ਬਣਦਾ ਹੈ ।

→ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਆਮ ਤੌਰ ‘ਤੇ ਪਰਤੇ ਨਹੀਂ ਜਾ ਸਕਦੇ ਹਨ ।

→ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨਾਂ ਵਿੱਚ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਨਵੇਂ ਪਦਾਰਥਾਂ ਦੇ ਗੁਣ ਬਿਲਕੁਲ ਵੱਖ ਨਵੇਂ ਹੁੰਦੇ ਹਨ ।

PSEB 7th Class Science Notes Chapter 6 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ

→ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਉਹਨਾਂ ਦੀਆਂ ਸਮਾਨਤਾਵਾਂ ਦੇ ਆਧਾਰ ‘ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

→ ਪਦਾਰਥਾਂ ਦੇ ਸਾਈਜ਼, ਮਾਪ, ਰੰਗ, ਅਵਸਥਾ ਵਰਗੇ ਗੁਣ ਉਸਦੇ ਭੌਤਿਕ ਗੁਣ ਅਖਵਾਉਂਦੇ ਹਨ ।

→ ਉਹ ਪਰਿਵਰਤਨ, ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋ ਜਾਂਦਾ ਹੈ, ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਅਖਵਾਉਂਦਾ ਹੈ ।

→ ਮੈਗਨੀਸ਼ੀਅਮ ਦੀ ਪੱਟੀ (ਰਿਬਨ) ਚਮਕੀਲੇ ਸਫ਼ੈਦ ਪ੍ਰਕਾਸ਼ ਨਾਲ ਜਲਦੀ ਹੈ ।

→ ਜਦੋਂ ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚੋਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਗੁਜ਼ਾਰੀ (ਲੰਘਾਈ) ਜਾਂਦੀ ਹੈ, ਤਾਂ ਉਹ ਦੁਧੀਆ ਹੋ ਜਾਂਦਾ ਹੈ ।

→ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨਾਂ ਵਿੱਚ ਧੁਨੀ, ਪ੍ਰਕਾਸ਼, ਤਾਪ, ਗੰਧ, ਗੈਸ, ਰੰਗ ਆਦਿ ਉਪਜਦੀਆਂ ਹਨ ।

→ ਜਲਣਾ ਇੱਕ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹੈ ਜਿਸ ਵਿੱਚ ਹਮੇਸ਼ਾ ਉਸ਼ਮਾ ਦਾ ਨਿਕਾਸ ਹੁੰਦਾ ਹੈ ।

→ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਓਜ਼ੋਨ ਦੀ ਇੱਕ ਪਰਤ ਹੈ ।

→ ਜੰਗਾਲ ਲੱਗਣ ਲਈ ਆਕਸੀਜਨ ਅਤੇ ਪਾਣੀ ਦੋਨਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ।

→ ਗੈਲਵੇਨਾਈਜੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਲੋਹੇ ਦੇ ਉੱਪਰ ਜ਼ਿੰਕ ਦੀ ਪਰਤ ਚੜਾਈ ਜਾਂਦੀ ਹੈ ।

→ ਲੋਹੇ ਨੂੰ ਪੇਂਟ ਕਰਕੇ ਜੰਗ ਲੱਗਣ ਤੋਂ ਬਚਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।

→ ਕ੍ਰਿਸਟਲੀਕਰਣ ਵਿਧੀ ਦੁਆਰਾ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਵੱਡੇ ਆਕਾਰ ਦੇ ਕ੍ਰਿਸਟਲ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ।

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  • ਭੌਤਿਕ ਪਰਿਵਰਤਨ-ਅਜਿਹੇ ਪਰਿਵਰਤਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਿਰਫ਼ ਪਦਾਰਥਾਂ ਦੇ ਭੌਤਿਕ ਗੁਣ ਹੀ ਬਦਲਣ ਅਤੇ ਕੋਈ ਨਵੇਂ ਪਦਾਰਥ ਨਾ ਪੈਦਾ ਹੋਣ, ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਅਖਵਾਉਂਦੇ ਹਨ ।
  • ਉਦਾਹਰਨ-ਪਾਣੀ ਵਿੱਚ ਨਮਕ ਦਾ ਘੋਲ ।
  • ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ-ਅਜਿਹੇ ਪਰਿਵਰਤਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਨਵੇਂ ਗੁਣਾਂ ਵਾਲੇ ਨਵੇਂ ਪਦਾਰਥ ਬਣਨ, ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਅਖਵਾਉਂਦੇ ਹਨ ।
  • ਉਦਾਹਰਨ-ਕੋਲੇ ਨੂੰ ਜਲਾਉਣਾ ।
  • ਜੰਗਾਲ (ਢੰਗ) ਲੱਗਣਾ-ਲੋਹੇ ਦੁਆਰਾ ਨਮੀ (ਸਿਲ਼) ਯੁਕਤ ਹਵਾ ਵਿੱਚ ਭੂਰੇ ਰੰਗ ਦੀ ਪਰਤ ਨਾਲ ਢੱਕੇ ਜਾਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਜੰਗਾਲ ਲੱਗਣਾ ਆਖਦੇ ਹਨ।

PSEB 7th Class Science Notes Chapter 6 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ

  • ਗੈਲਵੇਨਾਈਜੇਸ਼ਨ-ਲੋਹੇ ਨੂੰ ਜੰਗ ਤੋਂ ਬਚਾਉਣ ਲਈ ਇਸ ਉੱਪਰ ਜ਼ਿੰਕ ਦੀ ਪਰਤ ਜਮਾਂ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਗੈਲਵੇਨਾਈਜੇਸ਼ਨ ਆਖਦੇ ਹਨ । | ਕ੍ਰਿਸਟਲੀਕਰਣ-ਕਿਸੇ ਘੁਲਣਸ਼ੀਲ ਪਦਾਰਥ ਦੇ ਵੱਡੇ ਮਾਪ ਦੇ ਭ੍ਰਿਸ਼ਟਲ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕ੍ਰਿਸਟਲੀਕਰਣ ਆਖਦੇ ਹਨ ।

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

Punjab State Board PSEB 9th Class Science Book Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Science Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

PSEB 9th Class Science Guide ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ Textbook Questions and Answers

ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
0.24g ਆਕਸੀਜਨ ਅਤੇ ਬੋਰਾਂਨ ਯੁਕਤ ਯੌਗਿਕ ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਵਿਸ਼ਲੇਸ਼ਣ ਦੁਆਰਾ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਇਸ ਵਿੱਚ 0.096g ਬੋਰਾਂਨ ਅਤੇ 0.144g ਆਕਸੀਜਨ ਹੈ । ਉਸ ਯੌਗਿਕ ਦੇ ਪ੍ਰਤੀਸ਼ਤ ਬਣਤਰ ਦੀ ਭਾਰ ਰੂਪ ਵਿੱਚ ਗਣਨਾਂ ਕਰੋ ।
ਹੱਲ :
ਦਿੱਤੇ ਹੋਏ ਯੌਗਿਕ ਦਾ ਪੁੰਜ = 0.24g
ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਬੋਰਾਨ ਦਾ ਪੁੰਜ = 0.096g
ਯੌਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਆਕਸੀਜਨ ਦਾ ਪੁੰਜ = 0. 144g
ਨਮੂਨੇ ਵਿੱਚ ਬੋਰਾਨ (B) ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ (%) = \(\frac{0.096}{0.24}\) × 100
\(\frac{96}{240}\) × 100
= 40
ਨਮੂਨੇ ਵਿੱਚ ਆਕਸੀਜਨ (O) ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ (%) = \(\frac{0.144}{0.24}\) × 100
= 60

ਪ੍ਰਸ਼ਨ 2.
3.00g ਕਾਰਬਨ, 8.00g ਆਕਸੀਜਨ ਵਿੱਚ ਜਲ ਦੇ 11.00g ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਪੈਦਾ ਕਰਦੀ ਹੈ । ਜਦੋਂ 3.0g ਕਾਰਬਨ, 50.00g ਆਕਸੀਜਨ ਵਿੱਚ ਲਵਾਂਗੇ ਤਾਂ ਕਿੰਨੇ ਗ੍ਰਾਮ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਉਪਜੇਗੀ ? ਤੁਹਾਡਾ ਉੱਤਰ ਰਸਾਇਣ ਸੰਯੋਜਨ ਦੇ ਕਿਸ ਨਿਯਮ ‘ਤੇ ਆਧਾਰਿਤ ਹੋਵੇਗਾ ?
ਹੱਲ :
3.00g ਕਾਰਬਨ, 8.00g ਆਕਸੀਜਨ ਵਿੱਚ ਜਲ ਕੇ 11.00g ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਪੈਦਾ ਕਰਦੀ ਹੈ । ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਸਾਰੀ ਕਾਰਬਨ ਅਤੇ ਆਕਸੀਜਨ ਵਰਤੋਂ ਵਿੱਚ ਆਉਣ ਨਾਲ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਉਪਜਦੀ ਹੈ ।
C + O2 → CO2
ਇਸ ਲਈ ਜਦੋਂ ਤg ਕਾਰਬਨ, 50.0g ਆਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਸਿਰਫ਼ 8g ਆਕਸੀਜਨ ਸੰਜੋਗ ਕਰਕੇ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਬਣਾਉਂਦੀ ਹੈ ਜਦੋਂ ਕਿ ਬਾਕੀ ਆਕਸੀਜਨ ਦਾ ਪ੍ਰਯੋਗ ਨਹੀਂ ਹੁੰਦਾ ਹੈ । ਇਹ ਸਥਿਰ ਅਨੁਪਾਤ ਨਿਯਮ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਬਹੁ-ਪਰਮਾਣਵੀਂ ਆਇਨ ਕੀ ਹੁੰਦੇ ਹਨ ? ਉਦਾਹਰਣਾਂ ਦਿਓ ।
ਉੱਤਰ-
ਬਹੁ-ਪਰਮਾਣਵੀਂ-ਆਇਨ (Poly-atomic Ion) – ਪਰਮਾਣੂਆਂ ਦਾ ਉਹ ਸਮੂਹ ਜੋ ਆਇਨ ਦੀ ਤਰ੍ਹਾਂ ਵਿਵਹਾਰ ਕਰਦਾ ਹੈ, ਉਸਨੂੰ ਬਹੁ-ਪਰਮਾਣਵੀਂ ਆਇਨ ਕਹਿੰਦੇ ਹਨ । ਉਨ੍ਹਾਂ ਉੱਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ।
ਉਦਾਹਰਨ – \(\mathrm{SO}_{4}^{2-}\), \(\mathrm{SO}_{3}^{2-}\), \(\mathrm{NH}_{4}^{+}\), \(\mathrm{CO}_{3}^{2-}\)

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਲਿਖੋ :
(ੳ) ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ
(ਅ) ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ
(ੲ) ਕਾਪਰ ਨਾਈਟ੍ਰੇਟ
(ਸ) ਐਲੂਮੀਨੀਅਮ ਕਲੋਰਾਈਡ
(ਹ) ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ।
ਉੱਤਰ-
ਯੌਗਿਕ – ਰਸਾਇਣਿਕ ਸੂਤਰ
(ਉ) ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ – MgCl2
(ਅ) ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ – CaCl2
(ੲ) ਕਾਪਰ ਨਾਈਟ੍ਰੇਟ – Cu(NO3 )2
(ਸ) ਐਲੂਮੀਨੀਅਮ ਕਲੋਰਾਈਡ – AlCl3
(ਹ) ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ – CaCO3 .

ਪ੍ਰਸ਼ਨ 5.
ਹੇਠ ਲਿਖੇ ਯੌਗਿਕਾਂ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਨਾਂ ਦਿਓ :
(ਉ) ਬੁੱਝਿਆ ਹੋਇਆ ਚੂਨਾ
(ਅ) ਹਾਈਡ੍ਰੋਜਨ ਬਰੋਮਾਈਡ
(ੲ) ਬੇਕਿੰਗ ਪਾਊਡਰ
(ਸ) ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੇਟ ।
ਉੱਤਰ-
ਯੌਗਿਕਾਂ ਦੇ ਨਾਂ – ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਨਾਂ
(ਉ) ਬੁੱਝਿਆ ਹੋਇਆ ਚੂਨਾ – ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਆਕਸੀਜਨ
(ਅ) ਹਾਈਡ੍ਰੋਜਨ ਬਰੋਮਾਈਡ – ਹਾਈਡੋਜਨ ਅਤੇ ਬਰੋਮੀਨ
(ੲ) ਬੈਕਿੰਗ ਪਾਊਡਰ – ਸੋਡੀਅਮ, ਹਾਈਡੋਜਨ, ਕਾਰਬਨ ਅਤੇ ਆਕਸੀਜਨ
(ਸ) ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੇਟ – ਪੋਟਾਸ਼ੀਅਮ, ਸਲਫਰ ਅਤੇ ਆਕਸੀਜਨ ।

ਪ੍ਰਸ਼ਨ 6.
ਹੇਠ ਲਿਖੇ ਪਦਾਰਥਾਂ ਦੇ ਮੋਲਰ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ :
(ਉ) ਈਥਾਈਨ, C2H2
(ਅ) ਸਲਫਰ ਅਣੂ, S8
(ਬ) ਫਾਸਫੋਰਸ ਅਣੂ, P4 (ਫਾਸਫੋਰਸ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 31)
(ਸ) ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ, HCl
(ਹ) ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ, HNO3
ਹੱਲ:
PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 1
PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 2

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ ?
(ਉ) 1 ਮੋਲ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ
(ਅ) 4 ਮੋਲ ਐਲੂਮੀਨੀਅਮ ਪਰਮਾਣੂ (ਐਲੂਮੀਨੀਅਮ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 27)
(ੲ) 10 ਮੋਲ ਸੋਡੀਅਮ ਸਲਫਾਈਟ (Na2SO3)
ਹੱਲ:
(ੳ) 1 ਮੋਲ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 14u
= 14g

(ਅ) 1 ਮੋਲ ਐਲੂਮੀਨੀਅਮ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 27 u
∴ 4 ਮੋਲ ਐਲੂਮੀਨੀਅਮ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 27 × 4
= 108u
= 108g

(ੲ) 1 ਮੋਲ ਸੋਡੀਅਮ ਸਲਫਾਈਟ (Na2SO3) ਦਾ ਪੁੰਜ = 2 × Na + 1 × S + 3 × O
= 2 × 23 + 1 × 32 + 3 × 16 = 46 + 32 + 48
= 126 u
∴ 10 ਮੋਲ ਸੋਡੀਅਮ ਸਲਫਾਈਟ ਦਾ ਪੁੰਜ = 10 × 126u
= 1260u
= 1260g.

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 8.
ਮੋਲ ਵਿੱਚ ਬਦਲੋ :
(ਉ) 12g ਆਕਸੀਜਨ ਗੈਸ
(ਅ) 20g ਪਾਣੀ
(ੲ) 22g ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ।
ਹੱਲ:
ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਵਸਤੂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 3
(ਉ) 12g ਆਕਸੀਜਨ ਗੈਸ (O2) ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = \(\frac{12}{32}\)
= 0.375

(ਅ) 20g ਪਾਣੀ (HO2) ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = \(\frac{20}{18}\)
= \(\frac{10}{9}\)
= 1.11

(ੲ) 22g ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ (CO2) ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = \(\frac{22}{44}\)
= \(\frac{1}{2}\)
= 0.5

ਪ੍ਰਸ਼ਨ 9.
ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਪੰਜ ਕੀ ਹੋਵੇਗਾ ?
(ਉ) 0.2 ਮੋਲ ਆਕਸੀਜਨ ਪਰਮਾਣੂ
(ਅ) 0.5 ਮੋਲ ਜਲ ਅਣੂ ?
ਹੱਲ:
(ੳ) 1 ਮੋਲ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 16g
∴ 0.2 ਮੋਲ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 16g × 0.2
= 3.2g

(ਅ) 1 ਮੋਲ ਜਲ ਅਣੂ ਦਾ ਪੁੰਜ = 18g
0.5 ਮੋਲ ਜਲ ਅਣੂ ਦਾ ਪੁੰਜ = 18g × 0.5
= 9g

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 10.
16g ਠੋਸ ਸਲਫਰ ਵਿੱਚ ਸਲਫਰ (S8) ਦੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ ।
ਹੱਲ:
ਸਲਫਰ S8 ਦੇ 1 ਮੋਲ ਦਾ ਪੁੰਜ = 8 × 32
= 256g
ਅਤੇ S8 ਦੇ 1 ਮੋਲ ਵਿੱਚ ਉਪਸਥਿਤ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = 6.023 × 1023
:. 256g ਸਲਫਰ (S8) ਵਿੱਚ ਉਪਸਥਿਤ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = 6.023 × 1023

1g ਸਲਫਰ (S8) ਵਿੱਚ ਉਪਸਥਿਤ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = \(\frac{6.023 \times 10^{23}}{256}\)
16g ਸਲਫਰ (S8) ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = \(\frac{6.023 \times 10^{23} \times 16}{256}\)
= \(\frac{6.023 \times 10^{23}}{16}\)
= 3.76 × 1022

ਪ੍ਰਸ਼ਨ 11.
0.051g ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ (Al2O3 ਵਿੱਚ ਐਲੂਮੀਨੀਅਮ ਆਇਨ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾਂ ਕਰੋ | (ਸੰਕੇਤ : ਕਿਸੇ ਆਇਨ ਦਾ ਪੁੰਜ ਓਨਾ ਹੀ ਹੁੰਦਾ ਹੈ ਜਿੰਨਾ ਕਿ ਉਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ । ਐਲੂਮੀਨੀਅਮ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 27u ਹੈ )
ਹੱਲ:
ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ (Al2O3) ਦਾ 1 ਮੋਲ = 2 × Al + 3 × O
= 2 × 27 + 3 × 16
= 54 + 48
= 102g
102g ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ ਵਿੱਚ ਮੌਜੂਦ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = 6.023 × 1023
1g ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ ਵਿੱਚ ਮੌਜੂਦ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = \(\frac{6.023 \times 10^{23}}{102}\)
∴ 0.051g ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ ਵਿੱਚ ਮੌਜੂਦ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ = \(\frac{6.023 \times 10^{23} \times 0.051}{102}\)
= 3.01 × 1020
ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ (Al2O3) ਜਿੰਨੇ ਆਇਨ ਦਿੰਦਾ ਹੈ = 2Al+++
ਇਸ ਲਈ 0.051gm ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ ਜਿੰਨੇ ਆਇਨ ਦਿੰਦਾ ਹੈ = 2 × 3.01 × 1020
= 6.02 × 1020
PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 4
PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 5

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 6
PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ 7

Science Guide for Class 9 PSEB ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ InText Questions and Answers

ਪਾਠ-ਪੁਸਤਕ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ

ਪ੍ਰਸ਼ਨ 1.
ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ 5.3 g ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ 6.0 g ਈਥੋਨੋਇਕ ਐਸਿਡ ਕਿਰਿਆ ਕਰਦੇ ਹਨ । 2.2 g ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ, 8.2 g ਸੋਡੀਅਮ ਈਥੋਨੋਏਟ ਅਤੇ 0.9 g ਪਾਣੀ ਉਪਜਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ । ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਵਿਖਾਓ ਕਿ ਇਹ ਪਰੀਖਣ ਪੁੰਜ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦੇ ਅਨੁਰੂਪ ਹੈ । ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ + ਈਥੋਨੋਇਕ ਐਸਿਡ → ਸੋਡੀਅਮ ਈਥੋਨੋਏਟ + ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ + ਪਾਣੀ
ਹੱਲ :
ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਪੁੰਜ = 5.3g
ਈਥੋਨੋਇਕ ਐਸਿਡ ਦਾ ਪੁੰਜ = 6.0g
ਅਭਿਕਾਰਕਾਂ ਦਾ ਕੁੱਲ ਪੰਜ = ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਜ + ਈਥੋਨੋਇਕ ਐਸਿਡ ਦਾ ਪੁੰਜ
= 5.3g + 6.0g
= 11.3g ………………… (i)
ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਦਾ ਪੁੰਜ = 2.2 g
ਸੋਡੀਅਮ ਈਥੋਨੋਏਟ ਦਾ ਪੁੰਜ = 8.2g
ਪਾਣੀ ਦਾ ਪੁੰਜ = 0.9g
∴ ਉਪਜਾਂ ਦਾ ਕੁੱਲ ਪੰਜ = ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਦਾ ਪੁੰਜ + ਸੋਡੀਅਮ ਈਥੋਨੋਏਟ ਦਾ ਪੁੰਜ + ਪਾਣੀ ਦਾ ਪੁੰਜ
= 2.2g + 8.2g + 0.9g
= 11.3g (ii)
ਸਮੀਕਰਨ (i) ਅਤੇ (ii) ਤੋਂ
ਅਭਿਕਾਰਕਾਂ ਦਾ ਕੁੱਲ ਪੰਜ = ਉਪਜਾਂ ਦਾ ਕੁੱਲ ਪੂੰਜ
11.3g = 11.3g
ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਪੁੰਜ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦੇ ਅਨੁਰੂਪ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਪੁੰਜ ਦੇ ਅਨੁਸਾਰ 1:8 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਸੰਜੋਗ ਕਰਕੇ ਪਾਣੀ ਨਿਰਮਿਤ ਕਰਦੇ ਹਨ । 3g ਹਾਈਡੋਜਨ ਗੈਸ ਦੇ ਨਾਲ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਸੰਜੋਗ ਕਰਨ ਲਈ ਕਿੰਨੀ ਆਕਸੀਜਨ ਗੈਸ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?
ਉੱਤਰ-
ਕਿਉਂਕਿ ਹਾਈਡੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਪੁੰਜ ਅਨੁਸਾਰ 1: 8 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਕਿਰਿਆ ਕਰਦੇ ਹਨ ।
∴ xg ਹਾਈਡੋਜਨ ਨੂੰ ਪਾਣੀ ਬਣਨ ਲਈ ਜਿੰਨੀ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਦੀ ਲੋੜ ਹੈ = 8 × x g
∴ 3g ਹਾਈਡੋਜਨ ਨੂੰ ਜਿੰਨੀ ਮਾਤਰਾ ਆਕਸੀਜਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ = 8 × 3 g = 24g

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 3.
ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦਾ ਕਿਹੜਾ ਨੁਕਤਾ ਪੁੰਜ ਦੇ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਦਾ ਨਤੀਜਾ ਹੈ ?
ਉੱਤਰ-
“ਪਰਮਾਣੂ ਅਵਿਭਾਜ ਸੂਖ਼ਤਮ ਕਣ ਹੁੰਦੇ ਹਨ ਜੋ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਨਾ ਤਾਂ ਸਿਰਜਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਾ ਹੀ ਉਨ੍ਹਾਂ ਦਾ ਵਿਨਾਸ਼ ਹੁੰਦਾ ਹੈ ।”
ਡਾਲਟਨ ਸਿਧਾਂਤ ਦਾ ਇਹ ਨੁਕਤਾ ਪੁੰਜ ਦੇ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦਾ ਨਤੀਜਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 4.
ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦਾ ਕਿਹੜਾ ਨੁਕਤਾ ਨਿਸਚਿਤ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ ?
ਉੱਤਰ-
ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦਾ ਨੁਕਤਾ ਜਿਹੜਾ ਨਿਸਚਿਤ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ-
“ਕਿਸੇ ਵੀ ਯੌਗਿਕ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸਾਪੇਖ ਸੰਖਿਆ ਅਤੇ ਕਿਸਮਾਂ ਨਿਸਚਿਤ ਹੁੰਦੀਆਂ ਹਨ ।”

ਪ੍ਰਸ਼ਨ 5.
ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ।
ਉੱਤਰ-
ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ (Atomic Mass Unit)-ਇਹ ਕਾਰਬਨ-12 ਸਮਸਥਾਨਿਕ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਪੁੰਜ ਦਾ \(\frac{1}{12}\)ਵਾਂ ਭਾਗ ਹੈ ।
1 a.m.u. = 1.66 × 10-27 kg

ਪ੍ਰਸ਼ਨ 6.
ਇੱਕ ਪਰਮਾਣੂ ਨੂੰ ਅੱਖਾਂ ਨਾਲ ਵੇਖਣਾ ਕਿਉਂ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ ?
ਉੱਤਰ-
ਪਰਮਾਣੂ ਬਹੁਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ । ਇਸ ਲਈ ਅੱਖਾਂ ਨਾਲ ਉਹਨਾਂ ਨੂੰ ਵੇਖਣਾ ਸੰਭਵ ਨਹੀਂ ਹੈ । ਬਹੁਤ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਤਾਂ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਵਿਚਰ ਸਕਦੇ ਹਨ । ਇਕ ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ 10-10 m ਹੈ ਜਿਸ ਨੂੰ ਆਮ ਤੌਰ ‘ਤੇ ਨੈਨੋਮੀਟਰ ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ । (1 nm = 10-9 m)

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸੂਤਰ ਲਿਖੋ :
(i) ਸੋਡੀਅਮ ਆਕਸਾਈਡ
(ii) ਐਲੂਮੀਨੀਅਮ ਕਲੋਰਾਈਡ
(iii) ਸੋਡੀਅਮ ਸਲਫਾਈਡ
(iv) ਮੈਗਨੀਸ਼ੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ।
ਉੱਤਰ-
जेंगिव – ਸੂਤਰ
(i) ਸੋਡੀਅਮ ਆਕਸਾਈਡ – Na2O
(ii) ਐਲੂਮੀਨੀਅਮ ਕਲੋਰਾਈਡ – AlCl3
(iii) ਸੋਡੀਅਮ ਸਲਫਾਈਡ – Na2S
(iv) ਮੈਗਨੀਸ਼ੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ – Mg (OH)2

ਪ੍ਰਸ਼ਨ 8.
ਹੇਠ ਲਿਖੇ ਸੂਤਰਾਂ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਯੌਗਿਕਾਂ ਦੇ ਨਾਂ ਲਿਖੋ :
(i) Al2 (SO4)3
(ii) CaCl2
(iii) K2 SO4
(iv) KNO3
(v) CaCO3
ਉੱਤਰ-
ਸੂਤਰ – ਯੌਗਿਕ ਦਾ ਨਾਂ
(i) Al2 (SO4)3 – ਐਲੂਮੀਨੀਅਮ ਸਲਫੇਟ
(ii) CaCl2 – ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ
(iii) K2 SO4 – ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੇਟ
(iv) KNO3 – ਪੋਟਾਸ਼ੀਅਮ ਨਾਈਟਰੇਟ
(v) CaCO3 – ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ।

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 9.
ਰਸਾਇਣਿਕ ਸੂਤਰ ਦਾ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਰਸਾਇਣਿਕ ਸੂਤਰ (Chemical Formula)-ਕਿਸੇ ਪਦਾਰਥ (ਤੱਤ ਜਾਂ ਯੌਗਿਕ) ਦੇ ਅਣੂ ਨੂੰ ਸੰਕੇਤ ਜਾਂ ਚਿੰਨ੍ਹਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨਾ ਰਸਾਇਣਿਕ ਸੂਤਰ ਅਖਵਾਉਂਦਾ ਹੈ । ਉਦਾਹਰਨ ਵਜੋਂ ਪਾਣੀ ਦੇ ਅਣੂ ਦਾ ਸੂਤਰ H2 0 ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿੰਨੇ ਪਰਮਾਣੂ ਹਨ :
(i) H2S ਅਣੂ ਅਤੇ
(ii) \(\mathrm{PO}_{4}^{3-}\) ਆਇਨ ।
ਉੱਤਰ-
(i) H2 S ਦੇ ਇੱਕ ਅਣੂ ਵਿੱਚ ਕੁੱਲ 3 ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਦੋ ਪਰਮਾਣੂ ਹਾਈਡੋਜਨ ਦੇ ਅਤੇ ਇੱਕ ਮਾਣੂ ਸਲਫਰ ਦਾ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ ।
(ii) \(\mathrm{PO}_{4}^{3-}\) ਆਇਨ ਵਿੱਚ ਕੁੱਲ 5 ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ 1 ਪਰਮਾਣੂ ਫਾਸਫੋਰਸ ਦਾ ਅਤੇ 4 ਪਰਮਾਣੂ ਮੱਕਸੀਜਨ ਦੇ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 11.
ਹੇਠ ਦਿੱਤੇ ਯੌਗਿਕਾਂ ਦੇ ਅਣਵੀਂ ਪੰਜਾਂ ਦੀ ਗਣਨਾ ਕਰੋ :-
H2, O2, Cl2, CO2, CH4, C2H6, C4H2, NH3, ਅਤੇ CH3 OH
ਹੱਲ : H2 ਦਾ ਅਣਵੀਂ ਪੰ ਜ = 2 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੁ ਪੁੰਜ
= 2 × 1
= 2 u

O2 ਦਾ ਅਣਵੀਂ ਪੰਜ = 2 × ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 2 × 16
= 32 u
Cl2 ਦਾ ਅਣਵੀਂ ਪੰਜ = 2 × ਕਲੋਰੀਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 2 × 35.5
= 71 u

CO2 ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 1 ਪਰਮਾਣੂ ਕਾਰਬਨ + 2 ਪਰਮਾਣੂ ਆਕਸੀਜਨ
= 1 × ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 2 × ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 1 × 2 + 2 × 16
= 12 + 32
= 44 u

C2H6 ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 2 ਪਰਮਾਣੂ ਕਾਰਬਨ + 6 ਪਰਮਾਣੂ ਹਾਈਡ੍ਰੋਜਨ
= 2 × ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 6 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੁ ਪੁੰਜ
= 2 × 12 + 6 × 1
= 24 + 6
= 30 u

C2H4 ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 2 ਪਰਮਾਣੂ ਕਾਰਬਨ + 2 ਪਰਮਾਣੂ ਹਾਈਡ੍ਰੋਜਨ
= 2 × ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 4 ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 2 × 12 + 4 × 1
= 24 + 4
= 28 u

NH3 ਦਾ ਅਣਵੀਂ ਜ = 1 ਪਰਮਾਣੂ ਨਾਈਟ੍ਰੋਜਨ + 3 ਪਰਮਾਣੂ ਹਾਈਡ੍ਰੋਜਨ
= 1 × ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 3 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 1 × 14 + 3 × 1
= 14 + 3
= 17 u

CH3OH ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 1 × ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ + 3 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ + 1 × ਆਕਸੀਜਨ
ਦਾ ਪਰਮਾਣੂ + 1 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ
= 1 × ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 3 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 1 × ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 1 × ਹਾਈਡੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 1 × 12 + 3 × 1 + 1 × 16 + 1 × 1
= 12 + 3 + 16 + 1
= 32 u.

ਪ੍ਰਸ਼ਨ 12.
ਹੇਠਾਂ ਦਿੱਤੇ ਯੌਗਿਕਾਂ ਦੇ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ :-
ZnO, Na2O ਅਤੇ K2CO3.
ਦਿੱਤਾ ਗਿਆ ਹੈ :
Zn ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 65u
Na ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 23u
K ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 39u
C ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 12u
O ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 16u ਹੈ ।
ਹੱਲ :
ZnO ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੰਜ = Zn ਦਾ । ਪਰਮਾਣੂ +O ਦਾ । ਪਰਮਾਣੂ
= Zn ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + O ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 65 + 16
= 81u

Na2O ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ = Na ਦੇ 2 ਪਰਮਾਣੂ + O ਦਾ 1 ਪਰਮਾਣੂ
= 2 × Na ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 1 × O ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 2 × 23 + 1 × 16
= 46 + 16
= 62u

K2CO3 ੜ ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ = K ਦੇ 2 ਪਰਮਾਣੂ + C ਦਾ 1 ਪਰਮਾਣੂ + O ਦੇ 3 ਪਰਮਾਣੂ
= 2 × K ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 1 xcਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + 3 × O ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ
= 2 × 39 + 1 × 12 + 3 × 16
= 78 + 12 + 48
= 138u.

PSEB 9th Class Science Solutions Chapter 3 ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਪ੍ਰਸ਼ਨ 13.
ਜੇ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕ ਮੋਲ ਦਾ ਪੁੰਜ 12g ਹੈ ਤਾਂ ਕਾਰਬਨ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ ?
ਹੱਲ :
1 ਮੋਲ ਕਾਰਬਨ ਪਰਮਾਣੁ = 6.023 × 1023 ਪਰਮਾਣੂ
6.023 × 1023 ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦਾ ਪੁੰਜ = 12g
∴ 1 ਕਾਰਬਨ ਪਰਮਾਣੁ ਦਾ ਪੰਜ = \(\frac{12}{6.023 \times 10^{23}}\) g
= 1.99 × 10-23 g

ਪ੍ਰਸ਼ਨ 14.
ਕਿਸ ਵਿੱਚ ਵਧੇਰੇ ਪਰਮਾਣੂ ਹੋਣਗੇ : 100g ਸੋਡੀਅਮ ਜਾਂ 100g ਲੋਹਾ ? (Na ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 23u, Fe ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 56u
ਹੱਲ : 23 ਗ੍ਰਾਮ ਪਰਮਾਣੂ ਇਕਾਈ ਜਾਂ 23g ਸੋਡੀਅਮ (Na) = 1 ਮੋਲ ਸੋਡੀਅਮ
= 6.03 × 1023 ਪਰਮਾਣੁ ਸੋਡੀਅਮ
∴ 100g ਸੋਡੀਅਮ (Na) = \(\frac{6.03 \times 10^{23}}{23}\) × 100
= 2.617 × 1024 ਪਰਮਾਣੂ ……………….. (1)
ਹੁਣ, 56 ਗ੍ਰਾਮ ਪਰਮਾਣੂ ਲੋਹਾ (Fe) ਜਾਂ 56g ਲੋਹਾ = 1 ਮੋਲ ਲੋਹਾ (Fe)
= 6.03 × 1023 ਪਰਮਾਣੂ ਲੋਹਾ
∴ 100g ਲੋਹਾ = \(\) × 100
= 1.075 × 1024 ਪਰਮਾਣੂ ………………. (2)
ਸਮੀਕਰਨ (1) ਅਤੇ (2) ਦੀ ਤੁਲਨਾ ਕਰਨ ਤੇ,
100g ਸੋਡੀਅਮ ਵਿੱਚ 100g ਲੋਹੇ ਨਾਲੋਂ ਵਧੇਰੇ ਪਰਮਾਣੂ ਹਨ ।

PSEB 7th Class Science Notes Chapter 5 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ

This PSEB 7th Class Science Notes Chapter 5 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 5 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ

→ ਅਸੀਂ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਵਿਭਿੰਨ ਸੁਆਦ ਵਾਲੇ ਕਈ ਪਦਾਰਥ ਖਾਂਦੇ ਹਾਂ |

→ ਕੁੱਝ ਪਦਾਰਥਾਂ ਦਾ ਸੁਆਦ ਕੌੜਾ, ਖੱਟਾ, ਮਿੱਠਾ ਅਤੇ ਨਮਕੀਨ ਹੁੰਦਾ ਹੈ ।

→ ਪਦਾਰਥਾਂ ਦਾ ਖੱਟਾ ਸੁਆਦ ਇਹਨਾਂ ਵਿੱਚ ਮੌਜੂਦ ਤੇਜ਼ਾਬ (ਐਸਿਡ) ਕਾਰਨ ਹੁੰਦਾ ਹੈ ।

→ ਐਸਿਡ ਸ਼ਬਦ ਦੀ ਉੱਤਪਤੀ ਲੈਟਿਨ ਸ਼ਬਦ ਐਸਿਯਰ (Acere) ਤੋਂ ਹੋਈ ਜਿਸਦਾ ਅਰਥ ਹੈ ਖੱਟਾ ।

→ ਅਜਿਹੇ ਪਦਾਰਥ ਜਿਨ੍ਹਾਂ ਦਾ ਸੁਆਦ ਕੌੜਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਹੜੇ ਛੂਹਣ ਵਿੱਚ ਸਾਬਣ ਵਰਗੇ ਚੀਕਣੇ ਜਾਪਦੇ ਹਨ, ਖਾਰ ਅਖਵਾਉਂਦੇ ਹਨ ।

PSEB 7th Class Science Notes Chapter 5 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ

→ ਸੁਚਕ ਉਹ ਪਦਾਰਥ ਹਨ ਜਿਹੜੇ ਤੇਜ਼ਾਬੀ ਅਤੇ ਖਾਰੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਪਦਾਰਥਾਂ (ਘੋਲਾਂ ਨਾਲ ਵੱਖ-ਵੱਖ ਰੰਗ ਦਿੰਦੇ ਹਨ । ਇਹਨਾਂ ਨੂੰ ਪਦਾਰਥਾਂ ਦੀ ਤੇਜ਼ਾਬੀ ਜਾਂ ਖਾਰੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਪਰੀਖਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ।

→ ਹਲਦੀ, ਲਿਟਮਸ ਅਤੇ ਗੁੜ੍ਹਲ ਚਾਇਨਾ ਰੋਜ਼ ਦੀਆਂ ਪੰਖੜੀਆਂ ਕੁਦਰਤੀ ਸੂਚਕ ਹਨ ।

→ ਉਦਾਸੀਨ ਘੋਲ, ਲਾਲ ਜਾਂ ਨੀਲੇ ਲਿਟਮਸ ਦੇ ਰੰਗ ਨੂੰ ਨਹੀਂ ਬਦਲਦੇ ਕਿਉਂਕਿ ਇਹ ਨਾ ਤਾਂ ਤੇਜ਼ਾਬੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਾ ਹੀ ਖਾਰੀ ਹੁੰਦੇ ਹਨ ।

→ ਫੀਨੌਲਫਥੈਲੀਨ ਇੱਕ ਸੰਸ਼ਲਿਸ਼ਟ ਸੂਚਕ ਹੈ ਜਿਸ ਨੂੰ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

→ ਕੁੱਝ ਤੇਜ਼ਾਬ (ਐਸਿਡ) ਪ੍ਰਬਲ (ਤੇਜ਼) ਅਤੇ ਕੁੱਝ ਦੁਸਰੇ ਦੁਰਬਲ ਕਮਜ਼ੋਰ ਹੁੰਦੇ ਹਨ ।

→ ਕਿਸੇ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਦੀ ਆਪਸ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ, ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਅਖਵਾਉਂਦੀ ਹੈ ।

→ ਅਪਚਨ (ਬਦਹਜ਼ਮੀ ਨੂੰ ਦੂਰ ਕਰਨ ਲਈ ਪ੍ਰਤੀ ਅਮਲ ਐਂਟਐਸਿਡ) ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

→ ਕੀੜੇ ਦੇ ਡੰਗ ਦੇ ਪ੍ਰਭਾਵ ਦੇ ਉਪਚਾਰ ਲਈ ਖਾਣ ਵਾਲੇ ਸੋਡੇ (ਬੇਕਿੰਗ ਸੋਡਾ) ਨਾਲ ਰਗੜ ਕੇ ਜਾਂ ਕੈਲਾਮਾਈਨ (ਜਿਕ ਕਾਰਬੋਨੇਟ) ਦਾ ਘੋਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ।

→ ਮਿੱਟੀ ਦੇ ਤੇਜ਼ਾਬੀਪਨ ਦਾ ਚੂਨੇ ਜਾਂ ਬੁਝੇ ਹੋਏ ਚੂਨੇ (ਖਾਰ) ਨਾਲ ਉਪਚਾਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

→ ਇਹ ਉਦਾਸੀਨੀਕਰਨ ਦੀ ਹੀ ਉਦਾਹਰਨ ਹੈ । ਮਿੱਟੀ ਦੇ ਖਾਰੇਪਨ ਨੂੰ ਜੈਵ ਪਦਾਰਥ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸਮਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

→ ਕਾਰਖ਼ਾਨਿਆਂ ਵਿੱਚੋਂ ਨਿਕਲੇ ਅਪਸ਼ਿਸ਼ਟ ਉਤਪਾਦ (ਵਿਅਰਥ ਉਤਪਾਦ) ਨੂੰ ਖਾਰੇ ਪਦਾਰਥਾਂ ਨਾਲ ਉਦਾਸੀਨ ਕਰਨ ਮਗਰੋਂ ਹੀ ਪਾਣੀ ਵਿੱਚ ਛੱਡਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 7th Class Science Notes Chapter 5 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  1. ਤੇਜ਼ਾਬ (ਐਸਿਡ)-ਅਜਿਹੇ ਪਦਾਰਥ, ਜਿਨ੍ਹਾਂ ਦਾ ਸੁਆਦ ਖੱਟਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਹੜੇ ਨੀਲੇ ਲਿਟਮਸ ਦੇ ਘੋਲ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਉਸ ਦੇ ਰੰਗ ਨੂੰ ਲਾਲ ਕਰ ਦਿੰਦੇ ਹਨ, ਤੇਜ਼ਾਬ ਅਖਵਾਉਂਦੇ ਹਨ ।
  2. ਖਾਰ (ਐਲਕਲੀ)-ਅਜਿਹੇ ਪਦਾਰਥ ਜਿਨ੍ਹਾਂ ਦਾ ਸੁਆਦ ਕੌੜਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਹੜੇ ਲਾਲ ਲਿਮਸ ਦੇ ਘੋਲ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਉਸਦਾ ਰੰਗ ਨੀਲਾ ਕਰ ਦਿੰਦੇ ਹਨ, ਖਾਰ ਅਖਵਾਉਂਦੇ ਹਨ ।
  3. ਉਦਾਸੀਨੀਕਰਨ-ਕਿਸੇ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਦੀ ਆਪਸ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਅਖਵਾਉਂਦੀ ਹੈ ।
  4. ਉਦਾਸੀਨ ਘੋਲ-ਅਜਿਹਾ ਘੋਲ ਜਿਹੜਾ ਨਾ ਤੇਜ਼ਾਬੀ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਖਾਰੀ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੈ, ਉਸ ਨੂੰ ਉਦਾਸੀਨ ਘੋਲ ਆਖਦੇ ਹਨ ਜਾਂ ਫਿਰ ਜਿਹੜਾ ਘੋਲ ਸੂਚਕ ਦੇ ਰੰਗ ਨੂੰ ਨਹੀਂ ਬਦਲਦਾ ਹੈ, ਉਦਾਸੀਨ ਘੋਲ ਅਖਵਾਉਂਦਾ ਹੈ ।
  5. ਸੂਚਕ-ਅਜਿਹੇ ਪਦਾਰਥਾਂ ਦੇ ਘੋਲ ਜਾਂ ਅਜਿਹੇ ਪਦਾਰਥ ਜੋ ਵਿਭਿੰਨ ਤੇਜ਼ਾਬਾਂ, ਖਾਰਾਂ ਅਤੇ ਉਦਾਸੀਨ ਪਦਾਰਥਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਵੱਖ-ਵੱਖ ਰੰਗ ਦਰਸਾਉਂਦੇ ਹਨ, ਨੂੰ ਸੂਚਕ ਆਖਦੇ ਹਨ ।

PSEB 7th Class Science Notes Chapter 4 ਤਾਪ

This PSEB 7th Class Science Notes Chapter 4 ਤਾਪ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 4 ਤਾਪ

→ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਛੂਹ ਕੇ ਉਸ ਦੇ ਗਰਮ ਜਾਂ ਠੰਢਾ ਹੋਣ ਦਾ ਪਤਾ ਕਰਨ ਦਾ ਤਰੀਕਾ ਭਰੋਸੇਯੋਗ ਨਹੀਂ ਹੈ |

→ ਤਾਪਮਾਨ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਰਮੀ ਜਾਂ ਠੰਢਕ ਦਾ ਦਰਜਾ ਹੈ ।

→ ਕਿਸੇ ਵਸਤੂ ਦੇ ਗਰਮ ਜਾਂ ਠੰਢਾ ਹੋਣ ਦਾ ਦਰਜਾ ਅਰਥਾਤ ਤਾਪਮਾਨ ਇਕ ਯੰਤਰ ਥਰਮਾਮੀਟਰ ਨਾਲ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ।

→ ਮਨੁੱਖੀ ਸਰੀਰ ਜਾਂ ਸਜੀਵ ਦਾ ਤਾਪਮਾਨ ਪਤਾ ਕਰਨ ਲਈ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ (ਜਾਂ ਕਲੀਨੀਕਲ ਥਰਮਾਮੀਟਰ) ਨਾਲ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ।

→ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਤੇ ਇੱਕ ਸਕੇਲ ਵੇਖਿਆ ਜਾਂਦਾ ਹੈ । ਇਹ ਸਕੇਲ ਜਾਂ ਤਾਂ ਸੈਲਸੀਅਸ [C] ਜਾਂ ਫਾਰਨਹੀਟ [F] ਜਾਂ ਫਿਰ ਦੋਵਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ।

→ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਵਿੱਚ ਇੱਕ ਕੱਚ ਦੀ ਤੰਗ, ਸਮਰੂਪ ਨਲੀ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੇ ਹੇਠਲੇ ਸਿਰੇ ਤੇ ਇੱਕ ਬਲਬ ਹੁੰਦਾ ਹੈ । ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਦੇ ਬਲਬ ਉੱਪਰ ਇੱਕ ਟੇਢਾਪਣ ਜਾਂ ਗੰਢ (kink) ਹੁੰਦਾ ਹੈ ਜੋ ਪਾਰੇ ਦੇ ਲੇਵਲ ਨੂੰ ਭਾਰ ਵਜੋਂ ਹੇਠਾਂ ਨਹੀਂ ਡਿੱਗਣ ਦਿੰਦਾ ।

PSEB 7th Class Science Notes Chapter 4 ਤਾਪ

→ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਵਿੱਚ ਐਂਟੀਸੈਪਟਿਕ ਦੇ ਘੋਲ ਨਾਲ ਸਾਫ਼ ਕਰ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ।

→ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਦੀ ਸਕੇਲ ਦਾ ਰੇਂਜ 35°C ਤੋਂ 42°C ਹੁੰਦਾ ਹੈ ।

→ ਡਾਕਟਰੀ ਥਰਮਾਮੀਟਰ ਨੂੰ ਵਰਤਣ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਸੁਨਿਸ਼ਚਿਤ ਕਰ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਪਾਰੇ ਦਾ ਲੇਵਲ 35°C ਤੋਂ ਘੱਟ ਹੈ, ਜੇਕਰ ਅਜਿਹਾ ਨਹੀਂ ਹੈ ਤਾਂ ਥਰਮਾਮੀਟਰ ਨੂੰ ਮਜ਼ਬੂਤੀ ਨਾਲ ਫੜ ਕੇ ਝਟਕਾ ਮਾਰ ਕੇ ਲੇਵਲ ਨੂੰ 35°C ਤੋਂ ਹੇਠਾਂ ਲੈ ਆਉਣਾ ਚਾਹੀਦਾ ਹੈ ।

→ ਨਿਰੋਗ ਮਨੁੱਖ ਦਾ ਆਮ ਤਾਪਮਾਨ 37°C ਜਾਂ 98.4°F ਹੈ ।

→ ਵਸਤੂਆਂ ਦਾ ਤਾਪਮਾਨ ਮਾਪਣ ਲਈ ਹੋਰ ਥਰਮਾਮੀਟਰ ਹੁੰਦੇ ਹਨ । ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ ਲੈਬ ਥਰਮਾਮੀਟਰ । ਲੈਬ ਥਰਮਾਮੀਟਰ ਦੀ ਰੇਂਜ -10°C ਤੋਂ 110°C ਹੁੰਦੀ ਹੈ ।

→ ਲੈਬ ਥਰਮਾਮੀਟਰ ਨਾਲ ਵਸਤੂ ਦਾ ਤਾਪਮਾਨ ਉਸ ਵੇਲੇ ਮਾਪਣਾ ਚਾਹੀਦਾ ਹੈ ਜਦੋਂ ਥਰਮਾਮੀਟਰ ਦੇ ਪਾਰੇ ਦਾ ਲੇਵਲ ਸਥਿਰ ਹੋ ਜਾਏ ।

→ ਉਹ ਵਿਧੀ ਜਿਸ ਵਿੱਚ ਤਾਪ ਦਾ ਸੰਚਾਰ ਕਿਸੇ ਵਸਤੂ ਦੇ ਗਰਮ ਸਿਰੇ ਤੋਂ ਠੰਢੇ ਸਿਰੇ ਵੱਲ ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਰਾਹੀਂ ਹੁੰਦਾ ਹੈ, ਉਸ ਨੂੰ ਚਾਲਣ ਕਹਿੰਦੇ ਹਨ । ਠੋਸ ਪਦਾਰਥ ਚਾਲਣ ਵਿਧੀ ਦੁਆਰਾ ਗਰਮ ਹੁੰਦੇ ਹਨ ।

→ ਉਹ ਪਦਾਰਥ ਜਿਹੜੇ ਤਾਪ ਦਾ ਵਧੀਆ ਸੰਚਾਰ ਕਰਦੇ ਹਨ, ਚਾਲਕ ਜਾਂ ਸੂਚਾਲਕ ਅਖਵਾਉਂਦੇ ਹਨ ।

→ ਲੋਹਾ, ਚਾਂਦੀ, ਤਾਂਬਾ, ਐਲੂਮੀਨੀਅਮ ਨਾਲ ਬਣੀਆਂ ਵਸਤੂਆਂ ਤਾਪ ਦੀਆਂ ਚਾਲੱਕ ਹੁੰਦੀਆਂ ਹਨ ।

→ ਉਹ ਪਦਾਰਥ ਜਿਹੜੇ ਤਾਪ ਦਾ ਵਧੀਆ ਸੰਚਾਰ ਨਹੀਂ ਕਰਦੇ ਉਹਨਾਂ ਨੂੰ ਰੋਧਕ ਜਾਂ ਕੁਚਾਲਕ ਆਖਦੇ ਹਨ, ਜਿਵੇਂ ਲੱਕੜੀ, ਪਲਾਸਟਿਕ ਅਤੇ ਰਬੜ । ਹੁ ਹਵਾ ਤਾਪ ਦਾ ਵਧੀਆ ਚਾਲਕ ਨਹੀਂ ਹੈ ।

→ ਤਾਪ ਸੰਚਾਰ ਦੀ ਉਹ ਵਿਧੀ ਜਿਸ ਵਿੱਚ ਤਾਪ ਦਾ ਸੰਚਾਰ ਪਦਾਰਥ ਦੇ ਗਰਮ ਅਣੂਆਂ ਦੀ ਗਤੀ ਕਾਰਨ ਹੁੰਦਾ ਹੈ, ਸੰਵਹਿਣ ਆਖਦੇ ਹਨ ।

→ ਤਰਲ ਅਤੇ ਗੈਸਾਂ ਵਿੱਚ ਤਾਪ ਦਾ ਸੰਚਾਰ ਸੰਵਹਿਣ ਵਿਧੀ ਰਾਹੀਂ ਹੁੰਦਾ ਹੈ ।

→ ਤਟਵਰਤੀ ਇਲਾਕਿਆਂ ਵਿੱਚ ਦਿਨ ਦੇ ਸਮੇਂ ਸਮੁੰਦਰ ਤੋਂ ਤੱਟ ਵੱਲ ਵਗਦੀ ਹਵਾ ਨੂੰ ਜਲ ਸਮੀਰ ਆਖਦੇ ਹਨ । ਤਟਵਰਤੀ ਇਲਾਕਿਆਂ ਵਿੱਚ ਰਾਤ ਵੇਲੇ ਤੱਟ ਤੋਂ ਸਮੁੰਦਰ ਵੱਲ ਵੱਗਦੀ ਹਵਾ ਨੂੰ ਥਲ ਸਮੀਰ ਆਖਦੇ ਹਨ ।

→ ਮਾਧਿਅਮ ਤੋਂ ਬਗੈਰ ਗਰਮ ਵਸਤੂਆਂ ਦੁਆਰਾ ਵਿਕਿਰਣ ਛੱਡਣ ਕਾਰਨ ਤਾਪ ਦਾ ਸੰਚਾਰ ਹੋਣ ਨੂੰ ਵਿਕਿਰਣ ਆਖਦੇ ਹਨ । ਤਾਪ ਦੇ ਵਿਕਿਰਣ ਲਈ ਮਾਧਿਅਮ ਦੀ ਲੋੜ ਨਹੀਂ ਪੈਂਦੀ ।

→ ਗੜੇ ਰੰਗ ਦੇ ਕੱਪੜੇ ਹਲਕੇ ਰੰਗ ਦੇ ਕੱਪੜਿਆਂ ਦੇ ਮੁਕਾਬਲੇ ਤਾਪ ਨੂੰ ਵੱਧ ਸੋਖਦੇ ਹਨ । ਇਸ ਲਈ ਸਰਦੀਆਂ ਨੂੰ ਅਸੀਂ ਗੂੜ੍ਹੇ ਰੰਗ ਅਤੇ ਗਰਮੀਆਂ ਨੂੰ ਅਸੀਂ ਹਲਕੇ ਰੰਗ ਦੇ ਕੱਪੜੇ ਪਹਿਨਦੇ ਹਾਂ।

PSEB 7th Class Science Notes Chapter 4 ਤਾਪ

→ ਉੱਨ ਦੇ ਕੱਪੜੇ ਸਰਦੀਆਂ ਵਿੱਚ ਨਿੱਘ ਦਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਉੱਨ ਦੇ ਰੇਸ਼ਿਆਂ ਵਿੱਚ ਹਵਾ ਫਸੀ ਹੁੰਦੀ ਹੈ ਜਿਸ ਕਰਕੇ ਉਹ ਤਾਪ ਦੀ ਕੁਚਾਲਕ ਹੁੰਦੀ ਹੈ ।

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ-

  1. ਤਾਪ-ਇਹ ਇੱਕ ਕਾਰਕ ਹੈ ਜਿਹੜਾ ਸਾਨੂੰ ਗਰਮੀ ਅਨੁਭਵ ਕਰਾਉਂਦਾ ਹੈ । ਇਹ ਇੱਕ ਪ੍ਰਕਾਰ ਦੀ ਉਰਜਾ ਹੈ ।
  2. ਤਾਪਮਾਨ-ਤਾਪਮਾਨ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਰਮੀ ਜਾਂ ਠੰਢਕ ਦਾ ਦਰਜਾ ਹੈ । ਇਹ ਤਾਪ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪਤਾ ਲਗਾਉਂਦਾ ਹੈ ।
  3. ਥਰਮਾਮੀਟਰ-ਇਹ ਇੱਕ ਯੰਤਰ ਹੈ ਜਿਸ ਦੀ ਮਦਦ ਨਾਲ ਕਿਸੇ ਵਸਤੂ ਦਾ ਤਾਪਮਾਨ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ।
  4. ਸੈਲਸੀਅਸ ਸਕੇਲ-ਸੈਲਸੀਅਸ ਸਕੇਲ ਤਾਪਮਾਨ ਮਾਪਣ ਦੀ ਸਕੇਲ ਹੈ । ਕਈ ਵਾਰ ਇਸ ਨੂੰ ਸੈਂਟੀਗਰੇਡ ਸਕੇਲ ‘ ਵੀ ਆਖਦੇ ਹਨ ।
  5. ਰੋਧਕ-ਉਹ ਪਦਾਰਥ ਜਿਸ ਵਿੱਚੋਂ ਤਾਪ ਦਾ ਵਧੀਆ ਸੰਚਾਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਉਸ ਵਸਤੂ ਨੂੰ ਰੋਧਕ ਜਾਂ ਤਾਪ ਦੀ ਰੋਧਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ।
  6. ਚਾਲਣ-ਇਹ ਤਾਪ ਸੰਚਾਰ ਦੀ ਉਹ ਵਿਧੀ ਹੈ ਜਿਸ ਵਿੱਚ ਤਾਪ ਵਸਤੂ ਦੇ ਗਰਮ ਸਿਰੇ ਤੋਂ ਠੰਢੇ ਸਿਰੇ ਵੱਲ ਵਸਤ ਦੇ ਪਦਾਰਥ ਦੇ ਅਣੂਆਂ ਰਾਹੀਂ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਵਸਤੂ ਦੇ ਅਣੂ ਆਪਣੇ ਸਥਾਨ ‘ਤੇ ਸਥਿਰ ਰਹਿੰਦੇ ਹਨ ।
  7. ਸੰਵਹਿਣ ਤਰਲ ਜਾਂ ਗੈਸ) ਦੇ ਅਣੂ-ਇਹ ਤਾਪ ਸੰਚਾਰ ਦੀ ਉਹ ਵਿਧੀ ਹੈ ਜਿਸ ਵਿੱਚ ਤਾਪ ਗਰਮ ਅਣੂਆਂ ਦੀ | ਗਤੀ ਕਾਰਨ ਤਾਪ ਦੇ ਸੋਤ ਤੋਂ ਠੰਢੇ ਭਾਗ ਵੱਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਠੰਢੇ ਅਣੁ ਉਹਨਾਂ ਦੀ ਥਾਂ ਲੈਣ ਲਈ ਪਾਸਿਓਂ ਦੀ । ‘ ਹੋ ਕੇ ਤਾਪ ਦੇ ਸੋਤ ਵੱਲ ਹੇਠਾਂ ਆਉਂਦੇ ਹਨ । ਇਸ ਵਿਧੀ ਦੁਆਰਾ ਤਰਲ ਦ੍ਰਵ ਅਤੇ ਗੈਸਾਂ ਗਰਮ ਹੁੰਦੀਆਂ ਹਨ ।
  8. ਵਿਕਿਰਣ-ਇਹ ਤਾਪੁ ਸੰਚਾਰ ਦੀ ਉਹ ਵਿਧੀ ਹੈ ਜਿਸ ਵਿਚ ਮਾਧਿਅਮ ਨੂੰ ਬਿਨਾਂ ਪ੍ਰਭਾਵਿਤ ਕੀਤਿਆਂ (ਅਰਥਾਤ ਬਿਨਾਂ ਗਰਮ ਕੀਤਿਆਂ) ਗਰਮ ਸ੍ਰੋਤ ਜਾਂ ਪਿੰਡ ਤੋਂ ਠੰਢੇ ਪਿੰਡ ਵੱਲ ਤਾਪ ਦਾ ਸੰਚਾਰ ਕਰਦੀ ਹੈ ।
  9. ਜਲ ਸਮੀਰ-ਦਿਨ ਦੇ ਸਮੇਂ ਸੂਰਜ ਦੀ ਗਰਮੀ ਕਾਰਨ ਥਲ ਦੀ ਮਿੱਟੀ ਦੇ ਅਣੂ ਛੇਤੀ ਗਰਮ ਹੋ ਜਾਂਦੇ ਹਨ ਜਦਕਿ ਸਮੁੰਦਰ ਦੇ ਪਾਣੀ ਦੇ ਅਣੂ ਐਨੇ ਗਰਮ ਨਹੀਂ ਹੁੰਦੇ ਹਨ । ਇਸ ਲਈ ਥਲ ਦੇ ਨੇੜੇ ਵਾਲੀ ਹਵਾ ਗਰਮ ਹੋ ਕੇ ਹਲਕੀ ਹੋਣ ਕਾਰਨ ਉੱਪਰ ਵੱਲ ਨੂੰ ਉੱਠਦੇ ਹਨ । ਇਸ ਦਾ ਸਥਾਨ ਲੈਣ ਲਈ ਸਮੁੰਦਰ ਤੋਂ ਠੰਢੀ ਹਵਾ ਤੱਟ ਵੱਲ ਵਗਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਕਾਰਨ ਸੰਵਹਿਣ ਧਾਰਾਵਾਂ ਵਗਣੀਆਂ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ । ਇਹ ਸਮੁੰਦਰ ਤੋਂ ਤੱਟ ਵੱਲ ਵਗਦੀ ਹਵਾ ਜਲ ਸਮੀਰ ਅਖਵਾਉਂਦੀ ਹੈ ।
  10. ਥਲ ਸਮੀਰ-ਵੱਧ ਤਾਪ ਸੋਖਣ ਸਮਰੱਥਾ ਕਾਰਨ ਜਲ, ਥਲ ਨਾਲੋਂ ਦੇਰ ਨਾਲ ਠੰਢਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਕਾਰਨ ਥਲ ਦੀ ਠੰਢੀ ਹਵਾ, ਸਮੁੰਦਰੀ ਜਲ ਵੱਲ ਵੱਗਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਥਲ ਸਮੀਰ ਆਖਦੇ ਹਨ ।
  11. ਫਾਰਨਹੀਟ ਸਕੇਲ-ਫਾਰਨਹੀਟ ਸਕੇਲ ਤਾਪਮਾਨ ਮਾਪਣ ਲਈ ਬਣਾਈ ਗਈ ਸਕੇਲ ਹੈ ।

PSEB 7th Class Science Notes Chapter 3 ਰੇਸ਼ਿਆਂ ਤੋਂ ਕੱਪੜਿਆਂ ਤੱਕ

This PSEB 7th Class Science Notes Chapter 3 ਰੇਸ਼ਿਆਂ ਤੋਂ ਕੱਪੜਿਆਂ ਤੱਕ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 3 ਰੇਸ਼ਿਆਂ ਤੋਂ ਕੱਪੜਿਆਂ ਤੱਕ

→ ਉੱਨ ਅਤੇ ਰੇਸ਼ਮ ਦੇ ਰੇਸ਼ੇ ਕੁਦਰਤ ਵਿੱਚ ਜੰਤੂਆਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ।

→ ਉੱਨ ਦੇ ਰੇਸ਼ੇ ਭੇਡ, ਬੱਕਰੀ ਜਾਂ ਯਾਕ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ।

→ ਭੇਡ ਦੀ ਪਤਲੀ ਚਮੜੀ ਉੱਪਰ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਰੇਸ਼ੇ ਹੁੰਦੇ ਹਨ

  • ਦਾੜ੍ਹੀ ਦੇ ਰੁੱਖੇ ਵਾਲ ਅਤੇ
  • ਚਮੜੀ ਦੇ ਨੇੜੇ ਮੌਜੂਦ ਤੰਤੂ ਰੂਪੀ ਮੁਲਾਇਮ ਵਾਲ ।

→ ਚੋਣਵੀਂ ਜਣਨ ਵਿਧੀ ਦੁਆਰਾ ਮਾਪਿਆਂ ਦੀ ਚੋਣ ਕਰਕੇ ਲੋੜੀਂਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਜਿਵੇਂ ਮੁਲਾਇਮ ਵਾਲਾਂ ਵਾਲੀਆਂ ਭੇਡਾਂ ਜਾਂ ਸੰਘਣੀ ਜੱਤ ਵਾਲੀਆਂ ਭੇਡਾਂ ਪੈਦਾ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ ।

PSEB 7th Class Science Notes Chapter 3 ਰੇਸ਼ਿਆਂ ਤੋਂ ਕੱਪੜਿਆਂ ਤੱਕ

→ ਵਿਭਿੰਨ ਕਿਸਮ ਦੀ ਉੱਨ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਭੇਡ ਦੀ ਉੱਨ, ਅੰਗੋਰਾ ਉੱਨ ਅਤੇ ਕਸ਼ਮੀਰੀ ਉੱਨ ।

→ ਉੱਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਭੇਡਾਂ ਨੂੰ ਪਾਲਿਆ ਜਾਂਦਾ ਹੈ । ਹੁ ਸੋਟਰਸ ਰੋਗ ਐਂਥਰੈਕਸ ਜੀਵਾਣੂ ਦੁਆਰਾ ਫੈਲਦਾ ਹੈ ।

→ ਰੇਸ਼ਮ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਰੇਸ਼ਮ ਦੇ ਕੀੜੇ ਨੂੰ ਪਾਲਣਾ ਸੇਰੀ ਕਲਚਰ ਅਖਵਾਉਂਦਾ ਹੈ । ਹੁ ਮਾਦਾ ਰੇਸ਼ਮ ਦੇ ਕੀੜੇ ਸੈਂਕੜੇ ਅੰਡੇ ਦਿੰਦੇ ਹਨ ।

→ ਅੰਡਿਆਂ ਵਿਚੋਂ ਨਿਕਲਣ ਵਾਲੇ ਲਾਰਵਾ ਕੇਟਰ ਪਿੱਲਰ ਅਖਵਾਉਂਦਾ ਹੈ ।

→ ਕੇਟਰ ਪਿੱਲਰ ਸਾਈਜ਼ ਵਿੱਚ ਵਾਧਾ ਕਰਦੇ ਹਨ ਅਤੇ ਪਿਊਪਾ (ਬਾਲਗ) ਬਣ ਜਾਂਦੇ ਹਨ ।

→ ਪਿਉਪਾ ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਇੱਕ 8 ਸ਼ਕਲ ਦਾ ਪ੍ਰੋਟੀਨ ਦਾ ਜਾਲ ਬੁਣ ਲੈਂਦਾ ਹੈ ਜੋ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ । ਆ ਕੇ ਸਖ਼ਤ ਹੋ ਕੇ ਰੇਸ਼ਮ ਦਾ ਫਾਈਬਰ ਬਣ ਜਾਂਦਾ ਹੈ ।

→ ਪਿਊਪਾ ਇਹਨਾਂ ਰੇਸ਼ਿਆਂ ਨਾਲ ਆਪਣੇ-ਆਪ ਨੂੰ ਢੱਕ ਲੈਂਦਾ ਹੈ ਅਤੇ ਇਸ ਆਕ੍ਰਿਤੀ ਨੂੰ ਕੋਕੂਨ ਆਖਦੇ ਹਨ ।

→ ਸਭ ਤੋਂ ਆਮ ਰੇਸ਼ਮ ਕੀੜਾ ਸ਼ਹਿਤੂਤ ਰੇਸ਼ਮ ਕੀੜਾ ਹੈ । ਰੇਸ਼ਮ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਟੱਸਰ ਰੇਸ਼ਮ, ਮੁਗਾ ਰੇਸ਼ਮ ਅਤੇ ਕੋਸਾ ਰੇਸ਼ਮ ਹਨ ।

→ ਜਿਸ ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਕੋਕੂਨਾਂ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਉਬਾਲ ਕੇ ਜਾਂ ਭਾਫ਼ ਦੇ ਕੇ ਰੇਸ਼ੇ ਕੱਢੇ ਜਾਂਦੇ ਹਨ ਉਸਨੂੰ ਰੀਲਿੰਗ ਕਹਿੰਦੇ ਹਨ ।

→ ਰੀਲਿੰਗ ਵਿਸ਼ੇਸ਼ ਮਸ਼ੀਨਾਂ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਰੇਸ਼ਮੀ ਕੱਪੜੇ ਬਣਨ ਲਈ ਰੇਸ਼ਮੀ ਧਾਗੇ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ।

PSEB 7th Class Science Notes Chapter 3 ਰੇਸ਼ਿਆਂ ਤੋਂ ਕੱਪੜਿਆਂ ਤੱਕ

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  1. ਜੱਤ-ਭੇਡ ਦੇ ਸਰੀਰ ਦੇ ਵਾਲਾਂ ਦਾ ਗੁੱਛਾ ।
  2. ਰੀਲਿੰਗ-ਰੇਸ਼ਮ ਦੇ ਕੋਕੂਨ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਉਬਾਲ ਕੇ ਜਾਂ ਭਾਫ਼ ਦੇ ਕੇ ਰੇਸ਼ਮ ਦੇ ਰੇਸ਼ਿਆਂ ਨੂੰ ਕੱਢਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਰੀਲਿੰਗ ਆਖਦੇ ਹਨ ।
  3. ਸਕੋਰਿੰਗ ਜਾਂ ਅਭਿਮਾਰਜਨ-ਕੱਟੀ ਹੋਈ ਚਮੜੀ ਸਮੇਤ ਵਾਲਾਂ ਨੂੰ ਟੈਂਕੀਆਂ ਵਿੱਚ ਪਾ ਕੇ ਚਿਕਨਾਈ (ਗਰੀਸ), ਧੂੜ, ਮੈਲ ਅਤੇ ਪਸੀਨਾ ਆਦਿ ਨੂੰ ਹਟਾਉਣ ਲਈ ਚੰਗੀ ਤਰ੍ਹਾਂ ਧੋਣਾ, ਸਕੋਰਿੰਗ ਕਹਾਉਂਦਾ ਹੈ ।
  4. ਕੋਕੂਨ-ਰੇਸ਼ਮ ਦੇ ਰੇਸ਼ਿਆਂ ਨਾਲ ਬਣੀ ਹੋਈ ਪਰਤ ਜਿਹੜੀ ਕੇਟਰਪਿੱਲਰ ਨੂੰ ਢੱਕ ਲੈਂਦੀ ਹੈ, ਕੋਕੂਨ ਕਹਾਉਂਦੀ ਹੈ ।
  5. ਸੇਰੀ-ਕਲਚਰ (ਰੇਸ਼ਮ ਦੇ ਕੀੜੇ ਨੂੰ ਪਾਲਣਾ)-ਰੇਸ਼ਮ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਰੇਸ਼ਮ ਦੇ ਕੀੜਿਆਂ ਨੂੰ ਪਾਲਣਾ ਸੇਰੀ ਕਲਚਰ ਕਹਾਉਂਦਾ ਹੈ ।
  6. ਸ਼ੀਅਰਿੰਗ ਜਾਂ ਕਟਾਈ-ਭੇਡ ਦੇ ਵਾਲਾਂ ਅਤੇ ਚਮੜੀ ਦੀ ਪਤਲੀ ਪਰਤ ਨੂੰ ਭੇਡ ਦੇ ਸਰੀਰ ਤੋਂ ਹਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸ਼ੀਅਰਿੰਗ ਜਾਂ ਉੱਨ ਦੀ ਕਟਾਈ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।
  7. ਥਰੋਇੰਗ-ਕੱਚੇ ਰੇਸ਼ਮ ਨੂੰ, ਕੱਤੇ ਹੋਏ ਰੇਸ਼ਮ ਨੂੰ ਮਜ਼ਬੂਤ (ਮੋਟਾ) ਕਰਨ ਲਈ ਕੱਤਿਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਥਰੋਇੰਗ ਕਹਿੰਦੇ ਹਨ । ਇਹ ਅੱਡ-ਅੱਡ ਰੇਸ਼ਿਆਂ ਨੂੰ ਟੁੱਟਣ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ ।
  8. ਕੌਂਬਿੰਗ ਜਾਂ ਕੰਘੀ ਕਰਨਾ-ਛੋਟੇ ਫੁੱਲੇ ਹੋਏ ਰੇਸ਼ੇ ਜਿਨ੍ਹਾਂ ਨੂੰ ਬੁਰ ਜਾਂ ਗੰਢਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਨੂੰ ਹਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਕੌਂਬਿੰਗ ਜਾਂ ਕੰਘੀ ਕਰਨਾ ਕਹਿੰਦੇ ਹਨ ।
  9. ਡਾਇੰਗ ਜਾਂ ਰੰਗਾਈ ਕਰਨਾ-ਭੇਡਾਂ ਦੀ ਉੱਨ ਨੂੰ ਵੱਖ-ਵੱਖ ਰੰਗਾਂ ਵਿੱਚ ਰੰਗਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਕਿਉਂ ਜੋ ਕੁਦਰਤੀ ਰੰਗ ਤਾਂ ਸਿਰਫ਼ ਕਾਲਾ, ਭੂਰਾ ਜਾਂ ਚਿੱਟਾ ਹੁੰਦਾ ਹੈ ।
  10. ਵਰਣਾਤਮਕ ਪ੍ਰਜਣਨ-ਵਿਸ਼ੇਸ਼ ਲੋੜੀਂਦੇ ਗੁਣਾਂ ਦੀਆਂ ਦੋ ਭੇਡਾਂ ਨੂੰ ਉਤਪੰਨ ਕਰਨ ਲਈ ਮਾਪਿਆਂ ਵਜੋਂ ਚੁਣ ਲਿਆ ਜਾਂਦਾ ਹੈ ਫਿਰ ਦੋਵਾਂ ਮਾਪਿਆਂ ਨੂੰ ਪ੍ਰਜਣਨ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਚੋਣਵਾਂ ਪ੍ਰਜਣਨ ਕਹਿੰਦੇ ਹਨ ।

PSEB 7th Class Science Notes Chapter 1 ਪੌਦਿਆਂ ਵਿੱਚ ਪੋਸ਼ਣ

This PSEB 7th Class Science Notes Chapter 1 ਪੌਦਿਆਂ ਵਿੱਚ ਪੋਸ਼ਣ will help you in revision during exams.

PSEB 7th Class Science Notes Chapter 1 ਪੌਦਿਆਂ ਵਿੱਚ ਪੋਸ਼ਣ

→ ਸਾਰੇ ਜੀਵਾਂ (ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਲਈ ਭੋਜਨ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ।

→ ਭੋਜਨ ਦੇ ਮੁੱਖ ਅੰਸ਼-ਕਾਰਬੋਹਾਈਡਰੇਟਸ, ਚਰਬੀ, ਪ੍ਰੋਟੀਨ, ਵਿਟਾਮਿਨ ਅਤੇ ਖਣਿਜ ਹਨ, ਜੋ ਸਰੀਰ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਧੀ (ਵੱਧਣ ਲਈ ਜ਼ੂਰਰੀ ਹੁੰਦੇ ਹਨ ।

→ ਜੀਵ ਦੁਆਰਾ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਉਸਦੀ ਸਹੀ ਵਰਤੋਂ ਪੋਸ਼ਣ ਅਖਵਾਉਂਦੀ ਹੈ ।

→ ਵੱਖ-ਵੱਖ ਜੀਵਾਂ ਲਈ ਵੱਖ-ਵੱਖ ਪੋਸ਼ਣ ਹੁੰਦਾ ਹੈ ।

→ ਭੋਜਨ ਸੰਬੰਧੀ ਆਦਤਾਂ ਦੇ ਆਧਾਰ ‘ਤੇ ਪੋਸ਼ਣ ਨੂੰ ਦੋ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ-

  • ਸਵੈਪੋਸ਼ੀ ਪੋਸ਼ਣ,
  • ਪਰਪੋਸ਼ੀ ਪੋਸ਼ਣ

→ ਜਿਹੜੇ ਸਜੀਵ ਸਰਲ ਪਦਾਰਥਾਂ ਤੋਂ ਆਪਣਾ ਭੋਜਨ ਆਪ ਤਿਆਰ ਕਰਦੇ ਹਨ, ਉਨਾਂ ਨੂੰ ਸਵੈਪੋਸ਼ੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪੋਸ਼ਣ ਨੂੰ ਸਵੈਪੋਸ਼ੀ ਪੋਸ਼ਣ ਆਖਦੇ ਹਨ ।

→ ਸਾਰੇ ਹਰੇ ਪੌਦੇ ਅਤੇ ਬੈਕਟੀਰੀਆ (ਜੀਵਾਣੂ ਸਵੈਪੋਸ਼ੀ ਹੁੰਦੇ ਹਨ ।

→ ਯੁਗਲੀਨਾ ਇੱਕ ਅਜਿਹਾ ਜੀਵ ਹੈ ਜੋ ਦੋਨੋਂ ਸਵੈਪੋਸ਼ਣ ਅਤੇ ਪਰਪੋਸ਼ਣ ਕਰ ਸਕਦਾ ਹੈ ।

→ ਪੱਤਿਆਂ ਨੂੰ ਪੌਦਿਆਂ ਦਾ ਭੋਜਨ ਤਿਆਰ ਕਰਨ ਦਾ ਕਾਰਖ਼ਾਨਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

PSEB 7th Class Science Notes Chapter 1 ਪੌਦਿਆਂ ਵਿੱਚ ਪੋਸ਼ਣ

→ ਪੌਦੇ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਦੀ ਕਿਰਿਆ ਦੁਆਰਾ ਆਪਣਾ ਭੋਜਨ ਤਿਆਰ ਕਰਦੇ ਹਨ । ਇਸ ਕਿਰਿਆ ਦੌਰਾਨ ਪੱਤਿਆਂ ਵਿਚ ਮੌਜੂਦ ਹਰੇ ਰੰਗ ਦਾ ਵਰਣਕ (ਕਲੋਰੋਫਿਲ, ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਉਪਸਥਿਤੀ ਵਿੱਚ ਹਵਾ ਦੀ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਉਪਸਥਿਤੀ ਵਿਚ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਰੂਪੀ ਭੋਜਨ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ ।

→ ਪੌਦੇ ਦੇ ਪੱਤਿਆਂ ਦੀ ਸਤਹਿ ਉੱਪਰ ਛੋਟੇ-ਛੋਟੇ ਮੁਸਾਮ (ਛੇਕ) ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਰਾਹੀਂ ਹਵਾ ਦੀ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਨਿਰਮਿਤ ਆਕਸੀਜਨ ਦੀ ਅਦਲਾ-ਬਦਲੀ ਹੁੰਦੀ ਹੈ । ਇਨ੍ਹਾਂ ਨੂੰ ਸਟੋਮੈਟਾ ਦਾ ਨਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ ।

→ ਸਟੋਮੈਟਾ ਗਾਰਡ ਸੈੱਲਾਂ ਨਾਲ ਘਿਰੇ ਹੁੰਦੇ ਹਨ ।

→ ਮਿੱਟੀ ਵਿੱਚੋਂ ਪਾਣੀ ਅਤੇ ਖਣਿਜ ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਰਾਹੀਂ ਸੋਖੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਫਿਰ ਜ਼ਾਈਲਮ ਟਿਸ਼ੂ ਰਾਹੀਂ | ਪੌਦੇ ਦੇ ਹੋਰ ਭਾਗਾਂ ਨੂੰ ਭੇਜੇ ਜਾਂਦੇ ਹਨ ।

→ ਸਾਰੇ ਜੀਵਾਂ ਲਈ ਸੂਰਜ ਹੀ ਊਰਜਾ ਦਾ ਮੂਲ ਸਰੋਤ ਹੈ ।

→ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਕਿਰਿਆ ਵਿੱਚ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਉਰਜਾ ਨੂੰ ਰਸਾਇਣਿਕ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

→ ਕੁੱਝ ਅਜਿਹੇ ਪੌਦੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਪੱਤਿਆਂ ਦਾ ਰੰਗ ਹਰਾ ਨਹੀਂ ਹੁੰਦਾ ਪਰੰਤ ਕਿਸੇ ਹੋਰ ਰੰਗ ਦੇ ਵਰਣਕ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕੌਲੀਅਸ ਵਿੱਚ ਲਾਲ ਰੰਗ ਦਾ ਵਰਣਕ ਅਤੇ ਲਾਲ ਬੰਦ ਗੋਭੀ ਵਿੱਚ ਬੈਂਗਨੀ ਰੰਗ ਦਾ ਵਰਣਕ ਹੁੰਦਾ ਹੈ । ਅਜਿਹੇ ਪੱਤਿਆਂ ਵਿੱਚ ਵੀ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਰੰਗਾਂ ਦੇ ਪੱਤਿਆਂ ਵਿੱਚ ਹਰੇ ਰੰਗ ਦਾ ਵਰਣਕ ਕਲੋਰੋਫਿਲ ਵੀ ਹੁੰਦਾ ਹੈ ।

→ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਕਿਰਿਆ ਦੇ ਮੁੱਢਲੇ ਉਤਪਾਦ ਆਕਸੀਜਨ ਗੈਸ ਅਤੇ ਗੁਲੂਕੋਜ਼ ਹਨ ।

→ ਪਰਪੋਸ਼ੀਆਂ ਨੂੰ ਚਾਰ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ-

  • ਮ੍ਰਿਤ ਆਹਾਰੀ,
  • ਪਰਜੀਵੀ,
  • ਕੀਟ ਆਹਾਰੀ ਅਤੇ
  • ਸਹਿਜੀਵੀ ।

→ ਜਿਹੜੇ ਜੀਵ ਦੂਜੇ ਜੀਵਾਂ ਦੇ ਸਰੀਰ ਤੋਂ ਪੋਸ਼ਣ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਨੂੰ ਪਰਜੀਵੀ ਕਹਿੰਦੇ ਹਨ ।

→ ਜਿਹੜੇ ਜੀਵ ਪੋਸ਼ਣ ਲਈ ਮ੍ਰਿਤ ਸਰੀਰਾਂ ਅਤੇ ਗਲੇ-ਸੜੇ ਪਦਾਰਥਾਂ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਨੂੰ ਮ੍ਰਿਤ ਆਹਾਰੀ ਕਹਿੰਦੇ ਹਨ । ਸਹਿਜੀਵੀ ਸੰਬੰਧ ਵਿੱਚ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਜੀਵ ਭੋਜਨ ਲਈ ਇੱਕ-ਦੂਜੇ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਦੋਵਾਂ ਨੂੰ ਲਾਭ ਹੁੰਦਾ ਹੈ । ਮ੍ਰਿਤ ਜੰਤੂਆਂ, ਗਲੇ-ਸੜੇ ਪੌਦਿਆਂ ਅਤੇ ਪੱਤਿਆਂ ਨੂੰ ਨਿਖੇੜਕਾਂ ਦੁਆਰਾ ਨਿਖੇੜਨ ਕਾਰਨ ਮਿੱਟੀ ਦੀ ਜ਼ਰੂਰੀ ਪੋਸ਼ਕ ਤੱਤਾਂ ਦੀ ਪ੍ਰਤੀ ਪੂਰਤੀ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ ।

PSEB 7th Class Science Notes Chapter 1 ਪੌਦਿਆਂ ਵਿੱਚ ਪੋਸ਼ਣ

ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਭਾਸ਼ਾਵਾਂ

  1. ਪੋਸ਼ਕ ਤੱਤ-ਭੋਜਨ ਦੇ ਮੁੱਖ ਅੰਸ਼ ਜਿਵੇਂ-ਕਾਰਬੋਹਾਈਡਰੇਟਸ, ਚਰਬੀ, ਪ੍ਰੋਟੀਨ, ਵਿਟਾਮਿਨ ਅਤੇ ਖਣਿਜ ਜਿਹੜੇ | ਸਰੀਰ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਸਹਾਈ ਹੁੰਦੇ ਹਨ, ਨੂੰ ਪੋਸ਼ਕ ਤੱਤ ਕਹਿੰਦੇ ਹਨ ।
  2. ਸਵੈ-ਪੋਸ਼ਣ-ਜਿਹੜੇ ਸਜੀਵ ਸਰਲ ਪਦਾਰਥਾਂ ਤੋਂ ਆਪਣਾ ਭੋਜਨ ਆਪ ਤਿਆਰ ਕਰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਨੂੰ ਸਵੈਪੋਸ਼ੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪੋਸ਼ਣ ਨੂੰ ਸਵੈਪੋਸ਼ੀ ਕਹਿੰਦੇ ਹਨ ।
  3. ਪਰਪੋਸ਼ਣ-ਜਿਹੜੇ ਜੀਵ ਆਪਣਾ ਭੋਜਨ ਆਪ ਤਿਆਰ ਨਹੀਂ ਕਰ ਸਕਦੇ ਪਰੰਤ ਆਪਣੇ ਭੋਜਨ ਲਈ ਦੂਜੇ ਜੀਵਾਂ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਪਰਪੋਸ਼ੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪੋਸ਼ਣ ਨੂੰ ਪਰਪੋਸ਼ੀ ਪੋਸ਼ਣ ਕਹਿੰਦੇ ਹਨ ।
  4. ਮਿਤ ਆਹਾਰ-ਅਜਿਹਾ ਪੋਸ਼ਣ ਜਿਸ ਵਿੱਚ ਮਰੇ ਹੋਏ ਜੀਵ ਜਾਂ ਗਲੇ-ਸੜੇ ਪਦਾਰਥ ਜਿਨ੍ਹਾਂ ਤੋਂ ਜੀਵਾਂ ਦਾ ਭੋਜਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
  5. ਪਰਜੀਵੀ-ਉਹ ਜੀਵ ਜਿਹੜੇ ਭੋਜਨ ਲਈ ਦੂਜੇ ਪੌਦੇ ਅਤੇ ਜੀਵਾਂ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਨੂੰ ਪਰਜੀਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।
  6. ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸ਼ਣ-ਇਹ ਇੱਕ ਅਜਿਹੀ ਕਿਰਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਪੌਦੇ ਦੀਆਂ ਪੱਤੀਆਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਰੇ ਰੰਗ ਦਾ ਵਰਣਕ ਕਲੋਰੋਫਿਲ ਹੁੰਦਾ ਹੈ, ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਤੋਂ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਉਰਜਾ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਭੋਜਨ ਕਾਰਬੋਹਾਈਡੇਟਸ (ਭੋਜਨ) ਦੇ ਰੂਪ ਵਿੱਚ ਤਿਆਰ ਕਰਦੇ ਹਨ । ਇੱਥੇ ਸੂਰਜੀ ਉਰਜਾ ਰਸਾਇਣਿਕ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ ।
  7. ਕਲੋਰੋਫਿਲ-ਇਹ ਇੱਕ ਹਰੇ ਰੰਗ ਦਾ ਵਰਣਕ ਹੈ ਜਿਹੜਾ ਪੌਦਿਆਂ ਵਿੱਚ ਉਪਸਥਿਤ ਹੁੰਦਾ ਹੈ । ਇਹ ਪੌਦਿਆਂ ਨੂੰ ਆਪਣਾ ਭੋਜਨ ਤਿਆਰ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ।
  8. ਕਾਰਬੋਹਾਈਡਰੇਟਸ-ਇੱਕ ਕਿਸਮ ਦਾ ਸੂਖ਼ਮ ਪੋਸ਼ਕ ਹੈ ਜਿਹੜਾ ਕਈ ਖਾਧ ਪਦਾਰਥਾਂ, ਚੀਨੀ, ਸਟਾਰਚ ਅਤੇ ਰੇਸ਼ਿਆਂ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ । ਸਿਹਤਮੰਦ ਰਹਿਣ ਲਈ ਸਾਡੇ ਸਰੀਰ ਨੂੰ ਇਸ ਸੂਖ਼ਮ ਪੋਸ਼ਕ ਤੱਤ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।
  9. ਸਟੋਮੈਟਾ-ਪੌਦਿਆਂ ਦੇ ਹਵਾ ਨਾਲ ਭਰਪੂਰ ਹਿੱਸਿਆਂ ਦੀ ਬਾਹਰਲੀ ਸਤਹਿ ’ਤੇ ਸਟੋਮੈਟਾ (ਛੇਕ) ਪਾਏ ਜਾਂਦੇ ਹਨ । ਪੱਤਿਆਂ ਉੱਪਰ ਸਟੋਮੈਟਾ ਦੀ ਸੰਖਿਆ ਸਭ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ । ਸਟੋਮੈਟਾ (ਜਾਂ ਛੇਕਾਂ) ਰਾਹੀਂ ਗੈਸਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਹੁੰਦੀ ਹੈ ।
  10. ਮੇਜ਼ਬਾਨ-ਜਿਸ ਪੌਦੇ ਜਾਂ ਜੀਵ ਉੱਤੇ ਪਰਜੀਵੀ ਆਪਣੇ ਭੋਜਨ ਲਈ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਉਸਨੂੰ ਮੇਜ਼ਬਾਨ (Host) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।
  11. ਰਸਾਇਣਿਕ ਖਾਦ-ਇਹ ਫੈਕਟਰੀ ਵਿੱਚ ਤਿਆਰ ਕੀਤੇ ਗਏ ਰਸਇਣਾਂ (ਅਕਾਰਬਨਿਕ ਲੂਣਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ । ਇਸ ਵਿੱਚ ਕਾਫ਼ੀ ਮਾਤਰਾ ਵਿੱਚ ਪੌਦਿਆਂ ਦੇ ਲਈ ਪੋਸ਼ਕ ਤੱਤ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ । ਇਹ ਮਿੱਟੀ ਦੇ ਵਿਚ ਮੌਜੂਦ ਪੋਸ਼ਕ ਤੱਤਾਂ ਦੀ ਘਾਟ ਨੂੰ ਦੁਬਾਰਾ ਪੂਰਾ ਕਰਦੀ ਹੈ ਤਾਂ ਜੋ ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਬਣੀ ਰਹੇ ।
  12. ਰਾਈਜ਼ੋਬੀਅਮ-ਇਹ ਇੱਕ ਬੈਕਟੀਰੀਆ ਹੈ ਜੋ ਫਲੀਦਾਰ ਪੌਦਿਆਂ ਦੀਆਂ ਜੜਾਂ ਤੇ ਗੰਢਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ । ਇਹ ਹਵਾ ਵਿਚਲੀ ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਵਰਤੋਂ ਯੋਗ ਬਣਾ ਦਿੰਦਾ ਹੈ, ਜਿਸ ਦੀ ਵਰਤੋਂ ਪੌਦੇ ਕਰਦੇ ਹਨ ਅਤੇ ਇਸ ਦੇ ਬਦਲੇ ਵਿੱਚ ਪੌਦੇ ਇਸ ਬੈਕਟੀਰੀਆ ਨੂੰ ਆਸਰਾ ਅਤੇ ਭੋਜਨ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ।