PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 15 ਸੰਭਾਵਨਾ Exercise 15.2

ਪ੍ਰਸ਼ਨ 1.
ਦੋ ਗਾਹਕ ਸ਼ਾਮ ਅਤੇ ਏਕਤਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਦੁਕਾਨ ਉੱਤੇ ਇੱਕ ਹੀ ਹਫ਼ਤੇ ਵਿੱਚ ਜਾ ਰਹੇ ਹਨ । (ਮੰਗਲਵਾਰ ਤੋਂ ਸ਼ਨੀਵਾਰ ਤੱਕ) ਹਰੇਕ ਦੁਆਰਾ ਦੁਕਾਨ ਉੱਤੇ ਕਿਸੇ ਦਿਨ ਜਾਂ ਕਿਸੇ ਹੋਰ ਦਿਨ ਜਾਣ ਦੇ ਪਰਿਣਾਮ ਸਮਸੰਭਾਵੀ (ਬਰਾਬਰ ਸੰਭਾਵਨਾ ਵਾਲੇ) ਹਨ । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਦੋਨੋਂ ਉਸ ਦੁਕਾਨ ਤੇ
(i) ਇੱਕ ਹੀ ਦਿਨ ਜਾਣਗੇ ?
(ii) ਕ੍ਰਮਵਾਰ (ਨਾਲ-ਨਾਲ ਵਾਲੇ ਦਿਨਾਂ ਵਿੱਚ ਜਾਣਗੇ ?
(iii) ਭਿੰਨ-ਭਿੰਨ ਦਿਨਾਂ ਵਿੱਚ ਜਾਣਗੇ ?
ਹੱਲ:
ਜਦੋਂ ਸ਼ਾਮ ਅਤੇ ਏਕਤਾ ਇੱਕ ਦੁਕਾਨ ਉੱਤੇ ਇੱਕ ਹਫ਼ਤੇ ਜਾਣਗੇ ਤਾਂ ।
S = {(T, T) (T, W) (T, Th) (T, F) (T, S)
(W, T) (W, W) (W, Th) (W, F) (W, S)
(Th, T) (Th, W) (Th, Th) (Th, F) (Th, S)
(F, T) (F, W) (F, Th) (F, F) (F, S)
(S, T) (S, W) (S, Th) (S, F) (S, S)}
ਇੱਥੇ T ਮੰਗਲਵਾਰ ਲਈ, W ਬੁੱਧਵਾਰ, Th ਵੀਰਵਾਰ,
F ਸ਼ੁਕਰਵਾਰ, S ਸ਼ਨੀਵਾਰ ਲਈ ਹੈ।
n(S) = 25
(i) ਮੰਨ ਲਓ ਸ਼ਾਮ ਅਤੇ ਏਕਤਾ ਦੀ ਦੁਕਾਨ ਤੇ ਜਾਣ ਦੀ ਘਟਨਾ A ਹੈ ।
A = {(T, T), (W, W) (Th, Th) (F, F), (S, S)}
n (A) = 5
ਦੋਵੇਂ ਇੱਕ ਹੀ ਦਿਨ ਜਾਣਗੇ ਦੀ ਸੰਭਾਵਨਾ ਹੈ।
= \(\frac{5}{25}\) = \(\frac{1}{5}\)
∴ P(A) = \(\frac{1}{5}\)

(ii) ਮੰਨ ਲਉ ਸ਼ਾਮ ਅਤੇ ਏਕਤਾ ਉਸ ਦੁਕਾਨ ਤੇ ਕ੍ਰਮਵਾਰ ਦਿਨਾਂ ਵਿਚ ਜਾਣਗੇ ਦੀ ਘਟਨਾ B ਹੈ .
(B) = [(T, W) (W, T) (W, Th), (Th, W) (Th, F) (F, Th) (F, S) (F, S)]
n (B) = 8
∴ “ਦੋਵੇਂ ਕ੍ਰਮਵਾਰ ਦਿਨਾਂ ਵਿੱਚ ਦੁਕਾਨ ਤੇ ਜਾਣਗੇ’ ਦੀ ਸੰਭਾਵਨਾ ਹੈ = \(\frac{8}{25}\)

(iii) ਸੰਭਾਵਨਾ ਕਿ ਦੋਵੇਂ ਉਸ ਦੁਕਾਨ ਤੇ ਭਿੰਨ ਭਿੰਨ ਦਿਨਾਂ ਵਿੱਚ ਜਾਣਗੇ
= 1 – ਸੰਭਾਵਨਾ ਕਿ ਦੋਵੇਂ ਉਸ ਦਾਕਾਨ ਤੇ ਇੱਕ ਹੀ ਦਿਨ ਜਾਣਗੇ
= 1 – \(\frac{1}{5}\) ∵[∴ P(\(\overline{\mathrm{A}}\)) = 1 – P(A)]
= \(\frac{5-1}{5}\)
= \(\frac{4}{5}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2

ਪ੍ਰਸ਼ਨ 2.
ਇੱਕ ਪਾਸੇ ਦੇ ਫਲਕਾਂ ਉੱਤੇ ਸੰਖਿਆਂਵਾਂ 1, 2, 2, 3, 6 ਲਿਖੀਆਂ ਹੋਈਆਂ ਹਨ ? ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦੋਨੋਂ ਵਾਰ ਪ੍ਰਾਪਤ ਹੋਈਆਂ ਸੰਖਿਆਂਵਾਂ ਦਾ ਜੋੜ ਲਿਖ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਦੋਨੋਂ ਵਾਰ ਸੁੱਟਣ ਤੋਂ ਬਾਦ, ਪ੍ਰਾਪਤ ਜੋੜ ਦੇ ਕੁੱਝ ਸੰਭਾਵਿਤ ਮੁੱਲ ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਨੀ ਵਿੱਚ ਦਿੱਤੇ ਹਨ । | ਇਸ ਸਾਰਨੀ ਨੂੰ ਪੂਰਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2 1
ਇਸ ਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਕੁੱਲ ਜੋੜ
(i) ਇੱਕ ਜਿਸਤ ਸੰਖਿਆ ਹੋਵੇਗਾ ?
(ii) 6 ਹੈ ?
(iii) ਘੱਟ ਤੋਂ ਘੱਟ 6 ਹੈ ?
ਹੱਲ:
ਪੂਰਨ ਸਾਰਨੀ : ਪਹਿਲੀ ਵਾਰ ਸੁੱਟਣ ਦੇ ਮੁੱਲ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2 2
ਦੂਸਰੀ ਵਾਰ ਸੁੱਟਣ ਦੇ ਮੁੱਲ
ਸੰਭਾਵਿਤ ਪਰਿਣਾਮਾਂ ਦੀ ਸੰਖਿਆ ਹੈ 6 × 6 = 36
(i) ਮੰਨ ਲਓ ‘ਕੁੱਲ ਜੋੜ, ਇਕ ਸੰਖਿਆ’ ਪ੍ਰਾਪਤ ਕਰਨਾ ਘਟਨਾ A ਹੈ ।
A = {2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 12}
n (A) = 18
∴ ਇਕ ਜਿਸਤ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{18}{36}\) = \(\frac{1}{2}\)
P (ਜਿਸਤ ਸੰਖਿਆ) = \(\frac{1}{2}\)

(ii) ਮੰਨ ਲਓ ‘ਜੋੜ 6 ਪ੍ਰਾਪਤ ਕਰਨਾ’ ਘਟਨਾ B ਹੈ ।
B = {6, 6, 6, 6}
n (B) = 4,
∴ ਕੁਲ ਜੋੜ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{4}{36}\)
∴ P (B) = \(\frac{1}{9}\)

(iii) ਮੰਨ ਲਓ ‘ਕੁਲ ਜੋੜ ਘੱਟ ਤੋਂ ਘੱਟ 6′ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ ‘C’ ਹੈ ।
C = {6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 12}
n (C) = 15
∴ ਜੋੜ ਘੱਟ-ਤੋਂ-ਘੱਟ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{15}{36}\) = \(\frac{5}{12}\)
∴ P (C) = \(\frac{5}{12}\)

ਪ੍ਰਸ਼ਨ 3.
ਇੱਕ ਥੈਲੇ ਵਿੱਚ 5 ਲਾਲ ਗੇਂਦਾਂ ਅਤੇ ਕੁੱਝ ਨੀਲੀਆਂ ਗੇਦਾਂ ਹਨ | ਜੇਕਰ ਇਸ ਥੈਲੇ ਵਿੱਚੋਂ ਨੀਲੀ ਗੇਂਦ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ ਲਾਲ ਗੇਂਦ ਬਾਹਰ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ ਤੋਂ ਦੁੱਗਣੀ ਹੈ, ਤਾਂ ਥੈਲੇ ਵਿੱਚ ਨੀਲੀਆਂ ਗੇਦਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = 5
ਮੰਨ ਲਓ ਨੀਲੀਆਂ ਗੋਂਦਾਂ ਦੀ ਸੰਖਿਆ = x
∴ ਗੇਂਦਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ = 5 + x
ਨੀਲੀਆਂ ਗੇਂਦਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{x}{5+x}\)
ਲਾਲ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{5}{5+x}\)
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
ਨੀਲੀਆਂ ਗੇਂਦਾਂ ਦੀ ਸੰਭਾਵਨਾ = 2 ਲਾਲ ਗੇਂਦਾਂ ਦੀ ਸੰਭਾਵਨਾ
\(\frac{x}{5+x}\) = 2[latex]\frac{5}{5+x}[/latex]
x = 10
∴ ਨੀਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = 10

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2

ਪ੍ਰਸ਼ਨ 4.
ਇੱਕ ਪੇਟੀ ਵਿਚ 12 ਗੇਂਦਾਂ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚ 1 ਕਾਲੀਆਂ ਹਨ । ਜੇਕਰ ਇਸ ਵਿੱਚੋਂ ਇੱਕ ਗੇਂਦ ਅਚਾਨਕ | ਬਾਹਰ ਕੱਢੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਸਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ ਕਿ | ਇਹ ਗੇਂਦ ਕਾਲੀ ਹੈ । ਜੇਕਰ ਇਸ ਪੇਟੀ ਵਿੱਚ 6 ਕਾਲੀਆਂ | ਗੇਦਾਂ ਹੋਰ ਪਾ ਦਿੱਤੀਆਂ ਜਾਣ, ਤਾਂ ਕਾਲੀ ਗੇਂਦ ਨਿਕਲਣ ਦੀ ਸੰਭਾਵਨਾ ਪਹਿਲੀ ਸੰਭਾਵਨਾ ਨਾਲੋਂ ਦੁੱਗਣੀ ਹੋ ਜਾਂਦੀ ਹੈ । x ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਥੈਲੇ ਵਿਚ ਕੁੱਲ ਗੇਂਦਾਂ = 12
ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = x
∴ ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{x}{12}\)
ਜੇਕਰ ਥੈਲੇ ਵਿੱਚ 6 ਕਾਲੀ ਗੇਂਦਾਂ ਹੋਰ ਪਾ ਦਿੱਤੀਆਂ
ਜਾਣ ਤਾਂ ਕੁੱਲ ਗੇਂਦਾਂ = 12 + 6 = 18
ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = x + 6
ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{x+6}{18}\)
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਭਾਵਨਾ = 2 ਪਹਿਲਾਂ ਵਾਲੀ ਕਾਲੀ ਗੇਂਦ ਦੀ ਸੰਭਾਵਨਾ
\(\frac{x+6}{18}\) = \(\frac{2x}{12}\)
\(\frac{x+6}{3}\) = \(\frac{2x}{2}\)
\(\frac{x+6}{3}\) = x
x + 6 = 3x
6 = 3x – x
6 = 2x
x = 3
∴ ਕਾਲੀ ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = 3

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.2

ਪ੍ਰਸ਼ਨ 5.
ਇੱਕ ਡੱਬੇ ਵਿੱਚ 24 ਬੰਟੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਹਰੇ । ਹਨ ਅਤੇ ਬਾਕੀ ਨੀਲੇ ਹਨ । ਜੇਕਰ ਇਸ ਡੱਬੇ ਵਿੱਚੋਂ ਅਚਾਨਕ ਇੱਕ ਬੰਟਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਬੰਟੇ ਦੇ ਹਰਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ \(\frac{2}{3}\) ਹੈ । ਡੱਬੇ ਵਿੱਚ ਨੀਲੇ ਬੰਟਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਜਾਰ ਵਿੱਚ ਕੁੱਲ ਬੰਟੇ = 24
ਮੰਨ ਲਓ ਹਰੇ ਬੰਟੇ = x
∴ ਨੀਲੇ ਬੰਟੇ = 24 – x
ਜਦੋਂ ਇੱਕ ਬੰਟਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ
ਹਰਾ ਬੰਟਾ ਬਾਹਰ ਨਿਕਲਣ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{2}{3}\)
\(\frac{x}{24}\) = \(\frac{2}{3}\)
x = \(\frac{24×2}{3}\)
x = 16
∴ ਨੀਲੇ ਬੰਟਿਆਂ ਦੀ ਸੰਖਿਆਂ = 24 – x
= 24 – 16 = 8.

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 15 ਸੰਭਾਵਨਾ Exercise 15.1

1. ਹੇਠ ਲਿਖੇ ਕਥਨਾਂ ਨੂੰ ਪੂਰਾ ਕਰੋ :

ਪ੍ਰਸ਼ਨ (i).
ਘਟਨਾ E ਦੀ ਸੰਭਾਵਨਾ + ਘਟਨਾ ‘E ਨਹੀਂ” ਦੀ ਸੰਭਾਵਨਾ = …….. ਹੈ ।
ਉੱਤਰ:
ਘਟਨਾ E + ਸੰਭਾਵਿਤ ਘਟਨਾ ‘ਨਹੀਂ E’ ਦੀ ਸੰਭਾਵਨਾ = 1 ਹੈ ।

ਪ੍ਰਸ਼ਨ (ii).
ਉਸ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ ਜੋ ਵਾਪਰ ਨਹੀਂ ਸਕਦੀ ……….. ਹੈ | ਅਜਿਹੀ ਘਟਨਾ ……… ਕਹਾਉਂਦੀ ਹੈ ।
ਉੱਤਰ:
ਉਸ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ ਜੋ ਵਾਪਰ ਨਹੀਂ ਸਕਦੀ 0 ਹੈ । ਅਜਿਹੀ ਘਟਨਾ ਅਸੰਭਵ ਘਟਨਾ ਕਹਾਉਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ (iii).
ਉਸ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ ਜਿਸਦਾ ਵਾਪਰਨਾ ਨਿਸ਼ਚਿਤ ਹੈ ……… ਹੈ | ਅਜਿਹੀ ਘਟਨਾ…….. ਕਹਾਉਂਦੀ ਹੈ ।
ਉੱਤਰ:
ਉਸ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ ਜਿਸਦਾ ਵਾਪਰਨਾ | ਨਿਸ਼ਚਿਤ ਹੈ, 1 ਹੈ | ਅਜਿਹੀ ਘਟਨਾ ਨਿਸ਼ਚਿਤ ਘਟਨਾ ਕਹਾਉਂਦੀ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ (iv).
ਕਿਸੇ ਪ੍ਰਯੋਗ ਦੀਆਂ ਸਾਰੀਆਂ ਆਰੰਭਿਕ ਘਟਨਾਵਾਂ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਦਾ ਜੋੜ …….. ਹੈ ।
ਉੱਤਰ:
ਕਿਸੇ ਪ੍ਰਯੋਗ ਦੀਆਂ ਸਾਰੀਆਂ ਆਰੰਭਿਕ ਘਟਨਾਵਾਂ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਦਾ ਜੋੜ 1 ਹੈ ।

ਪ੍ਰਸ਼ਨ (v).
ਕਿਸੇ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ …….. ਤੋਂ ਵੱਡੀ ਜਾਂ ਉਸਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਅਤੇ ………. ਤੋਂ ਛੋਟੀ ਜਾਂ ਉਸਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ।
ਉੱਤਰ:
ਕਿਸੇ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ 0 ਤੋਂ ਵੱਡੀ ਜਾਂ ਉਸਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਅਤੇ 1 ਤੋਂ ਛੋਟੀ ਜਾਂ ਉਸਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ।

2. ਹੇਠਾਂ ਦਿੱਤੇ ਪ੍ਰਯੋਗਾਂ ਵਿੱਚੋਂ ਕਿਹੜੇ-ਕਿਹੜੇ ਪ੍ਰਯੋਗਾਂ ਦੇ ਪਰਿਣਾਮ ਸਮਸੰਭਾਵੀ ਹਨ ? ਸਪੱਸ਼ਟ ਕਰੋ ।

ਪ੍ਰਸ਼ਨ (i).
ਇੱਕ ਡਰਾਈਵਰ ਕਾਰ ਚਲਾਉਣ ਦਾ ਯਤਨ ਕਰਦਾ ਹੈ । ਕਾਰ ਚੱਲਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ ਜਾਂ ਕਾਰ ਚੱਲਣੀ ਸ਼ੁਰੂ | ਨਹੀਂ ਹੁੰਦੀ ਹੈ ।
ਉੱਤਰ:
ਜਦੋਂ ਇੱਕ ਡਰਾਈਵਰ ਕਾਰ ਚਲਾਉਣ ਦਾ ਯਤਨ ਕਰਦਾ ਹੈ ਤਾਂ ਆਮ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰ ਚੱਲਣ ਲੱਗ ਜਾਂਦੀ ਹੈ ਪਰ ਜੇਕਰ ਕਾਰ ਵਿੱਚ ਕੋਈ ਦੋਸ਼ ਹੈ ਤਾਂ ਕਾਰ ਨਹੀਂ ਚਲਦੀ । ਇਸ ਲਈ ਇਹ ਨਤੀਜਾ ਸਮਸੰਭਾਵੀ ਨਹੀਂ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ (ii).
ਇੱਕ ਖਿਡਾਰੀ ਬਾਸਕਟਬਾਲ ਨੂੰ ਬਾਸਕਟ ਵਿੱਚ ਪਾਉਣ ਦਾ ਯਤਨ ਕਰਦੀ ਹੈ । ਉਹ ਬਾਸਕਟ ਵਿੱਚ ਗੋਂਦ ਪਾ ਸਕਦੀ | ਹੈ ਜਾ ਨਹੀਂ ਪਾ ਸਕਦੀ ਹੈ ।
ਉੱਤਰ:
ਜਦੋਂ ਇੱਕ ਖਿਡਾਰੀ ਬਾਸਕੱਟਵਾਲ ਨੂੰ ਬਾਸਕਟ ਵਿੱਚ ਪਾਉਣ ਦਾ ਯਤਨ ਕਰਦਾ ਹੈ ਤਾਂ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਨਤੀਜਾ ਸਮ ਸੰਭਾਵੀ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਨਤੀਜਾ ਕਈ ਤੱਥਾਂ ‘ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕੀ ਖਿਡਾਰੀ ਦੀ ਸਿੱਖਿਆ, ਪ੍ਰਯੋਗ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਬੰਦੂਕ ਦੀ ਪ੍ਰਕ੍ਰਿਤੀ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ (iii).
ਇੱਕ ਸੱਚ ਜਾਂ ਝੂਠ ਪ੍ਰਸ਼ਨ ਦਾ ਅਨੁਮਾਨ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ।ਉੱਤਰ ਸਹੀ ਹੈ ਜਾਂ ਗ਼ਲਤ ਹੋਵੇਗਾ ।
ਉੱਤਰ:
ਕਿਉਂਕਿ ਇੱਕ ਪ੍ਰਸ਼ਨ ਲਈ ਦੋ ਸੰਭਾਵਨਾਵਾਂ ਜਾਂ ਤਾਂ ਸਹੀ ਜਾਂ ਗ਼ਲਤ ਹੈ । ਠੀਕ-ਗਲਤ ਦੇ ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਇਸ ਪ੍ਰਯੋਗ ਵਿੱਚ ਇੱਕ ਹੀ ਨਤੀਜਾ ਹੋ ਸਕਦਾ ਹੈ ਜਾਂ ਤਾਂ ਠੀਕ ਜਾਂ ਗਲਤ ਭਾਵ ਦੋਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਅਤੇ ਦੋਵਾਂ ਦੇ ਘੱਟਣ ਦੇ ਮੌਕੇ ਬਰਾਬਰ ਹਨ । ਇਸ ਲਈ ਦੋਵੇਂ ਪਰਿਣਾਮ ਸਮਸੰਭਾਵੀ ਹਨ ।

ਪ੍ਰਸ਼ਨ (iv).
ਇੱਕ ਬੱਚੇ ਦਾ ਜਨਮ ਹੁੰਦਾ ਹੈ ।ਉਹ ਇੱਕ ਲੜਕਾ ਹੈ ਜਾਂ ਇੱਕ ਲੜਕੀ ਹੈ ।
ਉੱਤਰ:
ਇੱਕ ਨਵਾਂ ਜੰਮਿਆ ਬੱਚਾ (ਭਾਵ ਜਿਸਦਾ ਜਨਮ ਇਸੇ ਸਮੇਂ ਹੋਇਆ ਹੈ । ਇੱਕ ਲੜਕਾ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਇੱਕ ਲੜਕੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਸ ਲਈ ਦੋਵੇਂ ਨਤੀਜੇ ਸਮ ਸੰਭਾਵੀ ਹਨ ।

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 3.
ਫੁੱਟਬਾਲ ਦੇ ਖੇਡ ਨੂੰ ਆਰੰਭ ਕਰਦੇ ਸਮੇਂ ਇਹ ਫੈਸਲਾ ਲੈਣ ਲਈ ਕਿ ਕਿਹੜੀ ਟੀਮ ਪਹਿਲਾਂ ਗੇਂਦ ਲਵੇਗੀ, ਇਸ ਦੇ ਲਈ ਸਿੱਕਾ ਉਛਾਲਣਾ ਇੱਕ ਨਿਆਸੰਗਤ ਵਿਧੀ ਕਿਉਂ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ?
ਹੱਲ:
ਜਦੋਂ ਸਿੱਕੇ ਨੂੰ ਉਛਾਲਿਆਂ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕੇਵਲ ਦੋ ਹੀ ਸੰਭਾਵਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ । ਭਾਵ ਚਿੱਤ ਜਾਂ ਪੱਟ । ਇੱਕ ਸਿੱਕਾ ਉਛਾਲਣ ਦੇ ਨਤੀਜੇ ਦੀ ਪਹਿਲਾਂ ਭਵਿਖਵਾਣੀ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ।

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਸੰਖਿਆ ਕਿਸੇ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ ਨਹੀਂ ਹੋ ਸਕਦੀ ?
(A) \(\frac{2}{3}\)
(B) -1.5
(C) 15%
(D) 0.7.
ਹੱਲ:
ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ 0 ਤੋਂ ਘੱਟ ਜਾਂ 1 ਤੋਂ ਜ਼ਿਆਦਾ ਨਹੀਂ ਹੋ ਸਕਦੀ ਭਾਵ 0 ≤ P (E) ≤ 1
∴ (B) – 1.5 ਸੰਭਵ ਨਹੀਂ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਜੇਕਰ P(E) = 0.05 ਹੈ, ਤਾਂ E ਨਹੀਂ’ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ ?
ਹੱਲ:
ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ
P (E) + P (\(\bar{E}\)) = 1
P (\(\bar{E}\)) = 1 – P (E)
= 1 – 0.05
= 0.95.

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 6.
ਇੱਕ ਥੈਲੇ ਵਿੱਚ ਕੇਵਲ ਨਿਬ ਦੀ ਮਹਿਕ ਵਾਲੀਆਂ | ਮਿੱਠੀਆਂ ਗੋਲੀਆਂ ਹਨ | ਮਾਲਿਨੀ ਬਿਨ੍ਹਾਂ ਥੈਲੇ ਵਿੱਚ ਦੇਖੇ ਉਸ | ਵਿੱਚੋਂ ਇੱਕ ਗੋਲੀ ਬਾਹਰ ਕੱਢਦੀ ਹੈ । ਇਸ ਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਉਹ ਕੱਢੀ ਗਈ ਗੋਲੀ
(i) ਸੰਤਰੇ ਦੀ ਮਹਿਕ ਵਾਲੀ ਹੈ ?
(ii) ਨਿੰਬੂ ਦੀ ਮਹਿਕ ਵਾਲੀ ?
ਹੱਲ:
(i) ਕਿਉਂਕਿ ਇੱਕ ਥੈਲੇ ਵਿਚ ਕੇਵਲ ਨਿੰਬੂ ਦੀ ਮਹਿਕ ਵਾਲੀਆਂ ਮਿਠੀਆਂ ਗੋਲੀਆਂ ਹਨ ।
∴ ਸੰਤਰੇ ਦੀ ਮਹਿਕ ਵਾਲੀ ਕੋਈ ਗੋਲੀ ਨਹੀਂ ਹੈ ।
∴ ਇਹ ਅਸੰਭਵ ਘਟਨਾ ਹੈ ।
(ii) ਕਿਉਂਕਿ ਥੈਲੇ ਵਿਚ ਕੇਵਲ ਨਿੰਬੂ ਦੀ ਮਹਿਕ ਵਾਲੀਆਂ ਗੋਲੀਆਂ ਹਨ ।
∴ ਇਹ ਨਿਸ਼ਚਿਤ ਘਟਨਾ ਹੈ ।
∴ ਨਿੰਬੂ ਦੀ ਮਹਿਕ ਵਾਲੀਆਂ ਗੋਲੀਆਂ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{1}\) = 1 ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਇਹ ਦਿੱਤਾ ਹੋਇਆ ਹੈ ਕਿ 3 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਇੱਕ ਸਮੂਹ ਵਿੱਚੋਂ 2 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਜਨਮ ਦਿਨ ਇੱਕ ਹੀ ਦਿਨ ਨਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ 0.992 ਹੈ । ਇਸ ਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਨ੍ਹਾਂ 2 ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਜਨਮ ਦਿਨ ਇੱਕ ਹੀ ਦਿਨ ਹੋਵੇ ?
ਹੱਲ:
ਦੋ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਜਨਮ ਦਿਨ ਇੱਕ ਹੀ ਦਿਨ ਜਨਮ ਦਿਨ ਹੋਣ ਦੀ ਘਟਨਾ ਨੂੰ ਲੈ ਮੰਨ ਲਉ ।
∴ ਦੋ ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਜਨਮ ਦਿਨ ਇੱਕ ਹੀ ਦਿਨ ਨਾ ਹੋਣ ਦੀ ਘਟਨਾ \(\bar{A}\) ਹੈ । ,
∴ P (\(\bar{A}\)) = 0.992
P (A) = 1 – P(\(\bar{A}\)) (P (A) +P (\(\bar{A}\)) = 1)
= 1 – 0.992 = 0.008
∴ ਦੋ ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਜਨਮ ਦਿਨ ਇੱਕ ਹੀ ਦਿਨ ‘ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ 0.008 ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਇੱਕ ਥੈਲੇ ਵਿੱਚ 3 ਲਾਲ ਅਤੇ 5 ਕਾਲੀਆਂ ਗੇਂਦਾ ਹਨ । ਇਸ ਥੈਲੇ ਵਿੱਚੋਂ ਇੱਕ ਗੇਂਦ ਅਚਾਨਕ ਬਾਹਰ ਕੱਢੀ | ਗਈ ਹੈ । ਇਸ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੋਵੇਗੀ ਕਿ ਗੇਂਦ
(i) ਲਾਲ ਹੋਵੇ ?
(ii) ਲਾਲ ਨਹੀਂ ਹੋਵੇ ?
ਹੱਲ:
ਲਾਲ ਗੇਂਦਾਂ ਦੀ ਸੰਖਿਆ = 3
ਕਾਲੀਆਂ ਗੇਂਦਾ ਦੀ ਸੰਖਿਆ = 5
ਕੁੱਲ ਗੇਂਦਾ ਦੀ ਸੰਖਿਆ = 3 + 5 = 8
ਇੱਕ ਗੇਂਦ ਅਚਾਨਕ ਕੱਢੀ ਜਾਂਦੀ ਹੈ ।
(i) ਲਾਲ ਗੇਂਦ ਕੱਢਣ ਦੀ ਸੰਭਵਾਨਾਂ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 1
P(ਲਾਲ ਗੇਂਦ) = \(\frac{3}{8}\)

(ii) ਲਾਲ ਗੇਂਦ ਨਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
= 1 – P (ਲਾਲ ਗੇਂਦ)
= 1 – \(\frac{3}{8}\) = \(\frac{5}{8}\)
[P(\(\bar{A}\)) = 1 – P(E)]

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 9.
ਇੱਕ ਡੱਬੇ ਵਿੱਚ 5 ਲਾਲ ਬੰਟੇ, 8 ਚਿੱਟੇ ਬੰਟੇ ਅਤੇ 4 ਹਰੇ ਬੰਟੇ ਹਨ ।ਇਸ ਡੱਬੇ ਵਿੱਚੋਂ ਇੱਕ ਬੰਟਾ ਅਚਾਨਕ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ।ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਕੱਢਿਆ ਗਿਆ ਬੰਦਾ
(i) ਲਾਲ ਹੈ ?
(ii) ਚਿੱਟਾ ਹੈ ?
(iii) ਹਰਾ ਨਹੀਂ ਹੈ ?
ਹੱਲ:
ਲਾਲ ਬੰਟਿਆਂ ਦੀ ਸੰਖਿਆ = 5
ਚਿੱਟੇ ਬੰਟਿਆਂ ਦੀ ਸੰਖਿਆ = 8
ਹਰੇ ਬੰਟਿਆਂ ਦੀ ਸੰਖਿਆ =4
ਕੁੱਲ ਬੰਟੇ = 5 + 8 + 4 = 17
ਕਿਉਂਕਿ ਇਕ ਬੰਟਾ ਕੱਢਿਆ ਗਿਆ ਹੈ
(i) ਕਿਉਂਕਿ ਲਾਲ ਬੰਟੇ 5 ਹਨ
ਲਾਲ ਬੰਟੇ ਦੇ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 2
= \(\frac{5}{17}\)

(ii) ਕਿਉਂਕਿ ਚਿੱਟੇ ਬੰਟੇ 8 ਹਨ ।
ਚਿੱਟਾ ਬੰਟਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 3
= \(\frac{8}{17}\)

(iii) ਕਿਉਂਕਿ ਹਰੇ ਬੰਟੇ 4 ਹਨ ।
ਹਰਾ ਬੰਟਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 4
= \(\frac{4}{17}\)
∴ ਹਰਾ ਬੰਟਾ ਨਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ = 1 – ਹਰਾ ਬੰਟਾ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ ।
= 1 – \(\frac{4}{17}\) = \(\frac{17-4}{17}\) = \(\frac{13}{17}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 10.
ਇੱਕ ਪਿੱਗੀ ਬੈਂਕ (piggy bank) ਵਿੱਚ, 50 ਪੈਸੇ ਦੇ ਸੌ ਸਿੱਕੇ ਹਨ, ₹ 1 ਦੇ ਪੰਜਾਹ ਸਿੱਕੇ ਹਨ, ₹ 2 ਦੇ ਵੀਹ ਸਿੱਕੇ ਅਤੇ ₹ 5 ਦੇ ਦਸ ਸਿੱਕੇ ਹਨ | ਜੇਕਰ ਪਿੱਗੀ ਬੈਂਕ ਨੂੰ ਹਿਲਾ ਕੇ ਉਲਟਾ ਕਰਨ ਤੇ ਕੋਈ ਇੱਕ ਸਿੱਕਾ ਬਾਹਰ ਡਿੱਗਣ ਦੇ ਪਰਿਣਾਮ ਸਮਸੰਭਾਵੀ ਹਨ ਬਰਾਬਰ ਦੀ ਸੰਭਾਵਨਾ ਵਾਲੇ) ਤਾਂ ਉਸਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ ਕਿ ਉਹ ਡਿੱਗਿਆ ਹੋਇਆ ਸਿੱਕਾ
(i) 50 ਪੈਸੇ ਦਾ ਹੋਵੇਗਾ
(ii) ਤੋਂ 5 ਦਾ ਨਹੀਂ ਹੋਵੇਗਾ ?
ਹੱਲ:
50 ਪੈਸੇ ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 100
₹ 1 ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 50
₹ 2 ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 20
₹ 5 ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 10
∴ ਸਿੱਕਿਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ = 100 + 50 + 20 + 10 = 180
50 ਪੈਸੇ ਦੇ 100 ਸਿੱਕੇ ਹਨ ।
50 ਪੈਸੇ ਦੇ ਸਿੱਕੇ ਨਿਕਲਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 5
= \(\frac{100}{180}\)
p (50 ਪੈਸੇ ਦੇ ਸਿੱਕੇ) = \(\frac{5}{9}\)

(ii) ₹ 5 ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 10
∴ ₹ 5 ਦੇ ਸਿੱਕੇ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 6
P (₹ 5 ਦੇ ਸਿੱਕੇ) = \(\frac{10}{180}\) = \(\frac{1}{18}\)
P (₹ 5 ਦੇ ਸਿੱਕੇ ਨਾ ਨਿਕਲਣ) = 1 – P (5)
= 1 – \(\frac{1}{18}\) = \(\frac{18-1}{18}\) = \(\frac{17}{18}\)

ਪ੍ਰਸ਼ਨ 11.
ਗੋਪੀ ਆਪਣੇ ਜਲ-ਜੀਵ-ਕੁੰਡ (aquarium) ਦੇ ਲਈ ਇੱਕ ਦੁਕਾਨ ਤੋਂ ਮੱਛੀਆਂ ਖਰੀਦਦੀ ਹੈ । ਦੁਕਾਨਦਾਰ ਇੱਕ ਟੈਂਕੀ ਜਿਸ ਵਿੱਚ 5 ਨਰ ਮੱਛੀਆਂ ਅਤੇ 8 ਮਾਦਾ ਮੱਛੀਆਂ ਹਨ, ਵਿਚੋਂ ਇੱਕ ਮੱਛੀ ਪੱਖਪਾਤ ਰਹਿਤ ਉਸਨੇ ਬਾਹਰ ਕੱਢੀ ਹੈ। (ਦੇਖੋ ਚਿੱਤਰ) । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾਂ ਹੈ ਕਿ ਬਾਹਰ ਕੱਢੀ। ਗਈ ਮੱਛੀ ਨਰ ਮੱਛੀ ਹੈ ?
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 7
ਹੱਲ:
ਨਰ ਮੱਛੀਆਂ ਦੀ ਸੰਖਿਆ = 5
ਮਾਦਾ ਮੱਛੀਆਂ ਦੀ ਸੰਖਿਆ = 8
ਕੁੱਲ ਮੱਛੀਆਂ ਦੀ ਸੰਖਿਆ = 5 + 8 = 13
ਨਰ ਮੱਛੀ ਕੱਢਣ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 8
P (ਨਰ ਮੱਛੀ) = \(\frac{5}{13}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 12.
ਸੰਯੋਗ (chance) ਦੇ ਇੱਕ ਖੇਡ ਵਿੱਚ ਇੱਕ ਤੀਰ ਨੂੰ ਘੁਮਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਵਿਰਾਮ ਵਿੱਚ ਆਉਣ ਤੋਂ ਬਾਅਦ ਸੰਖਿਆਵਾਂ 1, 2, 3, 4, 5, 6, 7, 8 ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਸੰਖਿਆਂ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ । (ਦੇਖੋ ਚਿੱਤਰ) । ਜੇਕਰ ਇਹ ਸਾਰੇ ਪਰਿਣਾਮ ਸਮਸੰਭਾਵੀ ਹਨ ਤਾਂ ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਹ ਤੀਰ ਸੰਕੇਤ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 9
(i) 8 ਨੂੰ ਕਰੇਗਾ ?
(ii) ਇੱਕ ਟਾਂਕ ਸੰਖਿਆਂ ਨੂੰ ਕਰੇਗਾ ?
(iii) 2 ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ ਨੂੰ ਕਰੇਗਾ ?
(iv) 9 ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਨੂੰ ਕਰੇਗਾ ?
ਹੱਲ:
(i) ਪਰਿਣਾਮਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ
= {1, 2, 3, 4, 5, 6, 7, 8}
‘8’ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾਂ = \(\frac{1}{8}\)
∴ P (8) = \(\frac{1}{8}\)

(ii) ਟਾਂਕ ਸੰਖਿਆ = {1, 3, 5, 7}
ਟਾਂਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾਂ
= \(\frac{4}{2}\) = \(\frac{1}{2}\)
P (ਟਾਂਕ ਸੰਖਿਆ) = \(\frac{1}{2}\)

(iii) 2 ਤੋਂ ਵੱਡੀਆਂ ਸਿਖਿਆਵਾਂ = {3, 4, 5, 6, 7, 8}
2 ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾਂ
= \(\frac{6}{8}\) = \(\frac{3}{4}\)
P (2 ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ) = \(\frac{3}{4}\)

(iv) 9 ਤੋਂ ਛੋਟੀ ਸੰਖਿਆਵਾਂ
{1, 2, 3, 4, 5, 6, 7, 8}
∴ 9 ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{8}{8}\)
P (9 ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ) = 1

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 13.
ਇੱਕ ਪਾਸੇ ਨੂੰ ਇੱਕ ਵਾਰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ । ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ :
(i) ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ
(ii) 2 ਅਤੇ 6 ਦੇ ਵਿਚਕਾਰ ਸਥਿਤ ਕੋਈ ਸੰਖਿਆ
(iii) ਇੱਕ ਟਾਂਕ ਸੰਖਿਆ
ਹੱਲ:
ਜਦੋਂ ਪਾਸੇ ਨੂੰ ਇੱਕ ਵਾਰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੰਭਵ ਪਰਿਣਾਮ ਹਨ :
S = {1, 2, 3, 4, 5, 6}
(i) ਅਭਾਜ ਸੰਖਿਆਵਾਂ ਹਨ :
{2, 3, 5}
∴ ਅਭਾਜ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{3}{6}\) = \(\frac{1}{2}\)
P (ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ) = \(\frac{1}{2}\)

(ii) 2ਅਤੇ 6 ਦੇ ਵਿਚਕਾਰ ਸਥਿਤ ਸੰਖਿਆਵਾਂ= {3,4,5}
2 ਅਤੇ 6 ਦੇ ਵਿਚਕਾਰ ਸਥਿਤ ਸੰਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{3}{6}\) = \(\frac{1}{2}\)
P (2 ਅਤੇ 6 ਵਿੱਚ ਸੰਖਿਆ) = \(\frac{1}{2}\)

(iii) ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਹਨ = { 1, 3, 5}
ਟਾਂਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{3}{6}\) = \(\frac{1}{2}\)
P (ਟਾਂਕ ਸੰਖਿਆ) = \(\frac{1}{2}\)

ਪ੍ਰਸ਼ਨ 14.
52 ਪੱਤਿਆਂ ਦੀ ਚੰਗੀ ਤਰ੍ਹਾਂ ਫੈਂਟੀ ਗਈ ਤਾਸ਼ ਦੀ ਗੁੱਟੀ ਵਿੱਚੋਂ ਇੱਕ ਪੱਤਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ | ਹੇਠਾਂ ਲਿਖਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ :
(i) ਲਾਲ ਰੰਗ ਦਾ ਬਾਦਸ਼ਾਹ
(ii) ਇੱਕ ਤਸਵੀਰ ਵਾਲਾ ਪੱਤਾ ।
(iii) ਲਾਲ ਰੰਗ ਦਾ ਤਸਵੀਰ ਵਾਲਾ ਪੱਤਾ |
(iv) ਪਾਨ ਦਾ ਗੁਲਾਮ
(v) ਹੁਕਮ ਦਾ ਪੱਤਾ
(vi) ਇੱਕ ਇੱਟ ਦੀ ਬੇਗਮ
ਹੱਲ:
52 ਪੱਤਿਆਂ ਵਾਲੀ ਗੁੱਟੀ ਵਿੱਚ 52 ਪੱਤੇ ਹਨ ।
(i) ਲਾਲ ਰੰਗ ਦੇ ਦੋ ਬਾਦਸ਼ਾਹ ਭਾਵ ਪਾਨ ਦਾ ਬਾਦਸ਼ਾਹ ਅਤੇ ਇੱਟ ਦਾ ਬਾਦਸ਼ਾਹ ।
∴ ਲਾਲ ਰੰਗ ਦਾ ਬਾਦਸ਼ਾਹ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{2}{52}\) = \(\frac{1}{26}\)
P (ਲਾਲ ਰੰਗ ਦਾ ਬਾਦਸ਼ਾਹ ) = \(\frac{1}{26}\)

(ii) 12 ਤਸਵੀਰ ਵਾਲੇ ਪੱਤੇ ਦਾ ਭਾਵ 4 ਗੁਲਾਮ, 4 ਬੇਗਮ ਅਤੇ 4 ਬਾਦਸ਼ਾਹ
ਤਸਵੀਰ ਵਾਲੇ ਪੱਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{12}{52}\)
∴ P (ਤਸਵੀਰ ਵਾਲਾ ਪੱਤਾ) = \(\frac{2}{13}\)

(iii) ਕਿਉਂਕਿ ਲਾਲ ਰੰਗ ਦੇ ਤਸਵੀਰ ਵਾਲੇ 6 ਪੱਤੇ ਭਾਵ 2 ਗੁਲਾਮ, 2 ਬੇਗ਼ਮ ਅਤੇ 2 ਬਾਦਸ਼ਾਹ ਹਨ ।
∴ 6 ਲਾਲ ਰੰਗ ਦੇ ਤਸਵੀਰ ਵਾਲੇ ਪੱਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{6}{52}\)
P (ਲਾਲ ਤਸਵੀਰ ਵਾਲਾ ਪੱਤਾ) = \(\frac{3}{26}\)

(iv) ਕਿਉਂਕਿ ਪਾਨ ਦਾ ਕੇਵਲ ਇੱਕ ਹੀ ਗੁਲਾਮ ਹੈ ।
∴ ਪਾਨ ਦਾ ਗੁਲਾਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{52}\)
P (ਇੱਕ ਪਾਨ ਦਾ ਗੁਲਾਮ) = \(\frac{1}{52}\)

(v) ਕਿਉਂਕਿ ਹੁਕਮ ਦੇ 13 ਪੱਤੇ ਹਨ ।
∴ ਹੁਕਮ ਦਾ ਪੱਤਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{13}{52}\)
P(ਹੁਕਮ ਦਾ ਪੱਤਾ) = \(\frac{1}{4}\)

(vi) ਕਿਉਂਕਿ ਇੱਟ ਦੀ ਕੇਵਲ ਇੱਕ ਹੀ ਬੇਗਮ ਹੈ
∴ ਇੱਟ ਦੀ ਬੇਗ਼ਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{52}\)
P (ਇੱਟ ਦੀ ਬੇਗਮ) = \(\frac{1}{52}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 15.
ਤਾਸ਼ ਦੇ ਪੰਜ ਪੱਤਿਆਂ -‘ਇੱਟ ਦਾ ਦਹਿਲਾ , ਗੁਲਾਮ, ਬੇਗ਼ਮ, ਬਾਦਸ਼ਾਹ ਅਤੇ ਧੱਕੇ ਨੂੰ ਪਲਟ ਕੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਫੈਂਟਿਆਂ ਗਿਆ ਹੈ । ਫਿਰ ਇਹਨਾਂ ਵਿੱਚੋਂ ਅਚਾਨਕ ਇੱਕ ਪੱਤਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ।
(i) ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਹ ਪੱਤਾ ਇੱਕ ਬੇਗ਼ਮ ਹੈ ?
(ii) ਜੇਕਰ ਬੇਗ਼ਮ ਆਉਂਦੀ ਹੈ ਤਾਂ, ਉਸਨੂੰ ਅੱਲਗ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਹੋਰ ਪੱਤਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਦੂਸਰਾ ਕੱਢਿਆ ਗਿਆ ਪੱਤਾ
(a) ਇੱਕ ਯੁੱਕਾ ਹੈ ?
(b) ਇੱਕ ਬੇਗ਼ਮ ਹੈ ?
ਹੱਲ:
ਪੰਜ ਪੱਤੇ ਇੱਟ ਦਾ ਦਹਿਲਾ, ਗੁਲਾਮ, ਬੇਗਮ, ਬਾਦਸ਼ਾਹ ਅਤੇ ਇੱਟ ਹਨ ।
(i) ਬੇਗ਼ਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{5}\)
∴ P (ਇੱਕ ਬੇਗ਼ਮ) = \(\frac{1}{5}\)

(ii) ਜੇਕਰ ਬੇਗ਼ਮ ਆਉਂਦੀ ਹੈ ਤਾਂ ਉਸ ਨੂੰ ਅਲੱਗ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ ਚਾਰ ਪੱਤੇ ਬੱਚ ਜਾਂਦੇ ਹਨ । ਇੱਟ ਦਾ ਦਹਿਲਾ, ਗੁਲਾਮ, ਬਾਦਸ਼ਾਹ ਅਤੇ ਧੱਕਾ
(a) ਯੱਕਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{4}\)
|P (ਇੱਕ ਯੱਕਾ) = \(\frac{1}{4}\)
ਕੋਈ ਬੇਗ਼ਮ ਨਹੀਂ ਬਚੀ ।
(b) ਬੇਗ਼ਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{0}{4}\) = 0
P (ਬੇਗ਼ਮ) = 0

ਪ੍ਰਸ਼ਨ 16.
ਕਿਸੇ ਕਾਰਨ 12 ਖਰਾਬ ਪੈੱਨ 132 ਚੰਗੇ ਪੈਂਨਾਂ ਵਿੱਚ ਮਿਲ ਗਏ ਹਨ । ਕੇਵਲ ਵੇਖ ਕੇ ਨਹੀਂ ਦੱਸਿਆ ਜਾ ਸਕਦਾ ਕਿ ਕੋਈ ਪੈੱਨ ਖਰਾਬ ਹੈ ਜਾਂ ਠੀਕ ਹੈ ।ਇਸ ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ, ਇੱਕ ਪੈਂਨ ਅਚਾਨਕ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ । ਬਾਹਰ ਕੱਢੇ ਗਏ ਪੈਂਨ ਦੇ ਠੀਕ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਖਰਾਬ ਪੈਂਨਾਂ ਦੀ ਸੰਖਿਆਂ = 12
ਚੰਗੇ ਪੈਂਨਾਂ ਦੀ ਸੰਖਿਆਂ = 132
∴ ਐੱਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆਂ = 12 + 132 = 144
ਚੰਗੇ ਪੈੱਨ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{132}{144}\) = \(\frac{11}{12}\)
P (ਇੱਕ ਚੰਗਾ ਪੈਂਨ) = \(\frac{11}{12}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 17.
(i) 20 ਬਲਬਾਂ ਦੇ ਇੱਕ ਸਮੂਹ ਵਿੱਚ 4 ਬਲਬ ਖਰਾਬ ਹਨ ।ਇਸ ਸਮੂਹ ਵਿੱਚੋਂ ਇੱਕ ਬਲਬ ਅਚਾਨਕ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਹ ਬਲਬ ਖ਼ਰਾਬ ਹੋਵੇਗਾ ?
(ii) ਮੰਨ ਲਓ (i) ਵਿੱਚ ਬਾਹਰ ਕੱਢਿਆ ਗਿਆ ਬਲਬ | ਖ਼ਰਾਬ ਨਹੀਂ ਹੈ ਅਤੇ ਨਾ ਹੀ ਇਸਨੂੰ ਦੁਬਾਰਾ ਬਲਬਾਂ ਦੇ ਨਾਲ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ । ਹੁਣ ਬਾਕੀ ਬਲਬਾਂ ਵਿੱਚੋਂ ਇੱਕ ਬਲਬ ਅਚਾਨਕ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ।ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਹ ਬਲਬ ਖ਼ਰਾਬ ਨਹੀਂ ਹੋਵੇਗਾ?
ਹੱਲ:
(i) ਖ਼ਰਾਬ ਬਲਬਾਂ ਦੀ ਸੰਖਿਆਂ = 4
ਚੰਗੇ ਬਲਬਾਂ ਦੀ ਸੰਖਿਆਂ = 16
ਬਲਬਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆਂ = 4 + 16 = 20
ਖ਼ਰਾਬ ਬਲਬ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{4}{20}\)

(ii) ਜਦੋਂ ਕੱਢਿਆ ਗਿਆ ਬਲਬ ਦੁਬਾਰਾ ਬਲਬਾਂ ਵਿਚ ਨਹੀਂ ਮਿਲਾਇਆ ਜਾਂਦਾ, ਤਾਂ 19 ਬਲਬ ਬਾਕੀ ਬਚਦੇ ਹਨ ।
ਹੁਣ ਖ਼ਰਾਬ ਬਲਬ ਪ੍ਰਾਪਤ ਨਾ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{15}{19}\)
∴ P (ਬਲਬ ਖ਼ਰਾਬ ਨਹੀਂ) = \(\frac{15}{19}\)

ਪ੍ਰਸ਼ਨ 18.
ਇੱਕ ਪੇਟੀ ਵਿੱਚ 90 ਪਲੇਟਾਂ (discs) ਹਨ , ਜਿਹਨਾਂ ਉੱਤੇ 1 ਤੋਂ 90 ਤੱਕ ਸੰਖਿਆਵਾਂ ਲਿਖੀਆਂ ਹਨ । ਜੇਕਰ ਇਸ ਪੇਟੀ ਵਿੱਚੋਂ ਇੱਕ ਪਲੇਟ ਅਚਾਨਕ ਬਾਹਰ ਕੱਢੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਕੀ ਇਸਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ ਕਿ ਇਸ ਪਲੇਟ ਉੱਤੇ ਅੰਕਿਤ ਹੋਵੇਗੀ ।
(i) ਦੋ ਅੰਕਾਂ ਦੀ ਇੱਕ ਸੰਖਿਆ
(ii) ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ
(iii) 5 ਨਾਲ ਵੰਡੀ ਜਾਣ ਵਾਲੀ ਇੱਕ ਸੰਖਿਆ ।
ਹੱਲ:
1 ਤੋਂ 90 ਤੱਕ ਕੁੱਲ 90 ਸੰਖਿਆਵਾਂ ਹਨ ਅਤੇ 10 ਤੋਂ 90 ਤੱਕ 80 ਸੰਖਿਆਵਾਂ 2 ਅੰਕਾਂ ਵਾਲੀਆਂ ਹਨ ।
(i) ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਸੰਖਿਆਂ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{81}{90}\)
∴ P (ਦੋ ਅੰਕਾਂ ਦੀ ਇੱਕ ਸੰਖਿਆ) = \(\frac{81}{90}\)

(ii) ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਹਨ :{1, 4, 9, 16, 25, 36, – 49, 64, 81} 1 ਤੋਂ 90 ਤੱਕ 9 ਪੁਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਹਨ ।
∴ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{9}{90}\) = \(\frac{1}{10}\)
P (ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ) = \(\frac{1}{10}\)

(iii) 5 ਨਾਲ ਵੰਡੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ : {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90}
5 ਨਾਲ ਵੰਡਣ ਯੋਗ 18 ਸੰਖਿਆਵਾਂ ਹਨ ।
∴ 5 ਨਾਲ ਵੰਡੀ ਜਾਣ ਵਾਲੀ ਸੰਖਿਆਦੀ ਸੰਭਾਵਨਾ
= \(\frac{18}{90}\) = \(\frac{1}{5}\)
∴ ਲੋੜੀਂਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{5}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 19.
ਇੱਕ ਬੱਚੇ ਦੇ ਕੋਲ ਇੱਕ ਅਜਿਹਾ ਪਾਸਾ ਹੈ ਜਿਸਦੇ ਫਲਕਾਂ ਉੱਤੇ ਹੇਠ ਲਿਖੇ ਅੱਖਰ ਅੰਕਿਤ ਹਨ ।
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 10
ਇਸ ਪਾਸੇ ਨੂੰ ਇੱਕ ਵਾਰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ
(i) A ਪ੍ਰਾਪਤ ਹੋਵੇ ?
(ii) D ਪ੍ਰਾਪਤ ਹੋਵੇ ?
ਹੱਲ:
ਪਾਸੇ ਦੇ ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ = 6
S = {A, B, C, D, E, A}
n (S) = 6
(1) ਕਿਉਂਕਿ ਦੋ ਫਲਕਾਂ ਉੱਤੇ A ਹੈ ।
∴ A ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{2}{6}\) = \(\frac{1}{3}\)
P(A) = \(\frac{1}{3}\)
(2) ਕਿਉਂਕਿ ਕੇਵਲ ਇੱਕ ਫਲਕ ਉੱਤੇ D ਹੈ ।
D ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{6}\)
∴ P(D) = \(\frac{1}{6}\)

ਪ੍ਰਸ਼ਨ 20.
ਮੰਨ ਲਓ ਤੁਸੀਂ ਇੱਕ ਪਾਸੇ ਨੂੰ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਏ ਆਇਤਾਕਾਰ ਖੇਤਰ ਵਿੱਚ ਅਚਾਨਕ ਸੁੱਟਦੇ ਹੋ । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ ਇਹ ਪਾਸਾ 1m ਵਿਆਸ ਵਾਲੇ ਚੱਕਰ ਦੇ ਅੰਦਰ ਡਿੱਗੇਗਾ ?
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 11
ਹੱਲ:
ਆਇਤ ਦੀ ਲੰਬਾਈ (1) = 3 m
ਆਇਤ ਦੀ ਚੌੜਾਈ (b) = 2 m
∴ ਆਇਤ ਦਾ ਖੇਤਰਫਲ = 3 m × 2 m = 6 m2
ਚੱਕਰ ਦਾ ਵਿਆਸ = 1 m
ਚੱਕਰ ਦਾ ਅਰਧ ਵਿਆਸ (R) = \(\frac{1}{2}\) m
∴ ਚੱਕਰ ਦਾ ਖੇਤਰਫਲ = πR2
= π\(\left(\frac{1}{2}\right)^{2}\) = \(\frac{\pi}{4}\) m2
ਚੱਕਰ ਦੇ ਅੰਦਰ ਡਿੱਗਣ ਵਾਲੇ ਪਾਸੇ ਦੀ ਸੰਭਾਵਨਾ
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 12
∴ ਲੋੜੀਂਦੀ ਸੰਭਾਵਨਾ = \(\frac{\pi}{24}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 21.
144 ਬਾਲ ਪੈਂਨਾਂ ਦੇ ਇੱਕ ਸਮੂਹ ਵਿੱਚ 20 ਬਾਲ ਪੈੱਨ ਖ਼ਰਾਬ ਹਨ ਅਤੇ ਬਾਕੀ ਠੀਕ ਹਨ |ਤੁਸੀਂ ਉਹੀ ਪੈਂਨ ਖ਼ਰੀਦਣਾ ਚਾਹੋਗੇ ਜਿਹੜਾ ਠੀਕ ਹੈ, ਪਰੰਤੂ ਖ਼ਰਾਬ ਪੈੱਨਤੁਸੀਂ ਖਰੀਦਣਾ ਨਹੀਂ ਚਾਹੋਗੇ !ਦੁਕਾਨਦਾਰ ਇਹਨਾਂ ਪੈਂਨਾਂ ਵਿੱਚੋਂ ਅਚਾਨਕ ਇੱਕ ਪੈਂਨ ਬਾਹਰ ਕੱਢ ਕੇ ਤੁਹਾਨੂੰ ਦਿੰਦਾ ਹੈ ।ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ
(i) ਤੁਸੀਂ ਉਹ ਪੈਂਨ ਖਰੀਦੋਗੇ ?
(ii) ਤੁਸੀਂ ਉਹ ਪੈਂਨ ਨਹੀਂ ਖਰੀਦੋਗੇ ?
ਹੱਲ:
ਸਮੂਹ ਦੇ ਬਾਲ ਪੈਂਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ = 144
ਖਰਾਬ ਪੈਂਨਾਂ ਦੀ ਸੰਖਿਆ = 20
∴ ਚੰਗੇ ਪੈਂਨਾਂ ਦੀ ਸੰਖਿਆ = 144 – 20
= 124
(i) ਮੰਨ ਲਉ ਤੁਸੀਂ ਉਹ ਪੈਂਨ ਖਰੀਦਣ ਦੀ ਘਟਨਾ ਨੇ ਹੈ
∴ ਐੱਨ ਖਰੀਦਣ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{124}{144}\)
P(A) = \(\frac{31}{36}\)

(ii) ਉਹ ਪੈਂਨ ਨਹੀਂ ਖਰੀਦਣ ਦੀ ਘਟਨਾ ਨੇ ਹੋਵੇਗੀ ।
P(\(\overline{\mathrm{A}}\)) = 1 – P (A)
= 1 – \(\frac{31}{36}\)
= \(\frac{36-31}{36}\)
∴ P (ਪੈਂਨ ਨਹੀਂ ਖਰੀਦਣਾ) = \(\frac{5}{36}\)

ਪ੍ਰਸ਼ਨ 22.
ਇੱਕ ਸਲੇਟੀ ਪਾਸੇ ਅਤੇ ਨੀਲੇ ਪਾਸੇ ਨੂੰ ਇੱਕਠੇ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ । ਸਾਰੇ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮਾਂ ਨੂੰ ਲਿਖੋ ।
(i) ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੇ :
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 13
(ii) ਇਕ ਵਿਦਿਆਰਥੀ ਇਹ ਤਰਕ ਦਿੰਦਾ ਹੈ ਕਿ ‘ਇੱਥੇ ਕੁੱਲ 11 ਪਰਿਣਾਮ 2, 3, 4, 5, 6, 7, 8, 910, 11 ਅਤੇ 12 ਹਨ । ਇਸ ਕਰਕੇ ਹਰੇਕ ਦੀ ਸੰਭਾਵਨਾ \(\frac{1}{11}\) ਹੈ । ਕੀ ਤੁਸੀਂ ਇਸ ਤਰਕ ਨਾਲ ਸਹਿਮਤ ਹੋ ? ਕਾਰਨ ਸਹਿਤ ਉੱਤਰ ਦਿਓ ।
ਹੱਲ:
ਜਦੋਂ ਦੋ ਪਾਸੇ ਸੁੱਟੇ ਜਾਂਦੇ ਹਨ ਤਾਂ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਹੈ :
S = {(1,1) (1, 2) (1, 3) (1, 4) (1,5) (1,6)
(2, 1) (2, 2) (2, 3) (2, 4) (2,5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3,6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6,4) (6,5) (6, 6)}
n (S) = 36
ਮੰਨ ਲਉ ਜੋੜ 3 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ ਨੇ ਹੈ ।
∴ A = {1, 2) (2, 1)}
n (A) = 2
∴ ਜੋੜ ਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{2}{36}\) = \(\frac{1}{18}\)
P(A) = \(\frac{1}{18}\)
ਮੰਨ ਲਓ ਜੋੜ ‘4 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ B ਹੈ ।
B = {(1, 3), (3, ; (2, 2)}
n(B) = 3
∴ P(B) = \(\frac{3}{36}\) = \(\frac{1}{12}\)
ਮੰਨ ਲਓ ਜੋੜ ‘5 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਹੈ ।
C = {(1, 4) (4, 1) (2, 3) (3, 2)}
n (C) = 4
P(C) = \(\frac{4}{36}\) = \(\frac{1}{9}\)
ਮੰਨ ਲਓ ਜੋੜ ‘ੴ’ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ ਹੈ ।
D= {(1, 5) (5, 1) (2, 4) (4, 2) (3, 3)}
n (D) = 5
∴ P (D) = \(\frac{5}{36}\)
ਮੰਨ ਲਓ ਜੋੜ ‘7′ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ E ਹੈ ।
E = {(1, 6) (6, 1) (2, 5) (5, 2) (4, 3) (3, 4)}
n (E) = 6
∴ P (E) = P (ਜੋੜ 7 ਪ੍ਰਾਪਤ ਕਰਨਾ) = \(\frac{6}{36}\) = \(\frac{1}{6}\)
ਜਦੋਂ ਦੋਵੇਂ ਪਾਸਿਆਂ ਨੂੰ ਸੁੱਟਿਆਂ ਜਾਂਦਾ ਹੈ ਤਾਂ
ਮੰਨ ਲਓ ਜੋੜ ‘8’ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ F ਹੈ !
F= {(2, 6) (6, 2) (3, 5) (4, 4) (5, 3)}
∴ n (F) = 5
P (F) = P (ਜੋੜ 8 ਪ੍ਰਾਪਤ ਕਰਨਾ) = \(\frac{5}{36}\)
ਮੰਨ ਲਓ ਜੋੜ ‘9′ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ G ਵੈ
G = {(4, 5) (5, 4) (3, 6) (6, 3)}
n(G) = 4
∴ P (G) = P (ਜੋੜ 9 ਪ੍ਰਾਪਤ ਕਰਨਾ) = \(\frac{4}{36}\) = \(\frac{1}{9}\)
ਮੰਨ ਲਓ ਜੋੜ ‘10′ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ H ਵੈ
H = {(6, 4) (4, 6) (5, 5)}
n (H) = 3
∴ P(H) = P (ਜੋੜ 10 ਪ੍ਰਾਪਤ ਕਰਨਾ) = \(\frac{3}{36}\) = \(\frac{1}{12}\)
ਮੰਨ ਲਉ ਜੋੜ ‘11′ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ I ਹੈ ।
I = {(5, 6) (6, 5)}
n (I) = 2
∴ P(I) = P (ਜੋੜ 11 ਪ੍ਰਾਪਤ ਕਰਨਾ) = \(\frac{2}{36}\) = \(\frac{1}{18}\)
ਮੰਨ ਲਓ ਜੋੜ ’12’ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਘਟਨਾ J ਹੈ ।
J = {(6, 6}; n (J) = 1
∴ P (J) = \(\frac{1}{36}\)
PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1 14

(ii) ਨਹੀਂ ਸਾਰੇ 11 ਸਮ ਸੰਭਾਵੀ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ ਨਹੀਂ ਹਨ । ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੀ ਸੰਭਾਵਨਾ ਭਿੰਨ-ਭਿੰਨ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 23.
ਇੱਕ ਖੇਡ ਵਿੱਚ ਇੱਕ ਰੁਪਏ ਦੇ ਸਿੱਕੇ ਨੂੰ ਤਿੰਨ ਵਾ ਉਛਾਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਵਾਰ ਦਾ ਪਰਿਣਾਮ ਲਿ ॥ ਲਿਆ ਜਾਂਦਾ ਹੈ ।ਤਿੰਨੋ ਪਰਿਣਾਮ ਸਮਾਨ ਹੋਣ ਤੇ, ਭਾਵ ਤਿੰਨ ਚਿੱਤ ਜਾਂ ਤਿੰਨ ਪੱਟ ਪ੍ਰਾਪਤ ਹੋਣ ਤੇ, ਹਨੀਫ਼ ਖੇਡ ਵਿੱਚ ਜਿੱਤ ਜਾਏਗਾ, ਨਹੀਂ ਤਾਂ ਉਹ ਹਾਰ ਜਾਏਗਾ | ਹਨੀਫ਼ ਦੇ ਖੇਡ ਵਿੱਚ ਹਾਰ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਜਦੋਂ ਇੱਕ ਰੁਪਏ ਦੇ ਸਿੱਕੇ ਨੂੰ ਤਿੰਨ ਵਾਰ ਉਛਾਲਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ
S = {HHH, HHT HTH, THH, HTT, THT, TTH, TTT}
n (S) = 8
ਮੰਨ ਲਓ ਤਿੰਨ ਪਰਿਣਾਮ ਸਮਾਨ ਹੋਣ ਦੀ ਘਟਨਾ A ਹੈ। ਭਾਵ {HHH, TTT}
∴ P (A) = \(\frac{2}{8}\) = \(\frac{1}{4}\)
ਹਾਰ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ = 1 – P (A)
P(\(\overline{\mathrm{A}}\)) = 1 – \(\frac{1}{4}\)
= \(\frac{4-1}{4}\)
= \(\frac{3}{4}\)
∴ ਹਾਰ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{3}{4}\)

ਪ੍ਰਸ਼ਨ 24.
ਇੱਕ ਪਾਸੇ ਨੂੰ ਦੋ ਬਾਰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ । ਇਸਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ ਕਿ
(i) 5 ਕਿਸੇ ਵੀ ਵਾਰ ਨਹੀਂ ਆਏਗਾ ?
(ii) 5 ਘੱਟੋ ਘੱਟ ਇੱਕ ਵਾਰ ਆਏਗਾ ?
ਹੱਲ:
ਜਦੋਂ ਪਾਸੇ ਨੂੰ ਦੋ ਵਾਰ ਸੁੱਟਿਆਂ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ
S = {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1,6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4,1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6,6)}
n (S) = 36
ਮੰਨ ਲਓ ‘5’ ਹਰੇਕ ਵਾਰ ਆਏਗਾ ਘਟਨਾ A ਹੈ
A = {(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)}
n (A) = 11
∴ ‘5’ ਇੱਕ ਵਾਰ ਵੀ ਨਹੀਂ ਆਏਗਾ ਘਟਨਾ \(\overline{\mathrm{A}}\) ਹੈ ।
n (\(\overline{\mathrm{A}}\)) = 36 – 11 = 25
(i) ∴ ‘5’ ਇਕ ਵਾਰ ਵੀ ਨਹੀਂ ਆਏਗਾ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{25}{36}\), P(\(\overline{\mathrm{A}}\)) = \(\frac{25}{36}\)
‘5 ‘ ਘੱਟੋ ਘੱਟ ਇਕ ਵਾਰ ਆਏਗਾ = \(\frac{11}{36}\)
∴ P (A) = \(\frac{11}{36}\)

PSEB 10th Class Maths Solutions Chapter 15 ਸੰਭਾਵਨਾ Ex 15.1

ਪ੍ਰਸ਼ਨ 25.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਤਰਕ ਸੱਚ ਹੈ ਅਤੇ ਕਿਹੜਾ ਤਰਕ ਸੱਚ ਨਹੀਂ ਹੈ ? ਕਾਰਨ ਸਹਿਤ ਉੱਤਰ ਦਿਓ :
(i) ਜੇਕਰ ਦੋ ਸਿੱਕਿਆਂ ਨੂੰ ਇੱਕੋ ਵਾਰ ਉਛਾਲਿਆਂ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਸਦੇ ਤਿੰਨ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ ਦੋ ਚਿੱਤ, ਦੋ ਪੱਟ ਜਾਂ ਹਰੇਕ ਇੱਕ ਵਾਰ ਹੈ । ਇਸ ਕਰਕੇ ਇਹਨਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਪਰਿਣਾਮ ਦੀ ਸੰਭਾਵਨਾ \(\frac{1}{3}\) ਹੈ ।
(ii) ਜੇਕਰ ਇੱਕ ਪਾਸੇ ਨੂੰ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਸਦੇ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ-ਇੱਕ ਟਾਂਕ ਸੰਖਿਆ ਜਾਂ ਇੱਕ ਜਿਸਤ ਸੰਖਿਆ ਹੈ । ਇਸ ਕਰਕੇ ਇੱਕ ਟਾਂਕ ਸੰਖਿਆ ਪਤਾ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ \(\frac{1}{2}\) ਹੈ ।
ਹੱਲ:
(i) ਜਦੋ ਦੋ ਸਿੱਕਿਆਂ ਨੂੰ ਉਛਾਲਿਆਂ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ ਹਨ :
S = {HH, HT, TH, TT}
ਦੋ ਚਿੱਤ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{4}\)
P (HH) = \(\frac{1}{4}\)
ਦੋ ਪੱਟ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{1}{4}\)
P (TT) = \(\frac{1}{4}\)
ਇਕ ਚਿੱਤ ਅਤੇ ਇੱਕ ਪੱਟ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
= \(\frac{2}{4}\) = \(\frac{1}{2}\)
∴ (i) ਤਰਕ ਠੀਕ ਨਹੀਂ ਹੈ ।

(ii) ਜਦੋ ਪਾਸੇ ਨੂੰ ਸੁਣਿਆਂ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੰਭਾਵਿਤ ਪਰਿਣਾਮ ਹਨ :
S = {1, 2, 3, 4, 5, 6}
n (S) = 6
ਟਾਂਕ ਸੰਖਿਆ : 1, 3, 5
∴ ਟਾਂਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{3}{6}\) = \(\frac{1}{2}\)
ਜਿਸਤ ਸੰਖਿਆ : 2, 4, 6
∴ ਜਿਸਤ ਦੀ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ = \(\frac{3}{6}\) = \(\frac{1}{2}\)
(ii) ਤਰਕ ਠੀਕ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Exercise 14.4

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਦਿੱਤਾ ਵੰਡ ਕਿਸੇ ਫੈਕਟਰੀ ਦੇ 50 ਮਜ਼ਦੂਰਾਂ ਦੀ ਰੋਜਾਨਾ ਆਮਦਨ ਦਰਸਾਉਂਦਾ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 1
‘ਉਪਰੋਕਤ ਵੰਡ ਨੂੰ ਇੱਕ ਘੱਟ ਪ੍ਰਕਾਰ ਦੇ ਸੰਚਵੀਂ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਵਿੱਚ ਬਦਲੋ ਅਤੇ ਉਸਦਾ ਤੋਰਣ ਖਿੱਚੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 2
ਹੁਣ ਅਸੀਂ ਬਿੰਦੁਆਂ (120, 12) ; (140, 26) ; (160, 34); (180, 40) ; (200, 50) ਨੂੰ ਗਾਫ ਪੇਪਰ ਉੱਤੇ ਆਲੇਖਿਤ ਕਰਦੇ ਹਾਂ ਅਸੀਂ ਇੱਕ ‘ਤੋਂ ਘੱਟ ਦੇ ਪ੍ਰਕਾਰ’ ਦਾ ਸੰਚਵੀਂ ਬਾਰੰਬਾਰਤਾ ਦਾ ਗ੍ਰਾਫ਼ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ।
ਚੁਣਿਆ ਗਿਆ ਪੈਮਾਨਾ : x-ਧੁਰੇ ਉੱਪਰ 10 ਮਾ = ₹ 10.
y-ਧੁਰੇ ਉੱਪਰ 10 ਮਾਤਕ = 5 ਮਜ਼ਦੂਰ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 3

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4

ਪ੍ਰਸ਼ਨ 2.
ਕਿਸੇ ਜਮਾਤ ਦੇ 35 ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਮੈਡੀਕਲ ਜਾਂਚ ਸਮੇਂ ਉਨ੍ਹਾਂ ਦਾ ਭਾਰ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਦਰਜ ਕੀਤਾ ਗਿਆ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 4
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ ਘੱਟ ਪ੍ਰਕਾਰ ਦਾ ਤੋਰਣ ਖਿੱਚੋ ਅਤੇ ਮੱਧਿਕਾ ਭਾਰ ਵੀ ਪ੍ਰਾਪਤ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 5
ਹੁਣ, ਆਲੇਖ ਉੱਤੇ ਬਿੰਦੁਆਂ (38, 0) ; (40, 3) ; (42, 5) ; (44, 9) ; (46, 14) ; (48, 28) ; (50, 32) ; (52, 35) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਸਾਨੂੰ ‘ਤੋਂ ਘੱਟ ਪ੍ਰਕਾਰ’ ਦੀ ਸੰਚਵੀਂ ਬਾਰੰਬਾਰਤਾ ਬਹੁਭੁਜ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਚੁਣਿਆ ਗਿਆ ਪੈਮਾਨਾ
x-ਧੁਰੇ ‘ਤੇ, 10 ਮਾਤਕ = 2 ਕਿਲੋਗ੍ਰਾਮ
y-ਧੁਰੇ ‘ਤੇ 10 ਮਾਕ = 5 ਵਿਦਿਆਰਥੀ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 6
ਉਪਰੋਕਤ ਆਲੇਖ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ
ਮੱਧਿਕਾ = 46.5 ਕਿ.ਗ੍ਰ. ਜੋ ਅੰਤਰਾਲ 46 – 48 ਵਿੱਚ ਸਥਿਤ ਹੈ ।
ਹੁਣ ਦਿੱਤੀ ਗਈ ਸਾਰਣੀ ਵਿੱਚ
Σfi = n = 35
∴ \(\frac{n}{2}\) = \(\frac{35}{2}\) = 17.5; ਜੋ ਕਿ ਅੰਤਰਾਲ 46 – 48 ਵਿੱਚ ਸਥਿਤ ਹੈ ।
∴ ਮੱਧਕਾ ਵਰਗ = 46 – 48
∴ l = 46 ; n = 35 ; f = 14; cf = 14 ਅਤੇ h = 2
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਿਆ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
= 46 + \(\left\{\frac{\frac{35}{2}-14}{14}\right\}\) × 2
= 46 + \(\left\{\frac{\frac{35-28}{2}}{14}\right\}\) × 2
= 46 + \(\frac{7}{2}\) × \(\frac{1}{14}\) × 2
= 46 + \(\frac{1}{2}\)
= 46 + 0.5
= 46.5
ਦੋਹਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਮੱਧਿਆ ਸਮਾਨ ਹੈ ।
ਉਪਰੋਕਤ ਚਰਚਾ ਅਤੇ ਗ੍ਰਾਫ਼ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਮੱਧਿਆ ਸਮਾਨ ਹੈ ।
∴ ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਮੱਧਿਕਾ ਭਾਰ 46.5 ਕਿਲੋਗ੍ਰਾਮ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਦਿੱਤੀ ਸਾਰਣੀ ਕਿਸੇ ਪਿੰਡ ਦੇ 100 ਫਾਰਮਾਂ ਦੇ ਪ੍ਰਤੀ ਹੈਕਟੇਅਰ ਕਣਕ ਦੇ ਉਤਪਾਦਨ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 7
ਇਸ ਵੰਡ ਨੂੰ ‘ਵੱਧ ਦੇ ਪ੍ਰਕਾਰ ਦੇ ਵੰਡ’ ਵਿੱਚ ਬਦਲੋ ਅਤੇ ਫਿਰ ਇਸਦਾ ਤੋਰਣ ਖਿੱਚੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 8
ਹੁਣ ਅਸੀਂ ਬਿੰਦੁਆਂ ਭਾਵ (50, 100) ; (55, 98) ; (60, 90) ; (65, 78) ; (70, 54) ; (75, 16) ਨੂੰ ਗ੍ਰਿਫ ਪੇਪਰ ਉੱਤੇ ਆਲੇਖਿਤ ਕਰਦੇ ਹਾਂ | ਅਸੀਂ ਵੱਧ ਪ੍ਰਕਾਰ ਦੇ’ ਦੀ ਸੰਚਵੀਂ ਬਾਰੰਬਾਰਤਾ ਦਾ ਗਾਫ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ।
ਚੁਣਿਆ ਗਿਆ ਪੈਮਾਨਾ x-ਧੁਰੇ ਉੱਤੇ 10 ਮਾਤਕ = 5 kg/ha
y-ਧੁਰੇ ਉੱਤੇ 10 ਮਾਤਕ = 10 ਫਾਰਮ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.4 9

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Exercise 14.3

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਦਿੱਤੀ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਕਿਸੇ ਮੁਹੱਲੇ ਦੇ 68 ਉਪਭੋਗਤਾਵਾਂ ਦੀ ਬਿਜਲੀ ਦੀ ਮਹੀਨੇਵਾਰ ਖਪਤ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ । ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਦੀ ਮੱਧਕਾ, ਮੱਧਮਾਨ ਅਤੇ ਬਹੁਲਕ ਪਤਾ ਕਰੋ । ਇਸਦੀ ਤੁਲਨਾ ਵੀ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 1
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 2
ਇੱਥੇ Σfi = n = 68 ਤਾਂ \(\frac{n}{2}\) = \(\frac{68}{2}\) = 34
ਜੋ ਵਰਗ ਅੰਤਰਾਲ 125 – 145 ਵਿੱਚ ਸਥਿਤ ਹੈ।
∴ ਮੱਧਕਾ ਵਰਗ = 125 – 145 ਹੋਵੇਗਾ
∴ l = 125 ; n = 68 ; f = 20 ; cf = 22 ਅਤੇ h = 20
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਿਕਾ
= l + \(\left[\frac{\frac{n}{2}-c f}{f}\right]\) × h
= 125 + \(\left\{\frac{\frac{68}{2}-22}{20}\right\}\) × 20
= 125 + \(\frac{34-22}{20}\) × 20
= 125 + 12 = 37
ਮੱਧਮਾਨ ਲਈ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 3
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ, ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 135
ਵਰਗ ਮਾਪ (h) = 20
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(\frac{7}{8}\) = 0.102
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ
ਮੱਧਮਾਨ (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 135 + 20 (0.102)
= 135 + 2.04 = 137.04
ਬਹੁਲਕ ਲਈ
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿਚ ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 20 ਹੈ ਅਤੇ ਇਸ ਦਾ ਸੰਗਤ ਵਰਗ 125 – 145 ਹੈ
∴ ਬਹੁਲਕ ਵਰਗ = 125 – 145
∴ l = 125 ; f1 = 20 ; f0 = 13; f2 = 14 ਅਤੇ h =20 ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
ਬਹੁਲਕ = l + \(\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right)\) × h
= 125 + \(\left(\frac{20-13}{2(20)-13-14}\right)\) × 20
= 125 + \(\frac{7}{40-27}\) × 20
= 125 + \(\frac{140}{13}\)
= 125 + 10.76923
= 125 + 10.77 = 135.77.
∴ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦਾ ਮੱਧਕ, ਮੱਧਮਾਨ ਅਤੇ ਬਹੁਲਕ ਹਨ : 137, 137.04 ਅਤੇ 135.77

ਪ੍ਰਸ਼ਨ 2.
ਜੇਕਰ ਹੇਠ ਦਿੱਤੀ ਗਈ ਵੰਡ ਦੀ ਮੱਧਿਕਾ 28.5 ਹੋਵੇ ਤਾਂ x ਅਤੇ y ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 4
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 5
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿੱਚ Σfi = n = 60
∴ \(\frac{n}{2}\) = \(\frac{60}{2}\) = 30
ਵੰਡ ਦੀ ਮੱਧਿਕਾ = 28.5
ਜੋ ਕਿ ਵਰਗ਼ ਅੰਤਰਾਲ 20 – 30 ਵਿੱਚ ਸਥਿਤ ਹੈ ।
∴ ਮੱਧਿਆ ਵਰਗ = 20 – 30
∴ l = 20 ; f = 20; cf = 5 + x; h= 10
ਸਾਰਣੀ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ 45 + x + y = 60
x + y = 60 – 45 = 15
x + y = 15 …(1)
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਮੱਧਿਕਾ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
28.5 = 20 + \(\left\{\frac{30-(5+x)}{20}\right\}\) × 10
28.5 = 20 + \(\frac{30-5-x}{2}\)
28.5 = \(\frac{40+25-x}{2}\)
2(28.5) = 65 – x
57.0 = 65 – x
x = 65 – 57 = 8
∴ x = 8
x ਦਾ ਇਹ ਮੁੱਲੇ (1) ਵਿੱਚ ਭਰਨ ਤੇ 8 + y = 15
y = 15 – 8 = 7
∴ x ਅਤੇ y ਦਾ ਮੁੱਲ 8 ਅਤੇ 7 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3

ਪ੍ਰਸ਼ਨ 3.
ਇੱਕ ਜੀਵਨ ਬੀਮਾ ਏਜੰਟ 100 ਪਾਲਿਸੀ ਧਾਰਕਾਂ ਦੀ | ਉਮਰ ਦੀ ਵੰਡ ਤੋਂ ਹੇਠ ਲਿਖੇ ਅੰਕੜੇ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ । | ਮੱਧਿਆ ਉਮਰ ਪਤਾ ਕਰੋ ਜੇਕਰ ਪਾਲਿਸੀ ਕੇਵਲ ਉਨ੍ਹਾਂ ਵਿਅਕਤੀਆਂ ਨੂੰ ਦਿੱਤੀ ਜਾਵੇ ਜਿਨ੍ਹਾਂ ਦੀ ਉਮਰ 18 ਸਾਲ ਜਾਂ । ਉਸ ਤੋਂ ਅਧਿਕ ਹੋਵੇ, ਪਰੰਤੂ 60 ਸਾਲ ਤੋਂ ਘੱਟ ਹੋਵੇ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 6
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 7
ਇੱਥੇ Σfi = n = 100
ਤਾਂ \(\frac{n}{2}\) = \(\frac{100}{2}\) = 50, ਜੋ ਅੰਤਰਾਲ 35 – 40 ਵਿੱਚ ਸਥਿਤ ਹਨ ।
∴ ਮੱਧਕਾ ਵਰਗ = 35 – 40
∴ l = 35 ; n = 100 ; f = 33 ; cf = 45 ਅਤੇ h = 5
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ, ਮੱਧਿਕਾ
= l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
= 35 + \(\left\{\frac{\frac{100}{2}-45}{33}\right\}\) × 5
= 35 + \(\frac{50-45}{33}\) × 5
= 35 + \(\frac{25}{33}\)
= 35 + 0.7575
= 35 +0.76 (ਲਗਭਗ) = 35.76
∴ ਮੱਧਿਕਾ ਉਮਰ 35.76 ਸਾਲ ਹੈ ।

ਪ੍ਰਸ਼ਨ 4.
ਇੱਕ ਪੌਦੇ ਦੀਆਂ 40 ਪੱਤਿਆਂ ਦੀ ਲੰਬਾਈ ਲਗਭਗ ਮਿਲੀਮੀਟਰ ਵਿੱਚ ਮਾਪੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਪ੍ਰਾਪਤ ਅੰਕੜਿਆਂ ਨੂੰ ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 8
ਪੱਤਿਆਂ ਦੀ ਮੱਧਕਾ ਲੰਬਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਕਿਉਂਕਿ ਬਾਰੰਬਾਰਤਾ ਸਾਰਣੀ ਲਗਾਤਾਰ ਨਹੀਂ ਹੈ । ਇਸ ਲਈ ਇਸ ਨੂੰ ਪਹਿਲਾਂ ਲਗਾਤਾਰਤਾ ਵਰਗ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਬਦਲਣਾ ਪਵੇਗਾ,
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 9
ਇੱਥੇ Σfi = n = 40
ਤਾਂ, \(\frac{n}{2}\) = \(\frac{40}{2}\) = 20, ਜੋ ਅੰਤਰਾਲ 144.5 – 153.5 ਵਿੱਚ ਸਥਿਤ ਹੈ ।
∴ ਮੱਧਕਾ ਵਰਗ = 144.5 – 153.5
∴ l = 144.5 ; f = 12 ; cf = 17 ; h = 9
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ,
ਮੱਧਿਆ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
ਮੱਧਿਆ = 144.5 + \(\left\{\frac{20-17}{12}\right\}\) × 9
= 144.5 + \(\frac{3×9}{12}\)
= 144.5 + 2.25 = 146.75
∴ ਪੱਤਿਆਂ ਦੀ ਮੱਧਿਕਾ ਲੰਬਾਈ 146.75 mm ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3

ਪ੍ਰਸ਼ਨ 5.
ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ 400 ਨਿਊਨ ਲੈਂਪਾਂ (lamp) ਦੇ ਜੀਵਨ ਕਾਲ (life time) ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 10
ਇੱਕ ਲੈਂਪ ਦਾ ਮੱਧਿਕਾ ਜੀਵਨ ਕਾਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 11
ਇੱਥੇ, Σfi = n = 400
∴ \(\frac{n}{2}\) = \(\frac{400}{2}\) = 200 ; ਜੋ ਕਿ ਵਰਗ ਅੰਤਰਾਲ 3000 – 3500 ਵਿੱਚ ਸਥਿਤ ਹੈ ।
∴ ਮੱਧਿਆ ਵਰਗ = 3000 – 3500
l = 3000 ; n = 400 ; f = 86 ; cf = 130 ਅਤੇ h = 500
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
ਮੱਧਕਾ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
ਮੱਧਿਕਾ = 3000 + \(\left\{\frac{\frac{400}{2}-130}{86}\right\}\) × 500
= 3000 + (\(\frac{200-130}{86}\) ) × 500
= 3000 + \(\frac{70×500}{86}\)
= 3000 + 406.9767441
= 3000 + 406.98 (ਲਗਭਗ
= 3406.98
∴ ਸੈਂਪ ਦਾ ਜੀਵਨਕਾਲ 3406.98 ਘੰਟੇ ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਇੱਕ ਸਥਾਨਕ ਟੈਲੀਫੋਨ ਡਾਇਰੈਕਟੀ ਤੋਂ 100 ਉੱਪ ਨਾਮ (surnames) ਦੀ ਸੂਚੀ ਲਈ ਗਈ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਵਰਤੇ ਗਏ ਅੰਗਰੇਜ਼ੀ ਵਰਣਮਾਲਾ ਦੇ ਅੱਖਰਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਹੇਠ ਲਿਖੀ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਪ੍ਰਾਪਤ ਹੋਈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 12
ਉੱਪ-ਨਾਮਾਂ ਵਿਚ ਮੱਧਿ ਅੱਖਰਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ | ਕਰੋ । ਉੱਪ-ਨਾਮਾਂ ਵਿੱਚ ਮੱਧਮਾਨ, ਅੱਖਰਾਂ ਦੀ ਸੰਖਿਆ ਵੀ ਪਤਾ ਕਰੋ ਅਤੇ ਨਾਲ ਹੀ, ਉਪਨਾਮ ਦਾ ਬਹੁਲਕ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੱਧਕਾ ਲਈ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 13
ਇੱਥੇ, Σfi = n = 100
∴ \(\frac{n}{2}\) = \(\frac{100}{2}\) = 50, ਜੋ ਵਰਗ ਅੰਤਰਾਲ 7 – 10 ਵਿੱਚ ਹੈ।
∴ ਮੱਧਕਾ ਵਰਗ = 7 – 10
∴ l = 7; n = 100 ; f = 40 ; cf = 36 ਅਤੇ h = 3
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਿਕਾ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
= 7 + \(\left\{\frac{\frac{100}{2}-36}{40}\right\}\) × 3
= 7 + \(\left\{\frac{50-36}{40}\right\}\) × 3
= 7 + \(\frac{14×3}{40}\)
= 7 + \(\frac{21}{20}\)
= 7 + 1.05 = 8.05
ਮੱਧਿ ਅੱਖਰਾਂ ਦੀ ਸੰਖਿਆ 8.05 ਹੈ ।
ਮੱਧਮਾਨ ਲਈ ,
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 14
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ, ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 8.5
ਵਰਗ ਮਾਪ (h) = 3
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(\frac{-6}{100}\) = -0.06
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ, ‘ਤੇ, ਮੱਧਮਾਨ (\(\bar{u}\)) = a + h\(\bar{u}\)
\(\bar{x}\) = 8.5 + 3 (0.06) = 8.5 – 0.18 = 8.32
ਇਸ ਲਈ ਮੱਧਮਾਨ ਅੱਖਰਾਂ ਦੀ ਸੰਖਿਆ 8.32
ਬਹੁਲਕ ਲਈ
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿਚ ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 40 ਹੈ ਅਤੇ ਸੰਗਤ ਅੰਤਰਾਲ 7 – 10 ਹੈ ।
∴ ਬਹੁਲਕ ਵਰਗ = 7 – 10
∴ l = 7; f1 = 40 ; f0 = 30 ; f2 = 16 ਅਤੇ h = 3
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਤੇ,
ਬਹੁਲਕ = l + \(\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right)\) × h
= 7 + \(\left(\frac{40-30}{2(40)-30-16}\right)\) × 3
= 7 + \(\frac{10}{80-46}\) × 3
= 7 + \(\frac{30}{34}\) = 7 + 0.882352941
=7 + 0.88 (ਲਗਭਗ)
= 7.88
∴ ਉੱਪਨਾਮਾਂ ਦਾ ਬਹੁਲਕ 7.88 ਅੱਖਰ ਹੈ

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਦਿੱਤੀ ਹੋਈ ਵੰਡ ਇੱਕ ਜਮਾਤ ਦੇ 30 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਵਜਨ (ਭਾਰ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ । ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਮੱਧਕਾ ਭਾਰ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 15
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.3 16
ਇੱਥੇ, Σfi = n = 30
∴ \(\frac{n}{2}\) = \(\frac{30}{2}\) = 15; ਜੋ ਅੰਤਰਾਲ 55 – 60 ਵਿਚ ਸਥਿਤ ਹੈ
∴ ਮੱਧਕਾ ਵਰਗ = 55 – 60
∴ l = 55 ; n = 30; f = 6; cf = 13 ਅਤੇ h = 5
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਤੇ ਮੱਧਿਆ
ਮੱਧਕਾ = l + \(\left\{\frac{\frac{n}{2}-c f}{f}\right\}\) × h
ਮੱਧਿਕਾ = 55 + \(\left\{\frac{\frac{30}{2}-13}{6}\right\}\) × 5
= 55 + \(\left\{\frac{15-13}{6}\right\}\) × 5
= 55 + \(\frac{2×5}{6}\)
= 55 + \(\frac{5}{3}\)
= 55 + 1.6666
= 55 + 1.67 ਲਗਭਗ = 56.67
∴ ਮੱਧਿਕਾ ਭਾਰ 56.67 ਕਿਲੋਗ੍ਰਾਮ ਹੈ

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Exercise 14.2

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਦਿੱਤੀ ਸਾਰਣੀ ਕਿਸੇ ਹਸਪਤਾਲ ਵਿੱਚ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਾਲ ਵਿੱਚ ਭਰਤੀ ਹੋਏ ਰੋਗੀਆਂ ਦੀ ਉਮਰ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 1
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ ਅਤੇ ਮੱਧਮਾਨ ਪਤਾ ਕਰੋ । ਦੋਨਾਂ ਕੇਂਦਰੀ ਪ੍ਰਵਿਰਤੀ ਦੇ ਮਾਪਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ ਅਤੇ ਉਹਨਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ ।
ਹੱਲ:
ਬਹੁਲਕ ਦੇ ਲਈ
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿੱਚ ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 23 ਹੈ ਅਤੇ ਇਸਦੇ ਸੰਗਤ ਵਰਗ ਅੰਤਰਾਲ 35 – 45 ਹੈ :
∴ ਬਹੁਲਕ ਵਰਗ = 35 – 45
ਇਸ ਲਈ l = 35 ; f1 = 23 ; f0 = 21; f2 = 14 ਅਤੇ h = 10
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
ਬਹੁਲਕ = 1 + (\(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\)) × h
= 35 + [latex]\frac{23-21}{2(23)-21-14}[/latex] × 10
= 35 + \(\frac{2}{46-35}\) × 10
= 35 + \(\frac{20}{11}\) = 35 + 1.8 = 36.8
ਮੱਧਮਾਨ ਲਈ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 2
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 30
ਵਰਗ ਮਾਪ (h) = 10
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(\frac{43}{80}\) = 0.5375
ਸੂਤਰ ਦੇ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ ਬਹੁਲਕ (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 30 + 10(0.5375)
= 30 + 5.375
= 35.375 = 35.37
ਹਸਪਤਾਲ ਵਿਚ ਭਰਤੀ ਰੋਗੀਆਂ ਦੀ ਮੱਧਮਾਨ ਉਮਰ 35.37 ਸਾਲ ਅਤੇ ਅਧਿਕਤਰ ਰੋਗੀਆਂ ਦੀ ਉਮਰ 36.8 ਸਾਲ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਹੇਠਾਂ ਦਿੱਤੇ ਅੰਕੜੇ, 225 ਬਿਜਲੀ ਉਪਕਰਨਾਂ ਦੇ ਜੀਵਨ ਕਾਲ (ਘੰਟਿਆਂ ਵਿੱਚ) ਦੀ ਸੂਚਨਾ ਦਿੰਦੇ ਹਨ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 3
ਉਪਕਰਨਾਂ ਦਾ ਬਹੁਲਕ ਜੀਵਨਕਾਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿੱਚ
ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 61 ਹੈ ਅਤੇ ਇਸ ਦਾ ਸੰਗਤ ਵਰਗ ਅੰਤਰਾਲ 60 – 80 ਹੈ ।
∴ ਬਹੁਲਕ ਵਰਗ = 60 – 80
∴ l = 60; f1 = 61 ; f0 = 52; f2 = 38 ਅਤੇ h = 20
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ
ਬਹੁਲਕ = l + (\(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\)) × h
= 60 + (\(\frac{61-52}{2(61)-52-38}\)) × 20
= 60 + \(\frac{9}{122-52-38}\) × 20
= 60 + \(\frac{9}{32}\) × 20
= 60 + \(\frac{180}{32}\) = 60 +5.625 = 65.625
∴ ਉਪਕਰਣਾਂ ਦਾ ਬਹੁਲਕ ਜੀਵਨਕਾਲ = 65.625 ਘੰਟੇ

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠਾਂ ਦਿੱਤੇ ਅੰਕੜੇ ਕਿਸੇ ਪਿੰਡ ਦੇ 200 ਪਰਿਵਾਰਾਂ ਦੀ ਕੁੱਲ ਮਹੀਨਾਵਾਰ ਘਰੇਲੂ ਖ਼ਰਚ ਦੀ ਵੰਡ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਪਰਿਵਾਰਾਂ ਦਾ ਬਹੁਲਕ ਮਹੀਨਾਵਾਰ ਖ਼ਰਚ ਪਤਾ ਕਰੋ । ਇਸਦੇ ਨਾਲ ਹੀ ਮੱਧਮਾਨ ਮਹੀਨਾਵਾਰ ਖ਼ਰਚ ਵੀ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 4
ਹੱਲ:
ਬਹੁਲਕ ਲਈ
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦੀ ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 40 ਹੈ ਅਤੇ ਸੰਗਤ ਵਰਗ 1500 – 2000 ਹੈ ।
∴ ਬਹੁਲਕ ਵਰਗ = 1500 – 2000
∴ l = 1500 ; f1 = 40 ; f0 = 24 ; f2 = 33 ਅਤੇ h = 500
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ,
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 5
= ₹ 1847.83
ਮੱਧਮਾਨ ਲਈ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 6
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a)= 2750
ਵਰਗ ਮਾਪ (h) = 500
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(-\frac{35}{200}\) = -0.175
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 2750 + 500 (0.175) = 2750 – 87.50
ਪਰਿਵਾਰਾਂ ਦਾ ਮਹੀਨਾਵਾਰ ਬਹੁਲਕ ਖਰਚ ₹ 1847.83
ਅਤੇ ਮਹੀਨਾਵਾਰ ਮੱਧਮਾਨ ਖਰਚ = ₹ 2662.50 ਹੈ

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਦਿੱਤੀ ਵੰਡ ਸਾਰਣੀ ਭਾਰਤ ਦੇ ਸੈਕੰਡਰੀ ਸਕੂਲਾਂ ਵਿੱਚ ਰਾਜਾਂ ਅਨੁਸਾਰ, ਅਧਿਆਪਕ-ਵਿਦਿਆਰਥੀ ਅਨੁਪਾਤ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ । ਇਨ੍ਹਾਂ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ ਅਤੇ ਮੱਧਮਾਨ ਪਤਾ ਕਰੋ । ਦੋਨਾਂ ਮਾਪਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 7
ਹੱਲ:
ਬਹੁਲਕ ਲਈ
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿਚ ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 10
ਹੈ ਅਤੇ ਸੰਗਤ ਵਰਗ ਅੰਤਰਕਾਲ 30 – 35 ਹੈ ।
∴ ਬਹੁਲਕ ਵਰਗ = 30 – 35.
∴ l = 30; f1 = 10 ; f0 = 9; f2 = 3 ਅਤੇ h = 5
ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਨ ‘ਤੇ
ਬਹੁਲਕ = l + (\(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\)) × h
ਬਹੁਲਕ = 30 + (\(\frac{10-9}{2(10)-9-3}\)) × 5
= 30 + \(\frac{1}{20-12}\) × 5
= 30 + \(\frac{5}{8}\) = 30 + 0.625
= 30.625 = 30.63 ਲਗਭਗ
ਮੱਧਮਾਨ ਲਈ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 8
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 32.5
ਵਰਗ ਮਾਪ (h) = 5
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(-\frac{23}{35}\) = – 0.65
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ
ਮੱਧਮਾਨ ( \(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 32.5 + 5(0.65) = 32.5 – 3.25 = 29.25 (ਲਗਭਗ)
∴ ਦਿੱਤੇ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ 30.63 ਅਤੇ ਮੱਧਮਾਨ 29.25 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2

ਪ੍ਰਸ਼ਨ 5.
ਦਿੱਤੀ ਹੋਈ ਵੰਡ ਸਾਰਣੀ ਵਿਸ਼ਵ ਦੇ ਕੁੱਝ ਵਧੀਆਂ ਬੱਲੇਬਾਜਾਂ ਦੁਆਰਾ ਇੱਕ ਰੋਜ਼ਾ ਅੰਤਰਰਾਸ਼ਟਰੀ ਕ੍ਰਿਕਟ ਮੈਚਾਂ ਵਿੱਚ ਬਣਾਈਆ ਗਈਆਂ ਦੌੜਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 9
ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ ਤਾਂ ਕਰੋ ।
ਹੱਲ:
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਤੋਂ
ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 18 ਹੈ ਅਤੇ ਸੰਗਤ ਵਰਗ ਅੰਤਰਾਲ 4000 – 5000 ਹੈ ।
∴ ਬਹੁਲਕ ਵਰਗ = 4000 – 5000
∴ l = 4000; f1 = 18; f0 = 4; f2 = 9 ਅਤੇ h = 1000
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਬਹੁਲਕ
= l + (\(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\)) × h
= 4000 + (\(\frac{18-4}{2(18)-4-9}\)) × 1000
= 4000 + \(\frac{14}{36-13}\) × 1000
= 4000 + \(\frac{14000}{23}\) = 4000 + 608.6956
= 4000 + 608.7 = 4608.7 ਲਗਭਗ
∴ ਇਸ ਲਈ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ = 4608.7

ਪ੍ਰਸ਼ਨ 6.
ਇੱਕ ਵਿਦਿਆਰਥੀ ਨੇ ਸੜਕ ਦੇ ਕਿਸੇ ਸਥਾਨ ਉੱਪਰ | ਖੜੇ ਹੋ ਕੇ ਉੱਥੋਂ ਲੰਘਣ ਵਾਲੀਆਂ ਕਾਰਾਂ ਦੀ ਸੰਖਿਆ | ਨੋਟ ਕੀਤੀ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਹੇਠ ਦਿੱਤੀ ਸਾਰਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟ ਕੀਤਾ । ਸਾਰਣੀ ਵਿਚ ਹਰੇਕ ਪ੍ਰੇਖਣ 3 ਮਿੰਟ ਦੇ ਅੰਤਰਾਲ ਨਾਲ ਉਸ ਸਥਾਨ ਤੋਂ ਲੰਘਣ ਵਾਲੀਆਂ | ਕਾਰਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ । ਇਹੋ ਜਿਹੇ 100 | ਅੰਤਰਾਲਾਂ ਉੱਪਰ ਪ੍ਰੇਖਣ ਲਏ ਗਏ । ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.2 10
ਹੱਲ:
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਵਿਚ
ਅਧਿਕਤਮ ਬਾਰੰਬਾਰਤਾ 20 ਹੈ ਅਤੇ ਸੰਗਤ ਵਰਗ ਅੰਤਰਾਲ 40 – 50 ਹੈ ।
ਬਹੁਲਕ ਵਰਗ = 40 – 50
l = 40 ; f1 = 20 ; f0 = 12 ; f2 = 11 ਅਤੇ h= 10
ਸਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ ਬਹੁਲਕ = l + (\(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\)) × h
ਬਹੁਲਕ = 40 +(\(\frac{20-12}{2(20)-12-11}\)) × 10
= 40 + \(\frac{8}{40-23}\) × 10
= 40 + \(\frac{80}{17}\) = 40 + 4.70588
= 40 + 4.7 = 44.7 (ਲਗਭਗ)
∴ ਇਸ ਲਈ ਦਿੱਤੇ ਅੰਕੜਿਆਂ ਦਾ ਬਹੁਲਕ = 44.7

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Exercise 14.1

ਪ੍ਰਸ਼ਨ 1.
ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਇੱਕ ਸਮੂਹ ਦੁਆਰਾ ਆਪਣੇ ਵਾਤਾਵਰਨ ਚੇਤਨਾ ਅਭਿਆਨ ਦੇ ਅਧੀਨ ਇੱਕ ਸਰਵੇਖਣ ਕੀਤਾ ਗਿਆ ਜਿਸ ਵਿੱਚ ਉਹਨਾਂ ਨੇ ਇੱਕ ਮੁਹੱਲੇ ਦੇ 20 ਘਰਾਂ ਵਿੱਚ ਲੱਗੇ ਪੌਦਿਆਂ ਨਾਲ ਸੰਬੰਧਿਤ ਹੇਠਾਂ ਲਿਖੇ ਅੰਕੜੇ ਇਕੱਠੇ ਕੀਤੇ । ਪ੍ਰਤਿ ਘਰ ਦੀ ਮੱਧਮਾਨ (ਔਸਤ) ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 1
ਮੱਧਮਾਨ ਦਾ ਪਤਾ ਕਰਨ ਲਈ ਤੁਸੀਂ ਕਿਹੜੀ ਵਿੱਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਅਤੇ ਕਿਉਂ ?
ਹੱਲ:
ਕਿਉਂਕਿ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਘਰਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਮੁੱਲ ਘੱਟ ਹਨ ਇਸ ਲਈ ਅਸੀਂ ਪ੍ਰਤੱਖ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਾਂਗੇ
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 2
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਮੱਧਮਾਨ \(\bar{X}\) = \(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\)
= \(\frac{162}{20}\) = 8.1
ਇਸ ਲਈ ਪ੍ਰਤੀ ਘਰ ਪੌਦਿਆਂ ਦੀ ਮੱਧਮਾਨ ਸੰਖਿਆ 8.1 ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਕਿਸੇ ਫੈਕਟਰੀ ਦੇ 50 ਮਜਦੂਰਾਂ ਦੀ ਰੋਜ਼ਾਨਾ ਮਜ਼ਦੂਰੀ ਦੇ ਹੇਠਾਂ ਲਿਖੀ ਵੰਡ ਸਾਰਣੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 3
ਇੱਕ ਸਹੀ (ਉਚਿਤ) ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਇਸ ਫੈਕਟਰੀ ਦੇ ਮਜ਼ਦੂਰਾਂ ਦੀ ਮੱਧਮਾਨ ਰੋਜ਼ਾਨਾ ਮਜ਼ਦੂਰੀ ਪੱਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 4
ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 150
ਵਰਗ ਮਾਪ (h) = 20
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\)
= \(\frac{-12}{50}\) = -0.24
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ (\(\bar{X}\)) = a + h\(\bar{u}\)
= 150 + (20)(-0.24)
= 150 – 4.8 =145.2
∴ ਫੈਕਟਰੀ ਦੇ ਮਜ਼ਦੂਰਾਂ ਦੀ ਮੱਧਮਾਨ ਰੋਜ਼ਾਨਾ ਮਜ਼ਦੂਰੀ ₹ 145.20 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਦਿੱਤੀ ਵੰਡ ਸਾਰਣੀ ਇੱਕ ਮੁਹੱਲੇ ਦੇ ਬੱਚਿਆਂ ਦਾ ਰੋਜ਼ਾਨਾ ਜੇਬ ਖ਼ਰਚ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ । ਮੱਧਮਾਨ ਜੇਬ ਖ਼ਰਚਾ ₹ 18 ਹੈ | ਅਗਿਆਤ ਬਾਰੰਬਾਰਤਾ ‘f ‘ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 5
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 6
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 18
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਮਾਨ (\(\bar{X}\)) = a + \(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\)
\(\bar{X}\) = 18 + \(\frac{2 f-40}{44+f}\)
ਪਰ, ਅੰਕੜਿਆਂ ਦਾ ਮੱਧਮਾਨ (\(\bar{x}\)) = 18 …….. (ਦਿੱਤਾ ਹੈ।)
∴ 18 = 18 + \(\frac{2 f-40}{44+f}\)
ਜਾਂ \(\frac{2 f-40}{44+f}\) = 18 – 18 = 0
ਜਾਂ 2f – 40 = 0
ਜਾਂ 2f = 40
ਜਾਂ f = \(\frac{40}{2}\) = 20
∴ ਅਗਿਆਤ ਬਾਰੰਬਾਰਤਾf = 20 ਹੈ । ਉੱਤਰ

ਪ੍ਰਸ਼ਨ 4.
ਕਿਸੇ ਹਸਪਤਾਲ ਵਿੱਚ, ਇੱਕ ਡਾਕਟਰ ਦੁਆਰਾ 30 ਇਸਤਰੀਆਂ ਦੀ ਜਾਂਚ ਕੀਤੀ ਗਈ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਦਿਲ ਦੀ ਧੜਕਣ (heart beat) ਪ੍ਰਤੀ ਮਿੰਟ ਨੋਟ ਕਰਕੇ ਹੇਠਾਂ ਦਰਸਾਉਂਦੀ ਵੰਡ ਸਾਰਣੀ ਵਿੱਚ ਸੰਖੇਪ ਰੂਪ ਨਾਲ ਲਿਖੀ ਗਈ । ਇੱਕ ਸਹੀ (ਉਚਿਤ) ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਹਨਾਂ ਇਸਤਰੀਆਂ ਦੇ ਦਿਲ ਦੀ ਧੜਕਣ ਦੀ ਪ੍ਰਤੀ ਮਿੰਟ ਮੱਧਮਾਨ ਸੰਖਿਆ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 7
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 8
ਉਪ੍ਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 75.5
ਵਰਗ ਮਾਪ (h) = 3
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\)
= \(\frac{4}{30}\) = 0.13 (ਲਗਭਗ)
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ ਮੱਧਮਾਨ (\(\bar{X}\)) = a + h\(\bar{u}\)
= 75.5 + 3 (0.13)
= 75.5 + 0.39
\(\bar{X}\) = 7889
∴ ਇਸਤਰੀਆਂ ਦੇ ਦਿਲ ਦੀ ਧੜਕਣ ਦੀ ਪ੍ਰਤੀ ਮਿੰਟ ਮੱਧਮਾਨ ਸੰਖਿਆ 78.89 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1

ਪ੍ਰਸ਼ਨ 5.
ਕਿਸੇ ਬਜ਼ਾਰ ਵਿੱਚ, ਫਲ ਵਿਕੇਤਾ, ਪੇਟੀਆਂ ਵਿੱਚ ਰੱਖੇ ਅੰਬ ਵੇਚ ਰਹੇ ਸਨ । ਇਨ੍ਹਾਂ ਪੇਟੀਆਂ ਵਿੱਚ ਅੰਬਾਂ ਦੀ ਸੰਖਿਆ ਅਲੱਗ-ਅਲੱਗ ਸੀ । ਪੇਟੀਆਂ ਦੀ ਸੰਖਿਆ ਅਨੁਸਾਰ, ਅੰਬਾਂ ਦੀ ਵੰਡ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਸੀ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 9
ਇੱਕ ਪੇਟੀ ਵਿੱਚ ਰੱਖੀ ਅੰਬਾਂ ਦੀ ਮੱਧਮਾਨ ਸੰਖਿਆ ਪਤਾ ਕਰੋ । ਤੁਸੀਂ ਮੱਧਮਾਨ ਕੱਢਣ ਲਈ ਕਿਹੜੀ ਵਿੱਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਹੈ ?
ਹੱਲ:
ਕਿਉਂਕਿ ਅੰਬਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਪੇਟਿਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਮੁੱਲ ਜ਼ਿਆਦਾ ਹੈ । ਇਸ ਲਈ ਅਸੀਂ ਪਗ ਵਿਚਲਣ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਾਂਗੇ।
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 10
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 57
ਵਰਗ ਮਾਪ (h) = 3
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\)
\(\bar{u}\) = \(\frac{25}{400}\) = 0.0625
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 57 + 3 (0.0625)
= 57 + 0.1875
= 57.1875
= 57.19 ਲਗਭਗ
ਪੇਟੀ ਵਿੱਚ ਰੱਖੇ ਗਏ ਅੰਬਾਂ ਦੀ ਮੱਧਮਾਨ ਸੰਖਿਆ 57.19 ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਕਿਸੇ ਮੁਹੱਲੇ ਦੇ 25 ਪਰਿਵਾਰਾਂ ਦੇ ਭੋਜਨ ਉੱਪਰ ਹੋਏ ਰੋਜ਼ਾਨਾ ਖ਼ਰਚ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 11
ਇੱਕ ਉਚਿਤ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਭੋਜਨ ਉੱਪਰ ਹੋਏ ਖ਼ਰਚ ਦਾ ਮੱਧਮਾਨ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 12
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ ।
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 225
ਵਰਗ ਮਾਪ (h) = 50
∴ \(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\)
\(\bar{u}\) = \(-\frac{7}{25}\) = -0.28
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਮਾਨ (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 225 + 50 (0.28)
\(\bar{X}\) = 225 – 14
\(\bar{X}\) = 211
ਭੋਜਨ ਉੱਪਰ ਹੋਏ ਖ਼ਰਚ ਦਾ ਮੱਧਮਾਨ ₹211 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1

ਪ੍ਰਸ਼ਨ 7.
ਹਵਾ ਵਿੱਚ ਸਲਫਰ ਡਾਈਆਕਸਾਈਡ (SO2) ਦੀ ਮਾਤਰਾ (Concentration) ਭਾਗ ਪ੍ਰਤੀ ਮਿਲਿਅਨ ਵਿੱਚ ਪਤਾ ਕਰਨ ਲਈ ਇੱਕ ਇਲਾਕੇ ਦੇ 30 ਮੁਹੱਲਿਆਂ ਵਿੱਚੋਂ ਅੰਕੜੇ ਇਕੱਠੇ ਕੀਤੇ ਗਏ । ਜਿਹਨਾਂ ਨੂੰ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 13
ਹਵਾ ਵਿੱਚ SO2 ਦੀ ਮਾਤਰਾ ਦਾ ਮੱਧਮਾਨ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 14
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ,
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 0.10
ਵਰਗ ਮਾਪ (h) = 0.04
\(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(\frac{-1}{30}\) = -0.33 (ਲਗਭਗ)
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 0.10 + 0.04(-0.33)
= 0.10 – 0.0013 = 0.0987 (ਲਗਭਗ)
ਹਵਾ ਵਿੱਚ SO2 ਦੀ ਮਾਤਰਾ ਦਾ ਮੱਧਮਾਨ 0.0987 ppm ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਕਿਸੇ ਜਮਾਤ ਦੀ ਅਧਿਆਪਕਾ ਨੇ ਪੂਰੇ ਸਾਲ ਦੌਰਾਨ ਆਪਣੀ ਜਮਾਤ ਦੇ 40 ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਗੈਰਹਾਜ਼ਰੀ ਨੂੰ ਹੇਠ ਲਿਖੇ, ਅਨੁਸਾਰ ਰਿਕਾਰਡ ਕੀਤਾ ਗਿਆ । ਇੱਕ ਵਿਦਿਆਰਥੀ ਜਿੰਨੇ ਦਿਨ ਗੈਰਹਾਜ਼ਿਰ ਰਿਹਾ ਉਸ ਦਾ ਮੱਧਮਾਨ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 15
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 16
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 17
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, ਮੱਧਮਾਨ (\(\bar{X}\)) = a + \(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\)
\(\bar{X}\) = 17 + \(\frac{(-181)}{40}\)
= 17 – 4.52 = 12.48
∴ ਇੱਕ ਵਿਦਿਆਰਥੀ ਜਿੰਨੇ ਦਿਨ ਗ਼ੈਰ ਹਾਜ਼ਰ ਰਿਹਾ 12.48 ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1

ਪ੍ਰਸ਼ਨ 9.
ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ 35 ਸ਼ਹਿਰਾਂ ਦੀ ਸਾਖਰਤਾ ਦਰ (ਪ੍ਰਤੀਸ਼ਤ ਵਿੱਚ) ਦਰਸਾਉਂਦੀ ਹੈ । ਮੱਧਮਾਨ ਸਾਖਰਤਾ ਦਰ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 17
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 14 ਅੰਕੜਾਵਿਗਿਆਨ Ex 14.1 18
ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਤੋਂ
ਕਾਲਪਨਿਕ ਮੱਧਮਾਨ (a) = 70
ਵਰਗ ਮਾਪ (h) = 10
\(\bar{u}\) = \(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) = \(\frac{-2}{35}\) = -0.057
ਸੂਤਰ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ, (\(\bar{X}\)) = a + h\(\bar{u}\)
\(\bar{X}\) = 70 + 10(-0.057)
= 70 – 0.57 = 69.43
ਮੱਧਮਾਨ ਸਾਖਰਤਾ ਦਰ 69.43% ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Exercise 13.5

ਪ੍ਰਸ਼ਨ 1.
3 mm ਵਿਆਸ ਵਾਲੇ ਤਾਂਬੇ ਦੇ ਇੱਕ ਤਾਰ ਨੂੰ 12 cm ਲੰਬੇ ਅਤੇ 10 cm ਵਿਆਸ ਵਾਲੇ ਇੱਕ ਬੇਲਣ ‘ਤੇ ਇਸ ਪ੍ਰਕਾਰ ਲਪੇਟਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਉਹ ਬੇਲਣ ਦੇ ਵਕਰ ਤਲ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਢੱਕ ਲੈਂਦਾ ਹੈ । ਤਾਰ ਦੀ ਲੰਬਾਈ ਅਤੇ ਮਾਨ (ਭਾਰ) ਪਤਾ ਕਰੋ, ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਤਾਂਬੇ ਦੀ ਘਣਤਾ 8.88 gਤਿ cm3 ਹੈ ।
ਹੱਲ:
ਤਾਰ ਦਾ ਵਿਆਸ (d) = 3 mm
∴ ਤਾਰ ਦਾ ਅਰਧ ਵਿਆਸ (r) = \(\frac{3}{2}\) mm = \(\frac{3}{20}\) cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 1
ਬੇਲਣ ਦਾ ਵਿਆਸ = 10 cm
ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 5 cm
ਬੇਲਣ ਦੀ ਉੱਚਾਈ (H) = 12 cm
ਬੇਲਣ ਦਾ ਪਰਿਮਾਪ = ਲਪੇਟੇ ਤਾਰ ਦੀ ਲੰਬਾਈ
2πR = ਇੱਕ ਲਪੇਟੇ ਤਾਰ ਦੀ ਲੰਬਾਈ
\(\frac{22}{7}\) × 2 × 5 = ਇੱਕ ਲਪੇਟੇ ਤਾਰ ਦੀ ਲੰਬਾਈ
\(\frac{220}{7}\) = ਲਪੇਟੇ ਤਾਰ ਦੀ ਲੰਬਾਈ
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 2
∴ ਪ੍ਰਯੋਗ ਕੀਤੀ ਤਾਰ ਦੀ ਲੰਬਾਈ = ਲਪੇਟਿਆਂ ਦੀ ਸੰਖਿਆ × ਇੱਕ ਲਪੇਟੇ ਵਿੱਚ ਪ੍ਰਯੋਗ ਕੀਤੀ ਤਾਰ ਦੀ ਲੰਬਾਈ
H = 40 × \(\frac{220}{7}\) cm
= 1257.14 cm
ਪ੍ਰਯੋਗ ਕੀਤੀ ਤਾਰ ਦਾ ਆਇਤਨ = πr2H
= \(\frac{22}{7}\) × \(\frac{3}{20}\) × \(\frac{3}{20}\) × 1257.14 cm3 = 88.89 cm3
1 cm3 ਤਾਰ ਦਾ ਮਾਨ = 8.88 gm
88.89 cm3 ਤਾਰ ਦਾ ਮਾਨ = 8.88 × 88.89
= 789.41 gm

ਪ੍ਰਸ਼ਨ 2.
ਇੱਕ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ, ਜਿਸ ਦੀਆਂ ਭੁਜਾਵਾਂ 3 cm ਅਤੇ 4 cm ਹਨ (ਕਰਣ ਤੋਂ ਇਲਾਵਾ), ਨੂੰ ਉਸਦੇ ਕਰਣ ਦੇ ਅਨੁਸਾਰ ਘੁਮਾਇਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਦੋਹਰੇ ਥੰਕੂ (double cone) ਦੇ ਆਇਤਨ, ਅਤੇ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ । ( ਦਾ ਮੁੱਲ ਜੋ ਠੀਕ ਲੱਗੇ ਲੈ ਲਵੋ ॥
ਹੱਲ:
ਮੰਨ ਲਉ △ABC ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ਹੈ, ਜਿਸਦਾ A ਉੱਤੇ ਸਮਕੋਣ ਹੈ । AB ਅਤੇ AC ਦਾ ਮਾਪ ਕ੍ਰਮਵਾਰ 3 cm ਅਤੇ 4 cm ਹੈ । ਭੁਜਾ BC (ਕਰਣ ਦੀ ਲੰਬਾਈ
= \(\sqrt{3^{2}+4^{2}}\) = \(\sqrt {9+16}\) = 5 cm
ਇੱਥੇ AO (ਜਾਂ A’O) ਪ੍ਰਾਪਤ ਦੋਵੇਂ ਪਾਸੇ ਸਾਂਝੇ ਅਧਾਰ ਦੀ ਅਰਧ ਵਿਆਸ ਸਮਕੋਣ ਤਿਭੁਜ ਭੁਜਾ BC ਦੇ ਆਸ-ਪਾਸ ਘੁੰਮ ਕੇ ਬਣੀ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 3
ਸ਼ੰਕੂ BAA’ ਦੀ ਉੱਚਾਈ BO ਅਤੇ ਤਿਰਛੀ ਉੱਚਾਈ 3 cm ਹੈ ।
ਸ਼ੰਕੂ CAA’ ਦੀ ਉੱਚਾਈ CO ਅਤੇ ਤਿਰਛੀ ਉੱਚਾਈ 4 cm ਹੈ ।
ਹੁਣ △AOB ~ △CAB (AA ਸਮਰੂਪਤਾ)
∴ \(\frac{AO}{4}\) = \(\frac{3}{5}\)
⇒ AO = \(\frac{4×3}{5}\) = \(\frac{12}{5}\) cm
ਨਾਲ ਹੀ ਉਹ \(\frac{BO}{3}\) = \(\frac{3}{5}\)
⇒ BO = \(\frac{3×3}{5}\) = \(\frac{9}{5}\) cm
∴ CO = BC – OB
= 5 – \(\frac{9}{5}\)
= \(\frac{16}{5}\) cm
∴ ਦੋਹਰੇ ਦੋਹਰੇ ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ
= ਸ਼ੰਕੂ ABA’ ਦਾ ਆਇਤਨ + ਸ਼ੰਕੂ ACA’ ਦਾ ਆਇਤਨ
= \(\frac{1}{3}\)π OA2.OB + \(\frac{1}{3}\)π OA2.OC
= \(\frac{1}{3}\)π OA2(OB + OC)
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × \(\frac{12}{5}\) × \(\frac{12}{5}\) (\(\frac{9}{5}\) + \(\frac{16}{5}\) )
= \(\frac{22 \times 4 \times 12}{7 \times 5 \times 5}\) × \(\frac{25}{5}\)
= \(\frac{1056}{35}\) = 30\(\frac{6}{35}\) cm3
∴ ਦੋਹਰੇ ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ = 30\(\frac{6}{35}\) cm3.
ਦੋਹਰੇ ਸ਼ੰਕੂ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ
= ਸ਼ੰਕੂ ABA ਦੀ ਸੜਾਂ ਦਾ ਖੇਤਰਫਲ + ਸ਼ੰਕੂ ACA ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ
= π. AO. AB + π. AO.A’C
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 4

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5

ਪ੍ਰਸ਼ਨ 3.
ਇੱਕ ਟੈਂਕੀ, ਜਿਸਦੇ ਅੰਦਰੂਨੀ ਮਾਪ 150 cm × 120 cm × 110 cm ਹਨ, ਵਿੱਚ 129600 cm3 ਪਾਣੀ ਹੈ । ਦੇ ਇਸ ਪਾਣੀ ਵਿੱਚ ਕੁੱਝ ਛੇਕਾਂ ਵਾਲੀਆਂ ਇੱਟਾਂ ਉਦੋਂ ਤੱਕ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਦੋਂ ਤੱਕ ਕਿ ਟੈਂਕੀ ਪੂਰੀ ਉੱਪਰ ਤੱਕ ਭਰ ਨਾ ਜਾਵੇ । ਹਰੇਕ ਇੱਟ ਆਪਣੇ ਆਇਤਨ ਦਾ \(\frac{1}{17}\) ਪਾਣੀ ਸੋਖ ਲੈਂਦੀ ਹੈ । ਜੇਕਰ ਹਰੇਕ ਇੱਟ ਦਾ ਮਾਪ 22.5 cm × 7.5 cm × 6.5 cm ਹੋਵੇ, ਤਾਂ ਟੈਂਕੀ ਵਿਚ ਕੁੱਲ ਕਿੰਨੀਆਂ ਇੱਟਾਂ ਪਾਈਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਤਾਂ ਕਿ ਉਸ ਤੋਂ ਪਾਣੀ ਬਾਹਰ ਨਾ ਆਵੇ ?
ਹੱਲ:
ਇੱਟਾਂ ਦਾ ਆਇਤਨ = 22.5 × 7.5 × 6.5 cm3
= 1096.87 cm3
ਟੈਂਕੀ ਦਾ ਆਇਤਨ = 150 × 120 × 110 cm3
= 1980000
ਮੰਨ ਲਉ ਇੱਟਾਂ ਦੀ ਸੰਖਿਆ = n
ਇੱਟਾਂ ਦਾ ਆਇਤਨ = n [1096.87] cm3
ਇੱਟਾਂ ਲਈ ਲੋੜੀਂਦੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
= (1980000 – 129600) cm3
= 1850400 cm3
ਹਰੇਕ ਇੱਟ ਆਪਣੇ ਆਇਤਨ ਦਾ \(\frac{1}{17}\) ਵਾਂ ਪਾਣੀ ਸੋਖ ਲੈਂਦੀ ਹੈ |
ਇੱਟਾਂ ਦੁਆਰਾ ਸੋਖਿਆ ਪਾਣੀ ਦਾ ਆਇਤਨ = \(\frac{17}{10}\) × ਇੱਟਾਂ ਲਈ ਲੋੜੀਂਦੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
= \(\frac{17}{10}\) × 1850400 cm3
ਇੱਟਾਂ ਦੁਆਰਾ ਸੋਖੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
= 1966050 cm3
n ਇੱਟਾਂ ਦਾ ਕੁੱਲ ਆਇਤਨ
= ਇੱਟਾਂ ਦੁਆਰਾ ਸੋਖੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
n[1096.87] cm3 = 1966050 cm3
n = \(\frac{1966050}{1096.42}\)
n = 1792.42
ਪ੍ਰਯੋਗ ਕੀਤੀਆਂ ਇੱਟਾਂ ਦੀ ਸੰਖਿਆ = 1792

ਪ੍ਰਸ਼ਨ 4.
ਕਿਸੇ ਮਹੀਨੇ ਦੇ 15 ਦਿਨਾਂ ਵਿੱਚ, ਇੱਕ ਨਦੀ ਦੀ ਘਾਟੀ ਵਿੱਚ 10 cm ਵਰਖਾ ਹੋਈ । ਜੇਕਰ ਇਸ ਘਾਟੀ ਦਾ ਖੇਤਰਫਲ 97280 km2 ਹੈ, ਤਾਂ ਦਰਸਾਉ ਕਿ ਕੁੱਲ ਵਰਖਾ ਲਗਭਗ ਤਿੰਨ ਨਦੀਆਂ ਦੇ ਆਮ ਪਾਣੀ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਸੀ, ਜਦੋਂ ਕਿ ਹਰੇਕ ਨਦੀ 1072 km ਲੰਬੀ, 75 m ਚੌੜੀ ਅਤੇ 3 m ਡੂੰਘੀ ਹੈ ।
ਹੱਲ:
ਘਾਟੀ ਦਾ ਖੇਤਰਫਲ = 97280 km2
ਘਾਟੀ ਵਿਚ ਬਾਰਿਸ਼ = 10 cm
∴ ਕੁੱਲ ਵਰਖਾ ਦਾ ਆਇਤਨ
= 97280 × \(\frac{10}{100}\) × \(\frac{1}{1000}\) km3
= 9728 km3

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5

ਪ੍ਰਸ਼ਨ 5.
ਟੀਨ ਦੀ ਬਣੀ ਹੋਈ ਇੱਕ ਤੇਲ ਦੀ ਕੁੱਪੀ 10 cm ਲੰਬੇ ਇੱਕ ਬੇਲਣ ਵਿੱਚ ਇੱਕ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਕ ਨੂੰ ਜੋੜਨ ਨਾਲ ਬਣੀ ਹੈ । ਜੇਕਰ ਇਸ ਦੀ ਕੁੱਲ ਉੱਚਾਈ 22 cm ਹੈ ਅਤੇ ਬੇਲਨਾਕਾਰ ਭਾਗ ਦਾ ਵਿਆਸ 8 cm ਹੈ ਅਤੇ ਕੁੱਪੀ ਦੇ ਉੱਪਰੀ ਸਿਰੇ ਦਾ ਵਿਆਸ 18 cm ਹੈ, ਤਾਂ ਇਸਦੇ ਬਣਾਉਣ ਵਿੱਚ ਲੱਗੀ ਟੀਨ ਦੀ ਚਾਦਰ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ (ਦੇਖੋ ਚਿੱਤਰ)।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 5
ਹੱਲ:
ਕੁੱਪੀ ਦੇ ਉੱਪਰੀ ਸਿਰੇ ਦਾ ਵਿਆਸ = 18 cm
∴ ਕੁੱਪੀ ਦੇ ਉੱਪਰੀ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ (R) = \(\frac{18}{2}\) = 9 cm
ਕੁੱਪੀ ਦੇ ਆਧਾਰ ਦਾ ਵਿਆਸ = 8 cm
ਕੁੱਪੀ ਦੇ ਆਧਾਰ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 4 cm
ਬੇਲਣਾਕਾਰ ਭਾਗ ਦੀ ਉੱਚਾਈ (h) = 10 cm
ਸ਼ੌਨਕ ਦੀ ਉੱਚਾਈ (H) = (22 – 10)
= 12 cm
ਸ਼ੌਨਕ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ (l)
= \(\sqrt{\mathrm{H}^{2}+(\mathrm{R}-r)^{2}}\)
= \(\sqrt{(12)^{2}+(9-4)^{2}}\)
= \(\sqrt{144+(5)^{2}}\)
= \(\sqrt {144+25}\) = \(\sqrt {169}\)
ਸ਼ੌਨਕ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ (l) = 13 cm
ਟੀਨ ਦੀ ਚੱਦਰ ਦਾ ਖੇਤਰਫਲ = ਬੇਲਣਾਕਾਰ ਆਧਾਰ ਦੀ ਵਕਰ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ + ਸ਼ੌਨਕ ਦੀ ਵਕਰ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 2πrh + πL[R + r]
= 2 × \(\frac{22}{7}\) × 4 × 10 + \(\frac{212}{7}\) × 13[19 + 4] cm2
= 251.42 + 531.14 = 782.56 cm2
∴ ਪ੍ਰਯੋਗ ਕੀਤੀ ਧਾਤੂ ਦੀ ਚੱਦਰ ਦਾ ਕੁੱਲ ਖੇਤਰਫਲ
= 782.56 cm2

ਪ੍ਰਸ਼ਨ 6.
ਸ਼ੰਕੂ ਦੇ ਇੱਕ ਛਿਣਕ ਦੇ ਲਈ, ਪਹਿਲਾਂ ਸਪੱਸ਼ਟ ਕੀਤੇ ਸੰਕੇਤਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਵਕਰ ਤਲ ਦਾ ਖੇਤਰਫਲ ਅਤੇ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਦੇ ਉਨ੍ਹਾਂ ਸੂਤਰਾਂ ਨੂੰ ਸਿੱਧ ਕਰੋ ਜੋ ਭਾਗ 13.5 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ ।
ਹੱਲ:
ਇਕ ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੋ ਅਸਮਾਨ ਚੱਕਰਾਕਾਰ ਆਧਾਰ ਅਤੇ ਵਕਰ ਸਤਾ ਹਨ । ਮੰਨ ਲਉ ਭਾਗ VCD ਨੂੰ ਹਟਾ ਕੇ ਪ੍ਰਾਪਤ ਸ਼ੌਨਕ ACDB ਹੈ । ਦੋਹਾਂ ਦੇ ਆਧਾਰਾਂ ਦੇ ਕੇਂਦਰਾਂ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲਾ ਰੇਖਾਖੰਡ OP ਛੰਨਕ ਦੀ ਉੱਚਾਈ ਕਹਾਉਂਦਾ ਹੈ । ਸ਼ੌਕ ACDB ਦਾ ਹਰੇਕ ਰੇਖਾਖੰਡ AC ਅਤੇ BD ਤਿਰਛੀ ਉੱਚਾਈ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 6
ਮੰਨ ਲਉ R ਅਤੇ r (R > r) ਸ਼ੰਕੂ (VAB) ਦੇ ਸ਼ੌਣਕ ACDB ਦੇ ਚੱਕਰਾਕਾਰ ਸਿਰਿਆਂ ਦਾ ਅਰਧ ਵਿਆਸ ਹਨ । ਅਸੀਂ ਸ਼ੰਕੂ ਆਕਾਰ ਭਾਗ VCD ਨੂੰ ਪੂਰਾ ਕਰਦੇ ਹਾਂ । ਮੰਨ ਲਉ ਕਿ ਮੈਂ ਅਤੇ 1 ਕੁਮਵਾਰ ਸਿੱਧੀ ਉੱਚਾਈ ਅਤੇ ਤਿਰਛੀ ਉੱਚਾਈ ਹੈ । ਤਾਂ OP = h ਅਤੇ AC = BD = l.
ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਣਕ ਨੂੰ ਦੋ ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂਆਂ ਦੇ ਬਰਾਬਰ VAB ਅਤੇ VCD ਦੇ ਅੰਤਰ ਦੇ ਰੂਪ ਵਿਚ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ।
ਮੰਨ ਲਉ ਸ਼ੰਕੂ VAB ਦੀ ਉੱਚਾਈ h, ਅਤੇ ਤਿਰਛੀ ਉਚਾਈ l ਹੈ । ਭਾਵ VP = h1 ਅਤੇ VA = VB = l1.
ਹੁਣ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ △DEB ਵਿਚ,
DB2 = DE2 + BE2
⇒ l2 = h2 + (R – r)2
⇒ l = \(\sqrt{h^{2}+(\mathrm{R}-r)^{2}}\)
ਦੁਬਾਗ △VOD ~ △VPB
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 7
= πl (R + r) ਵ. ਇਕਾਈਆਂ
∴ ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੀ ਵਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ
= πl(R + r) ਵ. ਇਕਾਈਆਂ ਜਿੱਥੇ
l = \(\sqrt{h^{2}+(\mathrm{R}-r)^{2}}\)
ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੀ ਕੁਲ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= ਵਕਰ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ+ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ + ਉਪਰੀ ਸਿਰੇ ਦਾ ਖੇਤਰਫਲ
= πl(R + r) + πR2 + πr2
= π[R2 + r2 + l(R + r)] ਵ. ਮੀ.

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5

ਪ੍ਰਸ਼ਨ 7.
ਸ਼ੰਕੂ ਦੇ ਇੱਕ ਸ਼ੌਨਕ ਦੇ ਲਈ ਪਹਿਲਾਂ ਸਪੱਸ਼ਟ ਕੀਤੇ ਸੰਕੇਤਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਆਇਤਨ ਦਾ ਉਹ ਸੂਤਰ | ਸਿੱਧ ਕਰੋ, ਜੋ ਭਾਗ 13.5 ਵਿਚ ਦਿੱਤਾ ਗਿਆ ਹੈ ।
ਹੱਲ:
ਇੱਕ ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੇ ਅਸਮਾਨ ਚੱਕਰਾਕਾਰ ਆਧਾਰ ਅਤੇ ਵਕਰ ਸ਼ਤਾ ਹੁੰਦੀ ਹੈ । ਮੰਨ ਲਉ ਭਾਗ VCD ਨੂੰ ਹਟਾ ਕੇ ਪ੍ਰਾਪਤ ਸ਼ੌਨਕ ACDB ਹੈ ਦੋਹਾਂ ਦੇ ਆਧਾਰ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲਾ ਰੇਖਾਖੰਡ OP ਸ਼ੌਨਕ ਦੀ ਲੰਬਾਈ ਕਹਾਉਂਦਾ ਹੈ ਸ਼ੌਨਕ ACDB ਦਾ ਹਰੇਕ ਰੇਖਾਖੰਡ AC ਅਤੇ BD ਤਿਰਛੀ ਉੱਚਾਈ ਕਹਾਉਂਦਾ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 8
ਮੰਨ ਲਉ R ਅਤੇ r (R > r) ਸ਼ੰਕੂ (VAB) ਨੂੰ ਛਿੱਕ ACDB ਦੇ ਚੱਕਰਾਕਾਰ ਸਿਰਿਆਂ ਦੇ ਅਰਧ ਵਿਆਸ ਹਨ । ਅਸੀਂ ਸ਼ੰਕੂ ਵਾਲੇ ਭਾਗ VCD ਨੂੰ ਪੂਰਾ ਕਰਦੇ ਹਨ । ਮੰਨ ਲਉ ) ਅਤੇ ਕੁਮਵਾਰ ਸਿੱਧੀ ਅਤੇ ਤਿਰਛੀ ਉਚਾਈ ਹੈ । OP = h ਅਤੇ AC = BD = l.
ਲੰਬ ਚੱਕਰਾਕਾਰ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੇ ਦੋ ਲੰਬ ਚੱਕਰਕਾਰ ਸ਼ੰਕੂਆਂ ਦੇ ਬਰਾਬਰ VAB ਅਤੇ VCD ਦੇ ਅੰਤਰ ਰੂਪ ਵਿਚ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ।
ਮੰਨ ਲਉ ਸ਼ੰਕੂ VAB ਦੀ ਉੱਚਾਈ h1 ਅਤੇ ਤਿਰਛੀ ਉੱਚਾਈ l ਹੈ । ਭਾਵ VP = h1 ਅਤੇ VA = VB = l1.
∴ ਸ਼ੰਕੂ VCD ਦੀ ਉੱਚਾਈ = VP – OP
= h1 – h
ਕਿਉਂਕਿ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ VOD ਅਤੇ VPB ਸਮਰੂਪ ਹਨ ।
⇒ \(\frac{VO}{VP}\) = \(\frac{OD}{PB}\) = \(\frac{h_{1}-h}{h_{1}}\) \(\frac{r}{R}\)
⇒ 1 – \(\frac{h}{h_{1}}\) = \(\frac{r}{R}\)
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.5 9
ਪਰ ਜੇਕਰ A1 ਅਤੇ A2 (A1 > A2) ਦੋ ਚੱਕਰਾਕਾਰ ਆਧਾਰਾਂ ਦੀ ਕੁੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਹੈ
A1 = πR2 ਅਤੇ A2 = πr2
ਹੁਣ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦਾ ਆਇਤਨ
= \(\frac{1}{3}\) πh(R2 + r2 + Rr)
= \(\frac{h}{3}\) (πR2 + πr2 + \(\sqrt{\pi \mathrm{R}^{2}} \sqrt{\pi r^{2}}\))
= \(\frac{h}{3}\) (A1 + A2 + \(\sqrt{A_{1} A_{2}}\))

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Exercise 13.2

(ਜਦੋਂ ਤੱਕ ਨਾ ਕਿਹਾ ਜਾਵੇ, π = \(\frac{22}{7}\) ਲਓ )

ਪ੍ਰਸ਼ਨ 1.
ਇੱਕ ਠੋਸ ਇੱਕ ਅਰਧ ਗੋਲੇ ‘ਤੇ ਖੜ੍ਹੇ ਸ਼ੰਕੂ ਦੇ ਆਕਾਰ ਦਾ ਹੈ । ਦੋਹਾਂ ਦਾ ਅਰਧ ਵਿਆਸ 1 cm ਹੈ ਅਤੇ ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ ਉਸਦੇ ਅਰਧ ਵਿਆਸ ਦੇ ਬਰਾਬਰ ਹੈ । ਇਸ ਠੋਸ ਦਾ ਆਇਤਨ π ਦੇ ਪਦਾਂ ਵਿੱਚ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਸ਼ੰਕੁ ਦਾ ਅਰਧ ਵਿਆਸ = ਅਰਧਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ = 1 cm
R = 1 cm
∴ ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (H) = 1 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 1
ਠੋਸ ਦਾ ਆਇਤਨ = ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ + ਅਰਧਗੋਲੇ ਦਾ ਆਇਤਨ
= \(\frac{1}{3}\)πR2H + \(\frac{2}{3}\)πR3
= \(\frac{1}{3}\)πR2[H + 2R]
= \(\frac{1}{3}\)π × 1 × 1[1 + 2 × 1] cm2
= \(\frac{1}{3}\)π × 3 = \(\frac{3 \pi}{3}\) cm2
= π cm3
∴ ਠੋਸ ਦਾ ਆਇਤਨ = π cm3

ਪ੍ਰਸ਼ਨ 2.
ਇੱਕ ਇੰਜੀਨਿਅਰਿੰਗ ਦੇ ਵਿਦਿਆਰਥੀ ਮਨੋਹਰ ਨੂੰ ਇੱਕ ਪਤਲੀ ਐਲੂਮੀਨੀਅਮ ਦੀ ਸ਼ੀਟ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇੱਕ ਮਾਡਲ ਬਣਾਉਣ ਲਈ ਕਿਹਾ ਗਿਆ ਜੋ ਇੱਕ ਅਜਿਹੇ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਹੋਵੇ ਜਿਸਦੇ ਦੋਨੋਂ ਸਿਰਿਆਂ ‘ਤੇ ਦੋ ਸ਼ੰਕੂ ਜੁੜੇ ਹੋਏ ਹੋਣ ।ਇਸ ਮਾਡਲ ਦਾ ਵਿਆਸ 3 cm ਹੈ ਅਤੇ ਇਸ ਦੀ ਲੰਬਾਈ 12 cm ਹੈ । ਜੇਕਰ ਹਰੇਕ ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ 2 cm ਹੋਵੇ ਤਾਂ ਮਨੋਹਰ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਮਾਡਲ ਵਿੱਚ ਮੌਜੂਦ ਹਵਾ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ। (ਇਹ ਮੰਨ ਲਓ ਮਾਡਲ ਦੀਆਂ ਅੰਦਰੂਨੀ ਅਤੇ ਬਾਹਰੀ ਪਸਾਰਾਂ ਲਗਭਗ ਬਰਾਬਰ ਹਨ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 2
ਸ਼ੰਕੂ ਦਾ ਅਰਧ ਵਿਆਸ = ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (R) = \(\frac{3}{2}\) cm
R = 5 cm
∴ R = 1.5 cm
ਹਰੇਕ ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (h) = 2 cm
∴ ਬੇਲਣ ਦੀ ਉਚਾਈ = (12 -2 – 2) cm
= 8 cm
ਬੇਲਣ ਵਿਚ ਮੌਜੂਦ ਹਵਾ ਦਾ ਆਇਤਨ = ਬੇਲਣ ਦਾ ਆਇਤਨ + 2 (ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ)
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 3
ਬੇਲਣ ਵਿਚ ਹਵਾ ਦਾ ਆਇਤਨ
= \(\frac{22}{7}\) × \(\frac{3}{2}\) × \(\frac{3}{2}\) × \(\frac{28}{3}\) cm3
= 22 × 3 cm3
= 66 cm3
= 66 cm3

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2

ਪ੍ਰਸ਼ਨ 3.
ਇੱਕ ਗੁਲਾਬਜਾਮਣ ਵਿੱਚ ਉਸਦੇ ਆਇਤਨ ਦੀ ਲਗਭਗ 30% ਖੰਡ ਦੀ ਚਾਸ਼ਣੀ ਹੁੰਦੀ ਹੈ | 45 ਗੁਲਾਬ ਜਾਮਣਾਂ ਵਿਚ ਲਗਭਗ ਕਿੰਨੀ ਚਾਸ਼ਣੀ ਹੋਵੇਗੀ, ਜੇਕਰ ਹਰੇਕ ਗੁਲਾਬਜਾਮਣ ਇੱਕ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਹੈ, ਜਿਸਦੇ ਦੋਨੋਂ ਸਿਰੇ ਅਰਧਗੋਲਾਕਾਰ ਹਨ ਅਤੇ ਉਸ ਦੀ ਲੰਬਾਈ 5 cm ਅਤੇ ਵਿਆਸ 2.8 cm ਹੈ (ਦੇਖੋ ਚਿੱਤਰ) ।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 4
ਹੱਲ:
ਗੁਲਾਬ ਜਾਮਣ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਹੈ, ਜਿਸਦੇ ਦੋਵੇਂ ਸਿਰੇ ਅਰਧਗੋਲਾਕਾਰ ਹਨ ।
ਵੇਲਣ ਦਾ ਵਿਆਸ = ਅਰਧ ਗੋਲੇ ਦਾ ਵਿਆਸ = 2.8 cm
ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ = ਅਰਧ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (R)
= \(\frac{2.8}{2}\) = 1.4 cm
R = 1.4 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 5
ਬੇਲਣਾਕਾਰ ਭਾਗ ਦੀ ਉੱਚਾਈ
= (5 – 14 – 1.4) cm
= (5 – 2.8) cm
= 2.2 cm
ਇੱਕ ਗੁਲਾਬ ਜਾਮਣ ਦਾ ਆਇਤਨ
= ਬੇਲਣ ਦਾ ਆਇਤਨ + 2 [ਅਰਧ ਗੋਲੇ ਦਾ ਆਇਤਨ]
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 6
= 22∙05 cm3
ਇਕ ਗੁਲਾਬ ਜਾਮਣ ਦਾ ਆਇਤਨ
= 25.05 cm3
ਹੁਣ, 45 ਗੁਲਾਬ ਜਾਮਣਾਂ ਦਾ ਆਇਤਨ
= 45 × 25.05 cm3
= 1127.25 cm3
∴ ਖੰਡ ਦੀ ਚਾਸ਼ਣੀ ਦਾ ਆਇਤਨ
= 45 ਗੁਲਾਬ ਜਾਮਣਾਂ ਦੇ ਆਇਤਨ ਦਾ 30%
= \(\frac{30 \times 1127.25}{100}\) cm3
= 338.175 cm3
∴ ਖੰਡ ਦੀ ਚਾਸ਼ਣੀ ਦੀ ਮਾਤਰਾ = 338 cm3

ਪ੍ਰਸ਼ਨ 4.
ਇੱਕ ਕਲਮਦਾਨ ਘਣਾਵ ਆਕਾਰ ਦੀ ਇੱਕ ਲੱਕੜੀ ਨਾਲ ਦਾ ਬਣਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਕਲਮ ਰੱਖਣ ਦੇ ਲਈ ਚਾਰ ਸ਼ੰਕੁ ਆਕਾਰ ਖੱਡੇ ਬਣੇ ਹੋਏ ਹਨ | ਘਣਾਵ ਦੀਆਂ ਪਸਾਰਾਂ (dimensions) 15 cm × 10 cm × 3.5 cm ਹਨ । ਹਰੇਕ ਖੰਡੇ ਦਾ ਅਰਧ ਵਿਆਸ 0.5 cm ਹੈ ਅਤੇ ਗਹਿਰਾਈ 1.4 cm ਹੈ । ਪੁਰੇ ਕਲਮਦਾਨ ਵਿੱਚ ਲੱਕੜੀ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ । (ਦੇਖੋ ਚਿੱਤਰ)
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 7
ਹੱਲ:
ਘਣਾਵ ਦੀ ਲੰਬਾਈ (L) = 15 cm
ਘਣਾਵ ਦੀ ਚੌੜਾਈ (B) = 10 cm
ਘਣਾਵ ਦੀ ਉੱਚਾਈ (H) = 3.5 cm
ਸ਼ੰਕੁ ਆਕਾਰ ਖੰਡੇ ਦਾ ਅਰਧ ਵਿਆਸ = 0.5 cm
ਸ਼ੰਕੂ ਆਕਾਰ ਖੱਡੇ ਦੀ ਉੱਚਾਈ h = 1.4 cm
ਕਲਮਦਾਨ ਵਿੱਚ ਲੱਕੜੀ ਦਾ ਆਇਤਨ
= ਘਣਾਵ ਦਾ ਆਇਤਨ – 4 [ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ]
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 8
= (15 × 35 – \(\frac{22}{3×5}\) ) cm3
= (525 – 1.466) cm3
= 523.534 cm3.
ਕਲਮਦਾਨ ਵਿੱਚ ਲੱਕੜੀ ਦਾ ਆਇਤਨ
= 523.53 cm3

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2

ਪ੍ਰਸ਼ਨ 5.
ਇੱਕ ਬਰਤਨ ਇੱਕ ਉਲਟੇ ਸ਼ੰਕੂ ਦੇ ਆਕਾਰ ਦਾ ਹੈ । ਇਸਦੀ ਉੱਚਾਈ 8 cm ਹੈ ਅਤੇ ਇਸਦੇ ਉੱਪਰੀ ਸਿਰੇ (ਜੋ ਖੁਲਿਆ ਹੋਇਆ ਹੈ) ਦਾ ਅਰਧ ਵਿਆਸ 5 cm ਹੈ । ਇਹ ਉੱਪਰ ਤੱਕ ਪਾਣੀ ਨਾਲ ਭਰਿਆ ਹੋਇਆ ਹੈ। ਜਦੋਂ ਇਸ ਬਰਤਨ ਵਿੱਚ ਸਿੱਕੇ ਦੀਆਂ ਕੁੱਝ ਗੋਲੀਆਂ ਜਿੰਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰੇਕ 0:5 cm ਅਰਧ ਵਿਆਸ ਵਾਲਾ ਇੱਕ ਗੋਲਾ ਹੈ, ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਇਸ ਵਿੱਚੋਂ ਭਰੇ ਹੋਏ ਪਾਣੀ ਦਾ ਇੱਕ ਚੌਥਾਈ ਭਾਗ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦਾ ਹੈ | ਬਰਤਨ ਵਿਚ ਪਾਈਆਂ ਗਈਆਂ ਸਿੱਕੇ ਦੀਆਂ ਗੋਲੀਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 9
ਸ਼ੰਕੂ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 5 cm
ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (H) = 8 cm
ਸਿੱਕੇ ਦੀ ਹਰੇਕ ਗੋਲੀ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 0.5 cm
ਮੰਨ ਲਉ ਗੋਲੀਆਂ ਦੀ ਸੰਖਿਆ = N
ਤਾਂ ਪਾਣੀ ਦਾ ਇੱਕ ਚੌਥਾਈ ਭਾਗ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦਾ ਹੈ ।
N [ਗੋਲੀਆਂ ਦਾ ਆਇਤਨ = \(\frac{1}{4}\) ਸ਼ੰਕੂ ਵਿੱਚ ਪਾਣੀ ਦਾ ਆਇਤਨ
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 10
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 11
= 10 × 10 = 100
ਗੋਲੀਆਂ ਦੀ ਸੰਖਿਆ = 100

ਪ੍ਰਸ਼ਨ 6.
ਉੱਚਾਈ 220 cm ਅਤੇ ਆਧਾਰ ਵਿਆਸ 24 cm ਵਾਲੇ ਇੱਕ ਬੇਲਣ ਜਿਸ ਤੇ ਉੱਚਾਈ 60 cm ਅਤੇ ਅਰਧ ਵਿਆਸ 8 cm ਵਾਲਾ ਇੱਕ ਹੋਰ ਬੇਲਣ ਰੱਖਿਆ ਹੋਇਆ ਹੈ, ਨਾਲ ਲੋਹੇ ਦਾ ਇੱਕ ਖੰਬਾ ਬਣਾਇਆ ਗਿਆ ਹੈ । ਇਸ ਖੰਬੇ ਦਾ ਮਾਨ (ਭਾਰ) ਪਤਾ ਕਰੋ, ਜਦੋਂ ਕਿ ਦਿੱਤਾ ਹੈ 1 cm3 ਲੋਹੇ ਦਾ ਮਾਣ (ਭਾਰ) 8g ਹੁੰਦਾ ਹੈ (π = 3∙14 ਲਓ) ।
ਹੱਲ:
ਹੇਠਾਂ ਵਾਲੇ ਬੇਲਣ ਦਾ ਵਿਆਸ = 24 cm
ਹੇਠਾਂ ਵਾਲੇ ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 12 cm
ਹੇਠਾਂ ਵਾਲੇ ਬੇਲਣ ਦੀ ਉੱਚਾਈ (H) = 220 cm
ਉੱਪਰ ਵਾਲੇ ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 8 cm
ਉੱਪਰ ਵਾਲੇ ਬੇਲਣ ਦੀ ਉੱਚਾਈ (h) = 60 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 12
ਖੰਬੇ ਦਾ ਆਇਤਨ = ਹੇਠਾਂ ਵਾਲੇ ਬੇਲਣ ਦਾ ਆਇਤਨ + | ਉੱਪਰ ਵਾਲੇ ਬੇਲਣ ਦਾ ਆਇਤਨ
= πR2H + πr2h
= [3.14 × 12 × 12 × 220 + 3.14 × 8 × 8 × 60] cm3
= [99475.2 + 12057.6] cm3
ਖੰਬੇ ਦਾ ਆਇਤਨ = 111532.8 cm3
1 cm3 ਦਾ ਦ੍ਰਵਸਾਨ = 8 gm
111532.8 cm3 ਦਾ ਦ੍ਰਵਸਾਨ = 8 × 111532. 8 gm
= 892262.4 gm
= \(\frac{892262.4}{1000}\) gm
= 892.2624 kg
= 892.2624 kg

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2

ਪ੍ਰਸ਼ਨ 7.
ਇੱਕ ਠੋਸ ਵਿੱਚ, ਉੱਚਾਈ 120 cm ਅਤੇ ਅਰਧ ਵਿਆਸ 60 cm ਵਾਲਾ ਇੱਕ ਸ਼ੰਕੂ ਸ਼ਾਮਿਲ ਹੈ ਜੋ 60 cm ਅਰਧ ਵਿਆਸ ਵਾਲੇ ਇੱਕ ਅਰਧਗੋਲੇ ‘ਤੇ ਬਣਿਆ ਹੈ ਇਸ ਠੋਸ ਨੂੰ ਪਾਣੀ ਨਾਲ ਭਰੇ ਹੋਏ ਇੱਕ ਲੰਬ ਚੱਕਰੀ ਬੋਲਣ ਵਿੱਚ ਇਸ ਪ੍ਰਕਾਰ ਸਿੱਧਾ ਪਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹ ਬੋਲਣ ਦੇ ਤਲ ਨੂੰ ਸਪਰਸ਼ ਕਰੇ । ਜੇਕਰ ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ 60 cm ਹੈ ਅਤੇ ਉੱਚਾਈ 180 cm ਹੈ ਤਾਂ ਬੇਲਣ ਵਿੱਚ ਬਾਕੀ ਬੱਚੇ ਪਾਣੀ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਸ਼ੰਕੂ ਦਾ ਅਰਧ ਵਿਆਸ = ਅਰਧ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ
= ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ
= 60 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 13
ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (h) = 120 cm
ਬੇਲਣ ਦੀ ਉੱਚਾਈ (H) = 180 cm
ਬੇਲਣਾਕਾਰ ਬਰਤਨ ਦਾ ਆਇਤਨ = πR2H
= \(\frac{22}{7}\) × 60 × 60 × 180 cm3
= 2036571.4 cm3
ਬੇਲਣ ਵਿਚ ਪਾਏ ਗਏ ਠੋਸ ਦਾ ਆਇਤਨ = ਅਰਧ ਗੋਲੇ ਦਾ ਆਇਤਨ + ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ
= \(\frac{2}{3}\)πR3 + \(\frac{1}{3}\)πR2h
= \(\frac{1}{3}\)πR2[2R + h]
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 60 × 60 [2 × 60 +120] cm3
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 [120 + 120] cm3
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 × 40 cm3
= 905142.86 cm3
ਬਾਹਰ ਨਿਕਲੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
= 905142.86 cm3
∴ ਬੇਲਣ ਵਿਚ ਬਚੇ ਬਾਕੀ ਪਾਣੀ ਦਾ ਆਇਤਨ = ਬੇਲਣ ਦਾ ਆਇਤਨ – ਬਰਤਨ ਵਿਚ ਪਾਏ ਗਏ ਠੋਸ ਦਾ ਆਇਤਨ
= (2036571.4 – 905142.86) cm3
= 1131428.5 cm3
= \(\frac{1131428.5}{100 \times 100 \times 100}\) m3
= 1.131 m3
∴ ਬੇਲਣ ਵਿੱਚ ਬਾਕੀ ਬਚੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
= 1.131 m3

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2

ਪ੍ਰਸ਼ਨ 8.
ਇੱਕ ਗੋਲਾਕਾਰ ਕੱਚ ਦੇ ਬਰਤਨ ਦੀ ਇੱਕ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦੀ ਗਰਦਨ ਹੈ ਜਿਸ ਦੀ ਲੰਬਾਈ 8 cm ਹੈ ਅਤੇ ਵਿਆਸ 2 cm ਹੈ ਜਦੋਂ ਕਿ ਗੋਲਾਕਾਰ ਭਾਗ ਦਾ ਵਿਆਸ 8.5 cm ਹੈ । ਇਸ ਵਿੱਚ ਭਰੇ ਜਾ ਸਕਣ ਵਾਲੇ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਮਾਪ ਕੇ, ਇੱਕ ਬੱਚੇ ਨੇ ਇਹ ਪਤਾ ਕੀਤਾ ਕਿ ਇਸ ਬਰਤਨ ਦਾ ਆਇਤਨ 345 cm3 ਹੈ । ਜਾਂਚ ਕਰੋ ਕਿ ਉਸ | ਬੱਚੇ ਦਾ ਉੱਤਰ ਸਹੀ ਹੈ ਜਾਂ ਨਹੀਂ, ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਉਪਰੋਕਤ ਮਾਪਣ ਅੰਦਰੂਨੀ ਮਾਪਣ ਹੈ ਅਤੇ π = 3.14।
ਹੱਲ:
ਗਰਦਨ ਦਾ ਵਿਆਸ ਬਿਲਣਾਕਾਰ ਭਾਗ) = 2 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.2 14
∴ ਗਰਦਨ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 1 cm
ਬੇਲਣਾਕਾਰ ਭਾਗ ਦੀ ਉੱਚਾਈ (H) = 8 cm
ਗੋਲਾਕਾਰ ਭਾਗ ਦਾ ਵਿਆਸ = 8.5 cm
ਗੋਲਾਕਾਰ ਭਾਗ ਦਾ ਅਰਧ ਵਿਆਸ (R) = \(\frac{8.5}{2}\) cm
= 4.25 cm
ਬਰਤਨ ਵਿਚ ਪਾਣੀ ਦਾ ਆਇਤਨ = ਗੋਲੇ ਦਾ ਆਇਤਨ + ਬੇਲਣ ਦਾ ਆਇਤਨ
= \(\frac{4}{3}\)πR3 + πr2h
= (\(\frac{4}{3}\) × 3.14 × 4.25 × 4.25 + 2.25 + 3.14 × 1 × 1 × 8) cm3
= (321.39 + 25.12) cm3
= 346.51 cm3
ਬਰਤਨ ਵਿਚ ਪਾਣੀ ਦਾ ਆਇਤਨ = 346.51 cm3 ਉਹ ਗਲਤ ਹੈ।

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Exercise 13.4

(ਜਦੋਂ ਤੱਕ ਕਿਹਾ ਨਾ ਜਾਵੇ, π = \(\frac{22}{7}\) ਲਓ )

ਪ੍ਰਸ਼ਨ 1.
ਪਾਣੀ ਪੀਣ ਵਾਲਾ ਇੱਕ ਗਿਲਾਸ 14 cm ਉੱਚਾਈ | ਵਾਲੇ ਇੱਕ ਸ਼ੰਭੂ ਦੇ ਸ਼ੌਨਕ ਦੇ ਆਕਾਰ ਦਾ ਹੈ । ਦੋਨਾਂ ਚੱਕਰਾਕਾਰ ਸਿਰਿਆਂ ਦੇ ਵਿਆਸ 4 cm ਅਤੇ 2 cm ਹਨ । ਇਸ ਗਿਲਾਸ ਦੀ ਧਾਰਨ ਸਮਰੱਥਾ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 1
ਉੱਪਰੀ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 2 cm
ਹੇਠਲੇ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 1 cm
ਗਿਲਾਸ ਦੀ ਉੱਚਾਈ (H) = 14 cm
ਗਿਲਾਸ ਸ਼ੌਨਕ ਦੇ ਆਕਾਰ ਦਾ ਹੈ
ਸ਼ੌਨਕ ਦਾ ਆਇਤਨ
= \(\frac{1}{3}\)π[R2 + r2 + Rr]H
= \(\frac{1}{3}\) × \(\frac{22}{7}\)[(2)2 + (1)2 + 2 × 1]14 cm3
= \(\frac{1}{3}\) × \(\frac{22}{7}\)[4 + 1 + 2] 14 cm3
= \(\frac{1}{3}\) ×\(\frac{22}{7}\) × 7 × 14 cm3
= \(\frac{2214}{3}\) cm3 = 102.67 cm3
ਗਿਲਾਸ ਦੀ ਧਾਰਨ ਸਮਰੱਥਾ = 102.67 cm3

ਪ੍ਰਸ਼ਨ 2.
ਇੱਕ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਨਕ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ 4 cm ਹੈ ਅਤੇ ਇਸਦੇ ਚੱਕਰੀ ਸਿਰਿਆਂ ਦੇ ਪਰਿਮਾਪ (ਘੇਰਾ) 18 cm ਅਤੇ 6 cm ਹਨ ।ਇਸ ਛਿੰਕ ਦੀ ਵਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਛਿਨਕ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ (l) = 4 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 2
ਮੰਨ ਲਉ ਉੱਪਰੀ ਸਿਰੇ ਅਤੇ ਹੇਠਲੇ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ R ਅਤੇ r ਹੈ ।
ਉੱਪਰਲੇ ਸਿਰੇ ਦਾ ਪਰਿਮਾਪੁ = 18 cm
2πR = 18
R = \(\frac{18}{2 \pi}\) = \(\frac{9}{\pi}\) cm
ਹੇਠਲੇ ਸਿਰੇ ਦਾ ਪਰਿਮਾਪ = 6 cm
2πr = 6 cm
r = \(\frac{6}{2 \pi}\) = \(\frac{3}{\pi}\) cm
ਜ਼ਿੰਕ ਦੀ ਵਕਰ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= π[R + r]l
= π[\(\frac{9}{\pi}\) + \(\frac{3}{\pi}\)] 4 cm2
= 4[latex]\frac{9+3}{\pi}[/latex] 4 cm2
= 12 × 4 cm2
= 48 cm2
ਸ਼ੌਨਕ ਦੀ ਵਕਰ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ
= 48 cm2

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4

ਪ੍ਰਸ਼ਨ 3.
ਇੱਕ ਤੁਰਕੀ ਟੋਪੀ ਸ਼ੰਕੁ ਦੇ ਇੱਕ ਛਿਨਕ ਦੇ ਆਕਾਰ ਦੀ ਹੈ । (ਦੇਖੋ ਚਿੱਤਰ) ਜੇਕਰ ਇਸਦੇ ਖੁੱਲ੍ਹੇ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ 10 cm ਹੈ, ਉਪਰੀ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ 4 cm ਹੈ ਅਤੇ ਟੋਪੀ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ 15 cm ਹੈ, ਤਾਂ ਇਸ ਦੇ ਬਣਾਉਣ ਲਈ ਲੱਗੇ ਪਦਾਰਥ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 3
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 4
15cm
ਸ਼ੌਨਕ ਦੇ ਹੇਠਲੇ ਸਿਰੇ ਦਾ ਅਰਧਵਿਆਸ (R) = 10 cm
ਸ਼ੌਨਕ ਉੱਪਰਲੇ ਸਿਰੇ ਦਾ ਅਰਧਵਿਆਸ (r) =4 cm
ਛਿਨਕ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ (l) = 15 cm
ਛਿਨਕ ਦੀ ਵਕਰ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ
= πl[R + r]
=\(\frac{22}{7}\) × 15[10 + 4] cm2
= \(\frac{22}{7}\) × 15 × 14 cm2
= 22 × 15 × 2 cm2
= 660 cm2
ਬੰਦ ਸਿਰੇ ਦਾ ਖੇਤਰਫਲ = πr2 = \(\frac{22}{7}\) × (4)2 cm2
= \(\frac{22}{7}\) × 4 × 4cm2 = \(\frac{352}{7}\) cm
ਲੋੜੀਂਦੇ ਪਦਾਰਥ ਦਾ ਕੁੱਲ ਖੇਤਰਫਲ
= ਛਿਨਕ ਦੀ ਵਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ + ਬੰਦ ਸਿਰੇ ਦਾ ਖੇਤਰਫਲ
= (660 + 50.28) cm2
= 710.28 cm2

ਪ੍ਰਸ਼ਨ 4.
ਧਾਤੂ ਦੀ ਚਾਦਰ ਨਾਲ ਬਣਿਆ ਅਤੇ ਉੱਪਰ ਤੋਂ ਖੁਲਿਆ ਇੱਕ ਬਰਤਨ ਸ਼ੰਕੂ ਦੇ ਇੱਕ ਛਿਨਕ ਦੇ ਆਕਾਰ ਦਾ ਹੈ, ਜਿਸਦੀ ਉੱਚਾਈ 16 cm ਹੈ ਅਤੇ ਹੇਠਲੇ ਅਤੇ ਉੱਪਰੀ ਸਿਰਿਆਂ ਦੇ ਅਰਧ ਵਿਆਸ ਕੁਮਵਾਰ 8 cm ਅਤੇ 20 cm ਹਨ । ₹ 20 ਪ੍ਰਤਿ ਲਿਟਰ ਦੀ ਦਰ ਨਾਲ, ਇਸ ਬਰਤਨ ਨੂੰ ਪੂਰਾ ਭਰ ਸਕਣ ਵਾਲੇ ਦੁੱਧ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ । ਨਾਲ ਹੀ, ਇਸ ਬਰਤਨ ਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਪ੍ਰਯੋਗ ਕੀਤੀ ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਮੁੱਲ ₹ 8 ਤਿ 100 cm2 ਦੀ ਦਰ ਨਾਲ ਪਤਾ ਕਰੋ । (π = 3.14 ਲਓ)
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 5
ਬਰਤਨ ਦੇ ਉੱਪਰੀ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 20 cm
ਹੇਠਲੇ ਸਿਰੇ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 8 cm
ਬਰਤਨ ਦੀ ਉੱਚਾਈ (H) = 16 cm
ਤਿਰਛੀ ਉੱਚਾਈ (l) =\(\sqrt{\mathrm{H}^{2}+(\mathrm{R}-r)^{2}}\)
= \(\sqrt{(16)^{2}+(20-8)^{2}}\)
= \(\sqrt {256+144}\)
(l) = \(\sqrt {400}\) = \(\sqrt {20×20}\) cm
= 20 cm
ਬਰਤਨ ਦੀ ਧਾਰਿਤਾ = \(\frac{1}{3}\) πH[R2 + r2 + Rr2]
= \(\frac{1}{3}\) × 3.14 × 16[(20)2 + (8)2 + 20 × 8]
= \(\frac{3.14×16}{3}\)[400 + 64 + 160] cm3
= 3.14 × 16 × 624 cm3
= 10449.92 cm3
∴ ਬਰਤਨ ਵਿਚ ਦੁੱਧ ਦਾ ਆਇਤਨ
= 10449.92 cm3
= \(\frac{10449.92}{1000}\) ਲਿਟਰ
∴ ਬਰਤਨ ਵਿਚ ਦੁੱਧ ਦਾ ਆਇਤਨ = 10.45 ਲਿਟਰ
1 ਲਿਟਰ ਦਾ ਮੁੱਲ = ₹ 20
∴ 10.45 ਲਿਟਰ ਦਾ ਮੁੱਲ = ₹ 20 × 10.45
ਦੁੱਧ ਦਾ ਮੁੱਲ = ₹ 209
ਸ਼ੌਨਕ ਦੀ ਵਿਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ
= πL [R + r]
= 3:14 × 20 [20 + 8]
= 3.14 × 20 × 28 cm2
= 1758.4 cm2
ਬਰਤਨ ਦੇ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ = πr2
= 3.14 × (8)2
= 3.14 × 64
= 200.96 cm2
ਬਰਤਨ ਬਣਾਉਣ ਲਈ ਪ੍ਰਯੋਗ ਕੀਤੀ ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਖੇਤਰਫਲ = ਸ਼ੌਨਕ ਦੀ ਵਕਰ ਸੜਾ ਦਾ ਖੇਤਰਫਲ + ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ :
= (1758. 4 + 200.96) cm2
= 1959.36 cm2
100 cm2 ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਮੁੱਲ = ₹ 8
1 cm2 ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਮੁੱਲ = ₹ \(\frac{8}{10}\)
1959.36 cm2 ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਮੁੱਲ
= ₹ \(\frac{8}{100}\) × 1959.36
= ₹ 156.748
= ₹ 15675
ਧਾਤੂ ਦੀ ਚਾਦਰ ਦਾ ਕੁੱਲ ਮੁੱਲ
= ₹ 156.75
ਦੁੱਧ ਤੇ ਕੁੱਲ ਲਾਗਤ ਤੋਂ 209

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4

ਪ੍ਰਸ਼ਨ 5.
20 cm ਉੱਚਾਈ ਅਤੇ ਸਿਖ਼ਰ ਕੋਣ (Vertical angle) 60° ਵਾਲੇ ਇੱਕ ਸ਼ੰਕੂ ਨੂੰ ਉਸਦੀ ਉੱਚਾਈ ਦੇ ਵਿੱਚਕਾਰ ਤੋਂ ਹੋ ਕੇ ਜਾਂਦੇ ਇੱਕ ਤਲ ਨਾਲ ਦੋ ਭਾਗਾਂ ਵਿੱਚ ਕੱਟਿਆ ਗਿਆ ਹੈ, ਜਦੋਂ ਕਿ ਤਲ ਸ਼ੰਕੂ ਦੇ ਆਧਾਰ ਦੇ ਸਮਾਂਤਰ ਹੈ । ਜੇਕਰ ਇਸ ਪ੍ਰਾਪਤ ਸ਼ੰਕੂ ਦੇ ਸ਼ੌਕ ਨੂੰ ਵਿਆਸ \(\frac{1}{16}\) cm ਵਾਲੇ ਇੱਕ ਤਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਤਾਰ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਸ਼ੰਕੂ ਦੇ ਸਿਖਰ ਦਾ ਕੋਣ = 60°
ਸ਼ੰਕੂ ਦਾ ਸਿਖਰਲੰਬ ਸਿਖ਼ਰ ਕੋਣ ਨੂੰ ਸਮਦੁਭਾਜਿਤ ਕਰਦਾ ਹੈ
∠EOF = 30°
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 6
△ODB ਵਿਚ,
\(\frac{BD}{OD}\) = tan 30°
\(\frac{r}{10}\) = \(\frac{1}{\sqrt{3}}\)
r = \(\frac{1o}{\sqrt{3}}\) cm
△OEF ਵਿਚ,
\(\frac{EF}{OE}\) = tan 30°
\(\frac{R}{20}\) = \(\frac{1}{\sqrt{3}}\)
R = \(\frac{20}{\sqrt{3}}\) cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 7
ਛਿਨਕ ਦੀ ਤਾਰ ਬਣਾਈ ਗਈ ਹੈ ਜੋ ਬੇਲਣ ਆਕਾਰ ਦੀ ਹੈ ਜਿਸਦਾ ਵਿਆਸ \(\frac{1}{16}\) cm ਹੈ ।
∴ ਬੇਲਣਾਕਾਰ ਤਾਰ ਦਾ ਅਰਧ ਵਿਆਸ (r1)
= \(\frac{1}{2}\) × \(\frac{1}{16}\) cm = \(\frac{1}{32}\) cm
ਮੰਨ ਲਉ ਇਸ ਤਰ੍ਹਾਂ ਬਣੇ ਬੇਲਣ ਦੀ ਉੱਚਾਈ = H cm
ਰੂਪ ਬਦਲਣ ‘ਤੇ ਆਇਤਨ ਬਰਾਬਰ ਰਹਿੰਦਾ ਹੈ
ਸ਼ੌਨਕ ਦਾ ਆਇਤਨ = ਬੇਲਣਾਕਾਰ ਤਾਰ ਦਾ ਆਇਤਨ
\(\frac{22}{7}\) × \(\frac{7000}{9}\) = πr12H
\(\frac{22}{7}\) × \(\frac{7000}{9}\) = \(\frac{22}{7}\) × \(\left(\frac{1}{32}\right)^{2}\) × H
H = \(\frac{\frac{22}{7} \times \frac{7000}{9}}{\frac{22}{7} \times \frac{1}{32} \times \frac{1}{32}}\) cm
= \(\frac{7000}{9}\) × 32 × 32 cm
H = \(\frac{796444.44}{100}\) m
H = 7964.44 m
∴ ਬੇਲਣਾਕਾਰ ਤਾਰ ਦੀ ਲੰਬਾਈ
H = 7964.44 m

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Exercise 13.3

ਜਦੋਂ ਤੱਕ ਕਿਹਾ ਨਾ ਜਾਵੇ, π = \(\frac{22}{7}\) ਲਓ।

ਪ੍ਰਸ਼ਨ 1.
ਅਰਧ ਵਿਆਸ 4.2 cm ਵਾਲੇ ਧਾਤੂ ਦੇ ਇੱਕ ਗੋਲੇ ਨੂੰ ਪਿਘਲਾ ਕੇ ਅਰਧ ਵਿਆਸ 6 cm ਵਾਲੇ ਇੱਕ ਬੇਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਢਾਲਿਆ ਜਾਂਦਾ ਹੈ । ਬੇਲਣ ਦੀ ਉੱਚਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 1
ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 4.2 cm
ਬੋਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 6 cm
ਮੰਨ ਲਉ ਬੇਲਣ ਦੀ ਉੱਚਾਈ = H cm
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ,
ਗੋਲੇ ਦਾ ਆਇਤਨ = ਬੇਲਣ ਦਾ ਆਇਤਨ
\(\frac{4}{3}\)πr3 = πR2H
\(\frac{4}{3}\) × \(\frac{22}{7}\) × 4.2 × 4.2 × 4.2
= \(\frac{22}{7}\) × 6 × 6 × H
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 2
= \(\frac{2744}{1000}\) = 2.744 cm
ਬੇਲਣ ਦੀ ਉੱਚਾਈ (H) = 2744 cm

ਪ੍ਰਸ਼ਨ 2.
ਕ੍ਰਮਵਾਰ : 6 cm, 8 cm ਅਤੇ 10 cm ਅਰਧ ਵਿਆਸ ਵਾਲੇ ਧਾਤੂ ਦੇ ਤਿੰਨ ਠੋਸ ਗੋਲਿਆਂ ਨੂੰ ਪਿਘਲਾ ਕੇ ਇੱਕ ਵੱਡਾ ਠੋਸ ਗੋਲਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਇਸ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 3
ਪਹਿਲੇ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (r1) = 6 cm
ਦੂਸਰੇ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (r2) = 8 cm
ਤੀਸਰੇ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (r3) = 10 cm
ਮੰਨ ਲਉ ਨਵੇਂ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ = R cm
ਤਿੰਨਾਂ ਗੋਲਿਆਂ ਦਾ ਆਇਤਨ = ਵੱਡੇ ਗੋਲੇ ਦਾ ਆਇਤਨ
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 4
= 2 × 2 × 3 cm
R = 12 cm
∴ ਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ = 12 cm

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3

ਪ੍ਰਸ਼ਨ 3.
ਵਿਆਸ 7 m ਵਾਲਾ ਇੱਕ ਖੁਹ 20 m ਡੂੰਘਾ ਪੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪੁੱਟਣ ਨਾਲ ਨਿਕਲੀ ਹੋਈ ਮਿੱਟੀ ਨੂੰ ਇੱਕੋ ਜਿਹੇ | ਰੂਪ ਵਿੱਚ ਫੈਲਾ ਕੇ 22 m × 14 m ਵਾਲਾ ਇੱਕ ਚਬੂਤਰਾ | ਬਣਾਇਆ ਗਿਆ ਹੈ | ਚਬੂਤਰੇ ਦੀ ਉੱਚਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਖੂਹ ਦਾ ਵਿਆਸ = 7 m
ਖੂਹ (ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ) R = 6 m
ਖੂਹ ਦੀ ਉੱਚਾਈ (H) = 20 m
ਚਬੂਤਰੇ ਦੀ ਲੰਬਾਈ (L) = 22 m
ਦੇ ਚਬੂਤਰੇ ਦੀ ਚੌੜਾਈ (B) = 14 m
ਮੰਨ ਲਓ ਚਬੂਤਰੇ ਦਾ ਅਰਧ ਵਿਆਸ = H m
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 5
ਖੂਹ ਵਿਚੋਂ ਨਿਕਲੀ ਮਿੱਟੀ ਦਾ ਆਇਤਨ = ਬਣਾਏ ਗਏ ਚਬੂਤਰੇ ਦਾ ਆਇਤਨ
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 6
πR2H = L × B × H
\(\frac{22}{7}\) × \(\frac{7}{2}\) × \(\frac{7}{2}\) × 20 = 22 × 14 × h
∴ H = \(\frac{\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20}{22 \times 14}\)
H = 2.5 cm
∴ ਚਬੂਤਰੇ ਦੀ ਉੱਚਾਈ H = 2.5 cm.

ਪ੍ਰਸ਼ਨ 4.
3 m ਵਿਆਸ ਦਾ ਇੱਕ ਖੁਹ 14 m ਦੀ ਗਹਿਰਾਈ ਡੂੰਘਾਈ) ਤੱਕ ਪੁੱਟਿਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਵਿੱਚੋਂ ਨਿਕਲੀ ਹੋਈ ਮਿੱਟੀ ਨੂੰ ਖੂਹ ਦੇ ਚਾਰੇ ਪਾਸੇ 4m ਚੌੜੀ ਇੱਕ ਚੱਕਰਾਕਾਰ ਚਬੂਤਰਾ (ring) ਬਣਾਉਂਦੇ ਹੋਏ, ਸਮਾਨ ਰੂਪ ਨਾਲ ਫੈਲਾ ਕੇ ਇੱਕ ਪ੍ਰਕਾਰ ਦਾ ਬੰਨ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਬੰਨ ਦੀ ਉੱਚਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਖੂਹ ਦੀ ਗਹਿਰਾਈ (h) = 14
ਖੂਹ ਦਾ ਅਰਧ ਵਿਆਸ (P) = \(\frac{3}{2}\) m
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 7
ਬੰਨ ਖੋਖਲੇ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਹੈ ਜਿਸਦਾ ਅੰਦਰੂਨੀ ਅਰਧ ਵਿਆਸ ਖੂਹ ਦੇ ਅਰਧ ਵਿਆਸ ਦੇ ਬਰਾਬਰ ਹੈ ਅਤੇ ਬੰਨ ਦੀ ਚੌੜਾਈ 4 m ਹੈ ।
ਬੰਨ ਦੇ ਅੰਦਰਲਾ ਅਰਧ ਵਿਆਸ (r)
= ਖੂਹ ਦਾ ਅਰਧ ਵਿਆਸ (r) = \(\frac{3}{2}\) m
ਬੰਨ ਦਾ ਬਾਹਰੀ ਅਰਧ ਵਿਆਸ (R)
= (\(\frac{3}{2}\) + 4) m
R = \(\frac{11}{2}\) m
= 5.5 m
ਨਿਕਲੀ ਹੋਈ ਮਿੱਟੀ ਦਾ ਆਇਤਨ
= ਬਣੇ ਹੋਏ ਬੰਨਦਾ ਆਇਤਨ
πr2h = ਬਾਹਰੀ ਬੇਲਣ ਦਾ ਆਇਤਨ – ਅੰਦਰੂਨੀ ਬੇਲਣ ਦਾ ਆਇਤਨ
= πR2H – πr2H
= πH[R2 – r2]
\(\frac{22}{7}\) × \(\frac{3}{2}\) × \(\frac{3}{2}\) × 14
= \(\frac{22}{7}\) × H[(5.5)2 – (1.5)2]
H = \(=\frac{\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 14}{\frac{22}{7} \times(5.5-1.5)(5.5+1.5)}\) m
= \(\frac{1.5 \times 1.5 \times 14}{4 \times 7}\) m
= 1.125 m
∴ ਬੰਨ ਦੀ ਉੱਚਾਈ H = 1.125 m

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3

ਪ੍ਰਸ਼ਨ 5.
12 cm ਵਿਆਸ ਅਤੇ 15 cm ਉੱਚਾਈ ਵਾਲੇ ਇੱਕ । ਲੰਬ ਚੱਕਰੀ ਬੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਬਰਤਨ ਆਇਸਕੀਮ ਨਾਲ ਪੂਰਾ ਭਰਿਆ ਹੋਇਆ ਹੈ । ਇਸ਼ ਆਇਸਕ੍ਰੀਮ ਦੀ ਉੱਚਾਈ 12 cm ਅਤੇ ਵਿਆਸ 6 cm ਵਾਲੇ ਸ਼ੰਕੂਆਂ ਵਿੱਚ ਭਰਿਆ ਜਾਣਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦਾ ਉੱਪਰੀ ਸਿਰਾ ਅਰਧ ਗੋਲਾਕਾਰ ਹੋਵੇਗਾ । ਉਨ੍ਹਾਂ ਸ਼ੰਕੂਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੋ ਇਸ ਆਇਸਕੀਮ ਨਾਲ ਭਰੇ ਜਾ ਸਕਦੇ ਹਨ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 8
ਬੇਲਣ ਦਾ ਵਿਆਸ (D) = 12 cm
∴ ਬੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 6 cm
ਬੇਲਣ ਦੀ ਉੱਚਾਈ (H) = 15 cm
ਸ਼ੰਕੂ ਦਾ ਵਿਆਸ = 6 cm
ਸ਼ੰਕੂ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 3 cm
ਅਰਧਗੋਲੇ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 3 cm
ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (h) = 12 cm
ਮੰਨ ਲਉ ਸ਼ੰਕੂਆਂ ਦੀ ਸੰਖਿਆ = n
ਬਰਤਨ ਵਿਚ ਆਇਸਕ੍ਰਿਮ ਦਾ ਆਇਤਨ
= n [ਇੱਕ ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ
πR2H = n
[ਸ਼ੰਕੂ ਦਾ ਆਇਤਨ + ਅਰਧਗੋਲੇ ਦਾ ਆਇਤਨ]
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 9
n = 10
ਸ਼ੰਕੂਆਂ ਦੀ ਸੰਖਿਆ = 10

ਪ੍ਰਸ਼ਨ 6.
5.5 cm × 10 cm × 3.5 cm ਪਸਾਰਾਂ ਵਾਲਾ ਇੱਕ ਘਣਾਵ ਬਣਾਉਣ ਦੇ ਲਈ 1.75 cm ਵਿਆਸ ਅਤੇ 2 mm ਮੋਟਾਈ ਵਾਲੇ ਕਿੰਨੇ ਚਾਂਦੀ ਦੇ ਸਿੱਕਿਆਂ (coins) ਨੂੰ ਪਿਘਲਾਉਣਾ ਪਏਗਾ ?
ਹੱਲ:
ਚਾਂਦੀ ਦਾ ਸਿੱਕਾ ਬੇਲਣ ਆਕਾਰ ਦਾ ਹੈ
ਚਾਂਦੀ ਦੇ ਸਿੱਕੇ ਦਾ ਵਿਆਸ = 1.75 cm
∴ ਚਾਂਦੀ ਦੇ ਸਿੱਕੇ ਦਾ ਅਰਧ ਵਿਆਸ (r) = \(\frac{1.75}{2}\) cm
ਚਾਂਦੀ ਦੇ ਸਿੱਕੇ ਦੀ ਮੋਟਾਈ
= ਬੇਲਣ ਦੀ ਉੱਚਾਈ (h) = 2 mm
ਅਰਥਾਤ h = \(\frac{2}{10}\) cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 10
ਘਣਾਵ ਦੀ ਲੰਬਾਈ (L) = 5.5 cm
ਘਣਾਵ ਦੀ ਚੌੜਾਈ (B) = 10 cm
ਘਣਾਵ ਦੀ ਉਚਾਈ (H) = 3.5 cm
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 11
ਮੰਨ ਲਉ ਚਾਂਦੀ ਦੇ ਸਿੱਕਿਆਂ ਨੂੰ ਪਿਘਲਾ ਕੇ ਨਵਾਂ ਘਣਾਵ ਬਣਾਇਆ ਗਿਆ ਹੈ
ਘਣਾਵ ਦਾ ਆਇਤਨ = n[ਚਾਂਦੀ ਦੇ ਸਿੱਕੇ ਦਾ ਆਇਤਨ]
= n[πr2h]
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 12
= 400
ਬਣੇ ਚਾਂਦੀ ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 400

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3

ਪ੍ਰਸ਼ਨ 7.
32 cm ਉੱਚੀ ਅਤੇ 18 cm ਆਧਾਰ ਦੇ ਅਰਧ ਵਿਆਸ ਵਾਲੀ ਇੱਕ ਬੇਲਣਾਕਾਰ ਬਾਲਟੀ ਰੇਤ ਨਾਲ ਭਰੀ ਹੋਈ ਹੈ । ਇਸ ਬਾਲਟੀ ਨੂੰ ਭੂਮੀ ‘ਤੇ ਖਾਲੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਰੇਤ ਦੀ ਇੱਕ ਸ਼ੰਕੂ ਆਕਾਰ ਢੇਰੀ ਬਣਾਈ ਜਾਂਦੀ ਹੈ । ਜੇਕਰ ਸ਼ੰਕੁ ਆਕਾਰ ਢੇਰੀ ਦੀ ਉੱਚਾਈ 24 cm ਹੈ, ਤਾਂ ਇਸ ਢੇਰੀ ਦਾ ਅਰਧ ਵਿਆਸ ਅਤੇ ਤਿਰਛੀ ਉੱਚਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 13
ਬੇਲਣਾਕਾਰ ਬਾਲਟੀ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 18 cm
ਬੇਲਣਾਕਾਰ ਬਾਲਟੀ ਦੀ ਉੱਚਾਈ (H) = 32 cm
ਸ਼ੰਕੂ ਦੀ ਉੱਚਾਈ (h) = 24 cm
ਮੰਨ ਲਉ ਸ਼ੰਕੂ ਦਾ ਅਰਧ ਵਿਆਸ ਅਤੇ ਢੇਰੀ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ ‘r’ cm ਅਤੇ ‘l’ cm ਹੈ ।
ਬਾਲਟੀ ਵਿਚ ਰੇਤ ਦਾ ਆਇਤਨ = ਸ਼ੰਕੂ ਵਿੱਚ ਰੇਤ ਦਾ ਆਇਤਨ
PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3 14
r2 = 1296
r = \(\sqrt {1296}\) cm
r = 36 cm
∴ ਕੂ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 36 cm
ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ
(ਤਿਰਛੀ ਉੱਚਾਈ)2 = (ਅਰਧਵਿਆਸ)2 + (ਉੱਚਾਈ)2
l2 = r2 + h2
l = \(\sqrt{(36)^{2}+(24)^{2}}\)
= \(\sqrt {1296+576}\)
= \(\sqrt {1872}\)
= \(\sqrt {12×12×13}\)
l = 12\(\sqrt {13}\) cm
∴ ਸ਼ੰਕੂ ਦੀ ਤਿਰਛੀ ਉੱਚਾਈ (l) = 12\(\sqrt {13}\) cm

ਪ੍ਰਸ਼ਨ 8.
6 m ਚੌੜੀ ਅਤੇ 1.5 m ਗਹਿਰੀ (ਡੂੰਘੀ) ਇੱਕ ਨਹਿਰ ਵਿੱਚ ਪਾਣੀ 10 km/h ਦੀ ਚਾਲ ਨਾਲ ਵਹਿ (ਚੱਲ) ਰਿਹਾ ਹੈ ।30 ਮਿੰਟ ਵਿੱਚ, ਇਹ ਨਹਿਰ ਕਿੰਨੇ ਖੇਤਰਫਲ ਦੀ ਸਿੰਚਾਈ ਕਰ ਸਕੇਗੀ, ਜਦਕਿ ਸਿੰਚਾਈ ਦੇ ਲਈ 8 cm ਡੂੰਘੇ ਪਾਣੀ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ।
ਹੱਲ:
ਨਹਿਰ ਦੀ ਚੌੜਾਈ = 6 m
ਨਹਿਰ ਵਿੱਚ ਪਾਣੀ ਦੀ ਡੂੰਘਾਈ = 1.5 m
ਜਿਸ ਚਾਲ ਨਾਲ ਪਾਣੀ ਚਲ ਰਿਹਾ ਹੈ = 10 km/hr
ਇੱਕ ਘੰਟੇ ਵਿੱਚ ਨਿਕਲੇ ਪਾਣੀ ਦਾ ਆਇਤਨ = ਇਕ ਘੰਟੇ ਵਿੱਚ ਨਿਕਲੇ ਪਾਣੀ ਦੀ ਚਾਲ
= (6 × 1.5 m2) × 10 km
= 6 × 1.5 × 10 × 10 × 1000 m3.
∴ \(\frac{1}{2}\) ਘੰਟੇ ਵਿੱਚ ਨਿਕਲੇ ਪਾਣੀ ਦਾ ਆਇਤਨ
\(\frac{1}{2}\) × \(\frac{6×15}{10}\) × 100000
= 450000 m3
ਮੰਨ ਲਉ ਸਿੰਚਾਈ ਦਾ ਖੇਤਰਫਲ = (x) m2
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ ਖੇਤ ਵਿੱਚ 8 cm ਗਹਿਰੇ ਪਾਣੀ ਦੀ ਲੋੜ
∴ \(\frac{1}{2}\) ਘੰਟੇ ਵਿਚ ਨਿਕਲੇ ਪਾਣੀ ਦਾ ਆਇਤਨ ਹੈ
= ਖੇਤ ਵਿੱਚ ਪਾਣੀ ਦਾ ਆਇਤਨ
450000 m3 = (ਖੇਤ ਦਾ ਖੇਤਰਫਲ) × ਪਾਣੀ ਦੀ ਉੱਚਾਈ
450000 m3 = x × (m)
\(\frac{450000}{8}\) × 100 = x
x = 562500 m2
x = \(\frac{562500}{10000}\) ਹੈਕਟੇਅਰ
[1 m2 = \(\frac{1}{10000}\) ਹੈਕਟੇਅਰ]
x = 56.25 ਹੈਕਟੇਅਰ
∴ ਖੇਤ ਦਾ ਖੇਤਰਫਲ = 56.25 ਹੈਕਟੇਅਰ

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.3

ਪ੍ਰਸ਼ਨ 9.
ਇੱਕ ਕਿਸਾਨ ਆਪਣੇ ਖੇਤ ਵਿਚ ਬਣੀ 10 m ਵਿਆਸ ਵਾਲੀ ਅਤੇ 2 m ਡੂੰਘੀ ਇੱਕ ਬੇਲਣਾਕਾਰ ਟੈਂਕੀ ਨੂੰ ਅੰਦਰੂਨੀ ਵਿਆਸ 20 cm ਵਾਲੇ ਇੱਕ ਪਾਇਪ ਦੁਆਰਾ ਇੱਕ ਨਹਿਰ ਨਾਲ ਜੋੜਦਾ ਹੈ। ਜੇਕਰ ਪਾਇਪ ਵਿੱਚ ਪਾਣੀ 3 km/h ਦੀ । ਚਾਲ ਨਾਲ ਚੱਲ (ਵਹਿ ਰਿਹਾ ਹੈ ਤਾਂ ਕਿੰਨੇ ਸਮੇਂ ਬਾਅਦ ਟੈਂਕੀ ਭਰ ਜਾਵੇਗੀ ?
ਹੱਲ:
ਪਾਣੀ ਦੀ ਚਾਲ = 3 km/hr
ਪਾਇਪ ਦਾ ਅੰਦਰੂਨੀ ਵਿਆਸ = 20 cm
∴ ਪਾਇਪ ਦਾ ਅਰਧ ਵਿਆਸ (r) = 10 cm = \(\frac{10}{100}\) m
= \(\frac{1}{10}\) m
ਟੈਂਕੀ ਦਾ ਵਿਆਸ = 10 m
ਟੈਂਕੀ ਦਾ ਅਰਧ ਵਿਆਸ (R) = 5 m
ਟੈਂਕੀ ਦੀ ਡੂੰਘਾਈ (H) = 2 m
ਮੰਨ ਲਉ ਪਾਇਪ n ਮਿੰਟਾਂ ਵਿਚ ਟੰਕੀ ਭਰਦੀ ਹੈ ਟੈਂਕੀ ਵਿਚ ਪਾਣੀ ਦਾ ਆਇਤਨ
= ਪਾਇਪ ਦੁਆਰਾ n ਮਿੰਟਾਂ ਵਿੱਚ ਚੱਕਿਆ ਪਾਣੀ
πR2H = n [ਅੰਦਰੂਨੀ ਕਾਟ ਦਾ ਖੇਤਰਫਲ × ਪਾਣੀ ਦੀ ਚਾਲੀ]
πR2H = n[(πr2) × 3 km/h]
\(\frac{22}{7}\) × (5)2 × 2
= n[\(\frac{22}{7}\) × \(\frac{1}{10}\) × \(\frac{1}{10}\) × \(\frac{31000}{60}\)]
= 25 × 2
= n\(\frac{1}{10}\) × 50
⇒ n = 100 ਮਿੰਟ
∴ ਟੈਂਕੀ ਨੂੰ ਭਰਨ ਵਿਚ ਲੱਗਾ ਸਮਾਂ
= 100 ਮਿੰਟ