PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.3

Question 1.
Find the area of the triangle whose vertices are:
(i) (2, 3); (- 1, 0); (2, – 4)
(ii) (- 5, – 1); (3, – 5); (5, 2)
Solution:
(i) Let vertices of the ∆ABC are A (2, 3); B(- 1, 0) and C (2, – 4)
Here x1 = 2, x2 = – 1 x3 = 2
y1 = 3, y2 = 0, y3 = – 4 .
∴ Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)
= \(\frac{1}{2}\) [2 × (0 + 4) – 1 × (- 4 – 3) + 2 × (3 – 0)]
= \(\frac{1}{2}\) [8 + 7 + 6] = \(\frac{21}{2}\)
= 10.5 sq units.

(ii) Let vertices of the ∆ABC are A (- 5, – 1); B (3, – 5) and C (5, 2)
Here x1 = – 5, x2 = 3, x3 = 5
y1 = – 1, y2 = – 5, y3 = 2
∴ Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [- 5 (- 5 – 2) + 3 (2 + 1) + 5 (- 1 + 5)]
= \(\frac{1}{2}\) [35 + 9 + 20]
= \(\frac{1}{2}\) × 64 = 32 sq units.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 2.
In each of the following find the value of ‘k’ for which the points are coimear.
(i) (7, – 2); (5, 1); (3, k)
(ii) (8, 1); (k, – 4); (2, – 5)
Solution:
(i) Let given points be A (7, – 2); B (5, 1) and C (5, k)
Here x1 = 7, x2 = 5, x3 = 3
y1 = – 2, y2 = 1 y3 = k
Three points are collinear iff
\(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)] = 0
or \(\frac{1}{2}\) [7 (1 – k) + 5(k + 2) + 3(- 2 – 1)] = 0
or 7 – 7k + 5k +10 – 9 = 0
or – 2k + 8 = 0
or – 2k = – 8
or – k = \(\frac{-8}{-2}\) = 4 .
Hence k = 4.

(ii) Let given points be A (8, 1); B (k, – 4) and C(2, – 5)
Here x1 = 8 x2 = k, x3 = 2
y1 = 1, y = – 4, y = – 5
Three points are collinear iff
\(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)] = 0
or \(\frac{1}{2}\) [8 (- 4 + 5) + k (- 5 – 1) + 2 (1 + 4) = 0]
or 8 – 6k + 10 = 0
or – 6k = – 18 .
or k = \(\frac{-18}{-6}\) = 3.
Hence k = 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 3.
Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, – 1), (2, 1) and (0, 3). FInd the ratio of the area of the triangle formed to the area of the given triangle.
Solution:
Let vertices of given triangle ABC are A(0, – 1); B (2, 1) and C (0, 3).
Also, D, E, F be the mid points of AB, BC, CA respectively.
Using mid point formula,
Coordinates of D = \(\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)\) = (1, 0)

Coordinates of E = \(\left(\frac{2+0}{2}, \frac{1+3}{2}\right)\) = (1, 2)

Coordinates of F = \(\left(\frac{0+0}{2}, \frac{3-1}{2}\right)\) = (0, 1)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 1

∴ Co-ordinates of the vertices of DEF are D (1, 0); E (1, 2); F (0,1).
Here x1 = 1, x2 = 1, x3 = 0
y1 = 0, y2 = 2, y3 = 1.
Area of ∆DEF = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [1 (2 – 1) + 1 (1 – 0) + 0 (0 – 2)]
= \(\frac{1}{2}\) [1 + 1 + 0] = \(\frac{2}{2}\) = 1.

In ∆ABC,
x1 = 0, x2 = 2, x3 = 0
y1 = – 1, y2 = 1, y3 = 3.
Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [0 (1 – 3) + 2 (3 + 1) + 0 (- 1 – 1)]
= \(\frac{1}{2}\) [0 + 8 + 0] = \(\frac{8}{2}\) = 4
Required ratio = \(\frac{\text { Area of } \triangle \mathrm{DEF}}{\text { Area of } \triangle \mathrm{ABC}}\)
= \(\frac{1}{4}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 4.
Find the area of the quadrilateral whose vertices taken in order, are (- 4, – 2); (- 3, – 5); (3, – 2); (2, 3).
Solution:
Let co-ordinates of the given quadrilateral ABCD are A(- 4, – 2); B(-3, – 5); C(3, – 2) and D (2, 3).
Join AC then Quad. ABCD divides in two triangles
i.e. ∆ABC and ∆CDA

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 3

In ∆ABC
Here x1 = – 4, x2 = – 3, x3 = 3
y1 = – 2, y2 = – 5, y3 = – 2
Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [- 4 (5 + 2) + (- 3) (- 2 + 2) + 3 (- 2 + 5)]
= \(\frac{1}{2}\) [12 + 0 + 9] = \(\frac{21}{2}\) sq. units.

In ∆CDA
x1 = 3, x2 = 2, x3 = – 4
y1 = – 2, y2 = 3, y3= – 2
Area of ∆CDA = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [3 (3 + 2) + 2 (- 2 + 2) + (-4) (- 2 – 3)]
= \(\frac{1}{2}\) [20 + 15 + 0] = \(\frac{35}{2}\) sq. units.

Now, Area of quadritateral ABCD = (Area of ∆ABC) + (Area of ∆ACD)
= \(\frac{21}{2}+\frac{35}{2}=\frac{21+35}{2}\)
= \(\frac{56}{2}\) = 28 sq. units.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 5.
You have studied in Class IX, (Chapter 9, Q. 3) that a median of a triangle divides it into two triangles of equal areas. Verify this result for ∆ABC whose vertices are A(4, – 6), B(3, – 2) and C(5, 2).
Solution:
Given that coordinates of the vertices of ∆ABC are A(4, – 6); B (3, – 2) and C (5, 2)
Let CD is the median i.e. D is the mid point of AB which divides AABC into two pails i.e.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 4

∆ADC and ∆CDB
Coordinates of D = \(\left(\frac{4+3}{2}, \frac{-6-3}{2}\right)\)
= \(\left(\frac{7}{2}, \frac{-8}{2}\right)\) = (3.5,- 4).

In ∆ADC
x1 = 4, x2 = 3.5, x3 = 5
y1 = – 6, y2 = -4, y3 = 2
Area of ∆ADC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [4(—4—2)+3.5(2+6)÷5(—6+4)]
= \(\frac{1}{2}\) [- 24 + 28 – 101]
= \(\frac{1}{2}\) × -6
= 3 sq. units (∵ area cannot be negative).

In ∆CDB
x = 5, x = 35, x = 3
y = 2, y = – 4, y = – 2
Area of ∆CDB = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [5 (- 4 + 2) + 3.5 (- 2 – 2) + 3 (2 + 4)]
= \(\frac{1}{2}\) [- 10 – 14 + 18]
= \(\frac{1}{2}\) × – 6 = – 3
= 3 sq. units(∵ area cannot be negalive)
From above discussion it is clear that area of ∆ADC = area of ∆CDB = 3 sq. units
Hence, a median of a triangle divides it into two triangles of equal areas.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.6 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.6

Question 1.
In figure, PS is bisector of ∠QPR of ∆PQR. Prove that = \(\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 1

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 2

Solution:
Given: ∆PQR. PS is bisector of ∠QPR
i.e., ∠1 = ∠2
To prove: \(\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}\)
Construction : Through R draw a line parallel to PS to meet QP produced at T.
Proof: In ∆QRT, PS || TR

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 3

∠1 = ∠4 (Corresponding angle)
but ∠1 = ∠2 (given)
∴ ∠3 = ∠4
In ∆PRT,
∠3 = ∠4 (Proved)
PT = PR
[Equal side have equal angle opposite to it]
In ∆QRT,
PS || TR
∴ \(\frac{\mathrm{QP}}{\mathrm{PT}}=\frac{\mathrm{QS}}{\mathrm{SR}}\)
[By Basic Proportionality Theorem]
\(\frac{\mathrm{QP}}{\mathrm{PR}}=\frac{\mathrm{QS}}{\mathrm{SR}}\) (PT = PR)
\(\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{QS}}{\mathrm{SR}}\)
Which is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 2.
In the given fig., D is a point on hypotenuse AC of ∆ABC, DM ⊥ BC, DN ⊥ AB, prove that:
(i) DM2 = DN.MC
(ii) DN2 = OMAN.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 4

Solution:
Given: ∆ABC, DM ⊥ BC, DN ⊥ AB
To prove: DM2 = DN . AC
DN2 = DM . AN.
Proof: BD ⊥ AC (Given)
⇒ ∠BDC = 90°
⇒ ∠BDM + ∠MDC = 90°
In ∠DMC, ∠DMC = 90°
[∵ DM ⊥ BC (Given)]
⇒ ∠C + ∠MDC = 90°
From (1) and (2),
∠BDM + ∠MDC = ∠C + ∠MDC
∠BDM =∠C
[Cancelling ∠MDC from both sides]
Now in ∆BMD and ∆MDC,
∠BDM = ∠C [Proved)
∠BMD = ∠DMC [Each 90°]
∆BMD ~ ∆MDC [By AA criterion of similarity]
⇒ \(\frac{\mathrm{DM}}{\mathrm{BM}}=\frac{\mathrm{MC}}{\mathrm{DM}}\)
[∵ Corresponding sides of similar triangles are proportional]
⇒ DM2 = BM × MC
⇒ DM2 = DN × MC [∵ BM = DN]
Similarly, ∆NDA ~ ∆NBD
⇒ \(\frac{\mathrm{DN}}{\mathrm{BN}}=\frac{\mathrm{AN}}{\mathrm{DN}}\)
[∵ Corresponding sides of similar triangles are próportional]
⇒ DN2 = BN × AN
⇒ DN2 = DM × AN .
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 3.
In fig., ABC is triangle in which ∠ABC > 90° and AD ⊥ BC produced, prove that AC2 = AB2 + BC2 + 2BC.BD.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 5

Solution:
Given: ∠ABC, AD ⊥ BC when produced, ∠ABC > 90°.
To prove : AC2 = AB2 + BC2 + 2BC. BD.
Proof: Let BC = a,
CA = b,
AB = c,
AD = h
and BD = x.
In right-angled ∆ADB,
Using Pythagoras Theorem.
AB2 = BD2 + AD2
i.e., c2 = x2 + h2
Again, in right-angled AADC,
AC2 = CD2 + AD2
i.e.. b2 = (a + x)2 + h2
= a2 + 2ax + x2 + h2
= a2 + 2ax + c2; [Using (1)]
b2 = a2 + b2 + 2w.
Hence, AB2 = BC2 + AC2 + 2BC × CD.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 4.
In fig., ABC is a triangle in which ∠ABC < 90°, AD ⊥ BC, prove that AC2 = AB2 + BC2 – 2BC.BD.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 6

Solution:
Given: ∆ ABC, ∠ABC < 90°, AD ⊥ BC.
To prove : AC2 = AB2 + BC2 – 2BC BD.
Proof: ADC is right-angled z at D
AC2 = CD2 + DA2 (Pythagora’s Theorem) ……………..(1)
Also, ADB is right angled ∆ at D
AB2 = AD2 + DB2 ……………….(2)
From (1), we get:
AC2 = AD2 + (CB – BD)2
= AD2 + CB2 + BD2 – 2CB × BD
or AC2 = (BD2 + AD2) + CB2 – 2CB × BD
AC2 = AB2 + BC2 – 2BC × BD. [Using (2)]

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 5.
In fig., AD is a median of a triangle ABC and AM ⊥ BC. Prove that:
(i) AC2 = AD2 + BC. DM + \(\left(\frac{B C}{2}\right)^{2}\)
(ii) AB2 = AD2 ± BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
(iii) AC2 + AB2 = 2 AD2 + \(\frac{1}{2}\) BC2

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 7

Solution:
Given: ∆ABC, AM ⊥ BC,
AD is median of ¿ABC.
To prove:
(i) AC2 = AD2 + BC. DM + \(\left(\frac{B C}{2}\right)^{2}\)
(ii) AB2 = AD2 ± BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
(iii) AC2 + AB2 = 2 AD2 + \(\frac{1}{2}\) BC2
Proof: In ∆AMC.
AC2 = AM2 + MC2
= AM2 + (MD + DC)2
AC2 = AM2 + MD2 + DC2 + 2MD × DC
AC2 = (AM2 + MD2) + \(\left(\frac{\mathrm{BC}}{2}\right)^{2}\) + 2 . MD \(\left(\frac{\mathrm{BC}}{2}\right)\)
AC2 = AD2 + BC . MD + \(\frac{\mathrm{BC}^{2}}{4}\) …………(1)

(ii) In right angled triangle AME,
AB2 = AM2 + BM2
= AM2 + (BD – MD)2
=AM2 + BD2 + MD2 – 2BD × MD
= (AM2 + MD2) + BD2 – 2(\(\frac{1}{2}\) BC) MD
= AD2 + (\(\frac{1}{2}\) BC)2 – BC . MD
[∵ In ∆ AMD; AD2 = MA2 + MD2]
AB2 + AD2 (\(\left(\frac{\mathrm{BC}}{2}\right)^{2}\)) – BC . MD ………….(2)

(iii) Adding (1) and (2),
AB2 + AC2 = AD2 + BC.MD + (\(\left(\frac{\mathrm{BC}}{2}\right)^{2}\)) + AD2 + (\(\left(\frac{\mathrm{BC}}{2}\right)^{2}\)) – BC . MD
= 2 AD2 + \(\frac{\mathrm{BC}^{2}}{4}+\frac{\mathrm{BC}^{2}}{4}\)
= 2AD2 + 2 \(\frac{\mathrm{BC}^{2}}{4}\)
AB2 + AC2 = 2AD2 + \(\frac{\mathrm{BC}^{2}}{2}\)
Which is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 6.
Prove that sum of squares of the diagonals of a parallelogram is equal to sum of squares of its sides.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 8

Given:
Let ABCD be a parallelogram in which diagonalš AC and BD intersect at point M.
To prove: AB2 + BC2 + CD2 + DA2 = AC2 + BD2
Solution:
Proof: Diagonals of a parallelogram bisect each other.
∴ In || gm ABCD,
Diagonal BD and AC bisect each other.
Or MB and MD are medians of ∆ABC and ∆ADC respectively.
We know that, if AD is a medians of ¿ABC,
then AB2 + AC2 = 2AD2 + BC2
Using this result, we get:
AB2 + BC2 = 2 BM2 + \(\frac{1}{2}\) AC2 ………..(1)
and AD2 + CD2 = 2 DM2 + \(\frac{1}{2}\) AC2 ………….(2)
Adding (1) and (2), we get:
AB2 + BC2 + AD2 + CD2 = 2 (BM2 + DM2) + (AC2 + AC2)
AB2 + BC2 + AD2 + CD2 = 2 (\(\frac{1}{2}\) BD2 + \(\frac{1}{4}\) BD2) + AC2
AB2 + BC2 + AD2 + CD2 = BD2 + AC2
Hence, sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 7.
In fig., two chords AB and CD intersect each other at the point P prove that:
(i) ∆APC ~ ∆DPB
(ii) AP.PB = CP.DP.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 9

Solution:
Given: Circle, AB and CD are two chords intersects each other at P.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 10

To prove:
(i) ∆APC ~ ∆DPB
(ii) AP.PB = CP.DP.
Proof:
(i) In ∆APC and ∆DPB,
∠1 = ∠2 (Vertically opposite angle)
∠3 = ∠4 (angle on same segment)
∴ ∆APC ~ ∆DPB [AA similarity criterion]

(ii) ∆APC ~ ∆DPB (Proved above)
\(\frac{\mathrm{AP}}{\mathrm{DP}}=\frac{\mathrm{PC}}{\mathrm{PB}}\)
(If two triangles are sitnilar corresponding sides are proportional)
AP.PB = PC.DP
Which is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 8.
In fig., two chords AB and CD of a circle intersect each other at point P (when produced) outside the circle prove:
(i) ∆PAC ~ ∆PDB
(ii) PA.PB = PC.PD.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 11

Solution:
Given: AB and CD are two chord of circle intersects each other at P (when produced)
To prove:
(i) ∆PAC ~ ∆PDB
(ii) PA.PB = PC.PD.
Proof:
(i) In ∆PAC and ∆PDB,
∠P = ∠P (Common)
∠PAC = ∠PDB.
(Exterior angle of cyclic quadrilqteral is equal to interior opposite angle)
∴ ∆PAC ~ ∆PDB [AA similarity criterion]

(ii) ∆PAB ~ ∆WDB
∴ \(\frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{PB}}\)
[If two triangles are similar corresponding sides are proportional]
PA × PB = PC × PD.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 9.
In fig., D is a point on side BC of BD AB ∆ABC such that \(\frac{\mathbf{B D}}{\mathbf{D C}}=\frac{\mathbf{A B}}{\mathbf{A C}}\). Prove that: AD is bisector of ∠BAC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 12

Solution:
Given: A ∆ABC, D is a point on BC such that \(\frac{\mathbf{B D}}{\mathbf{D C}}=\frac{\mathbf{A B}}{\mathbf{A C}}\)
To prove: AD bisects ∠BAC
i.e., ∠1 = ∠2
Construction: Through C draw CE || DA meeting BA produced at E.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 13

Proof:
In ∆BCE, we have:
AD || CE ………(const.)
So, by Basic Proportionality Theorem,
But \(\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AE}}\)
\(\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}\)

⇒ \(\frac{\mathrm{AB}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AC}}\)
⇒ AE = AC

In ∆ACE, we have:
AE = AC
⇒ ∠3 = ∠4 ………. (∠s opp. to equal sides)
Since CE || DA and AC cuts them, then:
∠2 = ∠4 ……….(alt ∠s)
Also CE || DA and BAE cuts them, then:
∠1 = ∠3 …………(Corr. ∠s)
Thus we have:
∠3 = ∠4
⇒ ∠3 = ∠1
But ∠4 = ∠2
⇒ ∠1 = ∠2.
HenCe AD bisects ∠BAC.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6

Question 10.
Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second, what will the horizontal distance of the fly from her after 12 seconds?

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.6 14

Solution:
A right angled triangle, ABC, in which,
AB = 1.8 cm,
BC = 2.4 cm.
∠B = 90°
By Pythagoras Theorem,
AC2 = AB2 + BC2
AC2 = (1.8)2 + (2.4)2
AC2 = 3.24 + 5.76 =9
AC2 = (3)2
AC = 3 cm
Now, when Nazima pulls in the string at the rate of 5 cm/sec ; then the length of the string decrease = 5 × 12 = 60 cm
= 0.6 m in 12 seconds.
Let after 12 seconds, position of the fly will be at D.
∴ AD = AC – distance covered in 12 seconds
AD = (3 – 0.6) m
AD = 2.4 m
Also, in right angled ∆ABD,
Using Pythagoras Theorem,
AD2 = AB2 + BD2
(2.4)2 = (1.8)2 + BD2
BD2 = 5.76 – 3.24
BD2 = 2.52 m
BD = 1.587 m.
∴ Horizontal distance of the fly from Nazima = BD + 1.2 m
= (1.587 + 1.2) m
= 2.787 m
= 2.79 m
Hence, original length of string and horizontal distance of the fly from Nazima is 3 m and 2.79 m.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.5 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.5

Question 1.
Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm.
Solution:
(i) Let ∆ABC, with AB = 7 cm BC = 24 cm, AC = 25 cm
AB2 + BC2 = (7)2 + (24)2
= 49 + 576 = 625
AC2 = (25)2 = 625
Now AB2 + BC2 = AC2
∴ ∆ABC is right angled triangle. Hyp. AC = 25cm.

(ii) Let ∆PQR with PQ = 3 cm, QR = 8 cm PR = 6 cm
PQ2 + PR2 = (3)2 + (6)2
= 9 + 36 = 45
QR2 = (8)2 = 64.
Here PQ2 + PR2 ≠ QR2
∴ ∆PQR is not right angled triangle.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

(iii) Let ∆MNP, with MN =50 cm, NP = 80 cm, MP = 100 cm
MN 2+ NP2 = (50)2 + (80)2
= 2500 + 6400 = 8900
MP2 = (100)2 = 10000
Here MP2 ≠ MN2 + NP2.
∴ ∆MNP is not right angled triangle.

(iv) Let ∆ABC, AB = 13 cm, BC = 12 cm, AC = 5 cm
BC2 + AC2 = (12)2 + (5)2
= 144 + 25 = 169
AB2 = (13)2 = 169
∴ AB2 = BC2 + AC2
∆ABC is right angled triangle.
Hyp. AB = 13 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 2.
PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM . MR.
Solution:
Given: ∆PQR is right angled at P and M is a point on QR such that PM ⊥ QR.
To prove : PM2 = QM × MR

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 1

Proof: ∠P = 90° (Given)
∴ ∠1 + ∠2 = 90°
∠M = 900 (Given)
In ∆PMQ,
∠1 + ∠3 + ∠5 = 180°
=> ∠1 + ∠3 = 90° [Angle Sum Property] ………….(2) [∠5 = 90°]
From (1) and (2),
∠1 + ∠2 = ∠1 + ∠3
∠2 = ∠3
In ∆QPM and ∆RPM,
∠3 = ∠2 (Proved)
∠5 = ∠6 (Each 90°)
∴ ∆QMP ~ ∆PMR [AA similarity]
\(\frac{{ar} .(\Delta \mathrm{QMP})}{{ar} .(\Delta \mathrm{PMR})}=\frac{\mathrm{PM}^{2}}{\mathrm{MR}^{2}}\)

[If two triangles are similar, ratio o their areas is equal to square of corresponding sides]
\(\frac{\frac{1}{2} \mathrm{QM} \times \mathrm{PM}}{\frac{1}{2} \mathrm{RM} \times \mathrm{PM}}=\frac{\mathrm{PM}^{2}}{\mathrm{MR}^{2}}\)

[area of ∆ = \(\frac{1}{2}\) Base × Altitude]

\(\frac{\mathrm{QM}}{\mathrm{RM}}=\frac{\mathrm{PM}^{2}}{\mathrm{RM}^{2}}\)

PM2 = QM × RM Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 3.
In fig., ABD is a triangle right angled at A and AC ⊥ BD. Show that

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 2

(i) AB2 = BC.BD
(ii) AC2 = BC.DC
(üi) AD2 = BD.CD.
Solution:
Given. A right angled ∆ABD in which right angled at A and AC ⊥ BD.
To Prove:
(i) AB2 = BC.BD
(ii) AC2 = BC.DC .
(iii) AD2 = BD.ÇD .
Proof. In ∆DAB and ∆DCA,
∠D = ∠D (common)
∠A = ∠C (each 90°)
∴ ∆DAB ~ ∆DCA [AA similarity]
In ∆DAB and ∆ACB,
∠B = ∠B (common)
∠A = ∠C . (each 90°)
∴ ∆DAB ~ ∆ACB, .
From (1) and (2),
∆DAB ~ ∆ACB ~ ∆DCA.
(i) ∆ACB ~ ∆DAB (proved)
∴ \(\frac{{ar} .(\Delta \mathrm{ACB})}{{ar} .(\Delta \mathrm{DAB})}=\frac{\mathrm{AB}^{2}}{\mathrm{DB}^{2}}\)

[If two triangles are similar corresponding sides are proportional]

\(\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AC}}{\frac{1}{2} \mathrm{DB} \times \mathrm{AC}}=\frac{\mathrm{AB}^{2}}{\mathrm{DB}^{2}}\)
[Area of triangle = \(\frac{1}{2}\) Base × Altitude]
BC = \(\frac{\mathrm{AB}^{2}}{\mathrm{BD}}\)
AB2 = BC × BD.

(iii) ∆ACB ~ ∆DCA (proved)
\(\frac{{ar} .(\Delta \mathrm{DAB})}{{ar} .(\Delta \mathrm{DCA})}=\frac{\mathrm{DA}^{2}}{\mathrm{DB}^{2}}\)
[If two triangles are similar corresponding sidec are proportional]

\(\frac{\frac{1}{2} \mathrm{CD} \times \mathrm{AC}}{\frac{1}{2} \mathrm{BD} \times \mathrm{AC}}=\frac{\mathrm{AD}^{2}}{\mathrm{BD}^{2}}\)

CD = \(\frac{\mathrm{AD}^{2}}{\mathrm{BD}}\)
⇒ AD2 = BD × CD.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 4.
ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2.
Solution:
Given: ABC is an isosceles triangle right angled at C.
To prove : AB2 = 2AC2.
Proof: In ∆ACB, ∠C = 90° & AC = BC (given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 3

AB2 = AC2 + BC2
[By using Pythagoras Theorem]
=AC2 + AC2 [BC = AC]
AB2 = 2AC2
Hence proved.

Question 5.
ABC is an isosceles triangle with AC = BC. If AB2 = 2AC2, prove that ABC is right triangle.
Solution:
Given: ∆ABC is an isosceles triangle AC = BC
To prove: ∆ABC is a right triangle.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 4

Proof: AB2 = 2AC2 (given)
AB2 = AC2 + AC2
AB2 = AC2 + BC2 [AC = BC]
∴ By Converse of Pythagoras Theorem,
∆ABC is right angled triangle.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 6.
ABC is an equilateral triangle of side 2a. Find each of its altitudes.
Solution:
∆ABC is equilateral triangle with each side 2a
AD ⊥ BC
AB = AC = BC = 2a
∆ADB ≅ ∆ADC [By RHS Cong.]
∴ BD = DC = a [c.p.c.t]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 5

In right angled ∆ADB
AB2 = AD2 + BD2
(2a)2 = AD2 + (a)2
4a2 – a2 = AD2.
AD2 = 3a2
AD = √3a.

Question 7.
Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. [Pb. 2019]
Solution:
Given: Rhombus, ABCD diagonal AC and BD intersect each other at O.
To prove:
AB2 + BC2 + CD2 + AD2 = AC2 + BD2
Proof:The diagonals of a rhombus bisect each other at right angles.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 6

∴ AO = CO, BO = DO
∴ ∠s at O are rt. ∠s
In ∆AOB, ∠AOB = 90°
∴ AB2 = AO2 + BO2 [By Pythagoras Theorem] …………..(1)
Similarly, BC2 = CO2 + BO2 ……………..(2)
CD2 = CO2 + DO2 ……………(3)
and DA2 = DO2 + AO2 ……………….(4)
Adding. (1), (2), (3) and (4), we get
AB2 + BC2 + CD2 + DA2 = 2AO2 + 2CO2 + 2BO2 + 2DO2
= 4AO2 + 4BO2
[∵ AO = CO and BO = DO]
= (2AO)2 + (2BO)2 = AC2 + BD2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 8.
In fig., O is a point In the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2

(ii)AF2 + BD2 + CE2 = AE2 + CD2 + BF2.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 7

Solution:
Given: A ∆ABC in which OD ⊥ BC, 0E ⊥ AC and OF ⊥ AB.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 8

To prove:
(i) AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
Construction: Join OB, OC and OA.
Proof: (i) In rt. ∠d ∆AFO, we have
OA2 = OF2 + AF2 [By Pythagoras Theorem]
or AF2 = OA2 – OF2 …………..(1)

In rt. ∠d ∆BDO, we have:
OB2 = BD2+ OD2 [By Pythagoras Theorem]
⇒ BD2 = OB2 – OD2 …………..(2)

In rt. ∠d ∆CEO, we have:
OC2 = CE2 + OE2 [By Pythagoras Theorem]

⇒ CE2 = OC2 – OE2 ……………(3)

∴ AF2 + BD2 + CE2 = OA2 – OF2 + OB2 – OD2 + OC2 – 0E2
[On adding (1), (2) and (3)]
= OA2 + OB2 + OC2 – OD2 – OE2 – OF2
which proves part (1).
Again, AF2 + BD2 + CE2 = (OA2 – OE2) + (OC2 – OD2) + (OB2 – OF2)
= AE2 + CD2 + BF2
[∵AE2 = AO2 – OE2
CD2 = OC2 – OD2
BF2 = OB2 – OF2].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 9.
A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
Solution:
Height of window from ground (AB) = 8m.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 9

Length of ladder (AC) = 10 m
Distance between foot of ladder and foot of wall (BC) = ?
In ∆ABC,
AB2 + BC2 = AC2 [By Pythagoras Theorem]
(8)2 + (BC)2 = (10)2
64 + BC2 = 100
BC2 = 100 – 64
BC = √36
BC = 6 cm.
∴ Distance between fóot of ladder and foot of wall = 6 cm.

Question 10.
A guy wire attached to a vertical pole of height 18 m Is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
Solution:
Let AB is height of pole (AB) = 18 m
AC is length of wire = 24 m

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 10

C is position of stake AB at ground level.
In right angle triangle ABC,
AB2 + BC2 = AC2 [By Pythagoras Theorem]
(18)2 + (BC)2 = (24)2
324 + (BC)2 = 576
BC2 = 576 – 324
BC = \(\sqrt{252}=\sqrt{36 \times 7}\)
BC = 6√7 m.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 11.
An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two pLanes after 1\(\frac{1}{2}\) hours?
Solution:
Speed of first aeroplane = 1000km/hr.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 11

Distance covered by first aeroplane due north in 1\(\frac{1}{2}\) hours =1000 × \(\frac{3}{2}\)
OA = 1500 km
Speed of second aeroplane = 1200 km/hr.
Distance covered by second aeroplane in 1\(\frac{1}{2}\) hours = 1200 × \(\frac{3}{2}\)
OB = 1800 km.
In right angle ∆AOB
AB2 = AO2 + OB2 [By Phyrhagoras Theorem]
AB2 = (1500)2 + (1800)2
AB = \(\sqrt{2250000+3240000}\)
= \(\sqrt{5490000}\)
= \(\sqrt{61 \times 90000}\)
AB = 300√61 km.
Hence, Distance between two aeroplanes = 300√61 km.

Question 12.
Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the
distance between their tops.
Solution:
Height of pole AB = 11 m
Height of pole (CD) = 6 m

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 12

Distance between foot of pole = 12 m
from C draw CE ⊥ AB. such that
BE = DC = 6 m
AE = AB – BE = (11 – 6) m = 5 m.
and CE = DB = 12 m.
In rt. ∠d ∆AEC,
AC2 = AE2 + FC2
[By Phythagoras Theorem)
AC = \(\sqrt{(5)^{2}+(12)^{2}}\)
= \(\sqrt{25+144}\)
= \(\sqrt{169}\) = 13.
Hence, Distance between their top = 13m.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 13.
D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C.
Prove that AE2 + BD2 = AB2 + DE2.
Solution:
Given: In right angled ∆ABC, ∠C = 90° ;
D and E are points on sides CA & CB respectively.
To prove: AE2 + BD2 = AB2 + DE2
Proof: In rt. ∠d ∆BCA,
AB2 = BC2 + CA2 …………..(1) [By Pythagoras Theorem]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 13

In rt. ∠d ∆ECD,
DE2 = EC2 + DC2 ……………….(2) [By Pythagoras Theorem]
In right angled triangle ∆ACE,
AE2 = AC2 + CE2 ……………….(3)
In right angled triangle ∆BCD
BD2 = BC2 + CD2 ……………….(4)
Adding (3) and (4),
AE2 + BD2 = AC2 + CE2 + BC2 + CD2
= [AC2 + CB2] + [CE2 + DC2]
= AB2 + DE2
[From (1) and (2)]
Hence 2 + BD2 = AB2 + DE2.
Which is the required result.

Question 14.
The perpendicular from A on side BC of a ∆ABC intersects BC at D such that DB = 3 CD. Prove that 2AB2 = 2AC2 + BC2.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 14

Solution:
Given: ∆ABC, AD ⊥ BC
BD = 3CD.
To prove: 2AB2 = 2AC2 + BC2.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 15

Proof: In rt. ∠d triangles ADB and ADC, we have
AB2 = AD2 + BD2;
AC2 = AD2 + DC2 [By Pythagoras Theorem]
∴ AB2 – AC2 = BD2 – DC2
= 9 CD2 – CD2; [∵ BD = 3CD]
= 8CD2 = 8 (\(\frac{\mathrm{BC}}{4}\))2
[∵ BC = DB + CD = 3 CD + CD = 4 CD]
∴ CD = \(\frac{1}{4}\) BC
∴ AB2 – AC2 = \(\frac{\mathrm{BC}^{2}}{2}\)
⇒ 2(AB2 – AC2) = BC2
⇒ 2AB2 – 2AC2 = BC2
∴ 2AB2 = 2AC2 + BC2.
Which is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 15.
In an equilateral triangle ABC, D is a point on side BC such that BD = \(\frac{1}{3}\) BC. Prove that 9 AD2 = 7 AB2.
Solution:
Given: Equilateral triangle ABC, D is a point on side BC such that BD = \(\frac{1}{3}\) BC.
To prove: 9AD2 = 7 AB2.
Construction: AB ⊥ BC.
Proof: ∆AMB ≅ ∆AMC [By R.HS. Rule since AM = AM and AB = AC]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 16

∴ BM = MC = \(\frac{1}{2}\) BC [c.p.c.t.]
Again BD = \(\frac{1}{3}\) BC and DC = \(\frac{1}{3}\) BC (∵ BC is trisected at D)
Now in ∆ADC, ∠C is acute
∴ AD2 = 2AC2 + DC2 – 2 DC × MC
= AC2 + \(\left[\frac{2}{3} \mathrm{BC}\right]^{2}\) – 2 \(\left[\frac{2}{3} \mathrm{BC}\right] \frac{1}{2} \mathrm{BC}\)

[∵ DC = \(\frac{2}{3}\) BC and MC = \(\frac{1}{2}\) BC]
= AB2 + \(\frac{4}{9}\) AB2 – \(\frac{2}{3}\) AB2
[∵ AC = BC = AB]
= (1 + \(\frac{4}{9}\) – \(\frac{2}{3}\)) AB2

= \(\left(\frac{9+4-6}{9}\right) \mathrm{AB}^{2}=\frac{7}{9} \mathrm{AB}^{2}\)

∴ AD2 = \(\frac{7}{9}\) AB2
⇒ 9 AD2 = 7 AB2.

Question 16.
In an equilateral triangle, prove that three times the square of one side Ls equal to four times the square of one of its
altitudes.
Solution:
Given:
ABC is equilateral ∆ in which AB = BC = AC

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 17

To prove: 3 AB2 = 4 AD2
Proof: In right angled ∆ABD,
AB2 = AD2 + BD2 (Py. theorem)
AB2 = A BD2 (Py. theorem)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5 18

AD2 = \(\frac{3}{4}\) AB2
⇒ 4 AD2 = 3 AB2
Hence, the result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.5

Question 17.
Tick the correct answer and justify: In ∆ABC, AB = 6 cm, AC = 12 cm and BC = 6√3 cm. [The angles of B are respectively
(A) 120°
(B) 64°
(C) 90°
(D) 45°
Solution.
AC = 12 cm
AB = 6√3 cm
BC = 6 cm
AC2 = (12)2 = 144 cm
AB2 + BC2 = (6√3)2 + (6)2
= 108 + 36
AB√3 + BC√3 = 144
∴ AB√3 + BC√3 = AC√3
Hence by converse of pythagoras theorem ∆ABC is right angred triangle right angle at B
∴ ∠B = 90°
∴ correct option is (C).

क्रिकेट (Cricket) Game Rules – PSEB 10th Class Physical Education

Punjab State Board PSEB 10th Class Physical Education Book Solutions क्रिकेट (Cricket) Game Rules.

क्रिकेट (Cricket) Game Rules – PSEB 10th Class Physical Education

याद रखने योग्य बातें

  1. क्रिकेट में खिलाड़ियों की गिनती = 16 (11 + 5 रिज़र्व)
  2. विकटों के मध्य की दूरी = 22 गज़ (20.12 मीटर)
  3. पिच की चौड़ाई। = 4’4′
  4. विकटों की चौड़ाई = 9″, (22.9 सी० मै०)
  5. क्रिकेट गेंद का घेरा = 8″ से 9″, (22, 4 सैं मी० से 22.4 मैं० मी०)
  6. क्रिकेट गेंद का घेरा क्रिकेट गेद का भार = 51/2 औंस 5% औंस (156 ग्राम सैं० मी० 163 ग्राम)
  7. बैट की चौड़ाई = 41/4″, (10.8 सैं०मी०)
  8. बैट की लम्बाई = 38″, (6.5 सैं० मी०)
  9. गेंद का रंग = दिन के मैच के लिए लाल और रात के लिए सफ़ेद
  10. केन्द्र से बड़े सर्कल की दूरी = 75 गज़ से 85 गज़ (68 मीटर से 58 मीटर)
  11. विकटों की ज़मीन से ऊंचाई = 28″, (71 cm.)
  12. मैच की किस्में = 20, 20 ओवर, एक दिवसीय मैच, पांच दिन का टेस्ट मैच
  13. मैच के अम्पायर = दो
  14. तीसरा अम्पायर = एक मैच रैफ़री
  15. केन्द्रीय विकेट के दोनों ओर पिच = 4 फुट 4 इंच की चौड़ाई
  16. स्कोरर की संख्या = 2
  17. पारी बदली का समय = 10 मिनट
  18. खिलाड़ी बदली का समय = 2 मिनट
  19. छोटे सर्कल का रेडियस = 2.7 मी०

क्रिकेट खेल की संक्षेप रूपरेखा
(Brief outline of the Cricket Game)

  1. मैच दो टीमों के बीच खेला जाता है। प्रत्येक टीम में 11 खिलाड़ी होते हैं।
  2. मैच के लिए दो अम्पायर नियुक्त किए जाते हैं। दोनों तरफ एक-एक अम्पायर होता है।
  3. रनों का रिकार्ड स्कोरर रखता है।
  4. ज़ख्मी या बीमार होने की दशा में खिलाड़ी तबदील किया जा सकता है, परन्तु उसे बैट या बाऊल करने की आज्ञा नहीं होती, वह विकटों के मध्य दूसरे खिलाड़ी के लिए दौड़ सकता है या फील्ड कर सकता है।
  5. बदला हुआ खिलाड़ी अपने विशिष्ट स्थान (Specialised Position) पर फील्ड नहीं कर सकता।
  6. बैट करने के लिये या फील्ड करने के लिए टीम के कप्तान टॉस करते हैं।
  7. प्रत्येक इनिंग के आरम्भ में नया गेंद लिया जाता है। 200 रन बनने के पश्चात् या 75 ओवरों के बाद गेंद नया लिया जा सकता है। गेंद गुम हो जाने या नष्ट हो जाने पर नया गेंद ले सकते हैं, परन्तु उसकी हालत गुम हुए या खराब हुए गेंद से मिलती-जुलती होनी चाहिए।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न
क्रिकेट गेंद, बैट, पिच विकट बाऊलिंग,पायिंग क्रीजें, पारी, खेल के आरम्भ, अन्त और इन्टरवल आदि के विषय में संक्षिप्त लिखें।
उत्तर-
(क) खिलाड़ी, निर्णायक (अम्पायर)
तथा फलांकनकर्ता (स्कोरर)

  1. क्रिकेट मैच दो टीमों के बीच खेला जाता है। प्रत्येक टीम में खिलाड़ियों की संख्या 11-11 होती है। प्रत्येक टीम का एक कप्तान होता है जो पारी के लिए टॉस होने से पहले अपने खिलाड़ी मनोनीत करता है।।
  2. किसी खिलाड़ी के घायल या अस्वस्थ हो जाने पर उसकी जगह पर किसी अन्य खिलाड़ी को लिए जाने की आज्ञा है। नए खिलाड़ी को सबस्टीच्यूट खिलाड़ी कहते हैं। सबस्टीच्यूट खिलाड़ी केवल फील्ड ही कर सकता है। वह बैट या बाऊल नहीं कर सकता।
  3. पारी के लिए टॉस से पहले दोनों सिरों के लिए एक-एक निर्णायक (अम्पायर) नियुक्त किया जाता है, जो खेल का निष्पक्ष नियन्त्रण करता है।
    क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 1
  4. सभी दौड़ों का रिकार्ड रखने के लिए दो फलांकनकर्ता (स्कोरर) नियुक्त किये जाते हैं। वे अम्पायरों के सभी इशारों तथा अनुदेशों का पालन करते हैं।

क्रिकेट किट
(Cricket Kit)
क्रिकेट के खिलाड़ी के लिए किट पहननी ज़रूरी है। किट से अभिप्राय सफेद पैंट, सफ़ेद कमीज़, बूट, जुराबें, पैड, अबडायिनल गार्ड, दस्ताने और बैट हैं।
(ख) खेल की सामग्री तथा मैदान

  1. गेंद (Ball) क्रिकेट बाल (गेंद) का वज़न \(5 \frac{1}{2}\) औंस से कम और \(5 \frac{3}{4}\) औंस से से अधिक नहीं होना चाहिए। इसकी परिधि (घेरा) \(8 \frac{13}{16}\) कम तथा 9” से अधिक नहीं होनी चाहिए।
    कोई भी कप्तान प्रत्येक पारी (इनिंग्ज़) के शुरू में नई गेंद ले सकता है। यदि खेल के दौरान गेंद गुम हो जाए या खराब हो जाए तो अम्पायर दूसरी गेंद लेने की अनुमति दे देता है। दूसरी गेंद प्रयोग या बनावट में पुरानी या खोई हुई गेंद से मिलती-जुलती होनी चाहिए।
    क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 2
  2. बैट (Bat) क्रिकेट बैट सबसे चौड़े भाग में \(4 \frac{1}{4}\)” तथा लम्बाई में 38” से अधिक नहीं होना चाहिए। साधारण क्रिकेट बैट का भार \(2 \frac{1}{4}\) पौंड होता है।
  3. पिच (Pitch) बाऊलिंग करने वाले स्थानों के बीच का क्षेत्र पिच कहलाता है। यह क्रिकेट के केन्द्र को जोड़ने वाली रेखा के दोनों ओर 4-4″ चौड़ी होती है तथा कुल पिच की चौड़ाई 8′-8″ होती है।
  4. विकेट (Wicket)-पिच के आमने-सामने तीन-तीन विकेट गाड़ी जाएंगी तथा आमने-सामने की विकेटों की दूरी 22 गज़ होगी। विकटों की चौड़ाई 9” होगी और उन पर जाने वाली दो गिल्लियां (वेल्ज़) होंगी। स्टम्प इस प्रकार गाड़े जाएंगे कि उनमें से गेंद न निकल सके। स्टम्प की भूमि से ऊंचाई 28” होगी। प्रत्येक गुल्ली \(4 \frac{3}{4}\)” लम्बी होगी तथा स्टम्प पर रखी हुई उनसे \( \frac{1}{2}\)” से अधिक बाहर न निकलेगा।
    नोट-जब तेज़ हवा चल रही हो तब टीमों के कप्तान अम्पायर की स्वीकृति से गिल्लियों का प्रयोग छोड़ भी सकते हैं।
  5. गेंद प्रक्षेपण तथा अदृश्य मंज रेखा (Bowling Crease and Popping Crease)—प्रक्षेपण (बाऊलिंग) मंज रेखा स्टम्पों की सीध में 8 फुट 8” लम्बी होगी। इसके केन्द्र में स्टम्प होंगे। प्रक्षेपण मंज स्टम्पों के समानान्तर 4 फुट सामने की ओर अदृश्य मंज रेखा अंकित की जाएगी। यह स्टम्प रेखा के किसी भी पार्श्व सिरे से कम से कम 6 फुट तक बढ़ती है। विकेट के पीछे दोनों ओर समकोण पर 4 फुट की निवर्तन रेखा होगी। निवर्तन तथा अदृश्य मंज रेखाएं लम्बाई में असीमित मानी जाएंगी।

प्रश्न
क्रिकेट खेल कितने खिलाड़ी, निर्णायक, स्कोरर और उनकी किट के बारे में लिखें।
उत्तर-
खेल की रीति (Rules of Game)—

  1. प्रत्येक टीम को बारी-बारी से दो पारियां मिलेंगी।
  2. खेल आरम्भ होने से कम-से-कम 15 मिनट पहले दोनों टीमों के कप्तान पारियों के लिए टॉस (Toss) करेंगे।
  3. टॉस जीतने वाली टीम का कप्तान बैट या फील्ड करने के निर्णय की सूचना विरोधी टीम के कप्तान को देगा। इस निर्णय का बाद में परिवर्तन नहीं हो सकता।
  4. अनुवर्तित (फालो ऑन) (Follow on) कराना-पहले बैट करने वाली टीम यदि पांच दिन के मैच में 200, तीन दिन के मैच में 150, दो दिन के मैच में 100 और एक दिन के मैच में 75 (दौड़ें) रन अधिक बना लेती है तो वह अपनी विरोधी टीम से पारी अनुवर्तित (Follow on) करने के लिए कह सकती है।
  5. पारी की घोषणा करना (डिक्लेयर करना) (Inning Declare)-मैच के दौरान किसी भी समय बैट करने वाली टीम का कप्तान अपनी पारी (इनिंग्ज़) समाप्त करने की घोषणा (Declare) कर सकता है।
  6. खेल का प्रारम्भ, समाप्ति तथा इन्टरवल (Start, Finish and Interval)प्रति-दिन खेल निश्चित समय पर शुरू होगा। खेल की अवधि प्रायः 5, 55 या 6 घंटे की होती है। पहले दो घंटे के खेल के बाद 45 मिनट के लिए भोजन का इन्टरवल (Lunch Interval) हो जाता है। इसके बाद दो घंटे के खेल के बाद 20 मिनट का चाय के लिए इन्टरवल (Tea Interval) होता है। प्रत्येक पारी के बीच 10 मिनट तथा प्रत्येक नए बैट्समैन के आने के लिए अधिक-से-अधिक 2 मिनट का समय दिया जाता है।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न
क्रिकेट खेल में निम्नलिखित से आप क्या समझते हैं ?
फलांकन, सीमाएं, गेंद का गुम होना, ओवर, विकेट का गिरना, मृत बाल, नो बाल, वाइड बाल, बाई, लैग बाई, बाऊल्ड, कैच, एल० बी० डब्ल्यू, स्टम्पड, रन आउट।
उत्तर-
फलांकन (Score)—फलांकन (Score) के लिए दौड़ों (रनों) की गिनती की जाती है। जब बैट्समैन गेंद को हिट करने के बाद एक छोर (सिरे) से दूसरे छोर (सिरे) पर पहुंचे बिना ही रास्ते में से लौट जाता है तो वह दौड़ (रन) नहीं गिनी जाएगी। इसे शार्ट रन (Short Run) कहते हैं। यदि रन बनाते समय बाल हवा में हो और वह लपक लिया जाए तो वह ‘रन’ (दौड़) गिनी नहीं जाएगी। इसी प्रकार यदि बैट्समैन ‘रन’ बनाते समय आऊट (Run out) हो जाए तो उस ‘रन’ को भी गिना नहीं जाएगा।

सीमाएं (Boundaries) खेल की सीमाएं सफेद रंग द्वारा अंकित की जानी चाहिएं। यदि बैट्समैन के हिट करने पर गेंद मैदान को छूती हुई सीमा रेखा के पार चली जाती है तो इसे बाऊण्डरी कहते हैं। बाऊण्डरी के लिए 4 दौड़ें (र.) दी जाती हैं। हां, यदि हिट की गई गेंद सीमा रेखा के बाहर गिरती है (भले ही उसे फील्डर ने छू लिया हो) तो इसे ‘छक्का’ (Sixer) कहते हैं। छक्के में 6 दौड़ें होती हैं। यदि बाऊण्डरी ओवर थ्रो के कारण हो तो बने हुए रन तथा बाऊण्डरी के ‘रन’ स्कोर में जोड़े जाएंगे।
गेंद का गुम होना (Loss of Ball)-यदि खेल के दौरान गेंद गुम हो जाती है तो स्कोर में 6 ‘रन’ जोड़ दिए जाएंगे। परन्तु गेंद गुम होने से पहले 6 से अधिक रन बने हों तो उतनी ही रने’ जोड़ी जाएंगी जितनी कि बनाई जा चुकी हों।
‘ परिणाम (Result) जो भी टीम दो पारियों (इनिंग) में अधिक दौडें बना लेती है उसे विजयी माना जाएगा। एक दिन के मैच में एक पारी पर फैसला होगा। यदि मैच पूरा न हो सके तो वह बराबर माना जाता है। ओवर में 6 या 8 बार गेंद फेंकी जाएगी। ये ओवर विकट के सिरे से बारी-बारी दिए जाते हैं। ‘नो-बाल’ तथा ‘वाइड-बाल’ ओवर में नहीं गिने जाएंगे। एक इनिंग में कोई भी बाऊलर लगातार दो ओवर नहीं कर सकता।
ओवर (Over)—एक ओवर में 6 बार गेंद फेंकी जाएगी। यह ओवर विकेट के सिरे पर बारी-बारी दिए जाते हैं। ‘No Ball’ तथा ‘Wide Ball’ ओवर में नहीं गिने जाएंगे। एक इनिंग में कोई भी ‘Bowler’ निरन्तर दो ‘Overs Bowl’ नहीं कर सकता।
मृत बाल (Dead Ball)-गेंद निम्नलिखित दशाओं में मृत गेंद कहलाएगी—

  1. जब बाऊलर या विकेट कीपर के हाथ में पूरी तरह आ जाए।
  2. सीमा तक पहुंच जाए या ठप्पा खा जाए।
  3. खेलने या न खेलने पर बैट्समैन या अम्पायर के कपड़ों में उलझ जाए।
  4. अम्पायर द्वारा ओवर या ‘समय’ की घोषणा कर दी जाए।
  5. बैट्समैन के आऊट होने पर।

नो बाल (No Ball)—गेंद करते समय यदि गेंदबाज़ का अगला पैर Bowling Crease से आगे चला जाता है या Return Crease को काटता है तो Umpire, No Ball घोषित कर देगा।
बैट्समैन नो बाल पर हिट लगाकर जितनी भी दौड़ें सम्भव हो, बना सकता है। इस प्रकार बनी दौडों को कुल स्कोर में जमा कर लिया जाएगा। यदि कोई भी दौड न बनी हो तो केवल एक दौड़ ही स्कोर में जोड़ी जाएगी। अम्पायर अपनी एक भुजा फैलाकर ‘नो बाल’ का संकेत देता है।

वाइड बाल (Wide Ball)-यदि बाऊलर गेंद को विकेट से उतनी ऊंचाई पर या चौड़ाई पर फेंकता है कि अम्पायर के विचार में यह बैट्समैन की पहुंच से बाहर है तो वह वाइड बाल की घोषणा कर देता है। वाइड बाल के समय बनने वाली दौड़ों की गिनती वाइड बाल में की जाती है। यदि कोई भी दौड़ न बने तो एक दौड़ बनी समझी जाती है।
बाई या लैग बाई (Bye or Leg Bye)–यदि कोई गेंद, जो न ही नो बाल हो और न ही वाइड बाल हो, प्रहारक (स्ट्राइकर) के बैट या शरीर को बिना स्पर्श किए पास से गुज़र जाए और ‘रन’ बन जाए तो अम्पायर, बाई घोषित करता है परन्तु गेंद प्रहारक के बैट वाले हाथ को छोड़कर शरीर के किसी भाग से छू कर पास से गुज़र जाए और ‘रन’ बन जाए तो अम्पायर लैग-बाई घोषित करेगा।

विकेट का गिरना (The Wicket is done) यदि प्रहारक स्वयं या उसका बैट या गेंद स्टम्प्स के ऊपर एक या दोनों गिल्लियां गिरा दे या प्रहार द्वारा भूमि से उखड़ जाए तो विकेट गिरी मानी जाएगी।
अपने क्षेत्र के बाहर (Out of his Ground) बैट्समैन अपने क्षेत्र से बाहर माना जाएगा जब उसके हाथ के बैट का कुछ भाग या उसका शरीर कल्पित मंज रेखा की पीछे ज़मीन पर न हो।
बैट्समैन की निवृत्ति (Batsman Retirement)-बैट्समैन किसी भी समय घायल या बीमारी की दशा में निवृत्त (Retire) हो सकता है। वह बल्लेबाजी तो कर सकता है परन्तु उसको विपक्षी कप्तान की आज्ञा लेनी पड़ेगी कि किस नम्बर पर बल्लेबाज़ी करे।
बाऊल्ड (Bowled)-जब विकेट गेंद मारकर गिरा दी जाए तो प्रहारक बाऊल्ड माना जाएगा। भले ही गेंद उसके बैट या शरीर के भाग से स्पर्श कर चुकी हो।

पकड़ आऊट (कैच आऊट) (Catch Out)-यदि बैट के प्रहार से, या बैट वाले हाथ से (कलाई से नहीं) लग कर ज़मीन छूने से पहले किसी फील्डर द्वारा गेंद लपक ली जाए तो प्रहारक पकड़ आऊट (कैच आऊट) होगा। यदि गेंद विकेट कीपर के पैडों में भी अटके तो भी बैट्समैन पकड़े आऊट माना जाएगा।
गेंद को हाथ लगाना आऊट (Handle the Ball) यदि खेलते समय कोई बैट्समैन हाथों से गेंद को छू लेता है तो उसे गेंद के साथ हाथ लगाना आऊट माना जाएगा।
गेंद पर दो प्रहार (Hit the Ball twice)-प्रहारक (स्ट्राइकर) गेंद पर ‘दो प्रहार’ आऊट होगा यदि गेंद उसके शरीर के किसी भाग से लगकर रुक जाती या वह उस पर जान-बूझ कर पुनः प्रहार करता है। केवल अपनी विकेट के बचाव के लिए ही प्रहार किया जा सकता है।

विकेट पर प्रहार आऊट (Hit Wicket Out) यदि गेंद खेलते समय प्रहारक (Striker) अपने बैट या शरीर के किसी भाग से विकेट मार गिराता है तो इसे ‘विकेट पर प्रहार’ (हिट विकेट) आऊट माना जाएगा। यदि उसकी विकेट टोपी या हैट गिरने या टूटे हुए बैट के किसी भाग के लगने से गिर जाती है तो भी उसे विकेट पर प्रहार आऊट माना जाएगा।
पगबाधा एल० बी० डब्ल्यू० (L.B.W.)(लैग बिफोर विकेट) या पगबाधा आऊटप्रहारक (Striker) उस समय ‘लैग बिफोर विकेट’ (एल० बी० डब्ल्यू०) आऊट माना जाता है जब गेंद को बल्ले से स्पर्श करने से पहले शरीर के किसी भाग से रोकने का यत्न करता है और अम्पायर के अनुसार गेंद विकेट की सीधी रेखा में है और यदि बैट्समैन इसे अपने शरीर के किसी भाग से न रोकता तो गेंद सीधे विकेट पर ही लगती।

क्षेत्र में बाधा (Obstruction) आऊट-कोई भी बैट्समैन ‘क्षेत्र में बाधा’ आऊट हो सकता है यदि वह जान-बूझ कर किसी फील्डर को गेंद पकड़ने से रोकता है।
स्टम्पड (Stumped) आऊट-प्रहारक (Stricker) उस समय ‘स्टम्पड आऊट’ माना जाता है जब बाऊलर द्वारा बाऊल की गई गेंद को प्राप्त करते समय रन बनाने की स्थिति के अतिरिक्त अपने क्षेत्र से बाहर चला जाए और विकेट कीपर विकेट उखाड़ दे या विकेटों के ऊपर रखी गिल्लियां उतार दे।
रन आऊट (Run Out)–जब कोई बैट्समैन दौड़ते समय या जब गेंद खेल में हो अपने क्षेत्र से बाहर चला जाए और कोई फील्डर गेंद मारकर उसकी विकेट गिरा दे और विकेटों के ऊपर से गेंद लगने से गिल्लियां गिर जाएं तो बैट्समैन को रन आऊट माना जाता है। यदि बैट्समैन एक-दूसरे को पार कर जाए तो उस बैट्समैन को आऊट माना जाएगा जो गिरी हुई विकेट की ओर दौड़ रहा है।
विकेट रक्षक (विकेट कीपर) (Wicket Keeper)-विकेट कीपर सदा विकेटों के पीछे रहेगा जब तक कि बाऊलर द्वारा संक्रमित (फेंकी हुई) गेंद बल्ले या प्रहारक के शरीर पर स्पर्श न कर ले या विकेट पार न चली जाए या प्रहारक रन (दौड़) बनाने की कोशिश न करे, वह गेंद को नहीं पकड़ सकता।

क्षेत्र रक्षक (Fielder) क्षेत्र रक्षक (फील्डर) अपने शरीर के किसी भी भाग से गेंद को रोक सकता है। क्षेत्र रक्षक टोपी या रूमाल से गेंद नहीं रोक सकता। यदि वह जानबूझ कर टोपी या रूमाल से गेंद रोकता है तो बनाए हुए रनों में पांच रन और जमा कर दिए जाएंगे। यदि कोई ‘रन’ न बना हो तो ‘रन’ और दिए जाएंगे।
क्षेत्र, मौसम और प्रकाश (Field, Weather and Light)-मैच शुरू होने से पहले टीमों के कप्तान खेल क्षेत्र, मौसम तथा प्रकाश के उचित होने को निश्चित करने के लिए चुनाव करेंगे। यदि इस विषय में पहले सहमति न हो गई हो। यदि किसी प्रकार की सहमति हुई हो तो उसका फैसला अम्पायर करेंगे।

  1. टैस्ट मैच (Test Match)-टैस्ट मैच में दोनों टीमों में से प्रत्येक को दो इनिंग Inning खेलने का अवसर मिलता है। टैस्ट मैच 5 दिनों में खेला जाता है।
  2. एक दिवसीय मैच (One day Match)-एक दिवस के मैच में दोनों टीमों 50-50 ओवरों को बैट करेगी। एक दिवसीय मैच दिन अथवा रात को हो सकता है।
  3. 20, 20 मैच (20, 20 Match)—यह एक दिवसीय मैच की तरह है इसे 20, 20 ओवर का मैच कहा जाता है क्योंकि दोनों टीम 20, 20 ओवर ही खेलती है। इस में नए नियम हैं जो इस प्रकार है। फ्री-हिट (Free Hit) जब बाउलर बाउलिंग करीज़ पार करके बाल फेंकता है। उसे नो बाल कहा जाता है। इसमें बैटस मैन को फ्री-हिट मिलती है। इस फ्री-हिट में बैटस मैन आऊट नहीं होगा सिर्फ रन आउट होने पर ही आउट माना जाता है।
  4. बाल आउट (Ball Out)-जब मैच बराबर हो जाता है तो बाल आऊट के द्वारा जीत का फैसला किया जाता है इसमें दोनों टीमों के पांच-पांच खिलाड़ियों को बाल करने का अवसर दिया जाता है। जिसमें कोई बैटस मैन नहीं होता जो टीम अधिक विकट लेती ही जाती मानी जाती है।
  5. पावर प्ले (Power Play)-क्रिकेट में नए नियम लागू हुए हैं जो इस प्रकार हैं। 50 ओवरों में तीन पावर प्ले 10 ओवर, 5 ओवर और 5 ओवर के होने चाहिए। पहले 10 पावर प्ले खेल के आरम्भ में लेने होते हैं 5-5 Overs बैटिंग और फीलडिंग टीम जब चाहे ले सकते हैं।

अपील (Appeal) अम्पायर किसी बैट्समैन को आऊट नहीं देगा जब तक कि किसी फील्डर द्वारा अपील न की गई हो। यह अपील अगली गेंद फेंकने तथा ‘समय’ पुकारने से पहले होनी चाहिए। अपील करते समय फील्डर अम्पायर से कहते हैं। ‘हाऊ इज़ दिस’ (यह कैसे हुआ) अम्पायर आऊट का निर्णय अपनी निर्देशिका अंगुली उठा कर देता है।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न
क्रिकेट के खेल में खिलाड़ियों के फील्ड करने की पोजीशन को चित्र द्वारा प्रकट करें।
उत्तर-
क्षेत्र रक्षक की व्यूह रचना (फील्ड सैटिंग)
(CRICKET FIELD)
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 3
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 4
प्रायः मैदान में क्षेत्र रक्षक चित्र के अनुसार स्थान ग्रहण करते हैं।

प्रश्न
क्रिकेट खेल के महत्त्वपूर्ण तकनीक लिखें।
उत्तर-
क्रिकेट में बैटिंग निपुणता और तकनीकें
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 5
किसी भी हिट को सफलतापूर्वक खेलने के लिए बैट्समैनों को तीन बातों का ध्यान रखना चाहिए। उसे अवश्य ही पहले बाल को ढूंढ़ना चाहिए और तब निरन्तर बाल की ओर ध्यान रखना चाहिए। उसे यह निर्णय देना होता है कि कौन-सी हिट ठीक है। उस हिट को ठीक तरह से खेलने के लिए अपने बदन को छोड़ना चाहिए।

पहले कहने को तो काफ़ी आसान है परन्तु वास्तव में इतना आसान नहीं है। यह बात सोचनी तो आसान है कि तुम बाल की ओर देख रहे हो। यह वास्तव में किसी आ रहे बाल को देखना आसान है बशर्ते कि तुमने अपना मन बनाया हुआ हो। किन्तु पूरी पारी में प्रत्येक बाल की जांच करने की आदत डालनी, सही अर्थों में जांच करनी एक बड़ा कठिन कार्य है। आप ऐसा केवल अपने हाथ के कार्य पर ध्यान केन्द्रित करना सीख कर ही कर सकते हो। यह वास्तव में बड़ा कठिन है, परन्तु यदि तुम इस प्रकार करना सीख लेते हो तो यह तुम्हें क्रिकेट में ही सहायक सिद्ध नहीं होगा बल्कि जीवन में भी।

अच्छी प्रकार निर्णय करना कि किसी विशेष बाल को किस तरह हिट करना है। यह एक प्रकार से अन्तर प्रेरणा का साधन है, या जिसे प्रायः क्रिकेट में ‘बाल सूझ’ कहा जाता है। कारण यह मुख्यतः अनुभव का कार्य है।
खिलाड़ी की स्थिति
खिलाड़ी की आरामदायक, तनावहीन तथा सन्तुलित स्थिति बनी रहनी आवश्यक है। बाल की ठीक परख करना और प्रत्येक स्ट्रोक के लिए पांव की हिल-डुल इस पर ही निर्भर करती है। पांव साधारणतः क्रीज़ की ओर समानान्तर होने चाहिएं और इनके पंजे लक्ष्य की ओर होने चाहिएं।
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 6
एक ठीक बैक लिफ्ट’ का बहुत महत्त्व है। बायां बाजू और कलाई को ही समस्त कार्य करना चाहिए और बैट को आसानी से लक्ष्य की ओर, जैसे कि बैट उतरता है।
सिर और बदन बिल्कुल स्थिर होने चाहिएं। उभार के सिरे पर दाईं कुहनी बदन से कुछ पीछे होनी चाहिए और बायां हाथ पैंट की दाईं जेब के बिल्कुल सामने ऊपर की ओर होना चाहिए।
बैट नीचे की ओर इच्छुक हिट की रेखा पर घूमना चाहिए। प्रहार के समय लिफ्ट कुदरती है कि अधिक परिपक्व हो।

सीधे बाल को सामने की सुरक्षा हिट
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 7
सामने की हिट सुरक्षा में न केवल बहुमूल्य है, बल्कि सब हिटों का आधार भी है। इसे ठीक ढंग से खेलना लगभग आधा बाल बैटमैन बनने के तुल्य है। उद्देश्य बाल को जितना प्वाइंट के निकट से निकट सम्भव हो सके, खेलने का है।
सिर आगे की ओर बढ़ाते, बायां कूल्हा और कन्धा बाल की रेखा से बाहर रख कर बाल को बैट पर बाएं पांव से कुछ इंच सामने लेना होता है और पांव मिड ऑफ व एक्स्ट्रा कवर के बीच की सेध में होना चाहिए। बदन का बोझ मुड़े हुए बाएं घुटने से बिल्कुल सामने की ओर हो।
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 8
बाल की समस्त मार्ग परख करो। इस तरह करने के लिए तुम्हें अपना सिर जहां तक हो सके, सन्तुलन में रखना चाहिए। सिर ऊपर उठाने का लोभ कम करो।
हिट में नियन्त्रण आवश्यक है-यदि तुम मज़बूत हिट मारना चाहते हो तो तुम्हारी हिट घूमने की अपेक्षा अधिक अच्छी लम्बी हो सकती है।
बाल को साफ़-साफ़ व आसान ढंग से हिट करने के लिए उसे सीमा (बाऊंडरी) की ओर फेंकने की अपेक्षा मैदान में फेंकना चाहिए।
यदि बाल काफ़ी दूर ऊपर है तो हिट एक ही लम्बे कदम से भरी जा सकती है, मगर तुम्हें पिच पर कम गति, तेज़ व अधूरे (Shorter) बाल को खेलने के लिए पांव का प्रयोग करना भी सीखना चाहिए।
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 9
आफ़ ड्राइव में सबसे आवश्यक बात यह है कि सिर, बायां कन्धा और कमर बाल की रेखा पर होने चाहिएं। यदि वह ठीक दिशा में होंगे तो बायां पांव अपने आप ही ठीक दिशा में काम करेगा। पहुंच से बाहर बाल और साधारण बाल को प्राप्त करने के लिए बाएं कन्धे की पीठ गेंद करने वाले की ओर होनी चाहिए और आफ़ साइड की ओर हिट का लक्ष्य होना चाहिए। वास्तव में अपनी नीचे की ओर गति फाइन लैग की रेखा से आरम्भ करेगा। जहां तक सम्भव हो सके बैट का पूरा भाग हिट की रेखा द्वारा घूमना चाहिए।
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 10
युवकों में आन ड्राइव की योग्यता बहुत ही कम है, मगर यदि वह इसे हासिल कर लें तो अपने रन बनाने की सामर्थ्य को काफ़ी बढ़ा सकते हैं।
इससे पहली हरकत बाएं कन्धे को हल्का-सा नीचे रखना है। इस प्रकार बाएं पांव और सन्तुलन रेखा को ठीक रखने, सिर को आगे की ओर करके बाल की रेखा पर आने की सहायता मिलेगी। बायां पांव रेखा से हल्का-सा दूर होगा।
बैट्समैन को हिट का निशाना लेना चाहिए और अन्तिम बैट की चौड़ाई की ओर से नीचे घूमना चाहिए। बैट्समैन को अपनी आन ड्राइवस दाएं हाथ और दाएं कन्धे से अधिक काम लेने की रुचि को दृढ़ता से कम करना होगा। उसे अपने बाएं कूल्हे को भी दूर होने की आज्ञा नहीं देनी चाहिए।
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 11
जब तक एक बैट्समैन बाल के आकर्षण की अच्छी तरह पड़ताल नहीं कर लेता तो उसे बैक स्ट्रोक से ही खेलना चाहिए और इस प्रकार उसे बाल के आकर्षण के पश्चात् जांच करने का समय भी मिलेगा। हल्की बाल और अधिक कठिन विकट में उसे अवश्य ही बैक स्ट्रोक पर निर्भर करना चाहिए।
दायां पांव क्रीज़ की ओर पंजा समानान्तर रहते बाल की रेखा के भीतर और पीछे की ओर अच्छी तरह हिल-डुल कर सकता है। बदन का बोझ इस पांव पर बदली किया जा सकता है परन्तु सिर आगे की ओर झुका हुआ होना चाहिए। बाएं पांव पर होते हुए एक सन्तुलनीय-सा कार्य करता है।
बाल दृष्टि से कुछ नीचे मिलना चाहिए जोकि जितना सम्भव स्तर हो सके होना चाहिए क्योंकि वह बाल को नीचे पिच की ओर झांकती है। हिट पर नियन्त्रण बाएं हाथ से बाजू की ओर से कोहनी ऊपर उठा कर किया जाता है। दायां हाथ अंगूठे पर अंगुलियों की पकड़ में आरामदायक होता है। बदन को जितना सम्भव हो सके साइडों की ओर रखना चाहिए।

समतल बैट स्ट्रोक
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 12
एक लड़का जब तक सीधी हिट नहीं मारना सीखता तब तक बैट्समैन नहीं बनता परन्तु उसे पूरे भाव से अनुचित बाल से खेलने का ढंग भी होना चाहिए। यह बात विशेष तौर पर लम्बे टिप्पों और पूर्ण उछाल में वास्तविक लगती है और विशेषतः जूनियर क्रिकेट में चौके मारने के उत्तम अवसर प्रदान करती है।
ये हिटें अधिक आसान होती हैं क्योंकि ये सीधी बैट हिटों से अधिक प्राकृतिक होती हैं, परन्तु इनको दृढ़ता से खेलने के लिए तुम्हें चतुराई से खेलने का ढंग सीखना चाहिए।

पिछले पांव का स्कवेयर कट
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 13
बाल रेखा और प्वाइंट पर सामने से या पीछे मिले बाल से निपटने के लिए दायां पांव दाएं कूल्हे के आर-पार घूमता है। तब कलाइयों और हाथों को एक ऊंची बैक लिफ्ट से नीचे घुमाया जाता है और सिर व बदन, झुके हुए दाएं घुटने और स्ट्रोक रेखा में घूमता है।

लेट कट
क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education 14
यह हिट भी ऊपरी हिट जैसी ही है, सिवाय इसके कि यह बाएं कन्धे के अधिक घुमाव से आरम्भ होती है और दायां पांव थर्ड स्लिप की ओर से पंजे की ओर भूमि पर होता है। बाल विकटों की सतह के बराबर मिलता है और कलाई आगे बढ़ाते बैट्समैन इसे गुल्ली या स्लिप की दिशा में हिट करता है।
इन दोनों कट्स में बायां पांव पंजे पर विश्राम अवस्था में रहता है और बोझ झुके हुए दाएं घुटने पर पूरी तरह रहता है।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

PSEB 10th Class Physical Education Practical क्रिकेट (Cricket)

प्रश्न 1.
क्रिकेट के खेल में एक टीम में कितने खिलाड़ी होते हैं ?
उत्तर-
11 खिलाड़ी भाग लेते हैं तथा 5 अतिरिक्त (Substitute) खिलाड़ी होते हैं

प्रश्न 2.
क्रिकेट की गेंद का भार तथा परिधि कितनी होती है ?
उत्तर-
गेंद का भार 155.9 ग्राम (\(5 \frac{1}{2}\) औंस) से 163 ग्राम (\(5 \frac{3}{4}\) औंस) तक तथा परिधि 22.4 सेमी० (\(3 \frac{13}{16}\)) 22.9 सेमी० (9”) तक होती है।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न 3.
क्रिकेट के खेल में अधिकारियों की संख्या कितनी होती है ?
उत्तर-

  1. अम्पायर-2
  2. स्कोरर-2

प्रश्न 4.
क्रिकेट के बैट की लम्बाई तथा चौड़ाई कितनी होती है ?
उत्तर-
लम्बाई 96.5 सेमी० तथा अधिक-से-अधिक चौड़ाई 10.8 सेमी० होती है।

प्रश्न 5.
विकटों की एक स्टम्प से दूसरी स्टम्प तक दूरी कितनी होती है ?
उत्तर-
20.12 मीटर या 22 गज।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न 6.
डैड बाल से आप क्या समझते हैं ?
उत्तर-
डैड बाल (Dead Ball)

  1. जब गेंद बाऊलर या विकेट कीपर ने ठीक तरह से पकड़ लिया हो।
  2. जब वह सीमा तक पहुंच जाये या ठप्पा खा जाए।
  3. वह खेले या बिना खेले या अम्पायर या बैट्समैन के कपड़ों से उलझ जाए।
  4. बैट्समैन आऊट हो जाये।
  5. गेंद फेंकने वाले के गेंद फिर प्राप्त करने के ऊपर अम्पायर खेल को यदि रोकना चाहे।
  6. अम्पायर द्वारा समय या ओवर की घोषणा करने पर।

नोट-बाऊलर को गेंद फेंकने की क्रिया या दौड़ शुरू करते ही गेंद डैड नहीं रहेगा।

प्रश्न 7.
क्रिकेट में ओवर से क्या अभिप्राय है ?
उत्तर-
ओवर (Over)-प्रायः एक ओवर में 6 बार गेंदें खेली जाती हैं, यदि पहले निश्चित कर लिया जाए तो ओवर में आठ गेंदें भी खेली जा सकती हैं। यदि नो बाल या वाइड बाल हो जाये तो ओवर में एक गेंद और फेंकने की वृद्धि की जाती है। जितने नो बाल उस ओवर में होंगे उतने और गेंद फेंके जाते हैं। यदि अम्पायर से ओवर के बालों की गिनती में भूल हो जाती है तो अम्पायर द्वारा गिना गया ओवर ही माना जायेगा।
भारत में एक ओवर छ: गेंदों का होता है जबकि ऑस्ट्रेलिया में आठ गेंदें होती थीं।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न 8.
निम्नलिखित से आप क्या समझते हैंस्टम्पड, बोल्ड, विकेट पर चोट, गेंद को हाथ लगाना, गेंद पर दो चोंटे, रन आऊट, पगबाधा (LBW), नो बाल, वाइड बाल, बाई और लैग बाई।
उत्तर-

  1. स्टम्पड (Stumped)-बैट्समैन के हाथ का बैट या उसका पांव मानी गई भंज-रेखा के पीछे पृथ्वी पर न हो तो वह क्षेत्र से बाहर माना जाता है। यदि विकेट कीपर गेंद विकेट को लगाकर गिल्ली उड़ा दे तो बैट्समैन स्टम्पड आऊट होगा।
  2. बोल्ड (Bowled)-बाऊलर यदि गेंद फेंक कर विकेट गिरा दे तो बैट्समैन Bowled out कहलाता है, चाहे गेंद पहले उसके पैर या शरीर को छू चुकी हो।
  3. विकेट पर चोट (Hit wicket)-विकेट पर चोट खेलते हुए चाहे बैट्समैन के बैट या शरीर के किसी भी भाग को छू कर यदि विकेट या इस पर रखी गिल्ली (Bail) गिर जाए तो वह बैट्समैन आऊट समझा जाएगा।
  4. गेंद को हाथ लगाना (Handled the ball) यदि बैट्समैन खेलता हुआ गेंद को छू ले तो वह आऊट माना जाएगा।
  5. गेंद पर दो चोटें (Hit the Ball twice)-गेंद पर चोट लगाते समय यदि गेंद पर चोट लगाने वाले के शरीर के किसी भी भाग पर लगे या रुक जाए और वह उस पर जानबूझ कर फिर चोट लगाए तो वह गेंद पर चोट वाला आऊट हो जाता है। परन्तु एक शर्त है कि ऐसा विकट के बचाव के लिए न किया गया हो।
  6. रन आऊट (Run out)-जिस समय गेंद मैदान में हो और बैट्समैन भागते हुए अपने क्षेत्र से बहार चला जाए और विरोधी टीम का खिलाड़ी उसकी विकेट गिरा दे तो बैट्समैन रन आऊट हो जाता है।
  7. पगबाधा (LBW)–एक बैट्समैन पगबाधा (LBW) आऊट हो जाता है जबकि उसके शरीर का भी कोई भाग सिवाए हाथ के दोनों विकटों के बिल्कुल सामने हो क्योंकि अम्पायर के विचार में यदि ऐसा न होता तो गेंद सीधा विकटों में लगता है।
  8. नो बाल (No Ball)-जब गेंदबाज का गेंद फेंकते समय एक पैर पॉपिंग क्रीज़ से पीछे और रिटर्न क्रीज़ के मध्य में हो तथा दोनों में से किसी एक को छू रहा हो या उसके ऊपर टिका हो तो नो बाल हो जाता है। नो बाल की एक दौड़ होती है। यदि नो बाल पर बैट्समैन हिट करके कुछ दौड़ें बना ले तो वे दौड़ें बैट्समैन के खाते में जमा होंगी। अम्पायर अपनी एक भुजा फैलाकर नो बाल का संकेत करता है।
  9. वाइड बाल (Wide Ball)–यदि गेंद इतनी ऊंचा या बाहर फेंकी जाए कि वह बैट्समैन की पहुंच से बाहर हो तो उसे वाइड बाल कहते हैं। जो दौड़ें बाल के समय बनें, उन्हें वाइड बाल में गिना जाता है। यदि कोई भी दौड़ न बने तो वह एक दौड़ बनी समझी जाती है। वाइड बाल का संकेत अम्पायर अपनी दोनों भुजाएं फैला कर करता है।
  10. बाई और लैग बाई (Bye and Leg Bye)–यदि गेंद स्ट्राइक लेने वाले ‘बैट्समैन’ के पास से गुज़र जाए तो इसके साथ जितनी दौड़ें बनें उन्हें ‘बाई’ कहते हैं परन्तु नो बाल या वाइड बाल नहीं होना चाहिए। यदि गेंद उसके बैट वाले हाथ को छोड़ शरीर के किसी दूसरे अंग के साथ छू कर दूर चला जाता है और इतनी देर में कोई दौड़ बन जाए उसे लैग बाई कहते हैं।

क्रिकेट (Cricket) Game Rules - PSEB 10th Class Physical Education

प्रश्न 9.
निम्नलिखित से क्या अभिप्राय है
(1) अनिवार्य ओवर
(2) एक दिवसीय मैच।
उत्तर-

  1. अनिवार्य ओवर (Mandatory Over)-मैच समाप्ति के एक घण्टा पहले निर्णायक अनिवार्य ओवर का संकेत देगा। उसके बाद खेल 20 ओवरों तक और खेला जाता है। प्रत्येक ओवर में 6 गेंदें खेली जाती हैं। यदि मैच अनिर्णित प्रतीत हो तो इन 20 ओवरों से पहले भी खेल स्थगित की जा सकती है।
  2. एक दिवसीय मैच-राष्ट्रीय तथा अन्तर्राष्ट्रीय स्तर पर एक दिवसीय टेस्ट मैच होता है जिसमें दोनों टीमें 40-40 या 50-50 ओवर खेलती हैं। जो टीम अधिक रन बनाती है वह जीत जाती है।

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.4

Question 1.
Let △ABC ~ △DEF and their areas be respectively 64 cm2 and 121 cm2. If EF = 15.4 cm, find BC.
Solution:
△ABC ~ △DEF ;
area of △ABC = 64 cm2;
area of △DEF = 121 cm2;
EF= 15.4 cm

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 1

△ABC ~ △DEF

∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\)
(If two traingles are similar, ratio of their area is square of corresponding sides }

\(\frac{64}{121}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\) \(\left(\frac{8}{11}\right)^{2}=\left(\frac{\mathrm{BC}}{15.4}\right)^{2}\)

⇒ \(\frac{8}{11}=\frac{\mathrm{BC}}{15.4}\)

BC = \(\frac{8 \times 15.4}{11}\)
BC = 8 × 1.4
BC = 11.2 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 2.
Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2 CD. Find the ratio of the areas of traingles AOB and COD.
Solution:
ABCD is trapezium AB || DC. Diagonals AC and BD intersects each other at the point O. AB = 2 CD

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 2

In △AOB and △COD,
∠1 = ∠2 (alternate angles)
∠3 = ∠4 (alternate angles)
∠5 = ∠6 (vertically opposite angle)
∴ △AOB ~ △COD [AA, A similarity criterion]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 10

(If two triangles are similar ratio of their areas is square of corresponding sides)

= \(\frac{(2 \mathrm{CD})^{2}}{\mathrm{CD}^{2}}\) [∵ AB = 2 CD] (Given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 11

∴ Required ratio of ar △AOB and △COD = 4 : 1.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 3.
In the fig., △ABC and △DBC are two triangles on the same base BC. If AD intersects BC at O show that

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 12

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 3

Solution:
Given. ∆ABC and ∆DBC are the triangles on same base BC. AD intersects BC at O

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 4

To Prove: PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 12
Construction: Draw AL ⊥ BC, DM ⊥ BC
Proof: In ∆ALO and ∆DMO.
∠1 = ∠2 (vertically opposite angle)
∠L = ∠M (each 90°)
∴ ∆ALO ~ ∆DMO [AA similarity criterion]
∴ \(\frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}\) ……………(1)
[If two triangles are similar, corrosponding sides are proportional

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 13

[∵ ∆ = \(\frac{1}{2}\) × b × p]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 14

Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 4.
If the areas of two similar triangles are equal, prove that they are congruent.
Solution:
Given: Two ∆s ABC and DEF are similar and equal in area.
To Prove : ∆ABC ≅ ∆DEF

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 5

Proof: Since ∆ABC ~ ∆DEF,
∴ \(\frac{\text { area }(\Delta \mathrm{ABC})}{\text { area }(\Delta \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\)

⇒ \(\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=1\) [∵ area (∆ABC) = area (∆DEF)]
⇒ BC2 = EF2
⇒ BC = EF.
Also, since ∆ABC ~ ∆DEF,
therefore they are equiangular and hence
∠B = ∠E
and ∠C = ∠F.
Now in ∆s ABC and DEF,
∠B = ∠E, ∠C = ∠F
and BC = EF
∴ ∆ABC ≅ ∆DEF (ASA congruence).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 5.
D, E and F are respectively the mid points of the sides BC, CA and AB of ∆ABC. Determine the ratio of the areas of triangles DEF and ABC.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 6

Given. D, E, F are the mid-point of the sides BC, CA and AB respectively of a tABC.
To find : ar (∆DEE) : ar (∆ABC)
Proof: In ∆ABC,
F is the mid-point of AB …(given)
E is the mid-point of AC …(given)
So, by the Mid-Foint Theorem
FE || BC and FE = \(\frac{1}{2}\) BC
⇒ FE || BD and FE = BD [∵ BD = \(\frac{1}{2}\) BC]
∴ BDEF is a || gm.
(∵ Opp. sides are || and equal)
In △s FBD and DEF,
FB = DE (opp. sides of || gm BDEF)
FD = FD .. .(common)
BD = FE
. ..(opp. sides of || gm BDEF)
∴ △FBD ≅ △DEF … (SSS Congruency Theorem)

Similary we can prove that:
△AFE ≅ △DEF
and △EDC ≅ △DEF
if △s are , then they are equal in area.
∴ ar (∆FBD) = ar. (∆DEF) ……………(1)
ar (∆AFE) = ar (∆DEF) ……………(2)
ar (∆EDC) = ar (∆DEF) ……………(3)
Now ar ∆ (ABC)
= ar (∆FBD) + ar (∆DEF) + ar (∆AFE) + ar (∆EDC)
= ar.(∆DEF) + ar (∆DEF) + ar (∆DEF) + ar. (∆DEF) [Using (1), (2) and (3)]
= 4 ar (∆DEF)
⇒ (∆DEF) = \(\frac{1}{4}\) ar(∆ABC)
⇒ \(\frac{{ar} .(\Delta \mathrm{DEF})}{{ar} .(\Delta \mathrm{ABC})}=\frac{1}{4}\)
∴ ar (∆DEF) : ar (∆ABC) = 1 : 4.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 6.
Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
Solution:
Given: ∆ABC ~ ∆DEF.
AX and DY are the medians to the side BC and EF respectively.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 7

To prove: \(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\frac{\mathrm{AX}^{2}}{\mathrm{DY}^{2}}\)
Proof: ∆ABC ~ ∆DEF (Given)
∴ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{2 \mathrm{BX}}{2 \mathrm{EY}}\)
[∵ AX and DY are medians
∴ BC = 2BX and EF = 2EY]

⇒ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BX}}{\mathrm{EY}}\) ………………(1)
In ∆ABX and ∆DEY, [∵ ∆ABC ~ ∆DEF]
\(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BX}}{\mathrm{EY}}\) [Prove in (1)]
∴ ∆ABC ~ ∆DEY [By SAS criterion of similarity]
∴ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AX}}{\mathrm{DY}}\) …………(2)
As the areas of two similar triangles are proportional to the squares of the corresponding sides, so
∴ \(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AX}^{2}}{\mathrm{D} \mathrm{Y}^{2}}\)
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 7.
Prove that the areas of the equilateral triangle described on the side of a square Is half the area of the equilateral triangle described on its diagonal.
Solution:
Given: ABCD is a square. Equilateral ∆ABE is described on the side AB of the square and equilateral ∆ACF is desribed on the diagonal AC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 8

To prove: \(\frac{{ar} .(\Delta \mathrm{ABE})}{{ar} .(\Delta \mathrm{ACF})}=\frac{1}{2}\)
Proof: In rt. ∆ABC,
⇒ AB2 + BC2 = AC2 [By Pathagoras theorem]
= AB2 + AB2 = AC2 [∵ AB = BC, being the sides of the same square]
⇒ 2AB2 = AC2 ………….(1)
Now each of ∆ABE and ∆ACF are equilateral and therefore equiangular and hence similar.
i.e., ∆ABE ~ ∆ACF.
Here any side of one ∆ is proportional to any side of other.
∴ \(\frac{\text { ar. }(\Delta \mathrm{ABE})}{\text { ar. }(\Delta \mathrm{ACF})}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}^{2}}\)

[∵ The ratio of the areas of two similar∆s is equal to their corresponding sides]
= \(\frac{\mathrm{AB}^{2}}{2 \mathrm{AB}^{2}}=\frac{1}{2}\) [Using (1)]

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 8.
Tick the correct answer and justify: ABC and BDE are two equilateral triangles such that D is the mid point of BC. Ratio of the areas of triangles ABC and BDE is
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4.
Solution:
∆ABC and ∆BDE are two equilateral thangles. D is mid point of BC.
∴ BD = DC = \(\frac{1}{2}\) BC,
Let each side of triangles are 2a
∴ ∆ABC ~ ∆BDE
∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\triangle \mathrm{BDE})}=\frac{\mathrm{AB}^{2}}{\mathrm{BD}^{2}}\)

= \(\frac{(2 a)^{2}}{(a)^{2}}\)
= \(\frac{4 a^{2}}{a^{2}}\)
= \(\frac{4}{1}\) = 4 : 1
∴ Correct option is (C).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 9.
Tick the correct answer and justify: Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are ¡n the ratio
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 9

∆ABC ~ ∆DEF (given)

\(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{4}{9}\)

∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}\)

[If two triangles are similar ratio of their areas is equal to square of corresponding sides]
\(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\left(\frac{4}{9}\right)^{2}\) = \(\frac{16}{81}\) = 16 : 81
∴ Correct option is (D).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.3

Question 1.
State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the queStion and also write the pairs of similar triangles in the symbolic form:

(i) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 1

(ii) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 2

(iii) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 3

(iv) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 4

(v) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 5

(vi) PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 6

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Solution:
(i) In ∆ABC and ∆PQR,
∠A = ∠P (each 60°)
∠B = ∠Q (each 80°)
∠C = ∠R (each 40°)
∴ ∆ABC ~ PQR [AAA Similarity criterion]

(ii) In ∆ABC and ∆PQR,
\(\frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{2}{4}=\frac{1}{2}\) …………….(1)

\(\frac{\mathrm{AC}}{\mathrm{PQ}}=\frac{3}{6}=\frac{1}{2}\) ……………..(2)

\(\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{2.5}{5}=\frac{1}{2}\) ……………(3)
From (1), (2) and (3),
\(\frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{\mathrm{AC}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{1}{2}\)

∴ ΔABC ~ ΔQRP [By SSS similarity criterion]

(iii) In ΔLMP and ΔDEF,
\(\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{2}{4}=\frac{1}{2}\)

\(\frac{\mathrm{PL}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}\) \(\frac{\mathrm{LM}}{\mathrm{EF}}=\frac{2.7}{5}=\frac{27}{50}\)

\(\)
∴ Two Triangles are not similar.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

(iv) In ΔMNL and ΔPQR,
\(\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{5}{10}=\frac{1}{2}\)

∠M = ∠Q (each 70°)

\(\frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{2.5}{5}=\frac{1}{2}\)

∴ ΔMNL ~ ΔPQR [By SAS similarity cirterion]

(v) In ΔABC and ΔDEF,
\(\frac{\mathrm{AB}}{\mathrm{DF}}=\frac{2.5}{5}=\frac{1}{2}\)

\(\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{3}{6}=\frac{1}{2}\)

But ∠B ≠ ∠F
∴ ΔABC and ΔDEF are not similar.

(vi) In ΔDEF, ∠D = 70°, ∠E = 80°
∠D + ∠E + ∠F = 180°
70° + 80° + ∠F = 180° [Angle Sum Propertyl
∠F= 180° – 70° – 80°
∠F = 30°
In ΔPQR,
∠Q = 80°, ∠R = 30°
∠P + ∠Q + ∠R = 180°
(Sum of angles of triangle)
∠P + 80° + 30° = 180°
∠P = 180° – 80° – 30°
∠P = 70°
In ΔDEF and ΔPQR,
∠D = ∠P (70° each)
∠E = ∠Q (80° each)
∠F = ∠R (30° each)
∴ ΔDEF ~ ΔPQR (AAA similarity criterion).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 2.
In Fig., ΔODC ~ ΔOBA, ∠BOC = 125° and ∠CDO = 70°. FInd ∠DOC, ∠DCO and ∠OAB.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 7

Solution:
Given that: ∠BOC = 125°
∠CDO = 70°
DOB is a straight line
∴ ∠DOC + ∠COB = 180°
[Linear pair Axiom]
∠DOC + 125° = 180°
∠DOC = 180°- 125°
∠DOC = 55°
∠DOC = ∠AOB = 55°
[Vertically opposite angle]
But ΔODC ~ ΔOBA
∠D = ∠B = 70°
In ΔDOC, ∠D + ∠O + ∠C = 180°
70° + 55° + ∠C = 180°
∠C= 180° – 70° – 55°
∠C = 55°
∠C = ∠A = 55°
Hence ∠DOC = 55°
∠DCO = 55°
∴ ∠OAB = 55°.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 3.
Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that \(\frac{\mathbf{O A}}{\mathbf{O C}}=\frac{\mathbf{O B}}{\mathbf{O D}}\).
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 8

Given: In Trapezium ABCD, AB || CD, and diagonal AC and BD intersects each other at O.
To Prove = \(\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}\) (Given)
Proof: AB || DC (Given)
In ΔDOC and ΔBOA,
∠1 = ∠2 (alternate angle)
∠5 = ∠6 (vertical opposite angle)
∠3 = ∠4 (alternate angle)
∴ ΔDOC ~ ΔBOA [AAA similarity criterion]
∴ \(\frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}}\)
[If two triangle are similar corresponding sides are Proportional }
⇒ \(\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{DO}}\)
Hence Proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 4.
In Fig., \(\) and ∠1 = ∠2. Show that ∆PQS ~ ∆TQR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 9

Solution:
Given that,
\(\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}\) and
∠1 = ∠2

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 10

To Prove. PQS – ITQR
Proof: In ΔPQR,
∠1 = ∠2 (given)
∴ PR = PQ
[Equal angle have equal side opposite to it]
and = \(\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}\) (given)
or \(\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PQ}}\) [PR = PQ]
⇒ \(\frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}}\)
In ΔPQS and ΔTQR,
\(\frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}}\)
∠1 = ∠1 (common)
∴ ∆PQS ~ ∆TQR [SAS similarity criterion]
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 5.
S and T are points on skies PR and QR of ∆PQR such that ∠P = ∠RTS. Show that ∆RPQ ~ ∆RTS.
Solution:
S and T are the points on side PR and QR such that ∠P = ∠RTS.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 11

To Prove. ∆RPQ ~ ∆RTS
Proof: In ∆RPQ and ∆RTS
∠RPQ = ∠RTS (given)
∠R = ∠R [common angle]
∴ RPQ ~ ARTS
[By AA similarity critierion which is the required result.]

Question 6.
In figure ∆ABE ≅ ∆ACD show that ∆ADE ~ ∆ABC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 12

Solution:
Given. ∆ABC in which ∆ABE ≅ ∆ACD
To Prove. ∆ADE ~ ∆ABC
Proof. ∆ABE ≅ ∆ACD (given)
AB = AC (cpct) and AE = AD (cpct)
\(\frac{A B}{A C}=1\) ……………..(1)
\(\frac{A E}{A D}=1\) …………….(2)
From (1) and (2).
\(\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AE}}\)
In ∆ADE and ∆ABC,
\(\frac{\mathrm{AD}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AC}}\)
∠A = ∠A (common)
∴ ∆ADE ~ ∆ABC [By SAS similarity criterion].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 7.
In Fig., altitudes AD and CE of ∆ABC intersect each other at the point P.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 13
Show that:
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC
Solution:
Given. ∆ABC, AD ⊥ BC CE⊥AB,

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 24

To Prove. (i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC
Proof:
(i) In ∆AEP and ∆CDP,
∠E = ∠D (each 90°)
∠APE = ∠CPD (vertically opposite angle)
∴ ∆AEP ~ ∆CDP [By AA similarity criterion].

(ii) In ∆ABD and ∆CBE,
∠D = ∠E (each 90°)
∠B = ∠B (common)
∴ ∆ABD ~ ∆CBE [AA Similarity criterion]

(iii) In ∆AEP and ∆ADB.
∠E = ∠D (each 90°)
∠A = ∠A (common)
∴ ∆AEP ~ ∆ADB [AA similarity criterion].

(vi) In ∆PDC and ∆BEC,
∠C = ∠C
∠D = ∠E
∴ ∆SPDC ~ ∆BEC [AA similarity criterion].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 8.
E is a point on the side AD produced of a parallelogram ABCD and BE Intersects CD at F. Show that AABE – &CFB.
Solution:
Given. Parallelogram ABCD. Side AD is produced to E, BE intersects DC at F.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 14

To Prove. ∆ABE ~ ∆CFB
Proof. In ∆ABE and ∆CFB.
∠A = ∠C (opposite angle of || gm)
∠ABE = ∠CFB (alternate angle)
∴ ∆ABE ~ ∆CFB (AA similarity criterion)

Question 9.
In Fig., ABC and AMP are two right triangles, right angled at B and M respectively. Prove that:
(i) ∆ABC ~ ∆AMP
(ii) \(\frac{\mathbf{C A}}{\mathbf{P A}}=\frac{\mathbf{B C}}{\mathbf{M P}}\)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 15

Solution:
Given. ∆ABC and ∆AMP are two right triangles right angled at B and M.
To Prove. (i) ∆ABC ~ ∆AMP
(ii) \(\frac{\mathbf{C A}}{\mathbf{P A}}=\frac{\mathbf{B C}}{\mathbf{M P}}\)
Proof. In ∆ABC and ∆AMP,
∠A = ∠A (common)
∠B = ∠M (each 90°)
(i) ∴ ∆ABC ~ ∆AMP (AA similarity criterion)

(ii) ∴ \(\frac{\mathrm{AC}}{\mathrm{AP}}=\frac{\mathrm{BC}}{\mathrm{MP}}\)
[If two triangles are similar corresponding sides]
\(\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}\)
Hence Proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Q. 10.
CD and GH are respectively the vectors of ∠ACB and ∠EGF such that D and H lie on sides AB and FE of ∆ABC and
∆EFG respectively. If ∆ABC ~ ∆FEG, show
(i) \(\frac{\mathbf{C D}}{\mathbf{G H}}=\frac{\mathbf{A C}}{\mathbf{F G}}\)
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 16

Given. In ∆ABC and ∆EFG, CD and OH are bisector of ∠ACB and ∠EGF
i.e. ∠1 = ∠2
and ∠3 = ∠4
and ∆ABC ~ ∆FEG
To Prove. (i) = \(\frac{\mathbf{C D}}{\mathbf{G H}}=\frac{\mathbf{A C}}{\mathbf{F G}}\)
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF
Proof.
(i) Given that, ∆ABC ~ ∆FEG
∴ ∠A = ∠F; ∠B = ∠E
and ∠C = ∠C
[∵ The corresponding angles of similar triangles are equal]
Consider, ∠C = ∠C [Proved above]
\(\frac{1}{2}\) ∠C = \(\frac{1}{2}\) ∠G
∠2 = ∠4 or ∠1 = ∠3
Now, in ∆ACD and ∆FGH
∠A = ∠F [Proved above]
∠2 = ∠4 [Proved above]
∴ ∠ACD ~ ∠FGH [∵ AA similarity creterion]
Also, \(\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}\)
[∵ Corresponding sides are in proportion].

(ii) In ∆DCB and ∆HGE,
∠B = ∠E [Proved above]
∠1 = ∠3 [Proved above]
∴ ∆DCB ~ ∆HGE [∵ AA similarity criterion]

(iii) In ∆DCA and ∆HGF
∠A = ∠F [Proved above]
∠2 = ∠4 [Proved above]
∴ ∆DCA ~ ∆HGF [∵ AA similarity criterion].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 11.
In Fig., E is a point on side CB produced of an Isosceles triangle ABC with AB = AC. IfAD ⊥BC and EF ⊥ AC, prove that ∆ABD ~ ∆ECF.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 17

Solution:
Given. ∆ABC, isosceles triangle with AB = AC AD ⊥ BC, side BC is produced to E. EF ⊥ AC
To Prove. ∆ABD ~ ∆ECF
Proof. ∆ABC is isosceles (given)
AB = AC
∴ ∠B = ∠C [Equal sides have equal angles opposite to it)
In ∆ABD and ∆ECF,
∠ABD = ∠ECF (Proved above)
∠ADB = ∠EFC (each 90°)
∴ ∠ABD – ∠ECF [AA similarity).

Question 12.
Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ∆PQR (see Fig.). Show that ∆ABC ~ ∆PQR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 18

Solution:
Given. ∆ABC and ∆PQR, AB, BC, and median AD of ∆ABC are proportional to side PQ; QR and median PM of ∆PQR,
i.e., \(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}\)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 23

To prove: ∆ABC ~ ∆PQR
Construction: Produce AD to E such that AD = DE and Produce PM to N such that PM = MN join BE, CE, QN and RN
Proof: \(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}\) (given) …………..(1)
BD = DC (given)
AD = DE (construction)
Diagonal bisects each other ¡n quadrilateral ABEC
∴ Quadrilateral ABEC is parallelogram
Similarly PQNR is a parallelogram
∴ BE = AC (opposite sides of parallelogram) and QN = PR
\(\frac{\mathrm{BE}}{\mathrm{AC}}=1\) ……………(i)
\(\frac{\mathrm{QN}}{\mathrm{PR}}=1\) …………..(ii)
From (i) and (ii),
\(\frac{\mathrm{BE}}{\mathrm{AC}}=\frac{\mathrm{QN}}{\mathrm{PR}}\)
⇒ \(\frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AC}}{\mathrm{PR}}\)
But \(\frac{A B}{P Q}=\frac{A C}{P R}\) (Given)
∴ \(\frac{B E}{Q N}=\frac{A B}{P Q}\) …………..(2)
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}\) From (1)
= \(\frac{2 \mathrm{AD}}{2 \mathrm{PM}}\)
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AE}}{\mathrm{PN}}\) …………..(3)
From (2) and (3),
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AE}}{\mathrm{PN}}\)
∴ ∆ABE ~ ∆PQN [Sides are Proportional]
∴ ∠1 = ∠2 …………….(4) [Corresponding angle of similar triangle]
|| ly ∆ACE ~ ∆PRN ……….(5) [Corresponding angle of similar triangle]
Adding (4) and (5).
∠1 + ∠3 = ∠2 + ∠4
∠A = ∠P
Now in ∆ABC and ∆PQR,
∠A = ∠P (Proved)
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}\) (given)
∴ ∆ABC ~ ∆PQR [By using SA similarity criterion]
Hence Proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 13.
D is a point on the side BC of a triangle ABC such that ∠ADC = ∠BAC. Show that CA2 = CB. CD.
Solution:
Given. ∆ABC, D is a point on side BC such that ∠ADC = ∠BAC
To Prove. CA2 = BC × CD
Proof. In ABC and ADC,

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 19

∠C = ∠C (common)
∠BAC = ∠ADC (given)
∴ ∆ABC ~ ∆DAC [by AA similarity criterion]
∴ \(\frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}}\)
[If two triangles are similar corresponding sides are proportional]
AC2 = BC. DC Hence Proved.

Question 14.
Sides AB and AC and median AD of a triangle ABC are proportional to sides PQ and PR and median PM of another
triangle PQR. Prove that ∆ABC ~ ∆PQR.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 20

Given: Two ∆s ABC and PQR. D is the mid-point of BC and M is the mid-point of QR. and \(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}\) ………..(1)
To Prove: ∆ABC ~ ∆PQR
Construction:
Produce AD to E such that AD = DE
Join BE and CE.
Proof. In quad. ABEC, diagonals AE and
BC bisect each other at D.
∴ Quad. ABEC is a parallelogram.
Similarly it can be shown that quad PQNR is a parallelogram.
Since ABEC is a parallelogram
∴. BE = AC ………….(2)
Similarly since PQNR is a || gm
∴ QN = PR ………….(3)
Dividing (2) by (3), we get:
\(\frac{B E}{Q N}=\frac{A C}{P R}\) …………….(4)
Now \(\frac{\mathrm{AD}}{\mathrm{PM}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}=\frac{\mathrm{AE}}{\mathrm{PN}}\)
∴ ∠BAE = ∠QPN ………….(5)
From (1), (4) and (5), we get:
\(\frac{A D}{P Q}=\frac{B E}{Q N}=\frac{A E}{P N}\)
Thus in ∆s ABE and PQN, we get:
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AE}}{\mathrm{PN}}\)
∴ ∆ABC ~ ∆PQN
∴ ∠BAE = ∠QPN ………..(6)
Similarly it can be proved that
∆AEC ~ ∆PNR
∴ ∠EAC = ∠NPR …………..(7)
Adding (6) and (7), we get:
∠BAE + ∠EAC = ∠QPN + ∠NPR
i.e., ∠BAC = ∠QPR
Now in ∆ABC and ∆PQR.
\(\frac{A B}{P Q}=\frac{A C}{P R}\)
and included ∠A = ∠P
∴ ∆ABC ~ ∆QPR (By SAS criterion of similarity).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3

Question 15.
A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 21

Length of vertical stick = 6 m
Shadow of stick = 4 m
Let height of tower be H m
Length of shadow of tower = 28 m
In ∆ABC and ∆PMN,
∠C = ∠N (angle of altitude of sun)
∠B = ∠M (each 90°)
∴ ∆ABC ~ ∆PMN [AA similarity criterion]
∴ \(\frac{\mathrm{AB}}{\mathrm{PM}}=\frac{\mathrm{BC}}{\mathrm{MN}}\)
[If two triangles are similar corresponding sides are proportional]
∴ \(\frac{6}{\mathrm{H}}=\frac{4}{28}\)
H = \(\frac{6 \times 28}{4}\)
H = 6 × 7
H = 42 m.
Hence, Height of Tower = 42 m.

Question 16.
If AD and PM are medians of triangles ABC and PQR, respectively where ∆ABC ~ ∆PQR, prove that \(\frac{\mathbf{A B}}{\mathbf{P Q}}=\frac{\mathbf{A D}}{\mathbf{P M}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.3 22

Solution:
Given: ∆ABC and ∆PQR, AD and PM are median and ∆ABC ~ ∆PQR
To Prove: \(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}\)
Proof. ∆ABC ~ ∆PQR (given)
∴ \(\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}\)
(If two triangles are similar corrosponding sides are Proportional)
∠A = ∠P
(If two triangles are similar corrosponding angles are equal)
∠B = ∠Q
∠C = ∠R
D is mid Point of BC
∴ BD = DC = \(\frac{1}{2}\) BC ……………..(2)
M is mid point of OR
∴ QM = MR = \(\frac{1}{2}\) QR …………….(3)
\(\frac{A B}{P Q}=\frac{B C}{Q R}\)
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2 \mathrm{BD}}{2 \mathrm{QM}}\) (from(2)and(3))
\(\frac{A B}{P Q}=\frac{B D}{Q M}\)
∠ABD = ∠PQM (given)
∆ABC ~ ∆PQM (By SAS similarity criterion)
\(\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}\)
[If two triangles are similar corresponding sides are proportional].

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.2

Question 1.
In fig. (i) and (ü), DE U BC. Find EC in (i) and AD in (ii).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 1

Solution:
(i) In ∆ABC, DE || BC ……………(given)
∴ \(\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By using Basic Proportionality Theorem]
\(\frac{1.5}{3}=\frac{1}{\mathrm{EC}}\)
EC = \(\frac{3}{1.5}\)
EC = \(\frac{3 \times 10}{15}\) = 2
∴ EC = 2 cm.

(ii) In ∆ABC,
DE || BC ……………(given)
∴ \(\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By using Basic Proportionality Theorem]
\(\frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4}\)
AD = \(\frac{1.8 \times 7.2}{5.4}\)
= \(\frac{1.8}{10} \times \frac{72}{10} \times \frac{10}{54}=\frac{24}{10}\)
AD = 2.4
∴ AD = 2.4 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 2.
E and F are points on the sides PQ and PR respectively of a APQR. For each of the following cases, state whether EF || QR :
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
(ii) PE =4 cm, QE = 4.5 cm, PF =8 cm and RF = 9cm.
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm.
Solution:
In ∆PQR, E and F are two points on side PQ and PR respectively.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 2

(i) PE = 3.9 cm, EQ = 3 cm
PF = 3.6 cm, FR = 2.4 cm
\(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=\frac{39}{30}=\frac{13}{10}=1.3\)

\(\frac{P F}{F R}=\frac{3.6}{2.4}=\frac{36}{24}=\frac{3}{2}=1.5\) \(\frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}}\)

∴ EF is not parallel to QR.

(ii) PE = 4 cm, QE = 4.5 cm,
PF = 8 cm, RF = 9 cm.
\(\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{4}{4.5}=\frac{40}{45}=\frac{8}{9}\) ………….(1)
\(\frac{P F}{R F}=\frac{8}{9}\) ……………..(2)
From (1) and (2),
\(\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{\mathrm{PF}}{\mathrm{RF}}\)
∴ By converse of Basic Proportionality theorem EF || QR.

(iii) PQ = 1.28 cm, PR = 2.56 cm
PE = 0.18 cm, PF = 0.36 cm.
EQ = PQ – PE = 1.28 – 0.18 = 1.10 cm
ER = PR – PF = 2.56 – 0.36 = 2.20 cm
Here \(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}\) …………..(1)

and \(\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55}\) …………….(2)

From (1) and (2), \(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}\)
∴ By converse of Basic Proportionality Theorem EF || QR.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 3.
In fig., LM || CB; and LN || CD. Prove that \(\frac{\mathbf{A M}}{\mathbf{A B}}=\frac{\mathbf{A N}}{\mathbf{A D}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 3

Solution:
In ∆ABC,
LM || BC (given)
∴ \(\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AL}}{\mathrm{LC}}\) ………..(1)
(By Basic Proportionality Theorem)
Again, in ∆ACD
LN || CD (given)
∴ \(\frac{A N}{N D}=\frac{A L}{L C}\) …………..(2)
(By Basic Proportionality Theorem)
From (1) and (2),
\(\frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{ND}}\)

or \(\frac{\mathrm{MB}}{\mathrm{AM}}=\frac{\mathrm{ND}}{\mathrm{AN}}\)

or \(\frac{\mathrm{MB}}{\mathrm{AM}}+1=\frac{\mathrm{ND}}{\mathrm{AN}}+1\)
or \(\frac{\mathrm{MB}+\mathrm{AM}}{\mathrm{AM}}=\frac{\mathrm{ND}+\mathrm{AN}}{\mathrm{AN}}\)

or \(\frac{\mathrm{AB}}{\mathrm{AM}}=\frac{\mathrm{AD}}{\mathrm{AN}}\)

or \(\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}\)
Hence, \(\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}\) is the required result.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 4.
In Fig. 6.19, DE || AC and DF || AE. Prove that \(\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}\).

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 4

Solution:
In ∆ABC, DE || AC(given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 4

∴ \(\frac{B D}{D A}=\frac{B E}{E C}\) …………….(1)
[By Basic Proportionality Theorem]
In ∆ABE, DF || AE
\(\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}}\) …………….(2)
[By Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FE}}\)
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 5.
In fig. DE || OQ and DF || OR. Show that EF || QR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 5

Solution:
Given:
In ∆PQR, DE || OQ DF || OR.
To prove: EF || QR.
Proof: In ∆PQO, ED || QO (given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 6

∴ \(\frac{P D}{D O}=\frac{P E}{E Q}\)

[By Basic Proportionality Theorem]
Again in ∆POR,
DF || OR (given)
∴ \(\frac{P D}{D O}=\frac{P F}{F R}\) ………….(2)
[By Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}\)
In ∆PQR, by using converse of Basic proportionaIity Theorem.
EF || QR,
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 6.
In flg., A, B and C points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show thatBC || QR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 7

Solution:
Given : ∆PQR, A, B and C are points on OP, OQ and OR respectively such that AB || PQ, AC || PR.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 8

To prove: BC || QR.
Proof: In ∆OPQ, AB || PQ (given)
∴ \(\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OB}}{\mathrm{BQ}}\) …………….(1)
[BY using Basic Proportionality Theorem]
Again in ∆OPR.
AC || PR (given)
∴ \(\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}}\) ……………….(2)
[BY using Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}\)
∴ By converse of Basic Proportionality Theorem.
In ∆OQR, BC || QR. Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 7.
Using Basic Proportionality theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved ¡t in class IX).
Solution:
Given: In ∆ABC, D is mid point of AB, i.e. AD = DB.
A line parallel to BC intersects AC at E as shown in figure. i.e., DE || BC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 9

To prove: E is mid point of AC.
Proof: D is mid point of AB.
i.e.. AD = DB (given)
Or \(\frac{\mathrm{AD}}{\mathrm{BD}}\) = 1 ……………..(1)
Again in ∆ABC DE || BC (given)
∴ \(\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}\)
[By Basic Proportionality Theorem]
∴ 1 = \(\frac{\mathrm{AE}}{\mathrm{EC}}\) [From (1)]
∴ AE = EC
∴ E is mid point of AC. Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2

Question 8.
Using converse of Basic Proportionality theorem prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done ¡tin Class IX).
Solution:
Given ∆ABC, D and E are mid points of AB and AC respectively such that AD = BD and AE = EC, D and Eare joined

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 10

To Prove, DE || BC
Proof. D is mid point of AB (Given)
i.e., AD = BD
Or \(\frac{\mathrm{AD}}{\mathrm{BD}}\) = 1 ………………(1)
E is mid point of AC (Given)
∴ AE = EC
Or \(\frac{\mathrm{AE}}{\mathrm{EC}}\) = 1 ………………(2)
From (1) and (2),
By using converse of basic proportionality Theorem
DE || BC Hence Proved.

Question 9.
ABCD is a trapeiiumin with AB || DC and its diagonals Intersect each other at the point O. Show that \(\frac{A O}{B O}=\frac{C O}{D O}\).
Solution:
Given. ABCD is trapezium AB || DC, diagonals AC and BD intersect each other at O.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 11

To Prove. \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\)
Construction. Through O draw FO || DC || AB
Proof. In ∆DAB, FO || AB (construction)
∴ \(\frac{\mathrm{DF}}{\mathrm{FA}}=\frac{\mathrm{DO}}{\mathrm{BO}}\) ……………..(1)
[By using Basic Proportionality Theorem]
Again in ∆DCA,
FO || DC (construction)
\(\frac{\mathrm{DF}}{\mathrm{FA}}=\frac{\mathrm{CO}}{\mathrm{AO}}\)
[By using Basic Proportionality Theorem]
From (1) and (2),
\(\frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{AO}} \quad \frac{\mathrm{AO}}{\mathrm{BO}} \quad \frac{\mathrm{CO}}{\mathrm{DO}}\)
Hence Proved.

Question 10.
The diagonals of a quadrilateral ABCD Intersect each other at the point O such that \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\).Show that ABCD is a
trapezium.
Solution:
Given: Quadrilateral ABCD, Diagonal AC and BD intersects each other at O
such that = \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.2 12

To Prove. Quadrilateral ABCD is trapezium.
Construction. Through ‘O’ draw line EO || AB which meets AD at E.
Proof. In ∆DAB,
EO || AB [Const.]
∴ \(\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{DO}}{\mathrm{OB}}\) ………………(1)
[By using Basic Proportionality Theoremj
But = \(\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}\) (Given)

or \(\frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\mathrm{BO}}{\mathrm{DO}}\)

or \(\frac{\mathrm{CO}}{\mathrm{AO}}=\frac{\mathrm{DO}}{\mathrm{BO}}\)

⇒ \(\frac{\mathrm{DO}}{\mathrm{OB}}=\frac{\mathrm{CO}}{\mathrm{AO}}\) …………….(2)
From (1) and (2),
\(\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{CO}}{\mathrm{AO}}\)
∴ By using converse of basic
proportionlity Theorem,
EO || DC also EO || AB [Const]
⇒ AB || DC
∴ Quadrilateral ABCD is a trapezium with AB || CD.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.1

Question 1.
Fill in the blanks using the correct word given in brackets:
(i) All circles are ………………. (congruent, similar).
Solution:
All circles are similar.

(ii) All squares are ………………. (similar, congruent).
Solution:
MI squares are similar.

(iii) All ………………. triangles are similar. (isosceles, equilateral).
Solution:
All equilateral triangles are similar.

(iv) Two polygons of the same number of sides are similar, if
(a) their corresponding angles are __________ and
Solution:
equal

(b) their corresponding sides are ………………. (equal, proportional).
Solution:
proportional.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Question 2.
Give two different examples of pair
(i) similar figures
(ii) non-similar figures.
Solution:
(i) 1. Pair of equilateral triangle are similar figures.
2. Pair of squares are similar figures.

(ii) 1. A triangle and quadrilateral form a pair of non-similar figures.
2. A square and rhombus form pair of non – similar figures.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1

Question 3.
State whether the following quadrilaterals are similar or not :-

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.1 1

Solution:
The two quadrilaterals in the figure are not similar because their corresponding angles are not equal.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4

Question 1.
Which term of the A.P. 121, 117, 113, …………. is its first negative term?
Solution:
Given A.P is 121, 117, 113, …
Here a = T1 = 121 ;T2 = 117; T3 = 113
d = T2 – T1 = 117 – 121 = – 4
Using formula, Tn = a + (n – 1) d
Tn = 121 + (n – 1) (- 4)
= 121 – 4n + 4
= 125 – 4n.
According to question :—
Tn < 0
or 125 – 4n < 0
or 125 < 4n or 4n > 125.
or n > \(\frac{125}{4}\)
or n > 31\(\frac{1}{4}\).
But n must be integer, for first negative term.
∴ n = 32.
Hence, 32nd term be the first negative term of given A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 2.
The sum of the third and the seventh term of an A.P. is 6 and their product ¡s 8. Find the sum of first sixteer
terms of an A.P.
Solution:
Let ‘a’ and ‘d’ be the first term and common diftèrence of given A.P.
According to 1st condition
T3 + T7 = 6
[a + (3 – 1)d] + [a + (7 – 1) d] = 6
∵ [Tn = a + (n – 1) d]
or a + 2d + a + 6d = 6
or 2a + 8d = 6
or a + 4d = 3 …………….(1)
According to 2nd condition
T3 (T7) = 8
[a + (3 – 1) d] [a + (7 – 1)d] = 8
∵ [Tn = a + (n – 1) d]
or (a + 2d) (a + 6d) = 8
or [3 – 4d + 2d] [3 – 4d + 6d] = 8
[Using (1), a = 3 – 4d]
or (3 – 2d) (3 + 2d) = 8
or 9 – 4d2 = 8
or 4d2 = 98
or d2 = \(\frac{1}{4}\)
d = ± \(\frac{1}{2}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Case I:
When d = \(\frac{1}{2}\)
Putting d = \(\frac{1}{2}\) in (1), we get:
a + 4 (\(\frac{1}{2}\)) = 3
or a + 2 = 3
or a = 3 – 2 = 1
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S16 = \(\frac{16}{2}\) [2 (1) + (16 – 1) \(\frac{1}{2}\)].

Case II:
Putting d = – \(\frac{1}{2}\) in (1), we get,
When d = – \(\frac{1}{2}\)
a + 4 (-\(\frac{1}{2}\)) = 3
a – 2 = 3
or a = 3 + 2 = 5
Using formula,
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
S16 = \(\frac{16}{2}\) [2(5) + (16 – 1) (-\(\frac{1}{2}\))]
= 8[10 – \(\frac{15}{2}\)]
= 8 \(\left[\frac{20-15}{2}=\frac{5}{2}\right]\)
S16 = 20.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 3.
A ladder has rungs 25 cm apart (see fig.) The rungs decrease uniformly in length from 45 cm at the bottom to 25 cm at the top. If the top and bottom rungs are 2 latex]\frac{1}{2}[/latex] m apart, what is the length of the wood required for the rungs?

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4 1

[Hint: Number of rungs = \(\frac{250}{25}\) + 1]
Solution:
Total length of rungs = 2 \(\frac{1}{2}\) m = \(\frac{5}{2}\) m
= (\(\frac{5}{2}\) × 100) cm = 250 cm
Length of each rung = 25 cm
∴ Number of rungs = \(\frac{\text { Total length of rungs }}{\text { Length of each rung }}\) + 1
= \(\frac{250}{25}\) + 1 = 10 + 1 = 11
Length of first rung =45 cm
Here a = 45; l = 25; n = 11
Length of the wood for rungs
= S11
= \(\frac{n}{2}\) [a + l]
= \(\frac{11}{2}\) [45 + 25]
= \(\frac{1}{2}\) × 70
= 11 × 35 = 385
Hence, length of the wood for rungs has 385 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 4.
The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it and find this value of x.
[Hint: Sx – 1 = S49 – S1]
Solution:
Let ‘x’ denotes the number of any house.
Here a = T1 = 1 ;d = 1
According to question,
Sx – 1 = S49 – Sx
= \(\frac{x-1}{2}\) [2 (1) + (x – 1 – 1) (1)]
= \(\frac{49}{2}\) [1 + 49] – \(\frac{x}{2}\) [2 (1) + (x – 1) (1)]
[Using Sn = \(\frac{n}{2}\) [2a + (n – 1) d] and Sn = \(\frac{n}{2}\) (a + l) ]
or \(\frac{x-1}{2}\) [2 + x – 2] = \(\frac{49}{2}\) (50) – \(\frac{x}{2}\) [2 + x – 1]
or \(\frac{x(x-1)}{2}=49(25)-\frac{x(x+1)}{2}\)
or \(\frac{x}{2}\) [x – 1 + x + 1] = 1225
\(\frac{x}{2}\) × 2x = 1225
or x2 = 1225
or x = 35.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4

Question 5.
A small terrace at a football ground comprises of 15 step each of which is 50 m long and built of solid concrete. Each step has a rise of \(\frac{1}{4}\) m and a tread of \(\frac{1}{2}\) m (see fig.) Calculate the total volume of concrete required to build the terrace.
[Hint: Volume of concrete required to build of the first step \(\frac{1}{4}\) × \(\frac{1}{2}\) × 50 m3].

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.4 2

Solution:
Volume of concrete required to build the first step \(\frac{1}{4}\) × \(\frac{1}{2}\) × 50 m3]
= [latex]\frac{25}{4}[/latex] m3
Volume of concrete required to build the second step = [\(\frac{25}{4}\) × \(\frac{1}{2}\) × 50] m3

= \(\frac{75}{2}\) m3
Volume of concrete required to build the third step = [\(\frac{3}{4}\) × \(\frac{1}{2}\) × 50] m3 and so on upto 15 steps.

Here a = T1 = \(\frac{25}{4}\);
T2 = \(\frac{25}{2}\);
T3 = \(\frac{75}{4}\); and n = 15.
d = T2 – T1 = \(\frac{25}{2}\) – \(\frac{25}{4}\)
= \(\frac{50-25}{4}\) = \(\frac{25}{4}\).

Total volume of concrete required to buld the terrace = S15
= \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{15}{2}\left[2\left(\frac{25}{4}\right)+(15-1) \frac{25}{4}\right]\)
= \(\left[\frac{25}{4} \times \frac{14 \times 25}{4}\right]\)
= \(\frac{15}{2}\left[\frac{25}{2} \times \frac{175}{2}\right]\)
= \(\frac{15}{2} \times \frac{200}{2}\) = 750
Hence, total volume of concrete required to build the terrace is 750 m3.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3

Question 1.
Find the sum of the following APs:
(i) 2, 7, 12, … to 10 terms.
(ii) – 37, – 33, – 29, ………….. to 12 terms.
(iii) 0.6, 1.7, 2.8, … to 100 terms.
(iv) \(\frac{1}{5}\), \(\frac{1}{12}\), \(\frac{1}{10}\), ………… to 11 terms.
Solution:
(i) Given AP. is 2, 7, 12, …
Here a = 2, d = 7 – 2 = 5 and n = 10
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
∴ S10 = \(\frac{10}{2}\) [2 × 2 + (10 – 1)5]
= 5 [4 + 45] = 245.

(ii) Given A.P. is – 37, – 33, – 29…
Here a = -37, d = – 33 + 37 = 4 and n = 12
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
∴ S12 = [2(-37) + (12 – 1)4]
= 6 [- 74 + 44] = – 180.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iii) Given A.P. is 0.6, 1.7. 2.8.
Here a = 0.6, d = 1.7 – 0.6 = 1.1 and n = 100
Sn = \(\frac{n}{2}\) [2a+(n – 1) d]
∴ S100 = \(\frac{100}{2}\) [2(0.6) + (100 – 1) 1.1]
= 50 [1.2 + 108.9] = 5505.

(iv) Given AP. is \(\frac{1}{5}\), \(\frac{1}{12}\), \(\frac{1}{10}\), ………… to 11 terms.
Here a = \(\frac{1}{5}\), d = \(\frac{1}{5}\) and n = 11
Sn = \(\frac{n}{2}\) [2a +(n – 1)d]
∴ S11 = \(\frac{11}{2}\left[2\left(\frac{1}{15}\right)+(11-1) \frac{1}{60}\right]\)

= \(\frac{11}{2}\left[\frac{2}{15}+\frac{10}{60}\right]=\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right]\)

= \(\frac{11}{2}\left[\frac{4+5}{30}=\frac{9}{30}\right]=\frac{33}{20}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 2.
Find the sums given below:
(i) 7+ 10\(\frac{1}{2}\) + 14 + …………… + 84
(ii) 34 + 32 + 30 + ………. + 10
(iii) – 5 + (- 8) + (- 11) +………+ (- 230)
Solution:
(i) Given A.P. is
7 + 10\(\frac{1}{2}\) + 14 + ………….. + 84
Here a = 7, d = 10\(\frac{1}{2}\) – 7 = \(\frac{21}{2}\) – 7
= \(\frac{21-14}{2}=\frac{7}{2}\)
and l = Tn = 84
or a + (n – 1) d = 84
or 7 + (n – 1) \(\frac{7}{2}\) = 84
or (n – 1) \(\frac{7}{2}\) = 84 – 7 = 77
or n – 1 = 77 × \(\frac{2}{7}\) =22
n = 22 + 1 = 23
∵ Sn = \(\frac{n}{2}\) [a + l]
Now, S23 = \(\frac{23}{2}\) [7 + 84]
= \(\frac{23}{2}\) × 91 = \(\frac{2093}{2}\).

(ii) Given A.P. is 34 + 32 + 30 + …………… + 10
Here a = 34, d = 32 – 34 = -2
l = Tn = 10
a + (n – 1) d = 10
or 34 + (n – 1) (- 2) = 10
or – 2(n – 1) = 10 – 34 = -24
or n – 1 = 12
n = 12 + 1 = 13
[∵ Sn = \(\frac{n}{2}\) [a + l]]
Now, S13 = \(\frac{13}{2}\) [34 + 10]
= \(\frac{23}{2}\) × 44
= 13 × 22 = 286.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iii) Give A.P. is – 5 + (- 8) + (- 11) + ……………. + (- 230)
Here a = – 5, d = – 8 + 5 = – 3
and l = Tn = – 230
a + (n – 1) d = – 230
or – 5 + (n – 1) (- 3) = – 230
or – 3(n – 1) = – 230 + 5 = – 225
or n – 1 = \(\frac{225}{3}\) = 75
or n = 75 + 1 = 76
Now, S76 = \(\frac{76}{2}\) [- 5 + (- 23o)]
= 38 (- 235) = – 8930.

Question 3.
In an AP:
(i) given a = 5, d = 3, an = 50 find n and Sn.
(ii) given a = 7. a13 = 35, find d and S13.
(iii) given a12 = 37, d = 3. find a and S12.
(iv) given a3 = 15, S10 = 125, find d and a10.
(y) given d = 5, S9 = 75, find a and a9.
(vi) given a = 2, d = 8, Sn = 90, find n and an.
(vii) given a = 8, an = 62, Sn = 210, find n and d.
(viii)given an = 4, d = 2, Sn = -14, find n and a.
(ix) given a = 3, n = 8, S = 192, find d.
(x) given l = 28, S = 144, and there are total 9 terms. Find a.
Solution:
(i) Given a = 5, d = 3, an = 50
an = 50
a + (n – 1) d = 50
or 5 + (n – 1) 3 = 50
or 3 (n – 1) = 50 – 5 = 45
or n – 1 = \(\frac{45}{3}\) = 15
or n = 15 + 1 = 16
Now, Sn = latex]\frac{n}{2}[/latex] [a + l]
= latex]\frac{16}{2}[/latex] [5 + 50] = 8 × 55 = 440.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(ii) Given a = 7, a13 = 35
a13 = 35
a + (n – 1) d = 35
or 7 + (13 – 1) d = 35
or 12 d = 35 – 7 = 28
or d = \(\frac{7}{3}\).
∵ [Sn = latex]\frac{n}{2}[/latex] [a + l]
Now, S13 = \(\frac{13}{2}\) [7 + 35]
= \(\frac{13}{2}\) × 42 = 273

(iii) Given a12 = 37, d = 3
∵ a12 = 37
a + (n – 1) d = 37
or a + (12 – 1) 3 = 37
a + 33 = 37
a = 37 – 33 = 4
∵ [Sn = latex]\frac{n}{2}[/latex] [a + l]
Now, S12 = \(\frac{13}{2}\) [4 + 37]
= 6 × 41 = 246.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(iv)Given a3 = 15, S10 = 125
∵ a3 = 15
a + (n – 1) d = 15
a + (3 – 1) d = 15
or a + 2d = 15 …………….(1)
∵ S10 = 125
∵ [Sn = latex]\frac{n}{2}[/latex] [2a + (n – 1)d]
\(\frac{10}{2}\) [2a + (10 – 1) d] = 125
or 5[2a + 9d] = 125
Note this
or 2a + 9d = \(\frac{125}{5}\) = 25
or 2a + 9d = 25 …………(2)
From (1), a = 15 – 24 …………..(3)
Substitute this value of (a) in (2i, we c1
2(15 – 2d) + 9d = 25
or 30 – 4d + 9d = 25
5d = 25 – 30
or d = \(\frac{-5}{5}\) = -1
Substitute this value of d in (3), we get
a = 15 – 2(- 1)
a = 15 + 2 = 17
Now, a10 = 17 + (10 – 1)(- 1)
∵ Tn = a + (n – 1) d = 17 – 9 = 8.

(v) Given d = 5, S9 = 75
∵ S9 = 75
∵ [Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
\(\frac{9}{2}\) [2a + 40] = 75
or [2a + 40] = \(\frac{50}{3}\)
or 2a = \(\frac{50}{3}\) – 40
or a = \(-\frac{70}{3} \times \frac{1}{2}\)
or a = – \(\frac{35}{3}\)
Now, a9 = a + (n – 1) d
= – \(\frac{35}{3}\) + (9 – 1)0 × 5
= – \(\frac{35}{3}\) + 4o = \(\frac{-35+120}{3}\)
a9 = \(\frac{85}{3}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(vi) Given a = 2, d = 8, Sn = 90
∵ Sn = 90
\(\frac{n}{2}\) [2a + (n – 1)d] = 9o
or \(\frac{n}{2}\) [2 × 2 + (n – 1) 8] = 90
or n [2 + 4n – 4] = 90
or n (4n – 2) = 90
or 4n2 – 2n – 90 = 0
or 2n2 – 10n + 9n – 45 = 0
S = – 2
P = – 45 × 2 = – 90
or 2n [n – 5] + 9(n – 5) = 0
or (2n + 9) (n – 5) = 0
Either 2n + 9 = 0 or n – 5 = 0
Either n = – \(\frac{9}{2}\) or n = 5
∵ n cannot be negative so reject n = – \(\frac{9}{2}\)
∴ n = 5
Now, an = a5 = a + (n – 1) d
= 2 + (5 – 1) 8 = 2 + 32 = 34.

(vii) Given a = 8, an = 62, Sn = 210
∵ Sn = 210
\(\frac{n}{2}\) [a + an] = 210
or \(\frac{n}{2}\) [8 + 62] = 210
or \(\frac{n}{2}\) × 70 = 210
or n = \(\frac{210}{35}\) = 6
Now, an = 62
[∵ Tn = a + (n – 1) d]
or 5d = 62 – 8 = 54
or d = \(\frac{54}{5}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(viii) Given an = 4, d = 2, Sn = – 14
∵ an = 4
a + (n – 1) d = 4
or a + (n – 1)2 = 4
or a + 2n – 2 = 4
or a = 6 – 2n ……………(1)
and Sn = – 14
\(\frac{n}{2}\) [a + an] = – 14
or \(\frac{n}{2}\) [6 – 2n +4] = – 14 (Using (1))
or \(\frac{n}{2}\) [10 – 2n] = – 14
or 5n – n2 + 14 = 0
or n2 – 5n – 14 = 0
S = – 5
P = 1 × – 14 = – 14
or n2 – 7n + 2n – 14 = 0
or n(n – 7) + 2 (n – 7) = 0
or (n – 7) (n + 2) = 0
either n – 7 = 0
or n + 2 = 0
n = 7 or n = -2
∵ n cannot be negative so reject n = – 2
∴ n = 7
Substitute this value of n in (1), we get
a = 6 – 2 × 7
a = 6 – 14 = – 8.

(ix) Given a = 3, n = 8, S = 192
∵ S = 192
S8 = 192 [∵ n = 8]
∵ Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
or \(\frac{8}{2}\) [2 × 3 + (8 – 1) d] = 192
or 4 [6 + 7d] = 192
6 + 7d = \(\frac{192}{4}\) = 48
or 7d = 48 – 6 = 42
or d = \(\frac{42}{6}\) = 6.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(x) Given l = 28, S = 144 and there are total 9 terms
∴ n = 9; l = a9 = 28; S9 = 144
∵ a9 = 28
or a + (9 – 1) d = 28
∵ [an = Tn = a + (n – 1) d ]
or a + 8d = 28 …………….(1)
and S9 = 144
∵ [Sn = \(\frac{n}{2}\) [a + an]]
\(\frac{9}{2}\) [a + 28] = 144
or a + 28 = \(\frac{144 \times 2}{9}\) = 32
a = 32 – 28 = 4.

Question 4.
How many terms of the A.P : 9, 17, 5… must be taken to give a sum of 636?
Solution:
Given A.P. is 9, 17, 25, …………
Here a = 9, d = 17 – 9 = 8
But Sn = 636
\(\frac{n}{2}\) [2a + (n – 1) d] = 636
or \(\frac{n}{2}\) [2(9) + (n – 1) 8] = 636
or \(\frac{n}{2}\) [18 + 8n – 8] = 636
or n [4n + 5] = 636
or 4n2 + 5n – 636 = 0
a = 4, b = 5, c = – 636
D = (5) – 4 × 4 × (- 636)
= 25 + 10176 = 10201
∴ n = \(\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}\)

= \(\frac{-5 \pm \sqrt{10201}}{2 \times 4}=\frac{-5 \pm 101}{8}\)

= \(\frac{-106}{8} \text { or } \frac{96}{8}\)

= \(-\frac{53}{4}\) or 12
∴ n cannot be negative so reject n = \(-\frac{53}{4}\)
∴ n = 12
Hence, sum of 12 terms of given A.P. has sum 636.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 5.
The first term ofan AP is 5, the last term is 45 and the sum Is 400. Find the number of terms and the common difference.
Solution:
Given that a = T1 = 5; l = an = 45
and Sn = 400
∴ Tn = 45
a + (n – 1) d = 45
or 5 + (n – 1) d = 45
or (n – 1) d = 45 – 5 = 40
or (n – 1) d = 40 ……………….(1)
and Sn = 400
\(\frac{n}{2}\) [a + an] = 400
or \(\frac{n}{2}\) [5 + 45] = 400
or 25 n = 400
or n = \(\frac{400}{25}\) = 16
Substitute this value of n in (1), we get
(16 – 1) d = 40
or 15d = 40
d = \(\frac{40}{15}\) = \(\frac{8}{3}\)
Hence, n = 16 and d = \(\frac{8}{3}\)

Question 6.
The first and last terms of an AP are 17 and 350 respectively. 1f the common difference is 9, how many terms are there
and what is their sum?
Solution:
Given that a = T1 = 17;
l = an = 350 and d = 9
∵ l = an = 350
a + (n – 1) d = 350
17 + (n – 1) 9 = 350
or 9 (n – 1) = 350 – 17 = 333
or n – 1 = \(\frac{333}{9}\) = 37
n = 37 + 1 = 38
Now, S38 = \(\frac{n}{2}\) [a + l]
= \(\frac{38}{2}\) (17 + 350]
= 19 × 367 = 6973.
Hence, sum of 38 terms of given A.P. arc 6973.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 7.
Find the sum of first 22 terms of an AP. in which d = 7 and 22nd term is 149.
Solution:
Given that d = 7; T22 = 149 and n = 22
∵ T22 = 149
a + (n – 1) d = 149
or a + (22 – 1) 7 = 149
or a + 147 = 149
or a = 149 – 147 = 2
Now, S22 = [a + T22]
= \(\frac{22}{2}\) [2+ 149] = 11 × 151 = 1661
Hence, sum of first 22 temis of given A.P. is 1661.

Question 8.
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Solution:
Let ‘a’ and ‘d’ be fïrst term and common difference
Given that T2 = 14; T3 = 18 and n = 51
∵ T2 = 14
a + (n – 1) d = 14
a + (2 – 1)d = 14
or a + d = 14
a = 14 – d …………….(1)
and T3 = 18 (Given)
a + (n – 1) d = 18
a + (3 – 1) d = 18
or a + 2d = 18
or 14 – d + 2d = 18
or d = 18 – 14 = 4
or d = 4
Substitute this value of d in (1), we get
a = 14 – 4 = 10
Now, S51 = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{51}{2}\) [2 × 10 + (51 – 1) 4]
= \(\frac{51}{2}\) [2o + 2oo]
= \(\frac{51}{2}\) × 220 = 51 × 110 = 5610
Hence, sum of first 51 terms of given A.P. is 5610.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 9.
If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
According to 1st condition
S7 = 49
\(\frac{n}{2}\) [2a + (n – 1) d] = 49
or \(\frac{7}{2}\) [2a + (7 – 1) d] = 49
or \(\frac{7}{2}\) [2a + 6d] = 49
or a + 3d = 7
or a = 7 – 3d
According to 2nd condition
S17 = 289
\(\frac{n}{2}\) [2a+(n – 1)d]=289
\(\frac{17}{2}\) [2a + (17 – 1) d] = 289
a + 8d = \(\frac{289}{17}\) = 17
Substitute the value of a from (1), we get
7 – 3d + 8d = 17
5d = 17 – 7 = 10
d = \(\frac{10}{5}\) = 2
Substitute this value of d in (1), we get
a = 7 – 3 × 2
a = 7 – 6 = 1
Now, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{n}{2}\) [2 × 1 + (n – 1) × 2] = n [I + n – 1] = n × n = n2
Hence, sum of first n terms of given A.P. is n2.

Question 10.
Show that a1, a2, ……., an, … form an AP where is defined as below.
(i) an = 3 + 4n
(ii) an = 9 – 5n
Also find the sum of the first 15 terms In each case.
Solution:
(i) Given that an = 3 + 4n ………..( 1)
Putting the different values of n in(1), we get
a1 = 3 + 4(1) = 7;
a2 = 3 + 4 (2) = 11
a3 = 3 + 4 (3) = 15, …………
Now, a2 – a1 = 11 – 7
and a3 – a2 = 15 – 11 = 4
a2 – a1 = 11 – 7 = 4
and a3 – a2 = 4 = d(say)
∵ given sequence form an A.P.
Here a = 7, d = 4 and n = 15
∴ S15 = \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{15}{2}\) [2(7) + (15 – 1) 4]
= \(\frac{15}{2}\) [14 + 56] = \(\frac{15}{2}\) × 70
= 15 × 35 = 525.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

(ii) Given that an = 9 – 5n ……………….(1)
Putting the different values of n is (1), we get
a1 = 9 – 5(1) = 4;
a2 = 9 – 5(2) = -1;
a3 = 9 – 5(3) = -6.
Now, a2 – a1 = – 1 – 4 = – 5
and a3 – a2 = – 6 + 1 = – 5
∵ a – a1 = a3 – a2 = – 5 = d (say)
∴ given sequence form an A.P.
Here a = 4, d = – 5 and n = 15
∴ S15 = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{15}{2}\) [2(4) + (15 – 1) (-5)]
= \(\frac{15}{2}\) [8 – 70]
= \(\frac{15}{2}\) (-62) = – 465

Question 11.
If the sum of the first n terms of an AP is 4n – n2, what is the first term (that is S1) ? What is the sum of two terms? What is the second term ? Similarly, find the 3rd, the 10th and the nth terms.
Solution:
Given that, sum of n terms of an A.P. are
Sn = 4n – n2
Putting n = 1 in (1), we get
S1 = 4(1) – (1)2 = 4 – 1
S1 = 3
∴ a = T1 = S1 = 3
Putting n = 2, in (1), we get
S2 = 4(2) – (2)2 = 8 – 4
S2 = 4
or T1 + T2 = 4
or 3 + T2 = 4
or T2 = 4 – 3 = 1
Putting n = 3 in (1), we get
S3 =4(3) – (3)2 = 12 – 9
S3 = 3
or S2 + T3 = 3
or 4+ T3 = 3
or T3 = 3 – 4 = – 1
Now, d = T2 – T1
d = 1 – 3 = -2
∴ T10 = a + (n – 1) d
= 3 + (10 – 1) (- 2)
T10 = 3 – 18 = – 15
and Tn = a + (n – 1) d
= 3 + (n – 1) (- 2)
= 3 – 2n + 2
Tn = 5 – 2n.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 12.
Find the sum of the first 40 positive integers divisible by 6.
Solution:
Positive integers divisible by 6 are 6, 12, 18, 24, 30, 36 42, …
Here a = T1 = 6, T2 = 12, T3 = 18, T4 = 24
T2 – T1 = 12 – 6 = 6
T3 – T2 = 18 – 12 = 6
T4 – T3 = 24 – 18 = 6
∵ T2 – T1 = T3 – T2 = T4 – T3 = 6 = d (say)
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S40 = \(\frac{40}{2}\) [2(6) + (40 – 1)6].
= 20 [12 + 234]
= 20 (246) = 4920
Hence, sum of first 40 positive integers divisible by 6 is 4920.

Question 13.
Find the sum of first 15 multiples of 8.
Solution:
Multiples of 8 are 8, 16, 24, 32, 40, 48, …………..
Here a = T1 = 8; T2 = 16; T3 = 24 ; T4 = 32
T2 – T1 = 16 – 8= 8
T3 – T2 = 24 – 16=8
T2 – T1 = T3 – T2 = 8 = d(say)
Ùsing formula. Sn = [2a + (n – 1) d}
S15 = \(\frac{15}{2}\) [2(8) + (15 – 1) 8]
= \(\frac{15}{2}\) [16 + 112]
= \(\frac{15}{2}\) × 128 = 960
Hence, sum of first 15 multiples of 8 is 960.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 14.
Find the sum of the odd numbers between 0 and 50.
Solution:
Odd numbers between 0 and 50 are 1, 3, 5, 7, 9, …………, 49
Here a = T1 = 1; T2 = 3; T3 = 5 ; T4 = 7
and l = Tn = 49
T2 – T1 = 3 – 1 = 2
T3 – T2 = 5 – 3 = 2
∵ T2 – T1 = T3 – T2 = 2 = d (say)
Also, l = Tn = 49
a + (n – 1) d = 49
1 + (n – 1) 2 = 49
or 2 (n – 1) = 49 – 1 = 48
n – 1 = \(\frac{48}{2}\) = 24
n = 24 + 1 = 25.
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S25 = \(\frac{25}{2}\) [2(1) + (25 – 1)2]
= \(\frac{25}{2}\) [2 + 48]
= \(\frac{25}{2}\) × 50 = 625
Hence, sum of the odd numbers between 0 and 50 are 625.

Question 15.
A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: ₹ 200 for
the first day, ₹ 250 for the second day, ₹ 300 for the third day, etc., the penalty for each succeeding day being ₹ 50 more than for the preceding day, How much money the contractor has to pay as penalty, if he hasdelayed the work by 30 days?
Solution:
Penalty (cost) for delay of one, two, third day are ₹ 200, ₹ 250, ₹ 300
Now, penalty increase with next day with a difference of ₹ 50.
∴ Required A.P. are ₹ 200, ₹ 250, ₹ 300, ₹ 350, …
Here a = T1 = 200; d = ₹ 50 and n = 30
Amount of penalty gives after 30 days
= S30
= \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{30}{2}\) [2(2oo) + (30 – 1) 50)
= 15 [400 + 1450]
= 15 (1850) = 27750
Hence, ₹ 27350 pay as penalty by the contractor if he has delayed the work 30 days.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 16.
A sum of ₹ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If
each prize is ₹ 20 less than its preceding prize, find the value of each of the prizes.
Solution:
Let amount of prize given to 1st student = ₹ x
Amount of prize given to 2nd student = ₹ (x – 20)
Amount of prize given to 3rd student = ₹ [x – 20 – 20] = ₹ (x – 40)
and so on.
∴ Required sequence are ₹ x, ₹ (x – 20), ₹ (x – 40), … which form on A.P. with
a = ₹ x, d = – 20 and n = 7
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S7 = \(\frac{7}{2}\) [2(x) + (7 – 1) (- 20)]
S7 = \(\frac{7}{2}\) [2x – 120] = 7 (x – 60)
According to question,
7 (x – 60) = 700
x – 60 = 7 = 100
x – 60 = 7 = 100
x = 100 + 60
x = 160
Hence, 7 prizes are ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60, ₹ 40.

Question 17.
In a school, student thought of planting trees in and around the school to reduce air pollution. It was decided that
number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g. – a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?
Solution:
Number of trees planted by three sections of class I = 3 × 1 = 3
Number of trees planted by three sections of class II = 3 × 2 = 6
Number of trees planted by three sections of class III = 3 × 3 = 9
…………………………………………………………………..
…………………………………………………………………..
……………………………………………………………………
Number of trees planted by three sections of class XII = 3 × 12 = 36
:. Required A.P. are 3, 6, 9, …………., 36
Here a = T1 = 3; T2 = 6; T3 = 9
and l = Tn = 36; n = 12
d = T2 – T1 = 6 – 3 = 3
Total number of trees planted by students
= S12
= \(\frac{n}{2}\) [a + l]
= \(\frac{12}{2}\) [3+ 36]
= 6 × 39 = 234
Hence, 234 trees will be planted by students to reduce air pollution.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 18.
A spiral is made up of successive semicircics, with centres alternately at A and B, starting with centre at A, of radii 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, …. as shown in Fig. What is the total length of such a spiral made up of thirteen consecutive semicircies? (Take π = \(\frac{22}{7}\))
[Hint: Length of successive semicircies is ‘l1’ ‘l2’ ‘l3‘ ‘l4‘ … wIth centres at A, B, A, B, …, respectively.]

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 1

Solution:
Let l1 = length of first semi circle = πr1 = π(0.5) = \(\frac{\pi}{2}\)
l2 = length of second semi circlem = πr2= π(1) = π
l3 = length of third semi circle = πr3 = π(1.5) = \(\frac{3 \pi}{2}\)
and l4 = length of fourth senil circle = πr4 = π(2) = 2π and so on
∵ length of each successive semicircle form an A.P.
Here
a = T1 = \(\frac{\pi}{2}\); T2 = π;
T3 = \(\frac{3 \pi}{2}\); T4 = 2π……… and n = 13
d = T2 – T1 = π – \(\frac{\pi}{2}\)
= \(\frac{2 \pi-\pi}{2}=\frac{\pi}{2}\)
Length of whole spiral = S13

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 2

Hence, total length of a spiral made up of thirteen consecutive semi circies is 143 cm

Question 19.
200 logs are stacked in the following manner : 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see Fig). In how many rows are the 200 logs placed and how many logs are in the top row?

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 3

Solution:
Number of logs in the bottom (1st row) = 20
Number of logs in the 2nd row = 19
Number of log in the 3rd row = 18 and so on.
∴ Number of logs in the each steps form an
Here a = T1 = 20; T2 = 19; T3 = 18…
d = T2 – T1 = 19 – 20 = – 1
Let S, denotes the number logs.
Using formula, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{n}{2}\) [2 (20) + (n – 1) (-1)]
∴ Sn = \(\frac{n}{2}\) [40 – n + 1]
= \(\frac{n}{2}\) [41 – n]
According to question,
\(\frac{n}{2}\) [41 – n] = 200
or 41 – n2 = 400
or – n2 + 41n – 400 = 0
or n2 – 41n + 400 = 0
S = – 41, P = 400
or n2 – 16n – 25n + 400 = 0
or n (n – 16) – 25 (n – 16)=0
or (n – 16) (n – 25) = 0
Either n – 16 = 0 or n – 25 = 0
Either n = 16 or n = 25
∴ n = 16, 25.
Case I:
When n = 25
T25 = a + (n – 1) d
= 20 + (25 – 1)(- 1)
= 20 – 24 = – 4;
which is impossible
∴ n = 25 rejected.

Case II. When n = 16
T16 = a + (n – 1) d
= 20 + (16 – 1)(- 1)
= 20 – 15 = 5
Hence, there are 16 row and 5 logs are in the top row.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3

Question 20.
In a potato race a bucket ¡s placed at the starting point which Ls 5 m from the first potato, and the other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line (see Fig.)

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.3 4

Each competitor starts from the bucket, picks up the nearest potato, runs back with It, drops It in the bucket, runs back to pick up the next potato, runs to the bucket to drop it In, and the continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
(Hint : To pick up the first potato and second potato, the distance run is [2 × 5 + 2 × (5 + 3)] m)
Solution:
Distance covered to pick up the Ist potato = 2(5) m = 10 m
Distance between successive potato = 3 m
distance covered to pick up the 2nd potato = 2(5 + 3) m = 16 m
Distance covered to pick up the 3rd potato = 2 (5 + 3 + 3) m = 22 m
and this process go on. h is clear that this situation becomes an A.P. as 10 m, 16 m, 22 m, 28 m, …
Here a = T1 = 10; T2 = 16; T3 = 22, …
d = T2 – T1 = 16 – 10 = 6 and n = 10
∴ Total distance the competitor has to run = S10
= \(\frac{n}{2}\) [2a + (n – 1) d]
= \(\frac{10}{2}\) [2(10) + (10 – 1) 6]
= 5 [20 + 54]
= 5 × 74 = 370
Hence, 370 m is the total distance run by a competitor.