PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Exercise 3.2

1. ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸਮੱਸਿਆਵਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ ਬਣਾਉ ਅਤੇ ਉਹਨਾਂ ਦੇ ਗ੍ਰਾਫੀ (ਆਲੇਖੀ) ਵਿਧੀ ਨਾਲ ਹੱਲ ਪਤਾ ਕਰੋ ।

ਪ੍ਰਸ਼ਨ (i).
ਜਮਾਤ X ਦੇ 10 ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਗਣਿਤ ਦੀ ਇੱਕ ਬੁਝਾਰਤ ਮੁਕਾਬਲੇ ਵਿਚ ਭਾਗ ਲਿਆ । ਜੇਕਰ ਲੜਕੀਆਂ ਦੀ ਗਿਣਤੀ, ਲੜਕਿਆਂ ਦੀ ਗਿਣਤੀ ਤੋਂ 4 ਵੱਧ ਹੋਵੇ ਤਾਂ ਮੁਕਾਬਲੇ ਵਿਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਲੜਕੇ ਅਤੇ ਲੜਕੀਆਂ ਦੀ ਗਿਣਤੀ ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਮੰਨ ਲਉ – ਮੁਕਾਬਲੇ ਵਿਚ ਲੜਕਿਆਂ ਦੀ ਗਿਣਤੀ = x
ਅਤੇ ਮੁਕਾਬਲੇ ਵਿਚ ਲੜਕੀਆਂ ਦੀ ਗਿਣਤੀ = y
ਮੁਕਾਬਲੇ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਕੁੱਲ ਵਿਦਿਆਰਥੀ = 10
∴ x + y = 10
ਜਾਂ x + y – 10 = 0
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
y = x + 4
ਜਾਂ x = y – 4
ਹੁਣ, ਰੇਖੀ ਸਮੀਕਰਣਾਂ ,
x + y = 10
ਅਤੇ x – y + 4 = 0 ਦਾ ਗ੍ਰਾਫ ਖਿੱਚੋ ।
x + y = 10
ਜਾਂ x = 10 – y …..(1)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :
x = 10 – 0 = 10
y = 7 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :
x = 10 – 7 = 3
y = 10 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :
x = 10 – 10 = 0 .
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 1
ਬਿੰਦੂਆਂ A (10, 0), B (3, 7), C (0, 10) ਨੂੰ ਆਖਿਤ ਕਰਨ ‘ਤੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x + y = 10 ਦਾ ਗ੍ਰਾਫ਼ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x – y + 4 = 0
ਜਾਂ x = y – 4 ….(2)
y = 0 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :
x = 0 – 4 = -4
y = 7 ਨੂੰ (2) ਵਿਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ ।
x = 7 – 4 = 3
y = 4 ਨੂੰ (2) ਵਿਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ ।
x = 4 – 4 = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 2
ਬਿੰਦੁਆਂ D (-4, 0), B (3, 7), E (0, 4) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x – y + 4 = 0 ਦਾ ਗ੍ਰਾਫ਼ ਆਲੇਖ) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 3
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਦੋਵੇਂ ਰੇਖੀ ਸਮੀਕਰਣਾਂ | ਬਿੰਦੂ B (3, 7) ਉੱਤੇ ਮਿਲਦੀਆਂ ਹਨ ।
∴ ਬਿੰਦੂ B (3, 7) ਆਲੇਖੀ ਸਥਿਤੀ ਹੈ ।
ਮੁਕਾਬਲੇ ਵਿਚ ਲੜਕਿਆਂ ਦੀ ਗਿਣਤੀ = 3
ਮੁਕਾਬਲੇ ਵਿਚ ਲੜਕੀਆਂ ਦੀ ਗਿਣਤੀ = 7

ਪ੍ਰਸ਼ਨ (ii).
5 ਪੈਨਸਿਲਾਂ ਅਤੇ 7 ਕਲਮਾਂ ਦਾ ਮੁੱਲ ₹ 50 ਹੈ, ਜਦ ਕਿ 7 ਪੈਨਸਿਲਾਂ ਅਤੇ 5 ਕਲਮਾਂ ਦਾ ਮੁੱਲ ₹ 46 ਹੈ । ਇਕ ਪੈਨਸਿਲ ਅਤੇ ਇਕ ਕਲਮ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਮੰਨ ਲਉ 1 ਪੈਨਸਿਲ ਦਾ ਮੁੱਲ = ₹ 2
ਅਤੇ 1 ਕਲਮ ਦਾ ਮੁੱਲ = ₹ y
ਪਹਿਲੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
5x + 7y = 50
ਦੂਸਰੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
7x + 5y = 46
∴ ਰੇਖੀ ਸਮੀਕਰਣ ਜੋੜਾ ਹੈ :
5x + 7y = 50
7x + 5y = 46
ਹੁਣ, ਇਨ੍ਹਾਂ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਆਲੇਖ ਖਿੱਚੋ !
5x + 7y = 50
ਜਾਂ 5x = 50 – 7y
ਜਾਂ x = \(\frac{50-7 y}{5}\) …(1)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 5
ਬਿੰਦੁਆਂ A (10, 0), B (3, 5), C (0.2, 7) ਨੂੰ । ਆਲੇਖਿਤ ਕਰਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਉਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 5x + 7y =50 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
7x + 5y = 46
ਨੂੰ 7x = 46 – 5y
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 6
ਬਿੰਦੂਆਂ E (6.5, 0), B (3, 5), F (9.5, – 4) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 7x + 5y = 46 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਦੋਵੇਂ ਰੇਖੀ ਸਮੀਕਰਣ ਬਿੰਦੂ B (3, 5) ਤੇ ਮਿਲਦੇ ਹਨ ।
∴ ਬਿੰਦੂ B (3, 5) ਆਲੇਖੀ ਸਥਿਤੀ ਹੈ ।
ਇਕ ਪੈਨਸਿਲ ਦਾ ਮੁੱਲ = ₹ 3
ਇਕ ਕਲਮ ਦਾ ਮੁੱਲ = ₹ 5
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 7

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

2. ਅਨੁਪਾਤਾਂ \(\frac{a_{1}}{a_{2}}\), \(\frac{b_{1}}{b_{2}}\) ਅਤੇ \(\frac{c_{1}}{c_{2}}\) ਦੀ ਤੁਲਨਾ ਕਰਕੇ ਪਤਾ ਕਰੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੇ ਸਮੀਕਰਣ ਜੋੜਿਆਂ ਦੁਆਰਾ ਦਰਸਾਉਂਦੀਆਂ ਰੇਖਾਵਾਂ, ਇੱਕ ਬਿੰਦੂ ’ਤੇ ਕੱਟਦੀਆਂ ਹਨ, ਸਮਾਂਤਰ ਹਨ ਜਾਂ ਸੰਪਾਤੀ ਹਨ :

ਪ੍ਰਸ਼ਨ (i).
5x – 4y + 8 = 0
7x + 6y – 9 = 4
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
5x – 4y + 8 = 0
ਅਤੇ 7x + 6y – 9 = 0
ਇੱਥੇ a1 = 5, b1 = – 4, c1 = 8
a2 = 7, b2 = 6, c2 = – 9
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 8
∴ \(\frac{a_{1}}{a_{2}}\) ≠ \(\frac{b_{1}}{b_{2}}\) ≠ \(\frac{c_{1}}{c_{2}}\)
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਇੱਕ ਬਿੰਦੂ ਉੱਤੇ ਕੱਟਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ (ii).
9x + 3y + 12 = 0
18x + 6y + 24 = 0
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
9x + 3y + 12 = 0
ਅਤੇ 18x + 6y + 24 = 0
ਇੱਥੇ a1 = 9, b1 = 3, c1 = 12
a2 = 18, b2 = 6, c2 = 24
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 9
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਪਾਤੀ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ (iii).
6x – 3y + 10 = 0
2x – y + 9 = 0
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
6x – 3y + 10 = 0,
ਅਤੇ 2x – y + 9 = 0
ਇੱਥੇ a1 = 6, b1 = -3, c1 = 10
a2 = 2, b2 = -1, c2 = 9
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 4
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ । ਇੱਕ-ਦੂਜੇ ਦੇ ਸਮਾਂਤਰ ਹੈ ।

3. ਅਨੁਪਾਤਾਂ \(\frac{a_{1}}{a_{2}}\), \(\frac{b_{1}}{b_{2}}\) ਅਤੇ \(\frac{c_{1}}{c_{2}}\) ਦੀ ਤੁਲਨਾ ਕਰਕੇ ਪਤਾ ਕਰੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੇ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ ਸੰਗਤ ਹਨ ਜਾਂ ਅਸੰਗਤ :

ਪ੍ਰਸ਼ਨ (i).
3x + 2y = 5; 2x – 3y = 7
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
3x + 2y = 5
ਅਤੇ 2x – 3y = 7
ਜਾਂ 3x + 2y – 5 = 0
ਅਤੇ 2x – 3y – 7 = 0
ਇੱਥੇ a1 = 3, b1 = 2, c1 = – 5
a2 = 2, b2 = – 3, c2 = – 7
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 10
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਗਤ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ (ii).
2x – 3y = 8; 4x – 6y = 9
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
2x – 3y = 8
ਅਤੇ 4x – 6y = 9
ਜਾਂ 2x – 3y – 8 = 0
4x – 6y – 9 = 0
ਇੱਥੇ a1 = 2, b1 = – 3, c1 = – 8
a2 = 4, b2 = – 6, c2 = -9
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 11
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਅਸੰਗਤ ਹੈ ।

ਪ੍ਰਸ਼ਨ (iii).
\(\frac{3}{2}\)x + \(\frac{5}{3}\)y = 7; 9x – 10y = 14
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
\(\frac{3}{2}\)x + \(\frac{5}{3}\)y = 7
ਅਤੇ 9x – 10y = 14
ਜਾਂ \(\frac{3}{2}\)x + \(\frac{5}{3}\)y – 7 = 0
ਅਤੇ 9x – 10y – 14 = 0
ਇੱਥੇ a1 = \(\frac{3}{2}\), b1 = \(\frac{5}{3}\), c1 = -7
a2 = 9, b2 = – 10, c2 = – 14
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 12
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਗਤ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ (iv).
5x – 3y = 11; -10x + 6y = – 22
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
5x – 3y = 11
ਅਤੇ -10x + 6y = – 22
ਜਾਂ 5x – 3y – 11 = 0
ਅਤੇ -10x + 6y + 22 = 0
ਇੱਥੇ a1 = 5, b1 = -3, c1 = – 11
a2 = – 10, b2 = 6, c2 = 22
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 13
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਗਤ ਹੈ ।

ਪ੍ਰਸ਼ਨ (v).
\(\frac{4}{3}\)x + 2y = 8; 2x + 3y = 12
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
\(\frac{4}{3}\)x + 2y = 8 ਅਤੇ 2x + 3y = 12
ਅਤੇ \(\frac{4}{3}\)x + 2y – 8 = 0
ਜਾਂ 2x + 3y – 12 = 0
ਇੱਥੇ a1 = \(\frac{4}{3}\), b1 = 2, c1 = -12 .
a2 = 2, b2 = 3, c2 = – 12
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 14
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਗਤ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

4. ਹੇਠਾਂ ਦਿੱਤੇ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜਿਆਂ ਵਿੱਚ ਕਿਹੜਾ ਜੋੜਾ ਸੰਗਤ ਹੈ ਅਤੇ ਕਿਹੜਾ ਅਸੰਗਤ ਜੇਕਰ ਜੋੜਾ ਸੰਗਤ ਹੈ ਤਾਂ ਆਲੇਖੀ (ਫੀ) ਵਿਧੀ ਨਾਲ ਹੱਲ ਪਤਾ ਕਰੋ :

ਪ੍ਰਸ਼ਨ (i).
x + y = 5, 2x + 2y = 10
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
x + y = 5
ਅਤੇ 2x + 2y = 10
ਜਾਂ x + y – 5 = 0
2x + 2y – 10 = 0
ਇੱਥੇ a1 = 1, b1 = 1, c1 = -5
a2 = 2, b2 = 2, c2 = – 10
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 15
∴ ਦਿੱਤੀ ਹੋਈ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ ਦਾ ਆਲੇਖ | ਖਿੱਚੋ
x + y = 5
x = 5 – y …..(1)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 0 = 5
y = 3 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 3 = 2
y = 5 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 5 = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 16
ਬਿੰਦੂਆਂ A (5, 0), B (2, 3), C (0, 5) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਣ ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x + y = 5 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
2x + 2y = 10 ਜਾਂ 2 (x + y) = 10
ਜਾਂ x + y = 5
ਜਾਂ x = 5 – …(2)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 0 = 5
y = 2 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 2 = 3
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 17
ਬਿੰਦੂਆਂ A (5, 0), D (3, 2), C (0, 5) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਣ ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 2x + 2y = 10 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਸੰਪਾਤੀ, ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਅਨੇਕ ਹੱਲ ਹਨ !

ਪ੍ਰਸ਼ਨ (ii).
x – y = 8, 3x – 3y = 16
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
x – y = 8
ਅਤੇ 3x – 3y = 16
ਜਾਂ x – y – 8 = 0
ਅਤੇ 3x – 3y – 16 = 0
ਇੱਥੇ a1 =1, b1 = -1 , c1 = – 8
a2 = 3, b2 = – 3, c2 = – 16
y = 5 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 5 – 5 = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 18
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 19
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਮੀਕਣਾਂ ਦਾ ਹੋ ਅਸੰਗਤ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ (iii).
2x + y – 6 = 0, 4x – 2y – 4 = 0
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
2x + y – 6 = 0
ਅਤੇ 4x – 2y – 4 = 0
ਇੱਥੇ a1 = 2, b1 = 1, c1 = 6
a2 = 4, b2 = -2, c2 = -4
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 20
∴ ਦਿੱਤੇ ਗਏ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ ਦਾ ਗ੍ਰਾਫ ਖਿੱਚੋ :
2x + y – 6 = 0
ਜਾਂ 2x = 6 – y
ਜਾਂ y = \(\frac{6-y}{2}\) ….(1)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6-0}{2}\) = \(\frac{6}{2}\) = 3
y = 2 ਨੂੰ (1), ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6-2}{2}\)
= \(\frac{4}{2}\) = 2
y = -2 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6-(-2)}{2}\) = \(\frac{6+2}{2}\)
= \(\frac{8}{2}\) = 4
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 21
ਬਿੰਦੂਆਂ A (3, 0), B (2, 2), C (4, – 2) ਨੂੰ ਆਖਿਤ ਕਰਨ ‘ਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿਚਣ ‘ਤੇ ਸਮੀਕਰਣ 2x +y – 6 = 0 ਦਾ ਆਲੇਖ ਮਿਲਦਾ ਹੈ ।
4x – 2y – 4 = 0
ਜਾਂ 2[2x – y – 2] = 0
ਜਾਂ 2x – y – 2 = 0
ਜਾਂ 2x = y + 2
ਜਾਂ x = \(\frac{y+2}{2}\) …(2)
y = 0 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{0+2}{2}\) = \(\frac{2}{2}\) = 1
y = 2 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{2+2}{2}\) = \(\frac{4}{2}\) = 2
y = -2 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸ਼ਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{-2+2}{2}\)
= \(\frac{0}{2}\) = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 22
ਬਿੰਦੂਆਂ D (1, 0), B (2, 2), E (0, -2) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 4x – 2y -4 = 0 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਬਿੰਦੂ B (2, 2) ਉੱਤੇ ਮਿਲਦਾ ਹੈ ।
∴ ਦਿੱਤੀ ਹੋਈ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਵਿਲੱਖਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 23

ਪ੍ਰਸ਼ਨ (iv).
2x – 2y – 2 = 0, 4x – 4y – 5 = 0
ਉੱਤਰ:
ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
2x – 2y – 2 = 0
ਅਤੇ 4x – 4y – 5 = 0
ਇੱਥੇ a1 = 2, b1 = – 2, c1 = – 2
a2 = 4, b2 = – 4, c2 = – 5
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 24
ਇਸ ਲਈ ਦਿੱਤਾ ਗਿਆ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਅਸੰਗਤ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ 5.
ਇੱਕ ਆਇਤਾਕਾਰ ਬਾਗ, ਜਿਸਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਤੋਂ 4 ਮੀ. ਵੱਧ ਹੈ, ਦਾ ਅਰਧ ਪਰਿਮਾਪ 36 ਮੀ. ਹੈ । ਬਾਗ ਦੀ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਪਤਾ ਕਰੋ ।
ਹੱਲ :
ਮੰਨ ਲਓ ਬਾਗ ਦੀ ਲੰਬਾਈ = x ਮੀ.
ਬਾਗ ਦੀ ਚੌੜਾਈ = y ਮੀ.
ਬਾਗ ਦਾ ਪਰਿਮਾਪ = 2 [x + y] ਮੀ.
ਬਾਗ ਦਾ ਅਰਧ ਪਰਿਮਾਪ = (x + y) ਮੀ
ਪ੍ਰਸ਼ਨ ਦੀ ਪਹਿਲੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
x = y + 4
ਪ੍ਰਸ਼ਨ ਦੀ ਦੂਸਰੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
x + y = 36
∴ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ :
x = y + 4
ਅਤੇ x + y = 36
x = y + 4 …(1)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 0 + 4 = 4
y = -4 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = – 4 + 4 = 0
y = 16 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 16 + 4 = 20
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 25
ਬਿੰਦੁਆਂ A (4, 0), B (0, – 4), C (20, 16) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ਤੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x = y + 4 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x + y = 36
x = 36 – y …..(2)
y = 12 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 36 – 12 = 24
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 26
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਬਿੰਦੂ C (20, 16) ਤੇ ਮਿਲਦਾ ਹੈ ।
∴ C (20, 16) ਭਾਵ x = 20 ਅਤੇ y = 16 ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ ਦਾ ਹੱਲ ਹੈ ।
∴ ਬਾਗ ਦੀ ਲੰਬਾਈ = 20 ਮੀ.
ਬਾਗ ਦੀ ਚੌੜਾਈ = 16 ਮੀ. ||
y = 24 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 36 – 24 = 12
y = 16 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 36 – 16 = 20
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 27
ਬਿੰਦੂਆਂ D (24, 12), E ( 12, 24), C (20, 16) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x + y = 36 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਇੱਕ ਹੋਰ ਵਿੱਧੀ
ਮੰਨ ਲਉ ਬਾਗ ਦੀ ਚੌੜਾਈ = x ਮੀ.
ਬਾਗ ਦੀ ਲੰਬਾਈ = (x + 4) ਮੀ.
ਬਾਗ ਦਾ ਪਰਿਮਾਪ = 2 ਲੰ: + ਚੌ:]
= 2 [x + x + 4] ਮੀ.
= 2 [2x + 4] ਮੀ.
∴ ਬਾਗ ਦਾ ਅਰਧ ਪਰਿਮਾਪੁ = (2x + 4)
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
2x + 4 = 36
ਜਾਂ 2x = 36 – 4
ਜਾਂ 2x = 32
ਜਾਂ x = \(\frac{32}{2}\) = 16
∴ ਬਾਗ ਦੀ ਚੌੜਾਈ = 16 ਮੀ.
ਬਾਗ ਦੀ ਲੰਬਾਈ = (16 + 4) ਮੀ.
= 20 ਮੀ.

6. ਇਕ ਰੇਖੀ ਸਮੀਕਰਣ 2x + 3y – 8 = 9 ਦਿੱਤੀ ਗਈ । ਹੈ । ਦੋ ਚਲਾਂ ਵਿੱਚ ਇਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਰੇਖੀ ਸਮੀਕਰਣ ਲਿਖੋ ਤਾਂ ਕਿ ਪ੍ਰਾਪਤ ਜੋੜੇ ਦਾ ਜਿਮਾਇਤੀ ਰੂਪ

ਪ੍ਰਸ਼ਨ (i).
ਕੱਟਦੀਆਂ ਰੇਖਾਵਾਂ ਹੋਣ ।
ਉੱਤਰ:
ਸਥਿਤੀ (i) ਕੱਟਦੀਆਂ ਰੇਖਾਵਾਂ
ਦਿੱਤੀ ਹੋਈ ਰੇਖੀ ਸਮੀਕਰਣ ਹੈ :
2x + 3y – 8 = 0 ….(1)
ਇੱਥੇ ਕਾਟਵੀਂ ਰੇਖਾਵਾਂ ਦੀ ਸ਼ਰਤਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਅਨੇਕ ਮੁੱਲ ਹਨ ।
ਭਾਵ \(\frac{a_{1}}{a_{2}}\) ≠ \(\frac{b_{1}}{b_{2}}\) ≠ \(\frac{c_{1}}{c_{2}}\)
ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ ।
3x – 2y – 6 = 0 ….(2)
ਰੇਖੀ ਸਮੀਕਰਣਾਂ ( 1 ) ਅਤੇ (2) ਦਾ ਆਲੇਖ ਖਿੱਚੋ ।
2x + 3y – 8 = 0
ਜਾਂ 2x = 8 – 3y
ਜਾਂ x = \(\frac{8-3y}{2}\) …… (3)
y = 0 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{8-30}{2}\) = \(\frac{8}{2}\) = 4
y = – 2 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{8-3(-2)}{2}\) = \(\frac{14}{2}\) = 7
y = 2 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{8-3×2}{2}\) = \(\frac{8-6}{2}\) = \(\frac{2}{2}\) = 1
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 28
ਬਿੰਦੁਆਂ A (4, 0), B (7, – 2), C (1, 2) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਣ ‘ਤੇ ਸਾਨੂੰ ਰੇਖਾ ਸਮੀਕਰਣ 2x + 3y – 8 = 9 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
3x – 2y – 6 = 0
ਜਾਂ 3x = 6 + 2y
ਜਾਂ x = \(\frac{6+2y}{3}\) …(4)
y = 0 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6+2×0}{3}\) = \(\frac{6}{3}\) = 2
y = – 3 ਨੂੰ (4) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6+2(-3)}{3}\)
= \(\frac{6-6}{3}\) = 0
y = 3 ਨੂੰ (4) ਵਿਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{6+2×3}{3}\) = \(\frac{6+6}{3}\)
= \(\frac{12}{3}\) = 4
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 29
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 30
ਬਿੰਦੂਆਂ D (2, 0), E (0, -3), F (4, 3) ਨੂੰ ਆ ਖਿਤ ਕਰਨ ‘ਤੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ’ 3x – 2y – 6 = 0 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ !
ਆਲੇਖ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਬਿੰਦੂ G ਉੱਤੇ ਕੱਟਦਾ ਹੈ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ (ii).
ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਹੋਣ ।
ਉੱਤਰ:
ਸਥਿਤੀ (ii) ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਦਿੱਤੀ ਹੋਈ ਰੇਖੀ ਸਮੀਕਰਣ ਹੈ :
2x + 3y – 8 = 9 …(1)
ਇੱਥੇ ਦੋ ਚਲਾਂ ਵਾਲੀਆਂ ਹੋਰ ਵੀ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਹੋ
ਸਕਦੀਆਂ ਹਨ ਜੋ ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਦੀ ਸ਼ਰਤ ਨੂੰ ਪੂਰਾ ਕਰਦੀਆਂ ਹਨ ਭਾਵ
\(\frac{a_{1}}{a_{2}}\) = \(\frac{b_{1}}{b_{2}}\) ≠ \(\frac{c_{1}}{c_{2}}\)
ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ ।
2x + 3y – 5 = 0 ….(2)
ਹੁਣ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ( 1 ) ਅਤੇ (2) ਦਾ ਆਲੇਖ ਖਿੱਚੋ । ਰੇਖੀ ਸਮੀਕਰਣ 2x + 3 – 8 = 0 ਲਈ ਆਲੇਖ ਹੈ :
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 31
2x + 3y – 5 = 0
ਜਾਂ 2x = 5 – 3y
ਜਾਂ x = \(\frac{5-3y}{2}\) …(3)
y = 0 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{5-3×0}{2}\) = \(\frac{5}{2}\) = 2.5
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 32
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 33
ਬਿੰਦੂਆਂ G (2.5, 0), H (- 2, 3), I (7, – 3) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਅਤੇ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 2x + 3y – 5 = 0 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
y = 3 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
y = \(\frac{5-3×3}{2}\) = \(\frac{5-9}{2}\) = \(\frac{-4}{2}\) = -2
y = -3 ਨੂੰ (3) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{5-3(-3)}{2}\) = \(\frac{5+9}{2}\) = \(\frac{14}{2}\)
= 7

ਪ੍ਰਸ਼ਨ (iii).
ਸੰਪਾਤੀ ਰੇਖਾਵਾਂ ਹੋਣ ।
ਉੱਤਰ:
ਸਥਿਤੀ (iii) ਸੰਪਾਤੀ ਰੇਖਾਵਾਂ ਲਈ
ਦਿੱਤੀ ਹੋਈ ਸਮੀਕਰਣ
2x + 3y – 8 = 0 ….(1)
ਦੋ ਚਲਾਂ ਵਿੱਚ ਅਜਿਹੇ ਹੋਰ ਵੀ ਰੇਖੀ ਸਮੀਕਰਣ ਹੋ ਸਕਦੇ ਹਨ ਜੋ ਸੰਪਾਤੀ ਰੇਖਾਵਾਂ ਦੀਆਂ ਸ਼ਰਤਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦੇ ਹੋਣ ।
ਭਾਵ \(\frac{a_{1}}{a_{2}}\) = \(\frac{b_{1}}{b_{2}}\) = \(\frac{c_{1}}{c_{2}}\)
ਉਨ੍ਹਾਂ ਵਿਚ ਇਸ ਪ੍ਰਕਾਰ ਹੈ ।
6x + 9y – 24 = 0 ….(2)
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 34
ਹੁਣ ਰੇਖੀ (1) ਅਤੇ (2) ਦਾ ਆਲੇਖ ਖਿਚਣ ‘ਤੇ
ਰੇਖੀ ਸਮੀਕਰਣ (2) ਲਉ ॥
6x + 9y – 24 = 0
ਜਾਂ 3 [2x + 3y – 8] = 0
ਜਾਂ 2 + 3y – 8 = 0
∴ ਦੋਵਾਂ ਵਿਚ ਬਿੰਦੂ ਇਕ ਸਮਾਨ ਹਨ ਇਸ ਲਈ ਦੋਵੇਂ ਸਮੀਕਰਣਾਂ ਇਕ ਹੀ ਰੇਖਾ ਹਨ ।

PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2

ਪ੍ਰਸ਼ਨ 7.
ਸਮੀਕਰਣਾਂ x – y + 1 = 0 ਅਤੇ 3x + 2y – 12 = 0 ਦਾ ਗ੍ਰਾਫ਼ ਖਿੱਚੋ । x-ਧੁਰੇ ਅਤੇ ਇਨ੍ਹਾਂ ਰੇਖਾਵਾਂ ਨਾਲ ਬਣ ਤ੍ਰਿਭੁਜ ਦੇ ਸਿਖ਼ਰਾਂ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ ਪਤਾ ਕਰੋ ਅਤੇ ਤਿਭੁਜ ਆਕਾਰ ਨੂੰ ਛਾਇਆ-ਅੰਕਿਤ (Shade) ਕਰੋ ।
ਹੱਲ :
ਇੱਕ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦਾ ਜੋੜਾ ਹੈ ।
x – y + 1 = 0
ਅਤੇ 3x + 2y – 12 = 0
x – y + 1 = 0
ਜਾਂ x = y – 1 ……(1)
y = 0 ਨੂੰ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 0 – 1 = – 1
y = 3 ਨੂੰ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 3 – 1 = 2
y = 1 ਨੂੰ ( 3 ) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = 1 – 1 = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 35
ਬਿੰਦੁਆਂ A -1, 0), B (2, 3), C (0, 1) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ x – y + 1 = 0 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਜਾਂ 3x + 2y – 12 = 0
3x = 12 – 2y
x = \(\frac{12-2y}{3}\) …….(2)
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 36
y = 0 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{12-2×0}{3}\) = \(\frac{12}{3}\) = 4
y = 3 ਨੂੰ (2), ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{12-2×3}{3}\) = \(\frac{12-6}{3}\) = \(\frac{6}{3}\) = 2
y = 6 ਨੂੰ (2) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
x = \(\frac{12-2×6}{3}\) = \(\frac{12-12}{3}\) = 0
ਸਾਰਣੀ
PSEB 10th Class Maths Solutions Chapter 3 ਦੋ ਚਲਾਂ ਵਿੱਚ ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ Ex 3.2 37
ਬਿੰਦੂਆਂ D (4, 0), B (2, 3), E (0, 6) ਨੂੰ ਆਲੇਖਿਤ ਕਰਨ ‘ਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਹੋਏ ਰੇਖਾ ਖਿੱਚਣ ‘ਤੇ ਸਾਨੂੰ ਸਮੀਕਰਣ 3x +2y – 12 = 0 ਦਾ ਆਲੇਖ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
ਰੇਖੀ ਸਮੀਕਰਣਾਂ ਦੇ ਜੋੜੇ x-ਧੁਰੇ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਤਿਭੁਜ ਦੇ ਸਿਖ਼ਰਾਂ ਦੇ ਆਲੇਖ ਨੂੰ ਦਿਖਾਇਆ ਗਿਆ ਹੈ ।
∴ △ABD ਇਸ ਪ੍ਰਕਾਰ ਬਣੀ ਤ੍ਰਿਭੁਜ ਹੈ ।
△ABD ਦੇ ਸਿਖ਼ਰ ਹਨ : A (-1, 0), B (2, 3) ਅਤੇ D (4, 0).
ਹੁਣ, ਅਧਾਰ AD ਦੀ ਲੰਬਾਈ = AO + OD
= 1+ 4 = 5 ਇਕਾਈਆਂ
ਲੰਬ BF ਦੀ ਲੰਬਾਈ = 3 ਇਕਾਈਆਂ
∴ △ABD ਦਾ ਖੇਤਰਫਲ = \(\frac{1}{2}\) × ਅਧਾਰ × ਲੰਬ
= \(\frac{1}{2}\) × AD × BF
= (\(\frac{1}{2}\) × 5 × 3)
ਵਰਗ ਇਕਾਈਆਂ |
= \(\frac{15}{2}\) = 7.5
ਵਰਗ ਇਕਾਈਆਂ

Leave a Comment