Processing math: 100%

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Exercise 8.1

ਪ੍ਰਸ਼ਨ 1.
△ABC ਵਿੱਚ, ਜਿਸਦਾ ਕੋਣ B ਸਮਕੋਣ ਹੈ, AB = 24 cm ਅਤੇ BC = 7 cm ਹੈ। ਹੇਠਾਂ ਦਿੱਤਿਆਂ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ :
(i) sin A, cos A
(ii) sin C, cos C.
ਹੱਲ:
(i) ਅਸੀਂ ਪਤਾ ਕਰਨਾ ਹੈ sin A, cos A AB = 24 cm ; BC = 7 cm
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 1
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ,
AC2 = AB2 + BC2
AC2 = (24)2 + (7)2
AC2 = 576 + 49
AC2 = 625.
AC = \sqrt {625}
AC = 25 cm.
sin A = \frac{BC}{AC}
sin A = \frac{7 cm}{25 cm} = \frac{7}{25}
cos A = \frac{AB}{AC} = \frac{24 cm}{25 cm}
cos A = \frac{24}{25}
sin A = \frac{7}{25} ਅਤੇ cos A = \frac{24}{25}

(ii) sin C = \frac{AB}{AC} = \frac{24 cm}{25 cm}
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 2
sin C = \frac{24}{25}
cos C = \frac{BC}{AC} = \frac{7 cm}{25 cm}
cos C = \frac{7}{25}
sin C = \frac{24}{25} ਅਤੇ cos C = \frac{7}{25}

ਪ੍ਰਸ਼ਨ 2.
ਚਿੱਤਰ ਵਿੱਚ, tan P – cot R ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 3
ਹੱਲ:
ਕਰਣ PR = 13 cm, ਲੰਬ PQ = 12 cm
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 4
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
PR2 = PQ2 + OR2
ਜਾਂ (13)2 = (12)2 + QR2
ਜਾਂ 169 = 144 + (OR)2
ਜਾਂ 169 – 144 = (QR)2
ਜਾਂ 25 = (QR)2
ਜਾਂ QR = ±\sqrt {25}
ਜਾਂ QR = 5, – 5.
ਪਰ QR = 5 cm.
[QR ≠ -5 ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੁੰਦੀ]
tan P = \frac{RQ}{QP} = \frac{5}{12}
cot R = \frac{RQ}{PQ} = \frac{5}{12}
∴ tan P – cot R = \frac{5}{12}\frac{5}{12} = 0
ਇਸ ਲਈ tan P – cot R = 0.

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 3.
ਜੇਕਰ sin A = \frac{3}{4}, ਤਾਂ cos A ਅਤੇ tan A ਦਾ ਮਾਨ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ABC ਕੋਈ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ਹੈ ਜਿਸ ਵਿਚ ਕੋਣ B ਸਮਕੋਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 5
sin A = \frac{3}{4}
ਪਰ sin A = \frac{BC}{AC} [ਚਿੱਤਰ ਵਿਚ]
\frac{BC}{AC} = \frac{3}{4}
ਪਰ \frac{BC}{AC} = \frac{3}{4} = k
K, ਇਕ ਸਥਿਰ ਅੰਕ ਹੈ ।
⇒ BC = 3K,
AC = 4K
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ,
AC2 = AB2 + BC2
ਜਾਂ (4K)2 = (AB)2 + (3K)2
ਜਾਂ 16K2 = AB2 + 9K2
ਜਾਂ 16K2 – 9K2 = AB2
ਜਾਂ 7K2 = AB2
ਜਾਂ AB = ±\sqrt{7 \mathrm{~K}^{2}}
ਜਾਂ AB = ±\sqrt {7} K
[AB ≠ – 7K ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦੀ ] AB= 17 K
⇒ AB = \sqrt {7} K
cos A = \frac{AB}{AC}
cos A = \frac{\sqrt{7} K}{4 K} = \frac{\sqrt{7}}{4}
tan A = \frac{\mathrm{BC}}{\mathrm{AB}} = \frac{3 K}{\sqrt{7} K} = \frac{3}{\sqrt{7}}
∴ cos A = \frac{\sqrt{7}}{4} ਅਤੇ tan A = \frac{3}{\sqrt{7}}

ਪ੍ਰਸ਼ਨ 4.
ਜੇਕਰ 15 cot A = 8 ਹੋਵੇ ਤਾਂ sin A ਅਤੇ sec A ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ABC ਕੋਈ ਸਮਕੋਣ ਤਿਭੁਜ ਹੈ ਜਿਸ ਵਿਚ ∠A ਨਿਊਨ ਕੋਣ ਹੈ ਅਤੇ B ਸਮਕੋਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 6
15 cot A = 8
cot A = \frac{8}{15}
ਪਰ cot A = \frac{AB}{BC} [ਚਿੱਤਰ ਵਿਚ]
\frac{AB}{BC} = \frac{8}{15} = K
K, ਸਥਿਰ ਅੰਕ ਹੈ ।
⇒ AB = 8 K, BC = 15 K
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ
AC2 = AB2 + BC2
AC2 = (8K)2 + (15K)2
AC2 = 64K2 + 225 K2
AC2 = 289 K2
AC = ±\sqrt{289 K^{2}}
AC = ±17K
⇒ AC = 17K
[AC = – 17 K, ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦੀ ]
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 7

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 5.
ਜੇਕਰ sec θ = \frac{13}{12} ਹੋਵੇ ਤਾਂ ਬਾਕੀ ਸਾਰੇ ਤਿਕੋਣਮਿਤਈ ਅਨੁਪਾਤ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ABC ਕੋਈ ਸਮਕੋਣ ਤਿਭੁਜ ਹੈ ਜਿਸ ਵਿਚ ∠B ਸਮਕੋਣ ਹੈ ।
∠BAC = θ
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 8
sec θ = \frac{13}{12}
ਪਰ sec θ = \frac{AC}{AB} …[ਚਿੱਤਰ ਵਿਚ]
\frac{AC}{AB} = \frac{13}{12}
ਪਰ \frac{AC}{AB} = \frac{13}{12} = k
k ਸਥਿਰ ਅੰਕ ਹੈ ।
AC = 13k ਅਤੇ AB = 12k
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦੇ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
AC2 = (AB)2 + (BC)2
ਜਾਂ (13k)2 = (12k)2 + (BC)2
ਜਾਂ169k2 = 144k2 + BC2
ਜਾਂ 169k2 – 144k2 = BC2
ਜਾਂ (BC)2 = 25k2
ਜਾਂ BC = ±\sqrt{25 k^{2}}
ਜਾਂ BC = ±5k
ਜਾਂ BC = 5k.
[BC ≠ – 5k ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦੀ]
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 9

ਪ੍ਰਸ਼ਨ 6.
ਜੇਕਰ ∠A ਅਤੇ ∠B ਨਿਊਨ ਕੋਣ ਹੋਣ, ਜਿੱਥੇ cos A = cos B, ਤਾਂ ਦਿਖਾਉ ਕਿ ∠A = ∠B.
ਹੱਲ:
ਮੰਨ ਲਉ ABC ਕੋਈ ਤਿਭੁਜ ਹੈ ਜਿੱਥੇ ∠A ਅਤੇ ∠B ਨਿਊਨ ਕੋਣੇ ਹਨ | cos A ਅਤੇ cos B ਪਤਾ ਕਰੋ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 10
CM ⊥ AB
∠AMC : ∠BMC = 90°
ਸਮਕੋਣ △AMC ਵਿਚ,
\frac{AM}{AC} = cos A …(1)
ਸਮਕੋਣ △BMC ਵਿਚ,
\frac{BM}{BC} = cos B …(2)
ਪਰ cos A = cos B [ਦਿੱਤਾ ਹੈ ] …(3)
(1), (2) ਅਤੇ (3) ਤੋਂ,
\frac{AM}{AC} = \frac{BM}{BC}
\frac{AM}{BM} = \frac{AC}{BC} = \frac{CM}{CM}
∴ △AMC ~ △BMC [SSS ਕਸੌਟੀ ]
⇒ ∠A = ∠B [∵ ਕਿਉਂਕਿ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਸੰਗਤ ਕੋਣ ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ]

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 7.
ਜੇਕਰ cot θ = \frac{7}{8}, ਤਾਂ
(i) \frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}
(ii) cot2θ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
(i) ∠ABC = θ
ਸਮਕੋਣ ਤਿਭੁਜ ABC ਵਿਚ C ਉੱਤੇ ਸਮਕੋਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 11
ਦਿੱਤਾ ਹੈ : cot θ = \frac{7}{8}
ਪਰ cot θ = \frac{BC}{AC} [ਚਿੱਤਰ ਵਿਚ]
\frac{BC}{AC} = \frac{7}{8}
ਮੰਨ ਲਓ \frac{BC}{AC} = \frac{7}{8} = k
ਜਿੱਥੇ k ਸਥਿਰ ਅੰਕ ਹੈ ।
⇒ BC = 7k, AC = 8k
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
AB2 = (BC)2 + (AC)2
ਜਾਂ (AB)2 = (7k)2 + (8k)2
ਜਾਂ (AB)2 = 49k2 + 64k2
ਜਾਂ(AB)2 = 113k2
ਜਾਂ AB = ±\sqrt{113 k^{2}}
AB = \sqrt{113} k
[AB ≠ –\sqrt{113} k ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦੀ]
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 12
[ਸੂਤਰ (a + b) (a – b) = a2 – b2 ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ]
= 1 – \frac{64}{113}
(1 + sin θ) (1 – sin θ)
= \frac{113-64}{113} = \frac{49}{113}
⇒ (1 + sin θ) (1 – sin θ) = \frac{49}{113} …(1)
(1 + cos θ) (1 – cos θ)
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 13

(ii) cot θ = \frac{BC}{AC} = \frac{7}{8}
cot2 θ = (cot θ)2
cot2 θ = \left(\frac{7}{8}\right)^{2}
⇒ cot2 θ = \frac{49}{64}.

ਪ੍ਰਸ਼ਨ 8.
ਜੇਕਰ 3 cot A = 4 ਤਾਂ ਪੜਤਾਲ ਕਰੋ ਕਿ \frac{1-\tan ^{2} A}{1+\tan ^{2} A} = cos2A – sin2A ਹੈ ਜਾਂ ਨਹੀਂ
ਹੱਲ:
ਮੰਨ ਲਉ ABC ਇਕ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ਹੈ ਜਿਸ ‘ ਵਿਚ B ਸਮਕੋਣ ਹੈ ॥
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 14
ਇਹ ਦਿੱਤਾ ਹੈ ਕਿ 3 cot A = 4
cot A = \frac{4}{3}
ਪਰ cot A = \frac{AB}{BC} [ਚਿੱਤਰ ਵਿਚੀ]
\frac{AB}{BC} = \frac{4}{3}
ਪਰ \frac{AB}{BC} = \frac{4k}{3k}
⇒ AB = 4k, BC = 3k
ਪਾਈਥਾਗੋਰਸ, ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਤੇ,
AC2 = AB2 + BC2
AC2 = 4k2 + 3k2
AC2 = 16k2 + 9k2
AC2 = 252
AC = ± \sqrt{25 k^{2}}
AC = ± 5k
ਪਰ AC = 5k.
[AC ≠ – 5k, ਕਿਉਂਕਿ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।]
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 15
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 16
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 17

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 9.
AABC ਵਿਚ, ਜਿਸਦਾ ਕੋਣ B ਸਮਕੋਣ ਹੈ, ਜੇਕਰ tan A = \frac{1}{\sqrt{3}}, ਤਾਂ ਹੇਠਾਂ ਦਿੱਤੇ ਮੁੱਲ ਪਤਾ ਕਰੋ :
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C.
ਹੱਲ:
(i) ਦਿੱਤਾ ਹੈ : △ABC ਜਿਸਦਾ ਕੋਣ B ਸਮਕੋਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 18
tan A = \frac{1}{\sqrt{3}} …(1)
ਪਰ tan A = \frac{BC}{AB} …(2)
(1) ਅਤੇ (2) ਤੋਂ, .
\frac{BC}{AB} = \frac{1}{\sqrt{3}}
ਮੰਨ ਲਉ \frac{BC}{AB} = \frac{1}{\sqrt{3}} = k
BC = k, AB = \sqrt {3} k
ਜਿੱਥੇ k ਸਥਿਰ ਅੰਕ ਹੈ ।
ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ABC ਵਿਚ,
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ‘ਤੇ,
AC2 = AB2 + Bc2
(AC)2 = ( k)2 + (k)2
AC2 = 3k2 + k2
AC2 = 4k2
AC = ± \sqrt{4 k^{2}}
AC = ± 2k.
ਇੱਥੇ AC = 2k
[AC ≠ – 2k ∵ ਭੁਜਾ ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦੀ]
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 19
sin A cos C = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}
cos A sin C = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{3}{4}
sin A cos C + cos A sinC
= \frac{1}{4} + \frac{3}{4}
= \frac{1+3}{4} = \frac{4}{4} = 1
∴ sin A cos C + cos A sin C = 1.

(ii) cos A cos C = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{4} [(3) ਤੋਂ]
sin A sin C = \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} [(3) ਤੋਂ।]
cos A cos C – sin A sin C
= \left(\frac{\sqrt{3}}{4}\right)\left(\frac{\sqrt{3}}{4}\right) = 0

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 10.
△POR ਵਿੱਚ, ਜਿਸਦਾ ਕੋਣ Q ਸਮਕੋਣ ਹੈ, PR + QR = 25 cm ਅਤੇ PQ = 5 cm ਹੈ । sin P, cos P ਅਤੇ tan P ਦੇ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : △PQR, ਵਿੱਚ Q ਸਮਕੋਣ ਹੈ ।
PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1 20
PR + QR = 25 cm
PQ = 5 cm
ਸਮਕੋਣ ਭੁਜ PQR ਵਿਚ,
ਪਾਈਥਾਗੋਰਸ ਪ੍ਰਮੇਯ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਤੇ,
PR2 = PQ2 + RQ2
ਜਾਂ PR2 = 52 + RQ2
[∵ PR + OR = 25
QR = 25 – PR]
PR2 = 25 + [25 – PR]2
PR2 = 25 + 252 + PR2 – 2 × 25 × PR PR2 = 25 + 625 + PR2 – 50 PR
PR2 – PR2 + 50 PR = 650
PR = \frac{650}{50}
PR = 13
∴ QR = 25 – PR
⇒ 25 – 13
= 12 cm.
sin P = \frac{QR}{PR} = \frac{12}{13}
cos P = \frac{PQ}{PR} = \frac{5}{13}
tan P = \frac{QR}{PQ} = \frac{12}{5}

PSEB 10th Class Maths Solutions Chapter 8 ਤਿਕੋਣਮਿਤੀ ਬਾਰੇ ਜਾਣ ਪਛਾਣ Ex 8.1

ਪ੍ਰਸ਼ਨ 11.
ਦੱਸੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੇ ਕਥਨ ਠੀਕ ਹਨ ਜਾਂ ਗਲਤ, ਕਾਰਣ ਸਹਿਤ ਆਪਣੇ ਉੱਤਰ ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ।
(i) tan A ਦਾ ਮੁੱਲ ਹਮੇਸ਼ਾ 1 ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ ।
(ii) ਕੋਣ A ਦੇ ਕਿਸੇ ਮੁੱਲ ਲਈ sec A = \frac{12}{5}.
(iii) cos A, ਕੋਣ A ਦੇ cosecant ਦਾ ਸੰਖੇਪ ਰੂਪ ਹੈ ।
(iv) cot A, cot ਅਤੇ A ਦਾ ਗੁਣਨਫਲ ਹੁੰਦਾ ਹੈ !
(v) ਕਿਸੇ ਵੀ ਕੋਣ 8 ਦੇ ਲਈ sin θ = \frac{4}{3}.
ਹੱਲ:
(i) ਠੀਕ ਨਹੀਂ ਹੈ
∵ tan 60° = \sqrt {3} = 1.732 > 1.
(ii) ਠੀਕ ਹੈ, sec A = \frac{12}{5} = 2:40 > 1
∵ Sec A ਹਮੇਸ਼ਾਂ A ਤੋਂ ਵੱਡਾ ਹੁੰਦਾ ਹੈ ।
(ii) ਠੀਕ ਨਹੀਂ
ਕਿਉਂਕਿ cos A, cosine A ਦੇ ਲਈ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
(iv) ਠੀਕ ਨਹੀਂ
ਕਿਉਂਕਿ cot A, ਕੋਣ A ਦਾ cotangent ਹੈ ਨਾ ਕਿ cot ਅਤੇ A ਦਾ ਗੁਣਨਫਲ ।
(v) ਠੀਕ ਨਹੀਂ sin θ = \frac{4}{3} = 1 666 > 1
ਕਿਉਂਕਿ sin θ ਹਮੇਸ਼ਾਂ 1 ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ ।

Leave a Comment