Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 8 Introduction to Trigonometry Ex 8.3 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.3
Question 1.
Evaluate:
(i) \(\frac{\sin 18^{\circ}}{\cos 72^{\circ}}\)
(ii) \(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\)
(iii) cos 48° – sin 42°
(iv) cosec 31° – sec 59°.
Solution.
(i) \(\frac{\sin 18^{\circ}}{\cos 72^{\circ}}\)
= \(\frac{\sin 18^{\circ}}{\cos \left(90^{\circ}-18^{\circ}\right)}\)
= \(\frac{\sin 18^{\circ}}{\sin 18^{\circ}}\) = 1
[∵ cos (90° – θ) = sin θ]
(ii) \(\frac{\tan 26^{\circ}}{\cos 64^{\circ}}=\frac{\tan 26^{\circ}}{\cot \left(90^{\circ}-26^{\circ}\right)}\)
= \(\frac{\tan 26^{\circ}}{\tan 26^{\circ}}\) = 1
[∵ cot (90°- θ) = tan θ]
(iii) cos 48° – sin 42°
= cos (90° – 42°) – sin 42°
[∵ cos (90° – 0) = sin O]
= sin 42° – sin 42° = 0.
(iv) cosec 31° – sec 59°
=cosec 31° – sec (90° – 31°)
= cosec 31° – cosec 31°
[∵ sec (90° – θ) = cosec θ].
Question 2.
Show that:
(i) tan 4 tan 230 tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Solution:
(i) L.H.S.
= tan 48° tan 23° tan 42° tan 67°
= tan 48° × tan 23° × tan (90° – 48°) × tan (90° – 23°)
= tan48° × tan 23° × cot48° × cot 23°
= tan 48C × tan 23° × \(\frac{1}{\tan 48^{\circ}}\) × \(\frac{1}{\tan 23^{\circ}}\) = 1
∴ L.H.S. = R.H.S.
(ii) L.H.S.= cos 38° cos 52° – sin 38° sin 52°
= cos 38° × cos (90 – 38°) – sin 38° × sin (90° – 38°)
= cos 38° × sin 38° – sin 38° × cos 38
= 0.
∴ L.H.S. = RH.S.
Question 3.
If tan 2A = cot (A – 18°) where 2A is an acute angle, find the value of A.
Solution:
Given: tan 2A = cot (A – 18°)
⇒ cot (90° – 2A) = cot (A – 18°)
[cot (90° – θ) = tan θ]
⇒ 90°- 2A = A – 18°
⇒ 3A = 108°
⇒A = 36°.
Question 4.
If tan A = cot B, prove that A + B = 90°.
Solution:
Given that: tan A = cot B
⇒ tan A = tan(90° – B)
[∵ tan (90° – θ) = cot θ]
⇒ A = 90° – B.
⇒ A + B = 90°..
Question 5.
If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution:
Given that: sec 4A = cosec (A – 20°)
⇒ cosec (90° – 4A) = cosec (A — 20°)
[∵ cosec (90° – θ) = sec θ]
⇒ 90° – 4A = A – 20°
⇒ 5A = 110°
⇒ A = 22°.
Question 6.
If A, B and C interior angles of a triangle ABC, then show that: \(\sin \left(\frac{B+C}{2}\right)=\cos \left(\frac{A}{2}\right)\)
Solution:
Since, A, B and C are interior angles of a triangle
∴ A + B + C = 180°
[Sum of three angles of a triangle is 180°]
⇒ B + C = 180° – A
⇒ \(\frac{\mathrm{B}+\mathrm{C}}{2}=\frac{180^{\circ}-\mathrm{A}}{2}\)
⇒ \(\frac{\mathrm{B}+\mathrm{C}}{2}=\left(90^{\circ}-\frac{\mathrm{A}}{2}\right)\)
Taking sin on both sides, we get
⇒ \(\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)\)
[∵ sin (90° – θ) = cos θ].
Question 7.
Express sin 67° + cos 75° in terms of Trigonometric ratios of angles between 0° and 45°.
Solution:
Given that: sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°
[∵ sin(90° – θ) = cos θ and cos (90° – θ) = sin θ].