PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Punjab State Board PSEB 11th Class Maths Book Solutions Chapter 13 Limits and Derivatives Ex 13.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Maths Chapter 13 Limits and Derivatives Ex 13.1

Question 1.
Evaluate the given limit: \(\lim _{x \rightarrow 3}\) x + 3.
Answer.
\(\lim _{x \rightarrow 3}\) x + 3 = 3 + 3 = 6.

Question 2.
Evaluate the given limit: \(\lim _{x \rightarrow \pi}\) (x – \(\frac{22}{7}\)).
Answer.
\(\lim _{x \rightarrow \pi}\) (x – \(\frac{22}{7}\)) = (π – \(\frac{22}{7}\)).

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 3.
Evaluate the given limit : \(\lim _{x \rightarrow 1}\) πr2.
Answer.
\(\lim _{x \rightarrow 1}\) πr2 = π (1)2 = π.

Question 4.
Evaluate the given limit : \(\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}\).
Answer.
\(\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}=\frac{4(4)+3}{4-2}=\frac{16+3}{2}=\frac{19}{2}\)

Question 5.
Evaluate the given limit: \(\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}\)
Answer.
\(\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}=\frac{(-1)^{10}+(-1)^{5}+1}{-1-1}\)

= \(\frac{1-1+1}{-2}=-\frac{1}{2}\)

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 6.
Evaluate the given limit : \(\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}\).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 1

Question 7.
Evaluate the given limit : \(\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}\).
Answer.
At x = 2, the value of the given rational function takes the form \(\frac{0}{0}\).
∴ \(\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(3 x+5)}{(x-2)(x+2)}\)

\(\lim _{x \rightarrow 2} \frac{3 x+5}{x+2}=\frac{3(2)+5}{2+2}=\frac{11}{4}\)

Question 8.
Evaluate the given limit: \(\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}\).
Answer.
At x = 3, the value of the given rational function takes the form \(\frac{0}{0}\).
∴ \(\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}\) = \(\lim _{x \rightarrow 3} \frac{(x-3)(x+3)\left(x^{2}+9\right)}{(x-3)(2 x+1)}\)

\(\lim _{x \rightarrow 3} \frac{(x+3)\left(x^{2}+9\right)}{2 x+1}\) = \(\frac{(3+3)\left(3^{2}+9\right)}{2(3)+1}\)

= \(\frac{6 \times 18}{7}=\frac{108}{7}\)

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 9.
Evaluate the given limit; \(\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}\).
Answer.
\(\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}=\frac{a(0)+b}{c(0)+1}\) = .

Question 10.
Evaluate the given limit: \(\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 2

Question 11.
Evaluate the given limit: \(\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}\), a + b + c ≠ 0.
Answer.
\(\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}=\frac{a(1)^{2}+b(1)+c}{c(1)^{2}+b(1)+a}\)

= \(\frac{a+b+c}{a+b+c}\) = 1. [a + b + c ≠ 0]

Question 12.
Evaluate the given limit: \(\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}\)
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 3

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 13.
Evaluate the given limit: \(\lim _{x \rightarrow 0} \frac{\sin a x}{b x}\).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 4

Question 14.
Evaluate the given limit: \(\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}\), a, b ≠ 0.
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 5

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 15.
Evaluate the given limit: \(\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}\)
Answer.
\(\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}\)
put π – x = θ, As x → π, θ → 0 (zero)
\(\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\pi \theta}=\lim _{\theta \rightarrow 0} \frac{1}{\pi} \frac{(\sin \theta)}{\theta}=\frac{1}{\pi}\)

Question 16.
Evaluate the given limit: \(\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}\).
Answer.
\(\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}=\frac{\cos 0}{\pi-0}=\frac{1}{\pi}\)

Question 17.
Evaluate the given limit: \(\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}\).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 6

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 18.
Evaluate the given limit: \(\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}\)
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 7

Question 19.
Evaluate the given limit: \(\lim _{x \rightarrow 0}\) x sec x.
Answer.
\(\lim _{x \rightarrow 0}\) x sec x = \(\lim _{x \rightarrow 0} \frac{x}{\cos x}=\frac{0}{\cos 0}=\frac{0}{1}\) = 0.

Question 20.
Evaluate the given limit: \(\) a, b, a + b ≠ 0.
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 8

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 21.
Evaluate the given limit: \(\lim _{x \rightarrow 0}\) (cosec x – cot x).
Answer.
\(\lim _{x \rightarrow 0}\) (cosec x – cot x)
At x = 0, the value of the given function takes the form ∞ – ∞.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 9

Question 22.
Evaluate the given limit \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}\).
Answer.
\(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}\)

At x = \(\frac{\pi}{2}\), the value of the given function takes the form \(\frac{0}{0}\).

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 10

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 23.
Find \(\lim _{x \rightarrow 0}\) f(x) and \(\lim _{x \rightarrow 1}\) f(x), where f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 11.
Answer.
Given, f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 11
(i) Now, LHL = \(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) (2x + 3)
= \(\lim _{h \rightarrow 0}\) [2 (0 – h) + 3] = 3
[putting x = 0 – h as x → 0, then h → 0]
RHL = \(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) 3(x + 1)
= \(\lim _{h \rightarrow 0}\) [3(0 + h) + 1] = 3
[putting x = 0 + h as x → 0,then h → 0]J
Here, LHL = RHL
∴ \(\lim _{x \rightarrow 0}\) f(x) = 3

(ii) We have to find \(\lim _{x \rightarrow 1}\) f(x)
\(\lim _{x \rightarrow 1}\) f(x) = \(\lim _{x \rightarrow 1}\) 3 (x + 1)
= 3 (1 + 1) = 6

Question 24.
Find \(\lim _{x \rightarrow 1}\) f(x), where f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 12
Answer.
Given, f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 12
At x = 1,
RHL = \(\lim _{x \rightarrow 1^{+}}\) f(x) = \(\lim _{h \rightarrow 0}\) f(1 + h)
= \(\) (1 + h)2 – 1 [put x = 1 + h]
= – (1 + 0)2 – 1
= – 1 – 1 = – 2
LHL = \(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{h \rightarrow 0}\) f(1 – h)
= \(\lim _{h \rightarrow 0}\) (1 – h)2 – 1 [put x = 1 – h]
= (1 – 0)2 – 1 = 1 – 1 = 0
RHL ≠ LHL
Hence, at x = 1 , limit does not exist.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 25.
Evaluate \(\lim _{x \rightarrow 0}\) f(x), where f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 13.
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 14

Question 26.
Find \(\lim _{x \rightarrow 0}\) f(x), where f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 15.
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 16

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 17

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 27.
Find \(\lim _{h \rightarrow 5}\) f(x), where f(x) = |x| – 5.
Answer.
The given function is f(x) = |x| – 5
when x > 5, put x = 5 + h, where h is small
|x| = |5 + h| = 5 + h
∴ \(\lim _{x \rightarrow 5^{+}}\) f(x) = \(\lim _{h \rightarrow 0}\) [(5 + h) – 5] = \(\lim _{h \rightarrow 0}\) h = 0
when x < 5, put x = 5 – h, where h is small
∴ |5 – h| = 5 – h
∴ \(\lim _{x \rightarrow 5^{-}}\) f(x) = \(\lim _{h \rightarrow 0}\) (5 – h – 5) = \(\lim _{h \rightarrow 0}\) (- h) = 0
∴ \(\lim _{x \rightarrow 5^{-}}\) f(x) = \(\lim _{x \rightarrow 5^{+}}\) f(x) = 0
∴ \(\lim _{h \rightarrow 5}\) f(x) = 0

Question 28.
Suppose f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 18 and if \(\lim _{h \rightarrow 1}\) f(x) = f(1) what are possible values of a and b ?
Answer.
The given function is f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 18
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1}\) (a + bx) = a + b
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1}\) (b – ax) = b – a
f(1) = 4
It is given that \(\lim _{x \rightarrow 1}\) f(x) = f(1).
∴ \(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) f(x)
= \(\lim _{x \rightarrow 1}\) f(x) = f(1)
a + b = 4 and b – a = 4.
On solving these two equations, we obtain a = 0 and b = 4.
Thus, the respective possible values of a and b are 0 and 4.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 29.
Let a1, a2, ………. a, be fixed real numbers and define a function f(x) = (x – a1) (x – a2) ………….. (x – an). What is \(\lim _{x \rightarrow a_{1}}\) f(x)? For some a ≠ a1, a2, ………………. an compute \(\lim _{x \rightarrow a}\) f(x).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 19

Question 30.
If f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 20 For what value(s) of a does f(x) exists?
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 21

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 31.
If the function f(x) satisfies \(\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}\) = π, evaluate \(\lim _{x \rightarrow 1}\) f(x).
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 22

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1

Question 32.
If f(x) = PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 23 For what integers m and n does \(\lim _{x \rightarrow 0}\) f(x) and \(\lim _{x \rightarrow 1}\) f(x) exist?
Answer.

PSEB 11th Class Maths Solutions Chapter 13 Limits and Derivatives Ex 13.1 24

Leave a Comment