PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

Punjab State Board PSEB 8th Class Maths Book Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 8 Maths Chapter 11 ਖੇਤਰਮਿਤੀ Exercise 11.3

ਪ੍ਰਸ਼ਨ 1.
ਦੋ ਘਣਾਵਕਾਰ ਡੱਬੇ ਹਨ ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਨਾਲ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ । ਕਿਸ ਡੱਬੇ ਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਘੱਟ ਸਮੱਗਰੀ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ?
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 1
ਹੱਲ:
(a) ਦੀ ਸਥਿਤੀ ਵਿਚ :
ਘਣਾਵ ਦੀ ਲੰਬਾਈ (l) = 60 cm
ਘਣਾਵ ਦੀ ਚੌੜਾਈ (b) = 40 cm
ਘਣਾਵ ਦੀ ਉੱਚਾਈ (h)= 50 cm
∴ ਡੱਬੇ ਦਾ ਕੁੱਲ ਸਤ੍ਹਾ ਖੇਤਰਫਲ
= 2 (lb + bh + hl)
= 2 (60 × 40 + 40 × 50 + 50 × 60)
= 2 (2400 + 2000 + 3000)
= 2 × 7400 = 14800 cm2

(b) ਦੀ ਸਥਿਤੀ ਵਿਚ :
ਘਣਾਵ ਦੀ ਲੰਬਾਈ (l) = 50 cm
ਘਣਾਵ ਦੀ ਚੌੜਾਈ (b) = 50 cm
ਘਣਾਵ ਦੀ ਉੱਚਾਈ (h)= 50 cm
∴ ਡੱਬੇ ਦਾ ਕੁੱਲ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 2 (lb + bh + hl)
= 2 (50 × 50 + 50 × 50 + 5 × 50)
= 2 (2500 + 2500 + 2500)
= 2 × 7500 = 15000 cm2
∴ ਡੱਬੇ (a) ਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਘੱਟ ਸਾਮਗਰੀ ਅਰਥਾਤ 14800 cm2 ਦੀ ਜ਼ਰੂਰਤ ਹੈ ।

PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

ਪ੍ਰਸ਼ਨ 2.
80 cm × 48 cm × 24 cm ਮਾਪ ਵਾਲੇ ਇਕ ਸੂਟਕੇਸ ਨੂੰ ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਨਾਲ ਢੱਕਣਾ ਹੈ । ਇਸ ਤਰ੍ਹਾਂ ਦੇ 100 ਸੂਟਕੇਸਾਂ ਨੂੰ ਢੱਕਣ ਦੇ ਲਈ 96 cm ਚੌੜਾਈ ਵਾਲੇ ਕਿੰਨੇ ਮੀਟਰ ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ?
ਹੱਲ:
ਸੂਟਕੇਸ ਦੀ ਲੰਬਾਈ (l) = 80 cm
ਸੂਟਕੇਸ ਦੀ ਚੌੜਾਈ (b) = 48 cm
ਸੂਟਕੇਸ ਦੀ ਉੱਚਾਈ (h) = 24 cm
∴ ਸੂਟਕੇਸ ਦਾ ਕੁੱਲ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 2 (lb + bh + hl)
= 2 (80 × 48 +48 × 24 + 24 × 80)
= 2 (3840 + 1152 + 1920)
= 2 (6912)
= 13824 cm2
1 ਸੂਟਕੇਸ ਦਾ ਕੁੱਲ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 13824 cm2
100 ਸੂਟਕੇਸਾਂ ਦਾ ਕੁੱਲ ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 100 × 13824
= 1382400 cm2
ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਦੀ ਲੰਬਾਈ = x cm
ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਦੀ ਚੌੜਾਈ = 96 cm
∴ ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਦਾ ਖੇਤਰਫਲ = ਲੰਬਾਈ × ਚੌੜਾਈ
= x × 96
= 96x cm2
∴ 96x = 1382400
⇒ x = \(\frac{1382400}{96}\)
⇒ x = 14400 cm = 144 m.

ਪ੍ਰਸ਼ਨ 3.
ਇਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣ ਦੀ ਭੁਜਾ ਪਤਾ ਕਰੋ ਜਿਸਦੀ ਕੁੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ 600 cm2 ਹੈ ?
ਹੱਲ:
ਮੰਨ ਲਉ ਘਣ ਦੀ ਭੁਜਾ ਦੀ ਲੰਬਾਈ = x cm
ਘਣ ਦੀ ਕੁੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ = 600 cm2
⇒ 6x2 = 600
⇒ x2 = 100
⇒ x = 10 cm
∴ ਘਣ ਦੀ ਭੁਜਾ = 10 cm

PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

ਪ੍ਰਸ਼ਨ 4.
ਰੁਖਸਾਰ ਨੇ 1 m × 2 m × 1.5 m ਮਾਪ ਵਾਲੀ ਇਕ ਪੇਟੀ ਨੂੰ ਬਾਹਰ ਤੋਂ ਪੇਂਟ ਕੀਤਾ । ਜੇ ਉਸਨੇ ਪੇਟੀ ਦੇ ਤਲ ਨੂੰ ਛੱਡ ਕੇ ਉਸਨੂੰ ਸਾਰੀ ਜਗਾ ਤੋਂ ਪੇਂਟ ਕੀਤਾ ਹੋਵੇ ਤਾਂ ਪਤਾ ਕਰੋ ਕਿ ਉਸਨੇ ਕਿੰਨੀ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਨੂੰ ਪੇਂਟ ਕੀਤਾ ।
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 2
ਹੱਲ:
ਪੇਟੀ ਦੀ ਲੰਬਾਈ (l) = 1 m
ਪੇਟੀ ਦੀ ਚੌੜਾਈ (b) = 2 m
ਪੇਟੀ ਦੀ ਉੱਚਾਈ (h) = 1.5 m
∴ ਤਲ ਦੇ ਇਲਾਵਾ ਪੇਟੀ ਦਾ ਖੇਤਰਫਲ
= 2h (l + b) + l × b
= 2 (15) [1 + 2] + 1 × 2
= (3) (3) + 2
= 9 m2 + 2 m2
= 11 m2

ਪ੍ਰਸ਼ਨ 5.
ਡੇਨੀਅਲ ਇਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣਾਵਕਾਰ ਕਮਰੇ ਦੀਆਂ ਦੀਵਾਰਾਂ ਅਤੇ ਛੱਤ ਨੂੰ ਪੇਂਟ ਕਰ ਰਿਹਾ ਹੈ ਜਿਸਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉੱਚਾਈ ਕ੍ਰਮਵਾਰ 15 m, 10 m ਅਤੇ 7 m ਹੈ । ਪੇਟ ਦੇ ਹਰੇਕ ਡੱਬੇ ਨਾਲ 100 m2 ਖੇਤਰਫਲ ਨੂੰ ਪੇਂਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਉਸ ਕਮਰੇ ਦੇ ਲਈ ਉਸਨੂੰ ਪੇਂਟ ਦੇ ਕਿੰਨੇ ਡੱਬਿਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ?
ਹੱਲ:
ਕਮਰੇ ਦੀ ਲੰਬਾਈ (l) = 15 m
ਕਮਰੇ ਦੀ ਚੌੜਾਈ (b) = 10 m
ਅਤੇ ਕਮਰੇ ਦੀ ਉੱਚਾਈ (h) = 7 m
∴ ਕਮਰੇ ਦੀਆਂ ਚਾਰਾਂ ਦੀਵਾਰਾਂ ਅਤੇ ਛੱਤਾਂ ਦਾ ਖੇਤਰਫਲ
= 2h (l + b) + l × b
= 2 × 7 (15 + 10) + 15 × 10
= 14 (25) + 150
= 350 + 150 = 500m2
1 ਕੈਨ ਪੇਂਟ ਕਰਦਾ ਹੈ = 100 m2
∴ ਜ਼ਰੂਰੀ ਕੈਨਾਂ ਦੀ ਸੰਖਿਆ = \(\frac{500}{100}\) = 5

PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

ਪ੍ਰਸ਼ਨ 6.
ਵਰਣਨ ਕਰੋ ਕਿ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰ ਕਿਸ ਤਰ੍ਹਾਂ ਇਕ ਸਮਾਨ ਹਨ ਅਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਇਕ-ਦੂਸਰੇ ਤੋਂ ਵੱਖਰੇ ਹਨ ? ਕਿਸ ਡੱਬੇ ਦਾ ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਜ਼ਿਆਦਾ ਹੈ ?
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 3
ਹੱਲ:
ਦਿੱਤੇ ਗਏ ਦੋ ਚਿੱਤਰਾਂ ਵਿਚੋਂ ਇਕ ਵੇਲਣ ਹੈ ਅਤੇ ਦੂਜਾ ਘਣ ਹੈ, ਇਕ ਸਮਾਨ ਉੱਚਾਈ ਅਤੇ ਵਿਆਸ ਅਰਥਾਤ 7 cm ਹੈ ਜਿਸਦੀ ਹਰੇਕ ਭੁਜਾ 7 cm ਦਾ ਵੇਲਣ ਹੈ ਅਤੇ ਦੂਸਰਾ ਘਣ ਹੈ ਜਿਸਦੀ ਹਰੇਕ ਭੁਜਾ 7 cm ਹੈ ।
ਵੇਲਣ ਦਾ ਵਿਆਸੇ = 7 cm
∴ ਵੇਲਣ ਦਾ ਅਧਵਿਆਸ = \(\frac{7}{2}\) cm
ਵੇਲਣ ਦੀ ਉੱਚਾਈ = 7 cm
∴ ਵੇਲਣ ਦੀ ਪਾਸਵੀਂ ਵਿਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ
= 2πrh
= 2 × \(\frac{22}{7}\) × \(\frac{7}{2}\) × 7
= 154 cm2
ਘਣ ਦੀ ਹਰੇਕ ਭੁਜਾ ਦੀ ਲੰਬਾਈ = 7 cm
∴ ਘਣ ਦੀ ਇਕ ਪਾਸੇ ਦੀ (ਕਰ) ਸੜਾ ਦਾ ਖੇਤਰਫਲ
= 4 (ਭੁਜਾ)2
= 4 (7)2 = 4 × 49
= 196 cm2
∴ ਘਣ ਦੀ ਕੁੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਜ਼ਿਆਦਾ ਹੈ !

ਪ੍ਰਸ਼ਨ 7.
7 m ਅਰਧਵਿਆਸ ਅਤੇ 3 m ਉੱਚਾਈ ਵਾਲਾ | ਇਕ ਬੰਦ ਵੇਲਣਾਕਾਰ ਟੈਂਕ ਕਿਸੇ ਧਾਤੁ ਦੀ ਇਕ ਚਾਦਰ ਨਾਲ ਬਣਿਆ ਹੋਇਆ ਹੈ । ਉਸਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਧਾਤੂ ਦੀ ਚਾਦਰ ਦੀ ਮਾਤਰਾ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਵੇਲਣਾਕਾਰ ਟੈਂਕ ਦਾ ਅਰਧਵਿਆਸ = 7 m
ਵੇਲਣਾਕਾਰ ਟੈਂਕ ਦੀ ਉੱਚਾਈ = 3 m
ਟੈਂਕ ਦਾ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 2πr (h + r)
= 2 × \(\frac{22}{7}\) × 7(3 + 7)
= 2 × 22 × 10
= 440 m2
∴ ਲੋੜੀਂਦੀ ਧਾਤੂ ਦੀ ਚਾਦਰ ਦੀ ਮਾਤਰਾ = 440 m2

PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

ਪ੍ਰਸ਼ਨ 8.
ਇਕ ਖੋਖਲੇ ਵੇਲਣ ਦੀ ਪਾਸਵੀਂ ਸੜ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 4224 cm2 ਹੈ । ਇਸਨੂੰ ਇਸਦੀ ਉੱਚਾਈ ਦੇ ਅਨੁਸਾਰ ਕੱਟ ਕੇ 33 cm ਚੌੜਾਈ ਦੀ ਇਕ ਆਇਤਾਕਾਰ ਚਾਦਰ ਬਣਾਈ ਜਾਂਦੀ ਹੈ । ਆਇਤਾਕਾਰ ਚਾਦਰ ਦਾ ਪਰਿਮਾਪ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਵੇਲਣ ਦੀ ਉੱਚਾਈ (h) = 33 cm
ਮੰਨ ਲਉ ਵੇਲਣ ਦਾ ਅਰਧਵਿਆਸ = r
ਵੇਲਣ ਦੀ ਵਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ = 4224 cm2
∴ 2πrh = 4224
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 4
⇒ 2 × \(\frac{22}{7}\) × r × 33 = 4224
⇒ r = \(\frac{422×47}{2×22×33}\) = \(\frac{32×7}{11}\) cm
ਕਿਉਂਕਿ ਖੋਖਲੇ ਵੇਲਣ ਨੂੰ ਉਸਦੀ ਉੱਚਾਈ ਦੇ ਅਨੁਸਾਰ ਕੱਟਿਆ ਗਿਆ ਹੈ |
∴ ਆਧਾਰ ਦਾ ਪਰਿਮਾਪ ਆਇਤਾਕਾਰ ਚਾਦਰ ਦੀ ਉੱਚਾਈ ਬਣ ਜਾਂਦਾ ਹੈ ।
∴ ਗੋਲਾਕਾਰ ਆਧਾਰ ਦਾ ਪਰਿਮਾਪ = 2πr
= \(\frac{32×7}{11}\)
= 128 cm
∴ ਆਇਤਾਕਾਰ ਚਾਦਰ ਦੀ ਲੰਬਾਈ 128 cm
ਆਇਤਾਕਾਰ ਚਾਦਰ ਦੀ ਚੌੜਾਈ = 33 cm
∴ ਆਇਤਾਕਾਰ ਚਾਦਰ ਦਾ ਪਰਿਮਾਪ = 2 (l + b)
= 2(128 + 33).
= 2 × 16
= 322 cm

ਪ੍ਰਸ਼ਨ 9.
ਕਿਸੇ ਸੜਕ ਨੂੰ ਪੱਧਰਾ ਕਰਨ ਲਈ ਇੱਕ ਰੋਡਰੋਲਰ ਨੂੰ ਸੜਕ ਦੇ ਉੱਪਰ ਇਕ ਵਾਰ ਘੁੰਮਣ ਦੇ ਲਈ 750 ਚੱਕਰ ਲਗਾਉਣੇ ਪੈਂਦੇ ਹਨ । ਜੇ ਸੜਕ ਰੋਲਰ ਦਾ ਵਿਆਸ 84 cm ਅਤੇ 1 m ਲੰਬਾਈ ਹੈ, ਤਾਂ ਸੜਕ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ ।
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 5
ਹੱਲ:
ਸੜਕ ਰੋਲਰ ਦੀ ਲੰਬਾਈ = 1 m
h = 100 cm
ਸੜਕ ਰੋਲਰ ਦਾ ਵਿਆਸ = 84 cm.
∴ ਸੜਕੂ ਰੋਲਰ ਦਾ ਅਰਵਿਆਸ (r) = \(\frac{84}{2}\) cm
= 42 cm.
ਸੜਕ ਰੋਲਰ ਦਾ ਵਕਰ ਸਤਾ ਦਾ ਖੇਤਰਫਲ
= 2πrh
= 2 × \(\frac{22}{7}\) × 42 × 100
= 26400 cm2
∴ 1 ਚੱਕਰ ਵਿਚ ਤੈਅ ਖੇਤਰਫਲ = 26400 cm2
= \(\frac{26400}{10,000}\) m2
= 2.64 m2
∴ ਸੜਕ ਦਾ ਖੇਤਰਫਲ : 750 ਚੱਕਰਾਂ ਵਿਚ ਤੈਅ ਖੇਤਰਫਲ
= 750 × 2.64
= 1980 m2

PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3

ਪ੍ਰਸ਼ਨ 10.
ਇਕ ਕੰਪਨੀ ਆਪਣੇ ਦੁੱਧ ਪਾਊਡਰ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵੇਲਣਾਕਾਰ ਬਰਤਨਾਂ ਵਿਚ ਪੈਕ ਕਰਦੀ ਹੈ । ਜਿਹਨਾਂ ਦਾ ਵਿਆਸ 14 cm ਅਤੇ ਉੱਚਾਈ 20 cm ਹੈ। ਕੰਪਨੀ ਬਰਤਨ ਦੇ ਸਤਾ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇਕ ਲੇਬਲ ਲਗਾਉਂਦੀ ਹੈ । (ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ ਵਿਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ । ਜੇਕਰ ਇਹ ਲੇਬਲ ਬਰਤਨ ਦੇ ਤਲ ਅਤੇ ਸਿਖਰ ਦੋਨਾਂ ਤੋਂ 2 cm ਦੀ ਦੂਰੀ ਤੇ ਚਿਪਕਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਲੇਬਲ ਦਾ ਖੇਤਰਫਲ ਕੀ ਹੈ ?
ਹੱਲ:
ਬਰਤਨ ਦੇ ਆਧਾਰ ਦਾ ਵਿਆਸ = 14 cm
∴ ਬਰਤਨ ਦੇ ਅਧਾਰ ਦਾ ਅਰਧਵਿਆਸ (R) = \(\frac{14}{2}\) cm
= 7 cm
ਵੇਲਣਾਕਾਰ ਬਰਤਨ ਦੀ ਉੱਚਾਈ H = 20 cm
PSEB 8th Class Maths Solutions Chapter 11 ਖੇਤਰਮਿਤੀ Ex 11.3 6
ਲੇਬਲ ਦੀ ਉੱਚਾਈ (h) = (20 – 2 – 2) cm
= (20 – 4)
h = 16 cm
∴ ਲੇਬਲ ਦਾ ਖੇਤਰਫਲ = 2πrh
= 2 × \(\frac{22}{7}\) × 7 × 16
= 704 cm2

Leave a Comment