Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.1 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 10 Maths Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Exercise 5.1
1. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਥਿਤੀਆਂ ਵਿਚੋਂ ਕਿਹੜੀਆਂ ਸਥਿਤੀਆਂ ਵਿਚ ਸੰਬੰਧਿਤ ਸੰਖਿਆਵਾਂ ਦੀ ਸੂਚੀ A.P. ਹੈ ਅਤੇ ਕਿਉਂ ?
ਪ੍ਰਸ਼ਨ (i).
ਹਰੇਕ ਕਿਲੋਮੀਟਰ ਦੇ ਬਾਅਦ ਟੈਕਸੀ ਦਾ ਕਿਰਾਇਆ, ਜਦੋਂ ਕਿ ਪਹਿਲੇ ਕਿਲੋਮੀਟਰ ਲਈ ਕਿਰਾਇਆ ₹ 15 ਹੈ ਅਤੇ ਹਰੇਕ ਵਾਧੂ ਕਿਲੋਮੀਟਰ ਦਾ ਕਿਰਾਇਆ
₹ 8 ਹੈ ।
ਉੱਤਰ:
ਮੰਨ ਲਓ ਟੈਕਸੀ ਦਾ ਵੇਂ ਕਿਲੋਮੀਟਰ ਦਾ ਕਿਰਾਇਆ Tn ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ।
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
T1 = 15 ਕਿ.ਮੀ. ; T2 = 15 + 8 = 23 ;
T3 = 23 + 8 =31………
ਹੁਣ T3 – T2 = 31 – 23 = 8
T2 – T1 = 23 – 15 = 8
ਇੱਥੇ T3 – T2 = T2 – T1 = 8
∴ ਦਿੱਤੀ ਗਈ ਸਥਿਤੀ A.P. ਦਾ ਰੂਪ ਹੈ ।
ਪ੍ਰਸ਼ਨ (ii).
ਕਿਸੇ ਬੇਲਨ (cylinder) ਵਿਚ ਹਵਾ ਦੀ ਮਾਤਰਾ, ਜਦੋਂ ਕਿ ਹਵਾ ਕੱਢਣ ਵਾਲਾ ਪੰਪ ਹਰੇਕ ਵਾਰ ਬੇਲਨ ਵਿੱਚ ਬਾਕੀ ਹਵਾ ਦਾ \(\frac{1}{4}\) ਹਿੱਸਾ ਬਾਹਰ ਕੱਢ ਦਿੰਦਾ ਹੈ ।
ਉੱਤਰ:
ਮੰਨ ਲਓ ਬੇਲਨ ਵਿਚ ਭਰੀ ਹਵਾ ਨੂੰ Tn ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ।
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ,
ਇੱਥੇ T3 – T2 ≠ T2 – T1
∴ ਦਿੱਤੀ ਗਈ ਸਥਿਤੀ A.P. ਦਾ ਰੂਪ ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (iii).
ਹਰੇਕ ਮੀਟਰ ਦੀ ਖੁਦਾਈ ਤੋਂ ਬਾਅਦ, ਇੱਕ ਖੂਹ | ਪੁਟੱਣ ਦੀ ਲਾਗਤ, ਜਦੋਂ ਕਿ ਪਹਿਲੇ ਮੀਟਰ ਖੁਦਾਈ ਦੀ ਲਾਗਤ ₹ 150 ਹੈ ਅਤੇ ਬਾਅਦ ਵਿੱਚ ਪ੍ਰਤਿ | ਮੀਟਰ ਖੁਦਾਈ ਦੀ ਲਾਗਤ ₹ 50 ਵੱਧ ਜਾਂਦੀ ਹੈ ।
ਉੱਤਰ:
ਮੰਨ ਲਉ ਖੂਹ ਪੁੱਟਣ ਦੇ ਵੇਂ ਮੀਟਰ ਦੀ ਲਾਗਤ ਨੂੰ Tn ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ।
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ,
T1 = ₹150
T2 = ₹(150 + 50)
= ₹ 200
T3 = ₹ (200 + 50)
= ₹ 250
ਹੁਣੌ T3 – T2 = ₹ (250 – 200) = ₹ 50
T2 – T1 = ₹ (200 – 150) = ₹ 50
ਇੱਥੇ T3 – T2 = T2 – T1 = 50
∴ ਦਿੱਤੀ ਗਈਸਥਿਥੀ A.P. ਦਾ ਰੂਪ ਹੈ ।
ਪ੍ਰਸ਼ਨ (iv).
ਖਾਤੇ ਵਿੱਚ ਹਰੇਕ ਸਾਲ ਦਾ ਮਿਸ਼ਰਧਨ, ਜਦੋਂ ਕਿ ₹ 10000 ਦੀ ਰਕਮ 8 ਸਾਲਾਨਾ ਦਰ ‘ਤੇ ਮਿਸ਼ਰਿਤ ਵਿਆਜ ‘ਤੇ ਜਮਾਂ ਕਰਵਾਈ ਜਾਂਦੀ ਹੈ।
ਉੱਤਰ:
ਮੰਨ ਲਉ ‘n’ਵੇਂ ਸਾਲ ਦਾ ਮਿਸ਼ਰਧਨ Tn ਹੈ :
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ,
T1 = ₹ 10,000
T2 = ₹ \(\left[\frac{10,000 \times 8 \times 1}{100}\right]\)
= ₹ 10,000 + ₹ 800 = ਤ₹ 10,800
T3 = ₹ \(\left[\frac{10,800 \times 8 \times 1}{100}\right]\)
= ₹ 10,800 + ₹ 864
= ₹11,640 ਇਸੇ ਤਰ੍ਹਾਂ ਅੱਗੇ ਵੀ
ਹੁਣ T3 – T2= ₹ (11,640 – 10,800)
= ₹ 840
T2 – T1= ₹ (10,800 – 10,000)
= ₹ 800 fent
ਇੱਥੇ T3 – T2 6 T2 – T1
∴ ਦਿੱਤੀ ਹੋਈ ਸਥਿਤੀ A.P. ਦਾ ਰੂਪ ਨਹੀਂ ਹੈ ।
2. ਦਿੱਤੀ ਹੋਈ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਲਿਖੋ, ਜਦੋਂ | ਕਿ ਪਹਿਲਾ ਪਦ a ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ dਹੇਠ ਅਨੁਸਾਰ ਹਨ :
ਪ੍ਰਸ਼ਨ (i).
a = 10, d= 10
ਉੱਤਰ:
ਦਿੱਤਾ ਹੋਇਆ ਪਹਿਲਾ ਪਦ a = 10
ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ = d = 10
∴ T1 = a = 10 ;
T2 = a + d
= 10 + 10 = 20
T3 = a + d = 10 + 2 × 10
= 10 + 20 == 30 ;
T4 = a + 3d = 10 + 3 × 10
= 10 + 30 = 40
∴ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਹਨ
10, 20, 30, 40….
ਪ੍ਰਸ਼ਨ (ii).
a = -2, d = 0
ਉੱਤਰ:
ਦਿੱਤਾ ਹੋਇਆ ਪਹਿਲਾ ਪਦ = a = -2
ਸਾਂਝਾ ਅੰਤਰ = d = 0
∴ T1 = a = -2 ;
T2 = a + d = -2 + 0 = -2
T3 = a + d = -2 + 2 × 0 = – 2
T4 = a + 3d
– 2 + 3 × 0 = – 2
∴ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਹਨ – 2, – 2, — 2, – 2,…………
ਪ੍ਰਸ਼ਨ (iii).
a = 4, d = -3
ਉੱਤਰ:
ਦਿੱਤਾ ਹੋਇਆ ਪਹਿਲਾ ਪਦ = 4 =4
ਸਾਂਝਾ ਅੰਤਰ d = -3
∴ T1 = a = 4 T2 = a + d = 4 – 3 = 1
T3 = a + 2d = 4 + 2(-3) = 4 – 6 = -2
T4 = a + 3d = 4 + 3 (-3) = 4 – 9 = – 5
∴ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਹਨ
4, 1, – 2, – 5,……….
ਪ੍ਰਸ਼ਨ (iv).
a = -1, d = \(\frac{1}{2}\)
ਉੱਤਰ:
ਦਿੱਤਾ ਹੋਇਆ ਪਹਿਲਾ ਪਦ, = a = – 1
ਸਾਂਝਾ ਅੰਤਰ = d =\(\frac{1}{2}\)
T1 = a = -1; T2 = a + d
= -1 + \(\frac{1}{2}\) = \(\frac{-1}{2}\)
T3 = a + 2d = -1 + 2\(\left(\frac{1}{2}\right)\)
= -1 + 1 = 0
T 4= a + 3d = -1 + 3\(\left(\frac{1}{2}\right)\)
= \(\frac{-2+3}{2}\) = \(\frac{1}{2}\)
∴ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਹਨ
-1, \(\frac{-1}{2}\), 0, \(\frac{1}{2}\), ……
ਪ੍ਰਸ਼ਨ (v).
a = – 1.25, d = – 0.25
ਉੱਤਰ:
ਦਿੱਤਾ ਹੋਇਆ ਪਹਿਲਾ ਪਦ = a = – 1.25
ਸਾਂਝਾ ਅੰਤਰ d = – 0.25
∴ T1 = a = – 1.25;
T2 = a + d = – 1.25 – 0.25 – 1.50
T3 = a + 2d = – 1.25 + 2(0.25)
=- 1.25 – 0.50
= – 1.75
T4 = a + 3d = – 1.25 + 3 (0.25)
– 1.25 – 0.75 = – 2
∴ A.P. ਦੇ ਪਹਿਲੇ ਚਾਰ ਪਦ ਹਨ
– 1.25, – 1.50, – 1.75, -2, ……..
3. ਹੇਠਾਂ ਹਰੇਕ AP. ਦੇ ਲਈ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
3, 1, -1, -3, ……
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ, 3, 1, – 1, – 3, ….
ਇੱਥੇ T1 = 3, T2 = 1,
T3 = -1, T4 = -3
ਪਹਿਲਾ ਪਦ T1 = 3
ਹੁਣ, T2 – T1 = 1 – 3 = -2
T3 – T2 = – 1 – 1 = -2
T4 – T3 = -3 + 1 = -2
∴ T2 – T1 = T3 – T2 = T4 – T3 = -2
∴ ਸਾਂਝਾ ਅੰਤਰ = – 2 ਅਤੇ ਪਹਿਲਾ ਪਦ = 3
ਪ੍ਰਸ਼ਨ (ii).
-5, -1, 3, 7, ……
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ
-5, – 1, 3, 7, …
ਇੱਥੇ T1 = -5, T2 = -1,
T3 = 3, T4 = 7
ਪਹਿਲਾ ਪਦ = T1 = -5
T2 – T1 – 1 + 5 = 4
T3 – T2 = 3 + 1 = 4
T4 – T3 = 7 – 3 = 4
∴ T2 – T1 = T3 – T2 = T4 – T3 = 4
∴ ਸਾਂਝਾ ਅੰਤਰ = 4
ਪਹਿਲਾ ਪਦ = – 5
ਪ੍ਰਸ਼ਨ (iii).
\(\frac{1}{3}\), \(\frac{5}{3}\), \(\frac{9}{3}\), \(\frac{13}{3}\), ……
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ
\(\frac{1}{3}\), \(\frac{5}{3}\), \(\frac{9}{3}\), \(\frac{13}{3}\), ……
ਇੱਥੇ T1 = \(\frac{1}{3}\), T2 = \(\frac{5}{3}\)
T3 = \(\frac{9}{3}\), T4 = \(\frac{13}{3}\)
ਪਹਿਲਾ ਪਦ T1 = \(\frac{1}{3}\)
ਹੁਣ, T2 – T1 = \(\frac{5}{3}\) – \(\frac{1}{3}\) = \(\frac{5-1}{3}\) = \(\frac{4}{3}\)
T3 – T2 = \(\frac{9}{3}\) – \(\frac{5}{3}\) = \(\frac{9-5}{3}\) = \(\frac{4}{3}\)
T4 – T3 = \(\frac{13}{3}\) – \(\frac{9}{3}\) = \(\frac{13-9}{3}\) = \(\frac{4}{3}\)
∴ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{4}{3}\)
∴ ਸਾਂਝਾ ਅੰਤਰ = \(\frac{4}{3}\)
ਪਹਿਲਾ ਪਦ = \(\frac{1}{3}\)
ਪ੍ਰਸ਼ਨ (iv).
0.6, 1.7, 28, 39, …..
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ
0.6, 1.7, 2.8, 3.9,…
ਇੱਥੇ T1 = 0.6, T2 = 1.7,
T3 = 2.8, T4 = 3.9
ਪਹਿਲਾ ਪਦ = T1 = 0.6
ਹੁਣ T2 – T1 = 1.7 – 0.6 = 1.1
T3 – T2 = 2.8 – 1.7 = 1.1
T4 – T3 = 3.9 – 2.8 == 1.1
∴ T2 = T1 = T3 = T2 = T4 = T3 = 1.1
∴ ਸਾਂਝਾ ਅੰਤਰ = 1.1
ਪਹਿਲਾ ਪਦ = 0.6
4. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ-ਕਿਹੜੇ A.P. ਹਨ ? ਜੇਕਰ ਕੋਈ A.P ਹੈ ਤਾਂ ਉਸਦਾ ਸਾਂਝਾ ਅੰਤਰ ਪਤਾ ਕਰੋ ਅਤੇ ਉਸਦੇ ਤਿੰਨ ਪਦ ਲਿਖੋ :
ਪ੍ਰਸ਼ਨ (i).
2, 4, 8, 16…..
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ : 2, 4, 8, 16…
ਇੱਥੇ T1 = 2, T2 = 4, T3 = 8, T4 = 16
T2 – T1 = 4 – 2 = 2
T3 – T2 = 8 – 4 = 4
∵ T2 – T1 ≠ T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (ii).
2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), ………..
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ : 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\) …
ਇੱਥੇ T1 = 2, T2 = \(\frac{5}{2}\), T3 = 3, T4 = \(\frac{7}{2}\)
T2 – T1 = \(\frac{5}{2}\) – 2 = \(\frac{5-4}{2}\) = \(\frac{1}{2}\)
T3 – T2 = 3 – \(\frac{5}{2}\) = \(\frac{6-5}{2}=\frac{1}{2}\)
T4 – T3 = \(\frac{7}{2}-3=\frac{7-6}{2}=\frac{1}{2}\)
∵ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{1}{2}\)
∴ ਸਾਂਝਾ ਅੰਤਰ = d = \(\frac{1}{2}\)
ਹੁਣ, T5 = a + 4d = 2 + 4\(\left(\frac{1}{2}\right)\) = 4
T6 = a + 5d = 2 + 5\(\left(\frac{1}{2}\right)\) = \(\frac{4+5}{2}=\frac{9}{2}\)
T7 = a + 6d = 2 + 6\(\left(\frac{1}{2}\right)\) = 2 + 3 = 5.
ਪ੍ਰਸ਼ਨ (iii).
– 1.2, – 3.2, – 5.2, -7.2 , …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ।
– 1.2, – 3.2, – 5.2, – 7.2, …
ਇੱਥੇ T1 = – 1.2, T2 = – 3.2,
T3 – 5.2, T4 = – 7.2
T2 – T1 = -3.2 + 1.2 = -2
T3 – T2 = – 5.2 + 3.2 = – 2
T4 – T3 = -7.2 + 5.2 = – 2
∵ T2 – T1 = T3 – T2 = T4 – T3 = -2
∴ ਸਾਂਝਾ ਅੰਤਰ = d = -2
ਹੁਣ, T5 = a + 4d
= – 1.2 + 4(-2)
= -1.2 – 8 = -9.2
T6 = a + 5d = – 1.2 + 5 (-2)
= – 1.2 – 10 = – 11.2
T7 = a + 6d = – 1.2 + 6 (-2)
= -1.2 – 12 = -13.2
ਪ੍ਰਸ਼ਨ (iv).
– 10, – 6, – 2, 2, ……
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ :
– 10, -6, -2, 2, ….
ਇੱਥੇ T1 = – 10, T2 = -6,
T3 = -2, T4 = 2
T2 – T1 = – 6 + 10 = 4
T3 – T2 = – 2 + 6 = 4
T4 – T3 = 2 + 2 = 4
∵ T2 – T1 = T3 – T2 = T4 – T3 = 4
∴ ਸਾਂਝਾ ਅੰਤਰ = d = 4
ਹੁਣ, T5 = a + 4d = – 10 + 4 (4)
= – 10 + 16 = 6
T6 = a + 5d = – 10 + 5 (4)
= -10 + 20 = 10
T7 = a + 6d = – 10 + 6(4)
= -10 + 24 = 14
ਪ੍ਰਸ਼ਨ (v).
3, 3 + \(\sqrt {2}\), 3 + 2\(\sqrt {2}\), 3 + 3\(\sqrt {2}\) , …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ
T1 = 3, T2 = 3 + \(\sqrt {2}\),
T3 = 3 + 2\(\sqrt {2}\), T4= 3 + 3\(\sqrt {2}\)
ਇੱਥੇ T2 – T1 = 3 + \(\sqrt {2}\) – 3 = \(\sqrt {2}\)
T2 – T3 = 3 + 2\(\sqrt {2}\) – (3 + \(\sqrt {2}\))
= 3 + 2\(\sqrt {2}\) – 3 – \(\sqrt {2}\) = \(\sqrt {2}\)
T4 – T3 = 3 + 3\(\sqrt {2}\) – (3 + 2\(\sqrt {2}\))
= 3 + 3\(\sqrt {2}\) – 3 – 2\(\sqrt {2}\) = \(\sqrt {2}\)
∵ T2 -T1 = T3 – T2 = T4 – T3 = \(\sqrt {2}\)
∴ ਸਾਂਝਾ ਅੰਤਰ = d = \(\sqrt {2}\)
ਹੁਣ, T5 = a +4d = 3 + 4 (\(\sqrt {2}\) )
= 3 + 4\(\sqrt {2}\)
T6 = a + 5d = 3 + 5\(\sqrt {2}\)
T7 = a + 6d = 3 + 6\(\sqrt {2}\)
ਪ੍ਰਸ਼ਨ (vi).
0.2, 0.22, 0.222, 0.2222, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ :
0.2, 0.22, 0.222, 0.2222, …
T1 = 0.2, T2 = 0.22,
T3 = 0.222,
T4 = 0.2222.
T2 – T1 = 0.22 – 0.2 = 0.02
T3 – T2 = 0.222 – 0.22 = 0.002
T2 – T1 ≠ T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (vii).
0, -4, – 8, – 12, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ :
0, -4, – 8, — 12, ….
ਇੱਥੇ T1, = 0, T2 = -4,
T3 =- 8, T4 = – 12
T2 -T1 = -4 – 0 = -4
T3 – T2 = -8 + 4 = -4
T4 – T3 = – 12 + 8 = -4.
∵ T2 – T1 = T3 – T2 = T4 – T3
∴ ਸਾਂਝਾ ਅੰਤਰ = d = -4
ਹੁਣ, T5 = a + 4d = 0 + 4 (-4) = -16
T6 = a + 5d = 0 + 5(-4) = -20.
T7 = a + 6d = 0 + 6(4) = – 24
ਪ੍ਰਸ਼ਨ (viii).
\(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ……..
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ :
\(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ……….
ਇੱਥੇ T1 = \(-\frac{1}{2}\), T2 = –\(\frac{1}{2}\)
T3 = \(-\frac{1}{2}\), T4 = \(-\frac{1}{2}\)
T2 – T1 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
T3 – T2 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
T3 – T2 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) =0
∵ T2 – T1 = T3 – T2 = 0
∴ ਸਾਂਝਾ ਅੰਤਰ = 0 (∵ a = \(\frac{1}{2}\), d = 0)
ਹੁਣ T5 = T6 = T7 = \(-\frac{1}{2}\)
ਪ੍ਰਸ਼ਨ (ix).
1, 3, 9, 27, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ : 1, 3, 9, 27
T1 = 1, T2 = 3, T3 = 9, T4 = 27
T2 – T1 = 3 – 1 = 2
T3 – T2 = 9 – 3 = 6
∵ T2 – T2 + T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (x).
a, 2a, 3a, 4a, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ : a, 2a, 3a, 4a, …
T1 = a, T2 = 2a, T3 = 3a, T1 = 4a
T2 – T1 = 2a – a = a
T3 – T2 = 3a – 2a = a
T4 – T3 = 4a – 3a = a
∵ T2 – T1 = T3 – T2 = T4 – T3 = a
∴ ਸਾਂਝਾ ਅੰਤਰ = d = a
ਇੱਥੇ T5 = a + 4d = a + 4 (a) = a + 4a = 5a
T6o = a + 5d = a + 5a = 6a
T7 = a + 6d = a + 6d = 7a
ਪ੍ਰਸ਼ਨ (xi).
a, a2, a3, a4, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ a, a2, a3, a4, …
T1 = a, T2 = a, T3 = a2, T4 = a3, T = a4
T2 – T1 = a2 – a
T3 – T2 = a3 – a2
∵ T2 – T1 ≠ T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ
ਪ੍ਰਸ਼ਨ (xii).
\(\sqrt {2}\), \(\sqrt {8}\), \(\sqrt {18}\), \(\sqrt {32}\), ………
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ \(\sqrt {2}\) , \(\sqrt {8}\) , \(\sqrt {18}\) , \(\sqrt {32}\) ,…
ਇੱਥੇ T1 = \(\sqrt {2}\), T2 = \(\sqrt {8}\) ,
T3 = \(\sqrt {18}\) , T4 = \(\sqrt {32}\)
ਜਾਂ T1 = \(\sqrt {2}\), T2 = 2\(\sqrt {2}\),
T3 = 3\(\sqrt {2}\), T4 = 4\(\sqrt {2}\)
T2 – T1 = 2\(\sqrt {2}\) – \(\sqrt {2}\) = \(\sqrt {2}\)
T3 – T2 = 3\(\sqrt {2}\) – 2\(\sqrt {2}\) = \(\sqrt {2}\)
T4 – T3 = 4\(\sqrt {2}\) – 3\(\sqrt {2}\) = \(\sqrt {2}\)
∵ T2 – T1 = T3 – T2 = T4 – T3 = \(\sqrt {2}\)
∴ ਸਾਂਝਾ ਅੰਤਰ = d = \(\sqrt {2}\)
ਇੱਥੇ T5 = a + 4d = \(\sqrt {2}\) + 4\(\sqrt {2}\) = 5\(\sqrt {2}\)
T6 = a + 5d = \(\sqrt {2}\) + 5\(\sqrt {2}\) = 6\(\sqrt {2}\)
T7 = a + 6d = \(\sqrt {2}\) + 6\(\sqrt {2}\) = 7\(\sqrt {2}\)
ਪ੍ਰਸ਼ਨ (xiii).
\(\sqrt {3}\), \(\sqrt {6}\), \(\sqrt {9}\), \(\sqrt {12}\), …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ
\(\sqrt {3}\), \(\sqrt {6}\), \(\sqrt {9}\), \(\sqrt {12}\),…
ਇੱਥੇ T1 = \(\sqrt {3}\), T2 = \(\sqrt {6}\),
T3 = \(\sqrt {9}\), T4 = \(\sqrt {12}\)
ਜਾਂ T1 = \(\sqrt {3}\), T2 = \(\sqrt {6}\),
T3 = 3, T4 = 2\(\sqrt {3}\)
T2 – T1 = \(\sqrt {6}\) – \(\sqrt {3}\)
ਹੁਣ, T23 – T2 = 3 – \(\sqrt {6}\)
∵ T2 – T1 ≠ T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (xiv).
12, 32, 52, 72, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ 12, 32, 52, 72……
T1 = 12, T2 = 32, T3 = 52, T4 = 72
ਜਾਂ T1 = 1, T2 = 9, T3 = 25, T4 = 49
T2 – T1 = 9 – 1= 8
T3 – T2 = 25 – 9 = 16
∵ T2 – T1 ≠ T3 – T2
∴ ਇਹ A.P. ਨਹੀਂ ਹੈ ।
ਪ੍ਰਸ਼ਨ (xv).
12, 52, 72, 73, …
ਉੱਤਰ:
ਦਿੱਤੇ ਹੋਏ ਪਦ ਹਨ 12, 52, 72, 73, ….
T1 = 12, T2 = 52, T3 = 72, T4 = 73
ਜਾਂ T1 = 1, T2 = 25, T23 = 49, T4 = 73
T2 – T1 = 25 – 1 = 24
T3 – T2 = 49 – 25 = 24
T4 – T3 = 73 – 49 = 24
∵ T2 – T1 = T3 – T2 = T4 – T3 = 24
∴ ਸਾਂਝਾ ਅੰਤਰ = d = 24
T5 = a + 4d = 1 + 4 (24) = 1 + 96 = 97
T6 = a + 5d = 1 + 5 (24) = 1 + 120 = 121
T7 = a + 6d = 1 + 6 (24) = 1 + 144 = 145