PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.4

1. Find the different set of like fractions:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4

2. Write any three like fractions of:

Question (i)
(i) \(\frac {2}{5}\)
(ii) \(\frac {1}{4}\)
(iii) \(\frac {11}{6}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 3

3. Encircle unit fractions:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 4
Solution:
\(\frac{1}{8}, \frac{1}{9}, \frac{1}{7}\)

4. Fill in the boxes with >, < or =

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 5
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 6

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4

5. Compare using >, < or =

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 7
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 8

6. Compare using >, < or =

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 9
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 10

7. Arrange the following fractions in ascending order:

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 11
Solution:
We know that in fractions having the same denominator the greater the numerator, the greater the value of the fractional numbers. Therefore the given fractions in:
(i) Ascending order is : \(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\)
(ii) Ascending order is : \(\frac{1}{7}, \frac{4}{7}, \frac{6}{7}\)
(iii) Ascending order is : \(\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\)
We know that in fractions having the same numerator, the fractions with smaller denominator is greater:
(iv) Ascending order is : \(\frac{5}{9}, \frac{5}{7}, \frac{5}{3}\)
(v) Ascending order is : \(\frac{3}{13}, \frac{3}{11}, \frac{3}{7}\)
(vi) First find L.C.M. of denominators 4, 6, 12. Now, we convert the given fractions into fractions with denominator 12, we have:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 12
(vii) First find L.C.M. of denominators 7, 35, 14, 28. Now, we convert the given fraction into fractions with denominators 140, we have
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 13
(viii) First find HCF of 3, 9, 12, 15. Now we convert the given fractions into fractions with denominator 180, we have:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 14
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 15

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4

8. Arrange the following fractions in descending order:

Question (i)
\(\frac{5}{9}, \frac{7}{9}, \frac{1}{9}\)
Solution:
If two or more fractions having the same denominator then fraction with greater numerator is greater fraction:
(i) Descending order is : \(\frac{7}{9}, \frac{5}{9}, \frac{1}{9}\)

Question (ii)
\(\frac{3}{11}, \frac{5}{11}, \frac{2}{11}, \frac{7}{11}\)
Solution:
Descending order is : \(\frac{7}{11}, \frac{5}{11}, \frac{3}{11}, \frac{2}{11}\)
If two or more fractions having the same numerator then the fraction with a small denominator is greater.

Question (iii)
\(\frac{2}{7}, \frac{2}{13}, \frac{2}{9}\)
Solution:
Descending order is : \(\frac{2}{7}, \frac{2}{9}, \frac{2}{13}\)

Question (iv)
\(\frac{1}{5}, \frac{1}{3}, \frac{1}{8}, \frac{1}{2}\)
Solution:
Descending order is : \(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{8}\)

Question (v)
\(\frac{1}{6}, \frac{5}{12}, \frac{5}{18}, \frac{2}{3}\)
Solution:
First find L.C.M. of denominators 6, 12, 18, 3.
Now, we convert the given fractions into a fraction with denominator 36, we have:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 16

Question (vi)
\(\frac{3}{4}, \frac{9}{20}, \frac{11}{15}, \frac{17}{30}\)
Solution:
First find L.C.M. of denominator 4, 20,15, 30. Now, we convert the given fractions into a fraction with denominator 60, we have:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 17
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 18

9. Kasvi covered \(\frac {1}{3}\) of her journey by car, \(\frac {1}{5}\) by rickshaw and \(\frac {2}{15}\) on foot. Find by which means, she covered the major part of her journey.
Solution:
Journey covered by car = \(\frac {1}{3}\)
Journey covered by Rickshaw = \(\frac {1}{5}\)
Journey covered on foot = \(\frac {2}{15}\)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 19
We observe that \(\frac {5}{15}\) i.e. \(\frac {1}{3}\) is the greatest.
Hence the major part of journey was covered by car.

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4

10. Father distributed his property among his three sons. The eldest one got \(\frac {3}{10}\), the middle got \(\frac {1}{6}\) and the youngest got \(\frac {1}{5}\) part of the property. State how the property was distributed in ascending order.
Solution:
Property eldest son got = \(\frac {3}{10}\) part
Property middle son got = \(\frac {1}{6}\) part
and Property youngest son got = \(\frac {1}{5}\) part
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.4 20

PSEB 6th Class Maths MCQ Chapter 4 Integers

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 4 Integers MCQ Questions with Answers.

PSEB 6th Class Maths Chapter 4 Integers MCQ Questions

Multiple Choice Questions

Question 1.
How many integers are between -3 to 3?
(a) 5
(b) 6
(c) 4
(d) 3.
Answer:
(a) 5

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question 2.
Which of the following integer is greater than -3?
(a) -5
(b) -4
(c) 0
(d) -10.
Answer:
(c) 0

Question 3.
Which of the following integers are in ascending order?
(a) -5, -9, -7, -8
(b) -9, -8, -7, -5
(c) -5, -7, -8, -8, -9
(d) -8, -5, -9, -7.
Answer:
(b) -9, -8, -7, -5

Question 4.
Which of the following integers are in descending order?
(a) 3, 0, -2, -5
(b) -5, -2, 0, 3
(c) -5, 3,-2, 0
(d) -2, 0, -5, 3.
Answer:
(a) 3, 0, -2, -5

Question 5.
The given number line represents:
PSEB 6th Class Maths MCQ Chapter 4 Integers 1
(a) 5 + 1
(b) 1 + 5
(c) 1 + 1 + 1 + 1 + 1
(d) 5 + 5 + 5 + 5 + 5.
Answer:
(c) 1 + 1 + 1 + 1 + 1

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question 6.
3 less than -2 =
(a) -5
(b) -6
(c) 5
(d) 6.
Answer:
(a) -5

Question 7.
(-2) + 8 =
(a) -6
(b) -10
(c) 10
(d) 6.
Answer:
(d) 6.

Question 8.
Which of the following statements is true about the given number line:
PSEB 6th Class Maths MCQ Chapter 4 Integers 2
(a) Value of A is greater than value of B.
(b) Value of A is greater than value of C.
(c) Value of B is less than value of C.
(d) Value of C is less than value of B.
Answer:
(c) Value of B is less than value of C.

Question 9.
(-7) + (-12) + 11 =
(a) -19
(b) 30
(c) -23
(d) -8.
Answer:
(d) -8.

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question 10.
15 – (-12) + (-27) =
(a) 0
(b) -54
(c) -24
(d) 54.
Answers :
(a) 0

Question 11.
What is the number of integers between -4 and -1?
(a) 3
(b) 4
(c) 5
(d) 6.
Answer:
(b) 4

Question 12.
What is the number of integers between -8 and -2?
(a) 3
(b) 4
(c) 5
(d) 6.
Answer:
(c) 5

Question 13.
Which is the largest integers among -7, -6, -5, -4 and -3?
(a) -6
(b) -5
(c) -4
(d) -3.
Answer:
(d) -3.

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question 14.
Which is the smallest integer among -3, -2, 0 and 1?
(a) -3
(b) -2
(c) 0
(d) 1.
Answer:
(a) -3

Question 15.
The value of (-7) + (-9) + 4 + 16 is:
(a) 36
(b) 22
(c) 4
(d) 27.
Answer:
(c) 4

Fill in the blanks:

Question (i)
The sum of (-9) + (+4) + (-6) + (+3) is …………. .
Answer:
– 8

Question (ii)
The successor of -5 is ……………. .
Answer:
– 4

Question (iii)
-19 + …………. = 0.
Answer:
19

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question (iv)
100 + …………. = 0.
Answer:
– 100

Question (v)
50 + (-50) = ……………. .
Answer:
0

Write True/False:

Question (i)
-8 is to the right of -10 on number line. (True/False)
Answer:
True

Question (ii)
-100 is to the right of -50 on number line. (True/False)
Answer:
False

Question (iii)
Smallest negative integer is -1. (True/False)
Answer:
False

PSEB 6th Class Maths MCQ Chapter 4 Integers

Question (iv)
-26 is larger than -25. (True/False)
Answer:
False

Question (v)
The sum of two integers is always an integer. (True/False)
Answer:
True

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 4 Integers Ex 4.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 4 Integers Ex 4.3

1. Fill the suitable integer in box:

Question (i)
(a) 2 + _ = 0
(b) _ + 11 =0
(c) -5 + _ = o
(d) _ + (-9) = 0
(e) 3 + _ = 0
(f) _ + 0 = 0.
Solution:
(a) 2 + -2 = 0
(b) -11 + 11 =0
(c) -5 + 5 = o
(d) 9 + (-9) = 0
(e) 3 + (-3) = 0
(f) 0 + 0 = 0.

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

2. Subtract using number line:

Question (a)
5 from -7
Solution:
(-7) – 5
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3 1
Hence , -7 – 5 = -12

Question (b)
-3 from -6
Solution:
-6 – (-3)
= -6 + (additive inverse of -3)
= -6 + (3)
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3 2
Hence, -6 + 3 = -3

Question (c)
-2 from 8
Solution:
8 – (-2)
= 8 + (additive inverse of -2)
= 8 + (2)
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3 3
Hence, 8 + 2 = 10

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

Question (d)
3 from 9.
Solution:
9 – 3
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3 4
Hence, 9 – 3 = 6

3. Subtract without using number line:

Question (a)
-6 from 16
Solution:
16 – (-6)
= 16 + (6) = 16 + 6
= 22

Question (b)
-51 from 55
Solution:
55 – (-51)
= 55 + (51) = 55 + 51
= 106

Question (c)
75 from -10
Solution:
-10 – 75
= -(10 + 75)
= -85

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

Question (d)
-31 from -47.
Solution:
-47 – (-31)
= -47 + 31 = -(47 – 31)
= -16

4. Find:

Question (a)
35 – (20)
Solution:
= (35 – 20)
= 15

Question (b)
(-20) – (13)
Solution:
= -(20 + 13)
= -33

Question (c)
(-15) – (-18)
Solution:
= (-15) + (18)
= 3

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

Question (d)
72 – (90)
Solution:
= -(90 – 72)
= -18

Question (e)
23 – (-12)
Solution:
= 23 + (12)
= 23 + 12
= 35

Question (f)
(-32) – (-40).
Solution:
= 40 – 32
= 8

5. Simplify:

Question (a)
2 – 4 + 6 – 8 – 10
Solution:
= 2 + 6 – 4 – 8 – 10
= 2 + 6 -(4 + 8 + 10)
= 8 – 22
= -14

Question (b)
4 – 2 + 2 – 4 – 2 + 2
Solution:
= 4 + 2 + 2 – 2 – 4 – 2
= 8 – 8
= 0

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.3

Question (c)
4 – (-9) + 7 – (-3)
Solution:
=4 + 9 + 7 + 3
= 23

Question (d)
(-7) + (-19) + (-7).
Solution:
= -(7 + 19 + 7)
= – 33

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.3

1. Write the fraction for the shaded part and check whether these fractions are equivalent or not?

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

2. Find four equivalent fractions of the followings:

Question (i)
(i) \(\frac {1}{4}\)
(ii) \(\frac {3}{5}\)
(iii) \(\frac {7}{9}\)
(iv) \(\frac {5}{11}\)
(v) \(\frac {2}{3}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 3
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 4

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

3. Write the lowest equivalent fraction (simplest form) of :

Question (i)
(i) \(\frac {10}{25}\)
(ii) \(\frac {27}{54}\)
(iii) \(\frac {48}{72}\)
(iv) \(\frac {150}{60}\)
(v) \(\frac {162}{90}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 5

4. Are the following fractions equivalent or not?

Question (i)
\(\frac{5}{12}, \frac{25}{60}\)
Solution:
We have
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 6
By cross product,
5 × 60 = 300 and 12 × 25 = 300
Since two cross products are same
So, the given fractions are equivalent.

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

Question (ii)
\(\frac{6}{7}, \frac{36}{42}\)
Solution:
We have
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 7
By cross product,
6 × 42 = 252 and 7 × 36 = 252
Since two cross products are same
So, the given fractions are equivalent.

Question (iii)
\(\frac{7}{9}, \frac{56}{72}\)
Solution:
We have
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3 8
By cross product,
7 × 72 = 504 and 9 × 56 = 504
Since two cross products are same
So, the given fractions are equivalent.

5. Replace [ ] 1 in each of the following by the correct number.

Question (i)
\(\frac{2}{7}\) = 12 / [ ]
Solution:
Observe the numerators we have 12 ÷ 2 = 6
So, we multiply both numerator and denominator of \(\frac {2}{7}\) by 6
We get \(\frac{2}{7}=\frac{2 \times 6}{7 \times 6}=\frac{12}{42}\)
Hence, the correct number in [ ] 1 is 42

Question (ii)
\(\frac{5}{8}\) = 35 / [ ]
Solution:
Observe the numerators we have 35 ÷ 5 = 7
So, we multiply both numerator and denominator of \(\frac {5}{8}\) by 7
We get \(\frac{5}{8}=\frac{5 \times 7}{8 \times 7}=\frac{35}{56}\)
Hence, the correct number in [ ] is 56.

Question (iii)
\(\frac{24}{36}\) = 6 / [ ]
Solution:
Observe the numerators we have 24 ÷ 6 = 4
So, we divide both numerator and denominator of \(\frac {24}{36}\) by 4
We get \(\frac{24}{36}=\frac{24 \div 4}{36 \div 4}=\frac{6}{9}\)
Hence, the correct number in [ ] is 9

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

Question (iv)
\(\frac{30}{48}\) = 8 / [ ]
Solution:
Observe the denominators we have 48 ÷ 8 = 6
So, we divide both numerator and denominator of \(\frac {30}{48}\) by 6
We get \(\frac{30}{48}=\frac{30 \div 6}{48 \div 6}=\frac{5}{8}\)
Hence, the correct number in ⊇ is 5

Question (v)
\(\frac{7}{4}\) = 42 / [ ]
Solution:
Observe the numerators we have 42 ÷ 7 = 6
So, we multiply both numerator and denominator of \(\frac {7}{4}\) by 6
We get \(\frac{7}{4}=\frac{7 \times 6}{7 \times 6}=\frac{42}{24}\)
Hence, the correct number in [ ] is 24

6. Find the equivalent fraction of \(\frac {3}{5}\), having

Question (i)
numerator 18
Solution:
(i) Equivalent fraction of \(\frac {3}{5}\), having numerator 18 is
\(\frac{3}{5}\) = 18 / [ ]
Observe the numerators, we have 18 ÷ 3=6
So, we multiply both numerator and denominator of \(\frac {3}{5}\) by 6
∴ \(\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}\)
Thus, required equivalent fraction of \(\frac{3}{5}=\frac{18}{30}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

Question (ii)
denominator 20
Solution:
Equivalent fraction of \(\frac {3}{5}\), having denominator 20 is \(\frac{3}{5}\) = [ ] / 20
Observe the denominators, we have 20 ÷ 5 = 4
So, we multiply both numerator and denominator of \(\frac {3}{5}\) by 4
Thus, required equivalent fraction of \(\frac{3}{5}=\frac{12}{20}\)
∴ \(\frac{3}{5}=\frac{3 \times 4}{5 \times 4}=\frac{12}{20}\)
Thus, required equivalent fraction of
\(\frac{3}{5}=\frac{12}{20}\)

Question (iii)
numerator 24.
Solution:
Equivalent fraction of \(\frac {3}{5}\) , having numerator 24 is
\(\frac{3}{5}\) = 24 / [ ]
Observe the numerators, we have 24 ÷ 3 = 8
So, we multiply both numerator and denominator of \(\frac {3}{5}\) by 8
∴ \(\frac{3}{5}=\frac{3 \times 8}{5 \times 8}=\frac{24}{40}\)
Thus, required equivalent fraction of
\(\frac{3}{5}=\frac{24}{40}\)

7. Find the equivalent fraction of \(\frac {24}{40}\), having

Question (i)
(i) numerator 6
(ii) numerator 48
(iii) denominator 20
Solution:
(i) Equivalent fraction of \(\frac {24}{40}\), numerator 6 is
\(\frac{24}{40}\) = 6 / [ ]
Observe the numerators, we have 24 ÷ 6 = 4
So, we divide both numerator and denominator of \(\frac {24}{40}\) by 4
∴ \(\frac{24}{40}=\frac{24 \div 4}{40 \div 4}=\frac{6}{10}\)
Thus, required equivalent fraction of
\(\frac{24}{40}=\frac{6}{10}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.3

Question (ii)
numerator 48
Solution:
Equivalent fraction of \(\frac {24}{40}\), having numerator 48 is
\(\frac{24}{40}\) = 48 / [ ]
Observe the numerators, we have 48 ÷ 24 = 2
So, we multiply both numerator and denominator of \(\frac {24}{40}\) by 2
∴ \(\frac{24}{40}=\frac{24 \times 2}{40 \times 2}=\frac{48}{80}\)
Thus, required equivalent fraction of
\(\frac{24}{40}=\frac{48}{80}\)

Question (iii)
denominator 20
Solution:
Equivalent fraction of \(\frac {24}{40}\), having denominator 20 is
\(\frac{24}{40}\) = [ ] / 20
Observe the denominators, we have 40 ÷ 20 = 2
So, we divide both numerator and denominator of \(\frac {24}{40}\) by 2
\(\frac{24}{40}=\frac{24 \div 2}{40 \div 2}=\frac{12}{20}\)
∴ Thus, required equivalent fraction of
\(\frac{24}{40}=\frac{12}{20}\)

PSEB 6th Class English Vocabulary Punctuation

Punjab State Board PSEB 6th Class English Book Solutions English Vocabulary Punctuation Exercise Questions and Answers, Notes.

PSEB 6th Class English Vocabulary Punctuation

Punctuation means putting full stops, commas, question marks etc. into a piece of writing. Punctuation helps to clarify the meaning of the sentence or passage.
लिखते समय उचित विराम चिन्हों, अर्थात् full stops (.), commas (,), question marks (?) आदि का प्रयोग करना Punctuation कहलाता है। ये चिन्ह वाक्य अथवा लेख के अर्थ को स्पष्ट करने में सहायता करते हैं।

The important Marks of Punctuation are-

  1. Full Stop (.)
  2. Comma (,)
  3. Question Mark (?)
  4. Exclamation Mark (!)
  5. Apostrophe (’)
  6. Quotation Mark (“ ”)

PSEB 6th Class English Vocabulary Punctuation 1

1. Full Stop is used:
to make the end of an assertive or imperative sentence; as-
1. The children are laughing.
2. Don’t run after the dog.

PSEB 6th Class English Vocabulary Punctuation

→ to make abbreviations and initials; as-
Sat. Dec. Ltd. Mr. A. Chandra
M.A. M.L.A. M.P. Mrs. N. Roy

2. Comma is used:
→ to separate words from each other; as-
1. His sister is a tall, lovely mid gentle girl.
2. She has pens, pencils, notebooks and books.
3. He did his homework neatly, quickly and correctly.
Note : A comma is generally not used before and.

→ to separate a reporting verb from the reported speech.
1. She says, “I like my school very much.
2. The saint said, “God is good and gracious.

3. Question Mark is used:
→ after a direct question; as-
1. What is your name ?
2. Have you got a car ?

PSEB 6th Class English Vocabulary Punctuation 2

→ after a tag question; as-
1. She is happy; isn’t she ?
2. He didn’t go to school, did he ?

4. Exclamation Mark is used:
→ after expressions of surprise or strong feeling.
1. How hot it is !
2. What a lovely rose !

PSEB 6th Class English Vocabulary Punctuation 3

→ after an inteijection; as-
1. O !
2. Oh !
3. Alas !
4. Hurray !
5. Pooh !

5. Apostrophe (a raised comma) is used:
→ to show that some letters or numbers have been omitted; as-
1. I’m = I am.
2. hasn’t = has not
3. ’tis = it is
4. don’t = do not

PSEB 6th Class English Vocabulary Punctuation 4

→ to show the possessive form of nouns; as-
1. man’s hat
2. girls’ hostel
3. Principal’s office
4. Mohan’s bag.

PSEB 6th Class English Vocabulary Punctuation

6. Quotation Marks are used:
→ to show the actual words of a speaker; as-
1. The teacher said, “Stop writing.”
2. “I can’t help you,” said my friend.

PSEB 6th Class English Vocabulary Punctuation 5

→ to show the titles of songs, poems, books, magazines, etc.
1. “The Blind Beggar” is a beautiful poem.
2. Do you read ‘The Hindustan Times’ daily ?
Note : (i) Quotation Marks are also called Inverted Commas.
(ii) In place of double commas, we can use single commas also.

7. Capital letters are used in the following cases:
1. The first letter of the first word of a sentence.
2. The speech in inverted commas begins with a capital letter.
3. The pronoun ‘P is always written in the capital form.
4. All Proper Nouns begin with a capital letter.
(Manpreet, Punjab, the Gita, the Himalayas, etc.)

Exercises (Solved)

I. Punctuate the following sentences using capital letters where necessary:

1. Shes a good dancer
2. is neeru a good dancer
3. isn’t richa a good dancer
4. madhus sister isnt a good dancer
5. richa said madhu is a good dancer
6. preeti is a good dancer said richas sister
7. what are the children doing there in the street
8. they are pulling the little dogs tail and the dog is crying
PSEB 6th Class English Vocabulary Punctuation 6
Answer:
1. She’s a good dancer.
2. Is Neeru a good dancer ?
3. Isn’t Richa a good dancer ?
4. Madhu’s sister isn’t a good dancer.
5. Richa said,“ Madhu is a good dancer.”
6. ‘‘Preeti is a good dancer,” said Richa’s sister.
7. What are the children doing there in the street ?
8. They are pulling the little dog’s tail, and the dog is crying.

PSEB 6th Class English Vocabulary Punctuation

II. Punctuate the following sentences using capital letters where necessary:

1. do you have a pet
2. the ladys purse was stolen
3. mrs Indu jain taught us hindi
4. this is our classroom said tony
5. what a great man gandhiji was
6. reema will sing a song said neha
7. well you may go and play outside
8. j c bose was a famous indian scientist
PSEB 6th Class English Vocabulary Punctuation 7
Answer:
1. Do you have a pet ?
2. The lady’s purse was stolen.
3. Mrs. Indu Jain taught us Hindi.
4. ‘‘This is our classroom,” said Tony.
5. What a great man Gandhiji was !
6. ‘‘Reema will sing a song,” said Neha.
7. Well ! you may go and play outside.
8. J.C. Bose was a famous Indian scientist.

PSEB 6th Class Punjabi Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

Punjab State Board PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Punjabi Chapter 3 ਸਮਾਜ ਸੇਵਕ

I. ਬਹੁਵਿਕਲਪੀ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ-ਠੀਕ ਉੱਤਰ ਅੱਗੇ ਸਹੀ (✓) ਦਾ ਨਿਸ਼ਾਨ ਲਾਓ :

(i) ਮੇਲਿਆਂ ਵਿੱਚ ਕਿਹੋ-ਜਿਹੀ ਵਰਦੀ ਵਾਲੇ ਮੁੰਡੇ ਨਜ਼ਰ ਆਉਂਦੇ ਹਨ ?
(ੳ) ਖ਼ਾਕੀ
(ਅ) ਸਫ਼ੈਦ
(ਈ) ਨੀਲੀ ।
ਉੱਤਰ :
(ਈ) ਨੀਲੀ । ✓

(ii) ਸਕਾਊਟ ਅਤੇ ਗਾਈਡ ਕੀ ਸਿੱਖ ਰਹੇ ਹੁੰਦੇ ਹਨ ?
(ਉ) ਨੌਕਰੀ ਲਈ ਸਿਖਲਾਈ ।
(ਅ) ਚੰਗੀ ਜੀਵਨ-ਜਾਚ
(ਈ) ਪੈਸੇ ਕਮਾਉਣੇ ॥
ਉੱਤਰ :
(ਅ) ਚੰਗੀ ਜੀਵਨ-ਜਾਚ ✓

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

(iii) ਸਕਾਊਟ ਅਤੇ ਗਾਈਡ ਸੇਵਾ ਕਰਨ ਬਦਲੇ ਕੀ ਲੈਂਦੇ ਹਨ ?
(ਉ) ਸੁਗਾਤਾਂ
(ਅ) ਨਕਦੀ
(ਇ) ਕੋਈ ਸੇਵਾ-ਫਲ ਨਹੀਂ ।
ਉੱਤਰ :
(ਇ) ਕੋਈ ਸੇਵਾ-ਫਲ ਨਹੀਂ । ✓

(iv) ਸਰ ਬੇਡਨ ਪਾਵੇਲ ਨੇ ਸਕਾਊਟ-ਲਹਿਰ ਬਾਰੇ ਪੁਸਤਕ ਕਦੋਂ ਲਿਖੀ ?
(ਉ) 1910
(ਅ) 1908
(ਈ) 1918.
ਉੱਤਰ :
(ਅ) 1908 ✓

(v) ਸਕੂਲਾਂ ਵਿਚ ਸਕਾਊਟਾਂ ਨੂੰ ਕੌਣ ਜਥੇਬੰਦ ਕਰਦਾ ਹੈ ?
(ਉ) ਡਰਿੱਲ-ਮਾਸਟਰ
(ਆ) ਸਕਾਊਟ-ਮਾਸਟਰ
(ਈ) ਲਾਇਬ੍ਰੇਰੀਅਨ ।
ਉੱਤਰ :
(ਆ) ਸਕਾਊਟ-ਮਾਸਟਰ ✓

II. ਛੋਟੇ ਉੱਤਰ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਕਿਸੇ ਮੁਸਾਫ਼ਰ ਦੇ ਸੱਟ ਲੱਗਣ ‘ਤੇ ਸਕਾਉਟ ਅਤੇ ਗਾਈਡ ਕੀ ਕਰਦੇ ਹਨ ?
ਉੱਤਰ :
ਸਕਾਊਟਾਂ ਵਿਚੋਂ ਕੋਈ ਜ਼ਖ਼ਮੀ ਨੂੰ ਮੁੱਢਲੀ ਡਾਕਟਰੀ ਸਹਾਇਤਾ ਵਾਲੇ ਤੰਬੂ ਵਿਚ ਲੈ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਸਕਾਊਟ ਅਤੇ ਗਾਈਡ ਦਾ ਕੀ ਧਰਮ ਹੈ ?
ਉੱਤਰ :
ਸਾਰਿਆਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨਾ ।

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

ਪ੍ਰਸ਼ਨ 3.
ਸਕਾਉਟਾਂ ਅਤੇ ਗਾਈਡਾਂ ਨੇ ਕੀ ਸਹੁੰ ਚੁੱਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ :
ਕਿ ਉਹ ਹਰ ਰੋਜ਼ ਘੱਟੋ-ਘੱਟ ਇੱਕ ਚੰਗਾ ਕੰਮ ਜ਼ਰੂਰ ਕਰਨਗੇ ।

ਪ੍ਰਸ਼ਨ 4.
ਸਕਾਊਟਾਂ ਅਤੇ ਗਾਈਡਾਂ ਦਾ ਮੁੱਖ ਉਦੇਸ਼ ਕੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ :
ਦੁਜਿਆਂ ਦੀ ਸੇਵਾ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 5.
ਭਾਰਤ ਵਿਚ ਪਹਿਲੀ ਵਾਰ ਕਦੋਂ ਕੁੱਝ ਵਿਦਿਆਰਥੀ ਸਕਾਊਟ ਬਣੇ ?
ਉੱਤਰ :
1909 ਵਿਚ ।

III. ਸੰਖੇਪ ਉੱਤਰ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਇੱਕ ਸਕਾਉਟ ਦੇ ਕੀ-ਕੀ ਫ਼ਰਜ਼ ਹਨ ?
ਉੱਤਰ :
ਲੋੜਵੰਦਾਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨਾ, ਹਰ ਰੋਜ਼ ਘੱਟੋ ਘੱਟ ਇਕ ਚੰਗਾ ਕੰਮ ਕਰਨਾ, ਕਿਸੇ ਨਾਲ ਭੇਦ-ਭਾਵ ਨਾ ਕਰਨਾ ਆਦਿ ਇਕ ਸਕਾਉਟ ਦੇ ਫ਼ਰਜ਼ ਹਨ !

ਪ੍ਰਸ਼ਨ 2.
ਸਕਾਉਟ ਕਿਨ੍ਹਾਂ ਗੱਲਾਂ ਦਾ ਭੇਦ-ਭਾਵ ਨਹੀਂ ਕਰਦੇ ?
ਉੱਤਰ :
ਸਕਾਊਟ ਧਰਮ, ਜਾਤ, ਰੰਗ, ਨਸਲ ਆਦਿ ਦਾ ਭੇਦ-ਭਾਵ ਨਹੀਂ ਕਰਦੇ ।

ਪ੍ਰਸ਼ਨ 3.
ਸਕਾਊਟ-ਕੈਂਪਾਂ ਵਿਚ ਸਕਾਊਟਾਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਅਤੇ ਕਿਸ ਕੰਮ ਦੀ ਸਿਖਲਾਈ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ :
ਸਕਾਊਟ ਕੈਂਪ ਵਿਚ ਸਕਾਊਟਾਂ ਨੂੰ ਮੁਢਲੀ ਡਾਕਟਰੀ ਸਹਾਇਤਾ ਕਰਨੀ ਸਿਖਾਈ ਜਾਂਦੀ ਹੈ-ਖ਼ਾਸ ਕਰ ਅੱਗ ਲੱਗਣ, ਹੜਾਂ ਜਾਂ ਭੁਚਾਲਾਂ ਸਮੇਂ । ਕੈਂਪਾਂ ਵਿਚ ਰਾਤ ਵੇਲੇ ਸਕਾਊਟ ਤੇ ਲੀਡਰ ਅੱਗ ਬਾਲ ਕੇ ਆਪਣੇ ਤਜਰਬੇ ਸਾਂਝੇ ਕਰਦੇ ਹਨ ਤੇ ਇਕ-ਦੂਜੇ ਤੋਂ ਸਿੱਖਦੇ ਹਨ । ਉਹ ਚੁਟਕਲਿਆਂ, ਕਹਾਣੀਆਂ ਤੇ ਗੀਤ-ਸੰਗੀਤ ਨਾਲ ਆਪਣਾ ਮਨ-ਪਰਚਾਵਾ ਵੀ ਕਰਦੇ ਹਨ ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਸਹਿਜ-ਸੁਭਾ ਚੰਗੀਆਂ ਗੱਲਾਂ ਆਪਣੇ ਮਨ ਵਿਚ ਵਸਾ ਕੇ ਉਹ ਸਮਾਜ-ਸੇਵਾ ਕਰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 4.
ਸਕਾਊਟ-ਲਹਿਰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਿੱਥੇ ਸ਼ੁਰੂ ਹੋਈ ਅਤੇ ਕਿਸ ਨੇ ਸ਼ੁਰੂ ਕੀਤੀ ?
ਉੱਤਰ :
ਸਕਾਉਟ ਲਹਿਰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇੰਗਲੈਂਡ ਦੇ ਇਕ ਫ਼ੌਜੀ ਅਫਸਰ ਸਰ ਬੇਡਨ ਪਾਵੇਲ ਨੇ 1908 ਵਿਚ ਇੰਗਲੈਂਡ ਵਿਚ ਹੀ ਸ਼ੁਰੂ ਕੀਤੀ ।

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

ਪ੍ਰਸ਼ਨ 5.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਨੂੰ ਵਾਕਾਂ ਵਿੱਚ ਵਰਤੋ :
ਸਹਾਇਤਾ, ਦੁਰਘਟਨਾ, ਸੁਭਾ, ਭੇਦ-ਭਾਵ, ਮੇਲਾ, ਰੁਚੀ ।
ਉੱਤਰ :
1. ਸਹਾਇਤਾ (ਮੱਦਦ) – ਸਾਨੂੰ ਲੋੜਵੰਦਾਂ ਦੀ ਬਿਨਾਂ ਭੇਦ-ਭਾਵ ਦੇ ਸਹਾਇਤਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ।
2. ਦੁਰਘਟਨਾ ਮਾੜੀ ਘਟਨਾ, ਜਿਸ ਵਿਚ ਲੋਕ ਜ਼ਖ਼ਮੀ ਹੋ ਜਾਣ ਤੇ ਮਾਰੇ ਜਾਣ) – ਸਾਡੇ ਦੇਸ਼ ਵਿਚ ਹਰ ਰੋਜ਼ ਸੜਕ ਦੁਰਘਟਨਾਵਾਂ ਵਿਚ ਸੈਂਕੜੇ ਬੰਦੇ ਮਰ ਜਾਂਦੇ ਹਨ ।
3. ਸੁਭਾ (ਚਰਿੱਤਰ) – ਇਸ ਬਜ਼ੁਰਗ ਦਾ ਸੁਭਾ ਬਹੁਤ ਕੌੜਾ ਹੈ
4. ਭੇਦ-ਭਾਵ ਵਿਤਕਰਾ) – ਸਾਨੂੰ ਸਮਾਜ ਵਿਚ ਵਿਚਰਦਿਆਂ ਕਿਸੇ ਨਾਲ ਧਰਮ, ਜਾਤ, ਲਿੰਗ ਜਾਂ ਰੰਗ-ਨਸਲ ਦਾ ਭੇਦ-ਭਾਵ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ।
5. ਮੇਲਾ (ਉਤਸਵ ਮਨਾਉਣ ਲਈ ਹੋਇਆ ਲੋਕਾਂ ਦਾ ਇਕੱਠ) – ਅਸੀਂ ਸਾਰੇ ਰਲ ਕੇ ਦੁਸਹਿਰੇ ਦਾ ਮੇਲਾ ਵੇਖਣ ਗਏ ।
6. ਰੁਚੀ ਦਿਲਚਸਪੀ) – ਮੇਰੀ ਹਿਸਾਬ ਵਿਚ ਰੁਚੀ ਬਹੁਤ ਘੱਟ ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਖ਼ਾਲੀ ਥਾਂਵਾਂ ਭਰੋ :
(i) ਸਾਰਿਆਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨਾ ਇਨ੍ਹਾਂ ਦਾ ……………… ਹੈ ।
(ii) ਲੋੜਵੰਦਾਂ ਦੀ ਸੇਵਾ ਕਰਨੀ ਇਹ ਆਪਣਾ ……………… ਸਮਝਦੇ ਹਨ ।
(iii) ਮੁੰਡਿਆਂ ਨੂੰ ………… ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕੁੜੀਆਂ ਨੂੰ …………..।
(iv) ਸਕਾਉਟਾਂ ਅਤੇ ਗਾਈਡਾਂ ਨੇ ਸਹੁੰ ਚੁੱਕੀ ਹੁੰਦੀ ਹੈ ਕਿ ਉਹ ਹਰ ਰੋਜ਼ ਘੱਟੋ-ਘੱਟ ਇੱਕ ……………… ਕੰਮ ਜ਼ਰੂਰ ਕਰਨਗੇ ।
(v) ਉਹ ਇਸ ਸੇਵਾ ਲਈ ਕੋਈ ……………… ਵੀ ਨਹੀਂ ਲੈਂਦੇ ।
ਉੱਤਰ :
(i) ਸਾਰਿਆਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨਾ ਇਨ੍ਹਾਂ ਦਾ ਧਰਮ ਹੈ ।
(ii) ਲੋੜਵੰਦਾਂ ਦੀ ਸੇਵਾ ਕਰਨੀ ਇਹ ਆਪਣਾ ਫ਼ਰਜ਼ ਸਮਝਦੇ ਹਨ !
(iii) ਮੁੰਡਿਆਂ ਨੂੰ ਸਕਾਊਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕੁੜੀਆਂ ਨੂੰ ਗਾਈਡ ।
(iv) ਸਕਾਉਟਾਂ ਅਤੇ ਗਾਈਡਾਂ ਨੇ ਸਹੁੰ ਚੁੱਕੀ ਹੁੰਦੀ ਹੈ ਕਿ ਉਹ ਹਰ ਰੋਜ਼ ਘੱਟੋ-ਘੱਟ ਇੱਕ ਚੰਗਾ ਕੰਮ ਜ਼ਰੂਰ ਕਰਨਗੇ ।
(v) ਉਹ ਇਸ ਸੇਵਾ ਲਈ ਕੋਈ ਸੇਵਾ-ਫਲ ਵੀ ਨਹੀਂ ਲੈਂਦੇ ।

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਨੂੰ ਹਿੰਦੀ ਅਤੇ ਅੰਗਰੇਜ਼ੀ ਵਿਚ ਲਿਖੋ :

ਪੰਜਾਬੀ – ਹਿੰਦੀ – ਅੰਗਰੇਜ਼ੀ
ਯਾਤਰੀ – ……… – …………
ਸਿੱਖਿਆ। – ………. – …………
ਫ਼ਰਜ਼ – ………… – ………….
ਮਨ-ਪਰਚਾਵਾਂ – ………….. – …………
ਸਮਾਜ-ਸੇਵਾ – …………….. – …………..
ਉੱਤਰ :
ਪੰਜਾਬੀ – ਹਿੰਦੀ – ਅੰਗਰੇਜ਼ੀ
ਯਾਤਰੀ – यात्री – Traveler
ਸਿੱਖਿਆ – शिक्षा – Training
ਫ਼ਰਜ਼ – कर्तव्य – Duty
ਮਨ-ਪਰਚਾਵਾ – मनोरंजन – Entertainment
ਸਮਾਜ-ਸੇਵਾ – समाज-सेवा – Social-Service

ਪ੍ਰਸ਼ਨ 8.
ਹੇਠਾਂ ਲਿਖੇ ਸ਼ਬਦਾਂ ਨੂੰ ਵਾਕਾਂ ਵਿੱਚ ਵਰਤੋ : ਸਹਾਇਤਾ, ਸੰਸਥਾ, ਦੁਰਘਟਨਾ, ਲਹਿਰ, ਨਿਚੋੜ, ਸਹਿਜ-ਸੁਭਾਅ, ਜਥੇਬੰਦ ।
ਉੱਤਰ :
1. ਸਹਾਇਤਾ ਮਦਦ)-ਲੋੜਵੰਦਾਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ।
2. ਸੰਸਥਾ (ਕਿਸੇ ਖ਼ਾਸ ਉਦੇਸ਼ ਲਈ ਬਣਿਆਂ ਸੰਗਠਨ)-ਸਕਾਊਟ ਇਕ ਸਮਾਜ-ਸੇਵੀ ਸੰਸਥਾ ਹੈ ।
3. ਦੁਰਘਟਨਾ ਮਾੜੀ ਘਟਨਾ, ਜਿਸ ਵਿਚ ਲੋਕ ਜ਼ਖ਼ਮੀ ਹੋ ਜਾਣ ਤੇ ਮਾਰੇ ਜਾਣ)-ਸਾਡੇ ਦੇਸ਼ ਵਿਚ ਹਰ ਰੋਜ਼ ਸੜਕ ਦੁਰਘਟਨਾਵਾਂ ਵਿਚ ਸੈਂਕੜੇ ਬੰਦੇ ਮਰ ਜਾਂਦੇ ਹਨ ।
4. ਲਹਿਰ (ਤਰੰਗ)-ਭਾਰਤ ਦੀ ਅਜ਼ਾਦੀ ਦੀ ਲਹਿਰ ਵਿਚ ਬਹੁਤ ਸਾਰੇ ਦੇਸ਼-ਭਗਤਾਂ ਨੇ ਹਿੱਸਾ ਲਿਆ
5. ਨਿਚੋੜ (ਸਾਰ, ਤੱਤ)-ਲੇਖ ਲਿਖਣ ਪਿਛੋਂ ਅੰਤਲੇ ਪੈਰੇ ਵਿਚ ਸਾਰੀ ਵਿਚਾਰ ਦਾ ਨਿਚੋੜ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ।
6. ਸਹਿਜ-ਸੁਭਾਅ (ਸੁਤੇ-ਸਿੱਧ)-ਬੱਚਾ ਸਮਾਜ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਗੱਲਾਂ ਸਹਿਜਸੁਭਾਅ ਹੀ ਸਿੱਖ ਜਾਂਦਾ ਹੈ ।
7. ਜਥੇਬੰਦ (ਸਮੂਹ ਵਿਚ ਪਰੋਏ ਹੋਣਾ)-ਅਮਰੀਕਾ ਵਿਚ ਦੇਸ਼-ਭਗਤਾਂ ਨੇ ਜਥੇਬੰਦ ਹੋ ਕੇ ਗ਼ਦਰ ਪਾਰਟੀ ਦੀ ਨੀਂਹ ਰੱਖੀ ।

IV. ਵਿਆਕਰਨ

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਨੂੰ ਸ਼ੁੱਧ ਕਰ ਕੇ ਲਿਖੋ : ਗਵਾਚੇ, ਇਛਨਾਨ, ਲੋੜਮੰਦ, ਲੈਹਰ, ਮੁਸਾਫ਼ਰ ।
ਉੱਤਰ :
ਅਸ਼ੁੱਧ –
ਗਵਾਚੇ – ਗੁਆਚੇ
ਇਛਨਾਨ – ਇਸ਼ਨਾਨ
ਲੋੜਮੰਦ – ਲੋੜਵੰਦ
ਲੈਹਰ – ਲਹਿਰ ।
ਮੁਸਾਫਰ – ਮੁਸਾਫ਼ਰ ।

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

ਪ੍ਰਸ਼ਨ 2.
ਇਕੱਠਵਾਚਕ ਨਾਂਵ ਕੀ ਹੁੰਦਾ ਹੈ ? ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਦੱਸੋ ।
ਉੱਤਰ :
ਜਿਹੜੇ ਸ਼ਬਦ ਜਾਤੀਵਾਚਕ ਨਾਂਵ ਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਸਮੁੱਚੇ ਇਕੱਠ ਲਈ ਵਰਤੇ ਜਾਣ, ਉਹ ਇਕੱਠਵਾਚਕ ਨਾਂਵ ਅਖਵਾਉਂਦੇ ਹਨ , ਜਿਵੇਂ-ਸ਼੍ਰੇਣੀ, ਸੰਗਤ, ਪੰਚਾਇਤ, ਭੀੜ, ਕਤਾਰ, ਜਮਾਤ, ਮੇਲਾ, ਟੋਲੀ, ਸਭਾ ਆਦਿ ।

V. ਯੋਗਤਾ ਵਿਸਤਾਰ

ਪ੍ਰਸ਼ਨ 1.
ਆਪਣੇ ਸਕੂਲ ਵਿਚ ਕੰਮ ਕਰ ਰਹੀ ਸਕਾਉਟ-ਗਾਈਡ ਸੇਵਾ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ :
ਸਾਡੇ ਸਕੂਲ ਵਿਚ ਸਾਂਝੀ ਵਿੱਦਿਆ ਹੈ । ਇਸ ਵਿਚ ਸਕਾਊਟ ਵੀ ਹਨ ਤੇ ਗਾਈਡ ਵੀ | ਸਕਾਉਟ ਜਥੇਬੰਦੀ ਵਿਚ 20 ਮੁੰਡੇ ਹਨ ਅਤੇ ਗਾਈਡ ਵਿਚ 10 ਕੁੜੀਆਂ । ਇਨ੍ਹਾਂ ਦੇ ਮਾਸਟਰ ਸਾਡੇ ਸਕੂਲ ਦੇ ਸਰੀਰਕ ਸਿੱਖਿਆ ਦੇ ਅਧਿਆਪਕ ਹਨ । ਉਹ ਸਕਾਊਟਾਂ ਤੇ ਗਾਈਡਾਂ ਨੂੰ ਕੈਂਪਾਂ ਵਿਚ ਲਿਜਾ ਕੇ ਉਨਾਂ ਨੂੰ ਸਿਖਲਾਈ ਦੁਆਉਂਦੇ ਰਹਿੰਦੇ ਹਨ । ਉਹ ਨੀਲੇ ਕੱਪੜੇ ਪਾਉਂਦੇ ਹਨ ਤੇ ਉਨ੍ਹਾਂ ਦੇ ਗਲ ਵਿਚ ਇਕ ਰੁਮਾਲ ਬੰਨਿਆ ਹੁੰਦਾ ਹੈ । ਉਨ੍ਹਾਂ ਨੇ ਆਪਣੀ ਕਮੀਜ਼ ਨਾਲ ਬੈਜ ਵੀ ਲਾਇਆ ਹੁੰਦਾ ਹੈ । ਉਹ ਹਰ ਸਮੇਂ ਲੋੜਵੰਦਾਂ ਦੀ ਸਹਾਇਤਾ ਲਈ ਤਿਆਰ ਰਹਿੰਦੇ ਹਨ । ਜੇਕਰ ਉਨ੍ਹਾਂ ਨੂੰ ਕੋਈ ਅੰਨ੍ਹਾ ਜਾਂ ਬਜ਼ੁਰਗ ਸੜਕ ਪਾਰ ਕਰਦਾ ਦਿਸ ਪਏ, ਤਾਂ ਉਨ੍ਹਾਂ ਵਿਚੋਂ ਕੋਈ ਦੌੜ ਕੇ ਉਸ ਦੇ ਕੋਲ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ ਤੇ ਉਸਦੀ ਬਾਂਹ ਫੜ ਕੇ ਸੜਕ ਪਾਰ ਕਰਾਉਂਦਾ ਹੈ । ਜੇਕਰ ਸਕੂਲ ਵਿਚ ਖੇਡਦਿਆਂ ਜਾਂ ਦੌੜਦਿਆਂ ਕਿਸੇ ਮੁੰਡੇ-ਕੁੜੀ ਦੇ ਸੱਟ ਲਗ ਜਾਵੇ, ਤਾਂ ਉਹ ਤੁਰੰਤ ਉਸਨੂੰ ਮੁਢਲੀ ਡਾਕਟਰੀ ਸਹਾਇਤਾ ਦੁਆਉਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ । ਕਈ ਵਾਰੀ ਉਹ ਬੱਸ ਅੱਡੇ ਜਾਂ ਰੇਲਵੇ ਦੀ ਟਿਕਟ ਲੈਂਦੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਕਿਉ ਵਿਚ ਖੜੇ ਹੋਣ ਦੀ ਮਹੱਤਤਾ ਦੱਸਦੇ ਹਨ । ਵਿਸਾਖੀ ਦੇ ਦਿਨ ਜਦੋਂ ਸਾਡੇ ਪਿੰਡ ਦੇ ਇਤਿਹਾਸਿਕ ਗੁਰਦੁਆਰੇ ਵਿਚ ਭਾਰੀ ਮੇਲਾ ਲਗਦਾ ਹੈ, ਤਾਂ ਉੱਥੋਂ ਦਾ ਬਹੁਤ ਸਾਰਾ ਪ੍ਰਬੰਧ ਉਹ ਆਪਣੇ ਹੱਥ ਲੈ ਲੈਂਦੇ ਹਨ । ਉਹ ਜ਼ਖ਼ਮੀਆਂ, ਬਿਮਾਰਾਂ ਤੇ ਬਜ਼ੁਰਗਾਂ ਦੀ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ । ਜੇਬ-ਕਤਰਿਆਂ ‘ਤੇ ਨਜ਼ਰ ਰੱਖਦੇ ਹਨ | ਭੀੜ ਉੱਤੇ ਕੰਟਰੋਲ ਕਰਨ ਲਈ ਰੱਸੀਆਂ ਆਦਿ ਬੰਨ੍ਹ ਦਿੰਦੇ ਹਨ । ਉਹ ਗੁਆਚੇ ਬੱਚਿਆਂ ਬਾਰੇ ਲਾਊਡ ਸਪੀਕਰ ਤੇ ਅਨਾਊਂਸ ਕਰ ਕੇ ਲੋਕਾਂ ਨੂੰ ਸੂਚਿਤ ਕਰਦੇ ਹਨ । ਇਸ ਪ੍ਰਕਾਰ ਉਹ ਬਿਨਾਂ ਕਿਸੇ ਲੋਭ-ਲਾਲਚ ਤੋਂ ਸਭ ਦੀ ਬਿਨਾਂ ਵਿਤਕਰੇ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ ।

ਸਮਾਜ ਸੇਵਕ Summary

ਸਮਾਜ ਸੇਵਕ ਪਾਠ ਸੰਖੇਪ

ਅਨੰਦਪੁਰ ਸਾਹਿਬ ਵਿਚ ਹੋਲੇ ਮਹੱਲੇ, ਮੁਕਤਸਰ ਵਿਚ ਮਾਘੀ ਦੇ ਮੇਲੇ, ਫ਼ਤਿਹਗੜ੍ਹ ਸਾਹਿਬ ਵਿਚ ਸ਼ਹੀਦੀ ਜੋੜ-ਮੇਲੇ ਜਾਂ ਕੁੰਭ ਦੇ ਮੇਲੇ ਵਿਚ ਨੀਲੀ ਵਰਦੀ ਵਾਲੇ ਮੁੰਡੇ-ਕੁੜੀਆਂ ਲੋਕਾਂ ਦੀ ਅਗਵਾਈ ਤੇ ਸਹਾਇਤਾ ਕਰਦੇ ਨਜ਼ਰ ਆਉਂਦੇ ਹਨ । ਉਹ ਮੇਲੇ ਦੇ ਪ੍ਰਬੰਧ ਵਿਚ ਹਿੱਸਾ ਪਾਉਂਦੇ ਹੋਏ ਜਖ਼ਮੀਆਂ ਨੂੰ ਮੁਢਲੀ ਡਾਕਟਰੀ ਸਹਾਇਤਾ ਲਈ ਤੰਬੂ ਵਿਚ ਲੈ ਜਾਂਦੇ ਹਨ ਜਾਂ ਭੁੱਲੇ-ਭਟਕਿਆਂ ਨੂੰ ਸਹੀ ਰਾਹ ਵੀ ਪਾਉਂਦੇ ਹਨ । ਉਹ ਗੁਆਚੇ ਬੱਚਿਆਂ ਬਾਰੇ ਲਾਉਡ ਸਪੀਕਰਾਂ ਰਾਹੀਂ ਲੋਕਾਂ ਨੂੰ ਦੱਸਦੇ ਹਨ · 1ਉਹ ਲੋਕਾਂ ਦੀ ਸਹਾਇਤਾ ਬਿਨਾਂ ਕਿਸੇ ਭੇਦ-ਭਾਵ ਤੋਂ ਆਪਣਾ ਫ਼ਰਜ਼ ਸਮਝ ਕੇ ਕਰਦੇ ਹਨ । ਇਹ ਮੁੰਡੇ-ਕੁੜੀਆਂ ਸਕੂਲਾਂ-ਕਾਲਜਾਂ ਦੇ ਵਿਦਿਆਰਥੀ ਹੁੰਦੇ ਹਨ, ਜੋ ਵਿਹਲੇ ਸਮੇਂ ਲੋਕਾਂ ਦੀ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ । ਇਹ ਬੜੇ ਪਿਆਰ ਨਾਲ ਬੋਲਦੇ ਹਨ ਤੇ ਕਿਸੇ ਤੋਂ ਸ਼ਾਬਾਸ਼ ਦੀ ਆਸ ਵੀ ਨਹੀਂ ਕਰਦੇ । ਇਨ੍ਹਾਂ ਨੇ ਆਪਣੇ ਦੇਸ਼ ਪ੍ਰਤੀ ਆਪਣਾ ਫ਼ਰਜ਼ ਪੂਰਾ ਕਰਨ ਦਾ ਬਚਨ ਦਿੱਤਾ ਹੁੰਦਾ ਹੈ । ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਮੁੰਡਿਆਂ ਨੂੰ ਸਕਾਉਟ ਤੇ ਕੁੜੀਆਂ ਨੂੰ ਗਾਈਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਛੋਟੀ ਉਮਰ ਦੇ ਇਨ੍ਹਾਂ ਸਮਾਜ-ਸੇਵਕਾਂ ਨੂੰ ‘ਕਬ’ ਅਤੇ ‘ਬਲਬੁਲਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਸਾਰੇ ਮੁੰਡੇ-ਕੁੜੀਆਂ ਅਸਲ ਵਿਚ ਚੰਗੀ ਜੀਵਨ-ਜਾਚ ਹੀ ਸਿੱਖ ਰਹੇ ਹੁੰਦੇ ਹਨ ।

ਇਨ੍ਹਾਂ ਨੇ ਸਹੁੰ ਖਾਧੀ ਹੁੰਦੀ ਹੈ ਕਿ ਹਰ ਰੋਜ਼ ਘੱਟੋ-ਘੱਟ ਇਕ ਚੰਗਾ ਕੰਮ ਜ਼ਰੂਰ ਕਰਨਾ ਹੈ । ਇਸ ਨੂੰ ਯਾਦ ਰੱਖਣ ਲਈ ਉਹ ਆਪਣੇ ਗਲ ਨਾਲ ਬੰਨ੍ਹੇ ਰੁਮਾਲ ਨੂੰ ਗੰਢ ਦੇ ਲੈਂਦੇ ਹਨ ਤੇ ਉਸਨੂੰ ਉਦੋਂ ਹੀ ਖੋਲ੍ਹਦੇ ਹਨ, ਜਦੋਂ ਉਹ ਕੋਈ ਚੰਗਾ ਕੰਮ ਕਰ ਲੈਣ । ‘ਸਕਾਉਟਾਂ ਤੇ ਗਾਈਡਾਂ’ ਦੀਆਂ ਵਰਦੀਆਂ ਵੱਖ-ਵੱਖ ਹੁੰਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦਾ ਕੰਮ ਇਕੋ ਹੀ ਹੁੰਦਾ ਹੈ-ਦੂਜਿਆਂ ਦੀ ਸੇਵਾ ਕਰਨਾ । : ਸਕਾਉਟ ਲਹਿਰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇੰਗਲੈਂਡ ਦੇ ਇਕ ਫ਼ੌਜੀ ਅਫ਼ਸਰ ਸਰ ਬੇਡਨ ਪਾਵੇਲ ਨੇ ਸ਼ੁਰੂ ਕੀਤੀ ਤੇ 1908 ਵਿਚ ਉਨ੍ਹਾਂ ਇਸ ਸੰਬੰਧੀ ਇਕ ਪੁਸਤਕ ਲਿਖੀ । ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਉਹ ਇੱਕੀ ਮੁੰਡਿਆਂ ਦਾ ਇਕ ਸਕਾਉਟ ਕੈਂਪ ਲਾ ਚੁੱਕੇ ਸਨ ਤੇ ਇਹ ਪੁਸਤਕ ਉਨ੍ਹਾਂ ਦੇ ਤਜਰਬਿਆਂ ਦਾ ਨਿਚੋੜ ਸੀ ! ਇਸ ਪੁਸਤਕ ਨੂੰ ਪੜ੍ਹ ਕੇ ਹਜ਼ਾਰਾਂ ਮੁੰਡੇ-ਕੁੜੀਆਂ ਸਕਾਉਟ ਬਣਨ ਲਈ ਤਿਆਰ ਹੋ ਗਏ । ਭਾਰਤ ਵਿਚ 1909 ਵਿਚ ਪਹਿਲੀ ਵਾਰੀ ਕੁੱਝ ਵਿਦਿਆਰਥੀ ਸਕਾਊਟ ਬਣੇ । ਸਕਾਉਟਾਂ ਨੂੰ ਆਪਣਾ ਵਿਹਲਾ ਸਮਾਂ ਚੰਗੇ ਢੰਗ ਨਾਲ ਬਿਤਾਉਣ ਦੀ ਜਾਚ ਸਿਖਾਈ ਜਾਂਦੀ ਹੈ ਸਕਾਊਟ ਕੈਂਪ ਤੇ ਰੈਲੀਆਂ ਵਿਚ ਮਨ-ਪਰਚਾਵੇ ਤੋਂ ਇਲਾਵਾ ਡਾਕਟਰੀ ਸਹਾਇਤਾ ਕਰਨੀ ਵੀ ਸਿਖਾਈ ਜਾਂਦੀ ਹੈ । ਅੱਗ ਲੱਗਣ, ਹੜਾਂ ਤੇ ਭੁਚਾਲਾਂ ਆਦਿ ਮੁਸੀਬਤਾਂ ਸਮੇਂ ਲੋਕਾਂ ਦੀ ਮੱਦਦ ਕਰਨ ਦੇ ਤਰੀਕੇ ਦੱਸੇ ਜਾਂਦੇ ਹਨ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿਚ ਸਕਾਉਟ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਪਹੁੰਚਦੇ ਹਨ | ਹਰ ਦੁੱਖ, ਤਕਲੀਫ ਵਿਚ ਕਿਸ ਤਰ੍ਹਾਂ ਖਿੜੇ ਮੱਥੇ ਰਿਹਾ ਜਾਵੇ, ਆਦਿ ਗੱਲਾਂ ਸਿੱਖ ਕੇ ਉਹ ਚੰਗੇ ਸ਼ਹਿਰੀ ਬਣਨ ਦੇ ਯੋਗ ਹੁੰਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਕੈਂਪਾਂ ਵਿਚ ਸਕਾਉਟ ਤੇ ਲੀਡਰ ਰਾਤ ਨੂੰ ਅੱਗ ਦੁਆਲੇ ਬੈਠ ਕੇ ਆਪਣੇ ਤਜਰਬੇ ਸਾਂਝੇ ਕਰਦੇ ਹਨ । ਚੁਟਕਲਿਆਂ, ਕਹਾਣੀਆਂ ਤੇ ਗੀਤ-ਸੰਗੀਤ ਦਾ ਦੌਰ ਚਲਦਾ ਹੈ । ਇਸ ਤਰ੍ਹਾਂ ਮਨ-ਪਰਚਾਵਾ ਕਰਦੇ ਹੋਏ ਉਹ ਸਹਿਜ-ਸੁਭਾ ਚੰਗੀਆਂ ਗੱਲਾਂ ਸਿੱਖਦੇ ਹਨ ।

ਸਕੂਲਾਂ ਵਿਚ ਸਕਾਉਟ-ਮਾਸਟਰ ਬੱਚਿਆਂ ਨੂੰ ਜਥੇਬੰਦ ਕਰਦੇ ਹਨ । ਸਾਰੇ ਸਕੂਲਾਂ ਦੇ ਸਕਾਊਟ ਜ਼ਿਲ਼ਾ-ਪੱਧਰ ‘ਤੇ ਅਤੇ ਫਿਰ ਰਾਜ-ਪੱਧਰ ‘ਤੇ ਸਕਾਉਟ-ਸੰਸਥਾ ਰਾਹੀਂ ਜੁੜੇ ਹੁੰਦੇ ਹਨ । ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਸੰਸਥਾ ਸਾਰੇ ਦੇਸ਼ ਵਿਚ ਫੈਲੀ ਹੁੰਦੀ ਹੈ, ਜੋ ਸਮੁੱਚੇ ਸੰਸਾਰ ਦੇ ਸਕਾਊਟਾਂ ਤੇ ਗਾਈਡਾਂ ਨੂੰ ਇਕ-ਦੂਜੇ ਦੇ ਨੇੜੇ ਲਿਆਉਂਦੀ ਹੈ । ਇਹ ਸੰਸਾਰ ਵਿਚ ਸਮਾਜ-ਸੇਵਾ ਕਰਨ ਵਾਲੇ ਸਭ ਤੋਂ ਵਧੀਆ ਮਨੁੱਖ ਹਨ ।

PSEB 6th Class Punjabi Book Solutions Chapter 3 ਸਮਾਜ ਸੇਵਕ

ਔਖੇ ਸ਼ਬਦਾਂ ਦੇ ਅਰਥ :

ਕੁੰਭ ਦਾ ਮੇਲਾ = ਕੁੰਭ ਦਾ ਮੇਲਾ ਹਰ ਬਾਰਾਂ ਸਾਲਾਂ ਪਿੱਛੋਂ ਹਰਦੁਆਰ, ਅਲਾਹਾਬਾਦ, ਨਾਸਿਕ ਅਤੇ ਉਜੈਨ ਵਿਚ ਲਗਦਾ ਹੈ । ਇਨ੍ਹਾਂ ਦਿਨਾਂ ਵਿਚ ਹਿੰਦੂ ਲੋਕ ਹਰਦੁਆਰ ਵਿਖੇ ਗੰਗਾ, ਅਲਾਹਾਬਾਦ ਵਿਚ ਗੰਗਾ-ਜਮਨਾ-ਸਰਸਵਤੀ ਦੇ ਸੰਗਮ, ਨਾਸਿਕ ਵਿਚ ਗੋਦਾਵਰੀ ਤੇ ਉਜੈਨ ਵਿਚ ਸ਼ਪ ਨਦੀ ਵਿਚ ਇਸ਼ਨਾਨ ਕਰਦੇ ਹਨ । ਸੰਬੰਧੀ = ਰਿਸ਼ਤੇਦਾਰ । ਭੇਦ-ਭਾਵ = ਫ਼ਰਕ, ਵਿਤਕਰਾ, ਕਿਸੇ ਜਾਤ, ਧਰਮ, ਨਸਲ ਜਾਂ ਲਿੰਗ ਕਾਰਨ ਚੰਗਾ-ਮਾੜਾ ਜਾਂ ਉੱਚਾ-ਨੀਵਾਂ ਸਮਝਣਾ | ਧਰਮ = ਪਵਿੱਤਰ ਫ਼ਰਜ਼ | ਸ਼ਾਬਾਸ਼ = ਪ੍ਰਸੰਸਾ, ਹੱਲਾਸ਼ੇਰੀ | ਪ੍ਰਤਿ = ਲਈ, ਖ਼ਤਰਾ | ਵਚਨ = ਇਕਰਾਰ | ਕੱਬ = ਛੋਟੀ ਉਮਰ ਦੇ ਸਕਾਉਟ ਮੁੰਡੇ ਬੁਲਬੁਲ = ਛੋਟੀ ਉਮਰ ਦੀ ਸਕਾਉਟ ਕੁੜੀ । ਸੰਸਥਾ = ਕਿਸੇ ਖ਼ਾਸ ਉਦੇਸ਼ ਲਈ ਬਣਿਆਂ ਲੋਕਾਂ ਦਾ ਸਮੂਹ । ਸੇਵਾ-ਫਲ = ਸੇਵਾ ਕਰਨ ਦਾ ਇਵਜ਼, ਸੇਵਾ ਕਰਨ ਦੇ ਬਦਲੇ ਵਿਚ ਲਈ ਚੀਜ਼ । ਜਾਚ = ਤਰੀਕਾ ਰੈਲੀਆਂ = ਕਿਸੇ ਖ਼ਾਸ ਉਦੇਸ਼ ਲਈ ਹੋਇਆ ਲੋਕਾਂ ਦਾ ਇਕੱਠ । ਰੁਚੀ = ਦਿਲਚਸਪੀ । ਖਿੜੇ ਮੱਥੇ = ਖ਼ੁਸ਼ੀ ਨਾਲ 1 ਚੁਟਕਲਿਆਂ = ਲਤੀਫ਼ਿਆਂ, ਨਿੱਕੀਆਂ ਨਿੱਕੀਆਂ ਹਸਾਉਣੀਆਂ ਘਟਨਾਵਾਂ । ਦੌਰ ਚਲਣਾ = ਸਮਾਂ ਬਿਤਾਉਣਾ } ਸਹਿਜਸੁਭਾਅ = ਬਿਨਾਂ ਮਨ ਉੱਤੇ ਬੋਝ ਪਾਇਆਂ, ਸੁੱਤੇ-ਸਿੱਧ । ਜੱਥੇਬੰਦ ਕਰਨਾ = ਕਿਸੇ ਖ਼ਾਸ ਉਦੇਸ਼ ਲਈ ਲੋਕਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰਨਾ ।

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.2

1. Classify the following as proper and improper fractions:

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

2. Express each of the following as mixed fractions, Also represent with diagrams:

Question (i)
\(\frac {27}{5}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 3
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(5\frac {2}{5}\)

Question (ii)
\(\frac {13}{4}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 4
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(3\frac {1}{4}\)

Question (iii)
\(\frac {43}{8}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 5
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(5\frac {3}{8}\)

Question (iv)
\(\frac {51}{7}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 6
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(7\frac {2}{7}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

Question (v)
\(\frac {20}{3}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 7
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(6\frac {2}{3}\)

3. Express each of the following mixed fractions as improper fractions:

Question (i)
(i) \(\)2 \frac{1}{3}\(\)
(ii) \(\)5 \frac{2}{7}\(\)
(iii) \(\)4 \frac{3}{5}\(\)
(iv) \(\)3 \frac{3}{4}\(\)
(v) \(\)9 \frac{5}{8}\(\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 8

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

4. Express the shaded portion as Improper Fraction and Mixed fraction:

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 9
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 10

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.1

1. Write the fraction representing the shaded portion:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

2. Colour the part according to the given fraction:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 3
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 4

3. Write the fraction for each of the following:

Question (i)
(i) Three-Fourth
(ii) Seven-Tenth
(iii) A Quarter
(iv) Five-Eighth
(v) Three-Twelvth.
Solution:
(i) \(\frac {3}{4}\)
(ii) \(\frac {7}{10}\)
(iii) \(\frac {1}{4}\)
(iv) \(\frac {5}{8}\)
(v) \(\frac {3}{12}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

4. Write the fraction for the followings:

Question (i)
numerator = 5
denominator = 9
Answer:
\(\frac {5}{9}\)

Question (ii)
numerator = 2
denominator = 11
Answer:
\(\frac {2}{11}\)

Question (iii)
numerator = 6
denominator = 7
Answer:
\(\frac {6}{7}\)

5. Write the numerator and the denominator for the followings:

Question (i)
\(\frac {2}{3}\)
Solution:
Given fraction is \(\frac {2}{3}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 2
and Denominator = 3

Question (ii)
\(\frac {1}{4}\)
Solution:
Given fraction is \(\frac {1}{4}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 1
and Denominator = 4

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (iii)
\(\frac {5}{11}\)
Solution:
Given fraction is \(\frac {5}{11}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 5
and Denominator = 11

Question (iv)
\(\frac {9}{13}\)
Solution:
Given fraction is \(\frac {9}{13}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 9
and Denominator = 13

Question (iv)
\(\frac {17}{16}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 17 and
Denominator = 16

6. Express:

Question (i)
1 day as a fraction of 1 week.
Solution:
We know 1 week = 7 days
∴ Required fraction= \(\frac {1}{7}\)

Question (ii)
40 seconds as a fraction of 1 minute.
Solution:
We know 1 minute = 60 seconds
∴ Required fraction = \(\frac {40}{60}\) or \(\frac {2}{3}\)
(Dividing both terms by 20)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (iii)
15 hours as fraction of 1 day.
Solution:
We know 1 day = 24 hours
∴ Required fraction = \(\frac {15}{24}\) or \(\frac {5}{8}\)
(Dividing both terms by 3)

Question (iv)
2 months as a fraction of 1 year.
Solution:
We know 1 year = 12 months
∴ Required fraction = \(\frac {2}{12}\) or \(\frac {1}{6}\)
(Dividing both terms by 2)

Question (v)
45 cm as a fraction of 1 metre.
Solution:
We know 1 metre = 100 cm
∴ Required fraction = \(\frac {45}{100}\) or \(\frac {9}{20}\)
(Dividing both terms by 5)

7. Write the numbers from 1 to 25.

Question (i)
What fraction of them are even numbers?
Solution:
Numbers from 1 to 25 are:
1,2, 3, 4,5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 i.e. 25 in number.
Even numbers out of these numbers are:
2, 4, 6, 8, 10, 12, 14, 16, 18; 20, 22, 24 i.e. 12 in number
∴ Required fraction = \(\frac {12}{25}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (ii)
What fraction of them are prime numbers?
Solution:
Prime number out of these numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23 i.e. 9 in number
∴ Required fraction = \(\frac {9}{25}\)

Question (iii)
What fraction of them are multiples of 3?
Solution:
Multiples of 3 out of these numbers are:
3, 6, 9, 12, 15, 18, 21, 24 i.e. 8 in number
∴ Required fraction = \(\frac {8}{25}\)

8. In class 6th, there are 24 boys and 18 girls. What fraction of total students represent boys and girls?
Solution:
Boys = 24
Girls = 18
Total students = 24 + 18 = 42
Fraction which represents boys
= \(\frac {24}{42}\) or \(\frac {4}{7}\)
(Dividing both terms by 6)
Fraction which represents girls
= \(\frac {18}{42}\) or \(\frac {3}{7}\)
(Dividing both terms by 6)

9. A bag contains 6 red balls and 7 blue balls. What fraction of balls represent red and blue colour?
Solution:
Red balls = 6
Blue balls = 7
Total number of red and blue balls = 6 + 7 = 13
Fraction which represents red balls = \(\frac {6}{13}\)
Fraction which represents blue balls = \(\frac {7}{13}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

10. Sidharth has a cake. He cuts it into 10 equal parts. He gave 2 parts to Naman, 3 parts to Nidhi, 1 parts to Seema and the remaining four parts he kept for himself. Find:

Question (i)
What fraction of cake, he gave to Naman?
Solution:
Total parts = 10
Fraction of cake, he gave to Naman = \(\frac {2}{10}\) or \(\frac {1}{5}\)

Question (ii)
What fraction of cake, he gave to Nidhi?
Solution:
Fraction of cake, he gave to Nidhi = \(\frac {3}{10}\)

Question (iii)
What fraction of cake, he kept for himself?
Solution:
Fraction of cake, he kept for himself = \(\frac {4}{10}\) or \(\frac {2}{5}\)

Question (iv)
Who has more cake than others?
Solution:
Sidharth has more cake than others

11. In a box, there are 12 apples, 7 oranges and 5 guavas. What fraction of fruits in box represents each?
Solution:
Apples = 12, Oranges = 7
and Gauvas = 5
Total fruits = 12 + 7 + 5 = 24.
Fraction which represents apples
= \(\frac {12}{24}\) or \(\frac {1}{2}\)
Fraction which represents oranges
= \(\frac {7}{24}\)
Fraction which represents Gauvas
= \(\frac {5}{24}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

12. Dishmeet has 20 pens. He gives one-fourth to Balkirat. How many pens Dishmeet and Balkirat have?
Solution:
Total pens = 20
Pens Balkirat has = One-fourth of 20
= \(\frac {22}{7}\) × 20 = 5
Pens Dishmeet has = 20 – 5 = 15

13. Represent the following fraction on the number line?

Question (i)
\(\frac {2}{5}\)
Solution:
In order to represent \(\frac {2}{5}\) on number line, we divide the gap between 0 and 1 into 5 equal parts, which are, (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 5

Question 2.
\(\frac {5}{7}\)
Solution:
In order to represent \(\frac {5}{7}\) on number line, we divide the gap between 0 and 1 into 7 equal parts, which are, (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 6

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question 3.
\(\frac {3}{10}\), \(\frac {5}{10}\), \(\frac {1}{10}\)
Solution:
In order to represent \(\frac {3}{10}\), \(\frac {5}{10}\), \(\frac {1}{10}\) on number line, we divide the gap between 0 and 1 into 10 equal parts, which are (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 7

Question 4.
\(\frac {3}{8}\), \(\frac {5}{8}\), \(\frac {7}{8}\)
Solution:
In order to represents \(\frac {3}{8}\), \(\frac {5}{8}\), \(\frac {7}{8}\) on number line, we divide the gap between 0 and 1 into 8 equal parts, which are (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 8

14. Find:

(i) \(\frac {3}{5}\) of 20 books
(ii) \(\frac {5}{8}\) of 32 pens
(iii) \(\frac {1}{6}\) of 36 copies 6
(iv) \(\frac {4}{7}\) of 21 apples
(v) \(\frac {3}{4}\) of 28 pencils.
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 9
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 10

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

15. Balkirat had a box of 36 erasers. He gave \(\frac {1}{2}\) of them to Rani, \(\frac {2}{9}\) of them to Yuvraj and keeps the rest.

Question (i)
(i) How many erasers does Rani get?
(ii) How many erasers does Yuvraj get?
(iii) How many erasers does Harnik keep?
Solution:
Total erasers = 36
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 11
(iii) Erasers Harnik gets = 36 – (18 + 8)
= 36 – 26
= 10

16. State True/False

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 12
Solution:
(i) False
(ii) True
(iii) True
(iv) True

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 3 Playing with Numbers MCQ Questions with Answers.

PSEB 6th Class Maths Chapter 3 Playing with Numbers MCQ Questions

Multiple Choice Questions

Question 1.
Which number is a factor of every, number?
(a) 0
(b) 1
(c) 2
(d) 3.
Answer:
(b) 1

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 2.
How many even numbers are prime?
(a) 1
(b) 2
(c) 3
(d) 4.
Answer:
(a) 1

Question 3.
The smallest composite number is:
(a) 1
(b) 2
(c) 3
(d) 4.
Answer:
(d) 4.

Question 4.
Which of the following number is a perfect number?
(a) 8
(b) 6
(c) 12
(d) 18.
Answer:
(b) 6

Question 5.
Which of the following is not a multiple of 7?
(a) 35
(b) 48
(c) 56
(d) 91.
Answer:
(b) 48

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 6.
Which of the following is not a factor of 36?
(a) 12
(b) 6
(c) 9
(d) 8.
Answer:
(d) 8.

Question 7.
The number of prime numbers upto 25 are:
(a) 9
(b) 10
(c) 8
(d) 12.
Answer:
(a) 9

Question 8.
Which mathematician gave the method to find prime and composite numbers?
(a) Aryabhatta
(b) Ramayan
(c) Eratosthenes
(d) Goldbach.
Answer:
(c) Eratosthenes

Question 9.
The statement “Every even number greater than 4 can be expressed as the sum of two odd prime numbers” is given by:
(a) Goldbach
(b) Eratosthenes
(c) Aryabhatta
(d) Ramanujan.
Answer:
(a) Goldbach

Question 10.
Which of the following is a prime number?
(a) 221
(b) 195
(c) 97
(d) 111.
Answer:
(c) 97

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 11.
Which of the following number is divisible by 4?
(a) 52369
(b) 25746
(c) 21564
(d) 83426.
Answer:
(c) 21564

Question 12.
Which of the following is not true?
(a) If a number is factor of two numbers then it is also factor of their sum.
(b) If a number is factor of two numbers then it is also factor of their difference.
(c) 15 and 24 are co-prime to each other.
(d) 1 is neither prime nor composite.
Answer:
(c) 15 and 24 are co-prime to each other.

Question 13.
Which of the following pair is co-prime?
(a) (12, 25)
(b) (18, 27)
(c) (25, 35)
(d) (21, 56).
Answer:
(a) (12, 25)

Question 14.
Which of the following number is divisible by 8?
(a) 123568
(b) 412580
(c) 258124
(d) 453230.
Answer:
(a) 123568

Question 15.
Prime factorisation of 84:
(a) 2 × 2 × 3 × 2 × 7
(b) 7 × 2 × 3 × 3
(c) 2 × 3 × 7 × 2
(d) 3 × 2 × 3 × 2 × 7.
Answer:
(c) 2 × 3 × 7 × 2

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 16.
H.C.F. of 25 and 45 is:
(a) 15
(b) 5
(c) 225
(d) 135.
Answer:
(b) 5

Question 17.
If L.C.M. of two numbers is 36 then which of the following can not be their H.C.F.?
(a) 9
(b) 12
(c) 8
(d) 18.
Answer:
(c) 8

Question 18.
The L.C.M. of two co-prime numbers is 143. If one number is 11 then find other number.
(a) 132
(b) 154
(c) 18
(d) 13.
Answer:
(d) 13.

Question 19.
Find the greatest number which divides 145 and 235 leaving the remainder 1 in each case.
(a) 24
(b) 18
(c) 19
(d) 17.
Answer:
(b) 18

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 20.
The greatest 4 digit number which is divisible by 12,15 and 20.
(a) 9990
(b) 9000
(c) 9960
(d) 9999.
Answer:
(c) 9960

Question 21.
Which of the following is a prime number?
(a) 23
(b) 51
(c) 39
(d) 26.
Answer:
(a) 23

Question 22.
Which of die following is a prime number?
(a) 32
(b) 30
(c) 31.
(d) 33.
Answer:
(c) 31.

Question 23.
Which of the following is a composite number?
(a) 12
(b) 19
(c) 29
(d) 31.
Answer:
(a) 12

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 24.
Which of the following is an even number?
(a) 13
(b) 15
(c) 16
(d) 19.
Answer:
(c) 16

Question 25.
Which of the following is an odd number?
(a) 12
(b) 13
(c) 14
(d) 20.
Answer:
(b) 13

Fill in the blanks:

Question 1.
…………… is an even prime number?
Answer:
2

Question 2.
…………… is the greatest prime number between 1 and 10.
Answer:
7

Question 3.
……………. is neither prime nor composite number.
Answer:
1

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 4.
A number which has only two factors is called a …………….. number.
Answer:
prime number

Question 5.
A number which has more than two factors is called a ……………… number.
Answer:
composite number

Write True/False:

Question 1.
The sum of three odd number is even. (True/False)
Answer:
False

Question 2.
All prime numbers are odd. (True/False)
Answer:
False

Question 3.
All even numbers are composite numbers. (True/False)
Answer:
False

PSEB 6th Class Maths MCQ Chapter 3 Playing with Numbers

Question 4.
1 neither prime nor composite. (True/False)
Answer:
True

Question 5.
If a number is factor of two numbers then it is also factor of their sum. (True/False)
Answer:
True

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 4 Integers Ex 4.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 4 Integers Ex 4.2

1. Using number line write the integer which is:

Question (a)
5 less than -1
Solution:
5 less than -1 = ?
We need to find the integer which is 5 less than -1.
So, we shall start with ‘-1 ’ and proceed 5 steps to the left of -1 as shown below:
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 1
Therefore 5 less than -1 is -6

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (b)
5 more than -5
Solution:
5 more than -5 = ?
We need to find the integer which is 5 more than -5.
So, we shall start with -5 and proceed 5 steps to the right of -5 as shown below:
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 2
Therefore 5 more than -5 is zero.

Question (c)
2 less than 5
Solution:
2 less than 5 = ?
We need to find the integer which is 2 less than 5.
So, we shall start with 5 and proceed
2 steps to the left of 5 as shown below:
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 3
Therefore 2 less than 5 is 3.

Question (d)
3 less than -2.
Solution:
3 less than – 2 = ?
We need to find the integer which is 3 less than -2.
So, we shall start with -2 and proceed 3 steps to the left of -2 as shown below:
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 4
Therefore 3 less than -2 is -5.

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

2. Using number line, add the following integers:

Question (a)
9 + (-3)
Solution:
On number line we shall start from 0 and move 9 steps to the right of zero. Then we shall move three steps to the left of ‘+9’. We finally reach at +6. Thus, +6 is the answer.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 5
Hence, 9 + (-3) = +6

Question (b)
5 + (-11)
Solution:
On number line we shall start from 0 and move 5 steps to the right of zero. Then we shall move eleven steps to the left of ‘+5’. We finally reach at ‘-6’. Thus, -6 is the answer.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 6
Hence, 5 + (-11) = -6

Question (c)
(-1) + (-4)
Solution:
On number line we first move 1 step to the left of zero. Then we moved ahead 4 steps to the left of ‘-1\ We finally reaches at -5. Thus -5 is the answer.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 7
Hence, (-1) + (-4) = -5

Question (d)
(-5) + 12
Solution:
On number line we shall move 5 steps to the left of zero. Then we shall move 12 steps to the right of ‘-5’ and finally reach at ‘+7’. Thus +7 is the answer.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 8
Hence, (-5) + 12 = +7

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (e)
(-1) + (-2) + (-4)
Solution:
Step I: On number line we shall move one step to the left of zero suggested by minus sign of ‘-1’.
Step II: Then we shall move 2 steps to the left of -1 suggested by minus sign of -2 and we reach at ‘-3’.
Step III: Then again we shall move 4 steps to the left of ‘-3’ suggested by minus sign of -4 and finally we reach at-7.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 9
Hence, (-1) + (-2) + (-4) = -7

Question (f)
(-2) + 4 + (-5)
Solution:
Step I: On number line we shall move 2 steps to the left of zero suggested by minus sign of ‘-2’.
Step II: Then we shall move 4 steps to the right of ‘-2’ suggested by plus sign of ‘44’ and we reach at +2.
Step III: Then we shall move 5 steps to the left of ‘+2’ as suggested by minus sign of ‘-5’ and finally we reach at -3. Thus answer is ‘-3’.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 10
Hence, (-2) + 4 + (-5) = -3

Question (g)
(-3) + (5) + (-4).
Solution:
Step I: On number line we shall move 3 steps to the left of zero as suggested by minus sign of ‘-3’.
Step II: Then we shall move 5 steps to the right of ‘-3’ as suggested by plus sign of ‘+5’ and we reach at ‘+2’.
Step III: Then we shall move 4 steps to the left of ‘+2’ as suggested by minus sign of ‘4’ and finally we reach at ‘-2’. Thus ‘-2’ is the answer.
PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2 11
Hence, (-3) + (5) + (-4) = -2

3. Add without using number line:

Question (a)
18 + 13
Solution:
18 + 13 = 31

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (b)
18 + (- 13)
Solution:
18 + (- 13) = + (18 – 13) = +5

Question (c)
(-18) + 13
Solution:
(-18) + 13 = – (18 – 13) = -5

Question (d)
(-18) + (-13)
Solution:
(-18) + (-13) = -(18 + 13) = -31

Question (e)
180 + (-200)
Solution:
180 + (-200) = -(200 – 180) = -20

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (f)
111 + (-67)
Solution:
111 + (-67) = (777 – 67) = 710

Question (g)
1262 + (-366) + (-962)
Solution:
1262 + (-366) + (-962)
= 1262 – (366 + 962)
= 1262 – 1328
= -(1328 – 1262) = -66

Question (h)
30 + (-27) + 21 + (-19) + (-3) + 11 + (-9)
Solution:
30 + (-27) + 21 + (-19) + (-3) + 11 + (-9)
= 30 + 21 + 11 + (-27) + (-19) + (-3) + (-9)
= 62 + (-58) = 62 – 58 = 4

Question (i)
(-7) + (-9) + 4 + 16
Solution:
(-7) + (-9) + 4+16 = (-16) + 20 = 4

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (j)
37 + (-2) + (-65) + (-8).
Solution:
37 + (-2) + (-65) + (-8)
= 37 – (2 + 65 + 8)
= 37 – 75 = -38

4. Write the successor and predecessor of the following:

Question (a)
-15
Solution:
Successor of -15 = -15 + 1 = -14
Predecessor of -15 = -15 – 1 = -16

Question (b)
27
Solution:
Successor of 27 = 27 + 1 = 28
Predecessor of 27 = 27 – 1 = 26

Question (c)
-79
Solution:
Successor of -79 = -79 + 1 = -78
Predecessor of -79 = -79- 1 = -80

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

Question (d)
0
Solution:
Successor of 0 = 0+ 1 = 1
Predecessor of 0 = 0 – 1 = -1

Question (e)
29
Solution:
Successor of 29 = 29 + 1 = 30
Predecessor of 29 = 29 – 1 = 28

Question (f)
-18
Solution:
Successor of -18 = -18 + 1 = -17
Predecessor of -18 = -18 – 1 = -19

Question (g)
-21
Solution:
Successor of -21 = -21 + 1 = -200
Predecessor of -21 = -21 – 1 = -22

Question (h)
99
Solution:
Successor of 99 = 99 + 1 = 100
Predecessor of 99 = 99 – 1 = 98

Question (i)
-1
Solution:
Successor of-1 = -1 + 1 = 0
Predecessor of -1 = -1 – 1 = -2

Question (j)
-13.
Solution:
Successor of -13 = -13 + 1 = -12
Predecessor of -13 = -13 – 1 = -14

PSEB 6th Class Maths Solutions Chapter 4 Integers Ex 4.2

5. Complete the following addition table:

+ -3 -4 -2 +1 +2 +3
-2
-3
0
+1
+2

Solution:

+ -3 -4 -2 + 1 +2 +3
-2 -5 -6 -4 -1 0 + 1
-3 -6 -7 -5 -2 -1 0
0 -3 -4 -2 + 1 +2 +3
+ 1 -2 -3 -1 +2 +3 +4
+2 -1 -2 0 +3 +4 +5