PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1

Question 1.
Find the distance between the following pairs of points:
(i) (2, 3); (4, 1)
(ii)(-5, 7); (-1, 3)
(iii) (a, b); (-a, -b).
Solution:
(i) Given points are: (2, 3); (4, 1)
Required distance = \(\sqrt{(4-2)^{2}+(1-3)^{2}}\)
\(\sqrt{4+4}=\sqrt{8}=\sqrt{4 \times 2}\)
= 2√2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points are: (-5, 7); (-1, 3)
Required distance = \(\sqrt{(-1+5)^{2}+(3-7)^{2}}\)
\(\sqrt{16+16}=\sqrt{32}\)
= \(\sqrt{16 \times 2}\)
= 4√2.

(iii) Given points are: (a, b); (-a, -b)
Required distance = \(\sqrt{(-a-a)^{2}+(-b-b)^{2}}\)
= \(\sqrt{(-2 a)^{2}+(-2 b)^{2}}\)
= \(\sqrt{4 a^{2}+4 b^{2}}\)
= √4 \(\sqrt{a^{2}+b^{2}}\)
= \(2 \sqrt{a^{2}+b^{2}}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 2.
Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B
discussed in section 7.2.
Solution:
Given points are: A (0, 0) and B (36, 15)
Distance, AB = \(\sqrt{(0-36)^{2}+(0-15)^{2}}\)
\(\sqrt{1296+225}=\sqrt{1521}\) = 39.
According to Section 7.2
Draw the distinct points A (0, 0) and B (36, 15) as shown in figure.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 1

Draw BC ⊥ on X-axis.
Now, In rt. ∠d ∆ACB,
AB = \(\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}\)
= \(\sqrt{(36)^{2}+(15)^{2}}\)
= \(\sqrt{1296+225}=\sqrt{1521}\)
= 39.
Hence, required distance between points is 39.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 3.
Determine if the points (1, 5), (2, 3) and (- 2, – 11) are collinear.
Solution:
Given point are : A (1. 5); B (2.3) and C (- 2, – 11).
AB = \(\sqrt{(2-1)^{2}+(3-5)^{2}}\)
= \(\sqrt{1+4}=\sqrt{5}\)

BC = \(\sqrt{(-2-2)^{2}+(-11-3)^{2}}\)
= \(\sqrt{16+196}=\sqrt{212}\)

CA = \(\sqrt{(1+2)^{2}+(5+11)^{2}}\)
= \(\sqrt{9+256}=\sqrt{265}\)
From above distances, it is clear that sum of any two is not equal to third one.
Hence, given points are not collinear

Question 4.
Check whether (5, – 2); (6, 4) and (7, – 2) are the Vertices of an isosceles triangle.
Solution:
Given points be A (5, – 2); B (6, 4) and C (7, – 2).
AB = \(\sqrt{(5-6)^{2}+(-2-4)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

BC = \(\sqrt{(6-7)^{2}+(4+2)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

CA = \(\sqrt{(7-5)^{2}+(-2+2)^{2}}\)
= \(\sqrt{4+0}=2\)
From above discussion, it is clear that AB = BC = √37.
Given points are vertices of an isosceles triangle.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 5.
In a classroom, 4 friends are seated at the points A, B, C and D as shown in fig. Champa and Charnel walk into the class and after observing for a few minutes Champa asks Chameli, “Don’t you think ABCD is a square”? Chameli disagrees. Using distance formula, find which of them is correct, and why?

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 2

Solution:
In the given diagram, the vertices of given points are : A (3, 4); B (6, 7); C (9, 4) and D (6, 1).
Now,
AB = \(\sqrt{(6-3)^{2}+(7-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

BC = \(\sqrt{(9-6)^{2}+(4-7)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

CD = \(\sqrt{(6-9)^{2}+(1-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

DA=\(\sqrt{(3-6)^{2}+(4-1)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

AC = \(\sqrt{(9-3)^{2}+(4-4)^{2}}\)
= \(\sqrt{36+0}=6\)

BD = \(\sqrt{(6-6)^{2}+(1-7)^{2}}\)
= \(\sqrt{0+36}\) = 6
From above discussion, it is clear that
AB = BC = CD = DA = √18 and AC = BD = 6.
ABCD formed a square and Champa is correct about her thinking.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 6.
Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
(i) ( 1,- 2), (1, 0),(- 1, 2), (- 3, 0)
(ii) ( 3, 5), (3, 1), (0, 3), (- 1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2).
Solution:
(i) Given points be A (- 1, – 2); B(1, 0); C(- 1, 2) and D(- 3, 0).
AB = \(\sqrt{(1+1)^{2}+(0+2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

BC = \(\sqrt{(-1-1)^{2}+(2-0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

CD = \(\sqrt{(-3+1)^{2}+(0-2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

DA = \(\sqrt{(-1+3)^{2}+(-2+0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

AC = \(\sqrt{(-1+1)^{2}+(2+2)^{2}}\)
= \(\sqrt{0+16}=4\)

BD = \(\sqrt{(-3-1)^{2}+(0-0)^{2}}\)
= \(\sqrt{16+0}=4\)

From above discussion, it is clear that
AB = BC = CD = DA = √8 and AC = BD = 4.
Hence, given quadrilateral ABCD is a square.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points be A (- 3, 5); B (3, 1); C (0, 3) and D (- 1,- 4)
AB = \(\sqrt{(-3-3)^{2}+(5-1)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}=\sqrt{4 \times 13}\)
= 2√13

BC = \(\sqrt{(3-0)^{2}+(1-3)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)

CA = \(\sqrt{(0+3)^{2}+(3-5)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)
Now, BC + CA = \(\sqrt{13}+\sqrt{13}\) = 2√13 = AB
∴A, B and C are collinear then A, B, C and D do not form any quadrilateral.

(iii) Given points are A (4, 5); B (7, 6); C (4, 3) and D (1, 2)
AB = \(\sqrt{(7-4)^{2}+(6-5)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

BC = \(\sqrt{(4-7)^{2}+(3-6)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

CD = \(\sqrt{(1-4)^{2}+(2-3)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

DA = \(\sqrt{(4-1)^{2}+(5-2)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

AC = \(\sqrt{(4-4)^{2}+(3-5)^{2}}\)
= \(\sqrt{0+4}\) = 2

BD = \(\sqrt{(1-7)^{2}+(2-6)^{2}}\)
= \(\)

From above discussion, it is clear that AB = CD and BC = DA. and AC ≠ BD.
i.e., opposite sides are equal but their diagonals are not equal.
Hence, given quadrilateral ABCD is a parallelogram.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 7.
Find the points on the x-axis which is equidistant from (2, – 5) and (- 2, 9).
Solution:
Let required point be P (x, 0) and given points be A (2, – 5) and B (- 2, 9).
According to question,
PA = PB
(PA)2 = (PB)2
or (2 – x)2 + (- 5- 0)2 = (- 2 – x)2 + (9 – 0)2
or 4 + x2 – 4x + 25 = 4 + x2+ 4x + 81
-8x = 56
x = \(\frac{4}{4}\) = – 7
Hence, required point be (- 7, 0).

Question 8.
Find the values of y for which the distance between the points P (2, – 3) and Q (10, y) is 10 units.
Solution:
Given points are P (2, – 3) and Q (10, y)
PQ = \(\sqrt{(10-2)^{2}+(y+3)^{2}}\)
= \(\sqrt{64+y^{2}+9+6 y}\)
= \(\sqrt{y^{2}+6 y+73}\)
According to question,
PQ = 10
or \(\sqrt{y^{2}+6 y+73}\) = 10
Squaring
or y2 + 6y + 73 = 100
or y2 + 6y – 27 = 0
or y2 + 9y – 3y – 27 = 0
S = 6 P = – 27
or y (y + 9) – 3 (y + 9) = 0
or (y + 9) (y – 3) = 0
Either y + 9 = 0 or y – 3 = 0
y = – 9 or y = 3
Hence, y = – 9 and 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 9.
If Q (0, 1) is equidistant from P (5, – 3) and R (x, 6), find the values of x. Also find the distances QR and PR.
Solution:
Given points Q (0, 1); P (5, – 3) and R (x, 6)
QP = \(\sqrt{(5-0)^{2}+(-3-1)^{2}}\)
= \(\sqrt{25+16}=\sqrt{41}\)

and QR = \(\sqrt{(x-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{x^{2}+25}\)

According to question,
QP = QR
or \(\sqrt{41}=\sqrt{x^{2}+25}\)
Squaring
or 41 = x2 + 25
or x2 = 16
or x = ± √16 = ± √4.

When x = 4 then R (4, 6).
QR = \(\sqrt{(4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{1+81}=\sqrt{82}\)

When x = – 4 then R (- 4, 6).
QR = \(\sqrt{(-4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(-4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{81+81}=\sqrt{162}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 10.
Find a relation between x and y such that the point (x, y) is equidistant from the point (3, 6) and (- 3, 4).
Solution:
Let required points be P (x, y) and given points are A (3, 6) and B (- 3, 4)
PA = \(\sqrt{(3-x)^{2}+(6-y)^{2}}\)
= \(\sqrt{9+x^{2}-6 x+36+y^{2}-12 y}\)
= \(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\)

and PB = \(\sqrt{(-3-x)^{2}+(4-y)^{2}}\)
= \(\sqrt{9+x^{2}+6 x+16+y^{2}-8 y}\)
= \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)

According to question,
PA = PB
\(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\) = \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)
sq,. both sides, we have,
or x2 + y2 – 6x – 12y + 45 = x2 + y2 + 6x – 8y – 25
or -12x – 4y + 20 = 0
or 3x + y – 5 = 0 is the required relation.

Leave a Comment