PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.3

Question 1.
Find the area of the triangle whose vertices are:
(i) (2, 3); (- 1, 0); (2, – 4)
(ii) (- 5, – 1); (3, – 5); (5, 2)
Solution:
(i) Let vertices of the ∆ABC are A (2, 3); B(- 1, 0) and C (2, – 4)
Here x1 = 2, x2 = – 1 x3 = 2
y1 = 3, y2 = 0, y3 = – 4 .
∴ Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)
= \(\frac{1}{2}\) [2 × (0 + 4) – 1 × (- 4 – 3) + 2 × (3 – 0)]
= \(\frac{1}{2}\) [8 + 7 + 6] = \(\frac{21}{2}\)
= 10.5 sq units.

(ii) Let vertices of the ∆ABC are A (- 5, – 1); B (3, – 5) and C (5, 2)
Here x1 = – 5, x2 = 3, x3 = 5
y1 = – 1, y2 = – 5, y3 = 2
∴ Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [- 5 (- 5 – 2) + 3 (2 + 1) + 5 (- 1 + 5)]
= \(\frac{1}{2}\) [35 + 9 + 20]
= \(\frac{1}{2}\) × 64 = 32 sq units.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 2.
In each of the following find the value of ‘k’ for which the points are coimear.
(i) (7, – 2); (5, 1); (3, k)
(ii) (8, 1); (k, – 4); (2, – 5)
Solution:
(i) Let given points be A (7, – 2); B (5, 1) and C (5, k)
Here x1 = 7, x2 = 5, x3 = 3
y1 = – 2, y2 = 1 y3 = k
Three points are collinear iff
\(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)] = 0
or \(\frac{1}{2}\) [7 (1 – k) + 5(k + 2) + 3(- 2 – 1)] = 0
or 7 – 7k + 5k +10 – 9 = 0
or – 2k + 8 = 0
or – 2k = – 8
or – k = \(\frac{-8}{-2}\) = 4 .
Hence k = 4.

(ii) Let given points be A (8, 1); B (k, – 4) and C(2, – 5)
Here x1 = 8 x2 = k, x3 = 2
y1 = 1, y = – 4, y = – 5
Three points are collinear iff
\(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)] = 0
or \(\frac{1}{2}\) [8 (- 4 + 5) + k (- 5 – 1) + 2 (1 + 4) = 0]
or 8 – 6k + 10 = 0
or – 6k = – 18 .
or k = \(\frac{-18}{-6}\) = 3.
Hence k = 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 3.
Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, – 1), (2, 1) and (0, 3). FInd the ratio of the area of the triangle formed to the area of the given triangle.
Solution:
Let vertices of given triangle ABC are A(0, – 1); B (2, 1) and C (0, 3).
Also, D, E, F be the mid points of AB, BC, CA respectively.
Using mid point formula,
Coordinates of D = \(\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)\) = (1, 0)

Coordinates of E = \(\left(\frac{2+0}{2}, \frac{1+3}{2}\right)\) = (1, 2)

Coordinates of F = \(\left(\frac{0+0}{2}, \frac{3-1}{2}\right)\) = (0, 1)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 1

∴ Co-ordinates of the vertices of DEF are D (1, 0); E (1, 2); F (0,1).
Here x1 = 1, x2 = 1, x3 = 0
y1 = 0, y2 = 2, y3 = 1.
Area of ∆DEF = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [1 (2 – 1) + 1 (1 – 0) + 0 (0 – 2)]
= \(\frac{1}{2}\) [1 + 1 + 0] = \(\frac{2}{2}\) = 1.

In ∆ABC,
x1 = 0, x2 = 2, x3 = 0
y1 = – 1, y2 = 1, y3 = 3.
Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [0 (1 – 3) + 2 (3 + 1) + 0 (- 1 – 1)]
= \(\frac{1}{2}\) [0 + 8 + 0] = \(\frac{8}{2}\) = 4
Required ratio = \(\frac{\text { Area of } \triangle \mathrm{DEF}}{\text { Area of } \triangle \mathrm{ABC}}\)
= \(\frac{1}{4}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 4.
Find the area of the quadrilateral whose vertices taken in order, are (- 4, – 2); (- 3, – 5); (3, – 2); (2, 3).
Solution:
Let co-ordinates of the given quadrilateral ABCD are A(- 4, – 2); B(-3, – 5); C(3, – 2) and D (2, 3).
Join AC then Quad. ABCD divides in two triangles
i.e. ∆ABC and ∆CDA

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 3

In ∆ABC
Here x1 = – 4, x2 = – 3, x3 = 3
y1 = – 2, y2 = – 5, y3 = – 2
Area of ∆ABC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [- 4 (5 + 2) + (- 3) (- 2 + 2) + 3 (- 2 + 5)]
= \(\frac{1}{2}\) [12 + 0 + 9] = \(\frac{21}{2}\) sq. units.

In ∆CDA
x1 = 3, x2 = 2, x3 = – 4
y1 = – 2, y2 = 3, y3= – 2
Area of ∆CDA = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [3 (3 + 2) + 2 (- 2 + 2) + (-4) (- 2 – 3)]
= \(\frac{1}{2}\) [20 + 15 + 0] = \(\frac{35}{2}\) sq. units.

Now, Area of quadritateral ABCD = (Area of ∆ABC) + (Area of ∆ACD)
= \(\frac{21}{2}+\frac{35}{2}=\frac{21+35}{2}\)
= \(\frac{56}{2}\) = 28 sq. units.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.3

Question 5.
You have studied in Class IX, (Chapter 9, Q. 3) that a median of a triangle divides it into two triangles of equal areas. Verify this result for ∆ABC whose vertices are A(4, – 6), B(3, – 2) and C(5, 2).
Solution:
Given that coordinates of the vertices of ∆ABC are A(4, – 6); B (3, – 2) and C (5, 2)
Let CD is the median i.e. D is the mid point of AB which divides AABC into two pails i.e.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.3 4

∆ADC and ∆CDB
Coordinates of D = \(\left(\frac{4+3}{2}, \frac{-6-3}{2}\right)\)
= \(\left(\frac{7}{2}, \frac{-8}{2}\right)\) = (3.5,- 4).

In ∆ADC
x1 = 4, x2 = 3.5, x3 = 5
y1 = – 6, y2 = -4, y3 = 2
Area of ∆ADC = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [4(—4—2)+3.5(2+6)÷5(—6+4)]
= \(\frac{1}{2}\) [- 24 + 28 – 101]
= \(\frac{1}{2}\) × -6
= 3 sq. units (∵ area cannot be negative).

In ∆CDB
x = 5, x = 35, x = 3
y = 2, y = – 4, y = – 2
Area of ∆CDB = \(\frac{1}{2}\) [x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]
= \(\frac{1}{2}\) [5 (- 4 + 2) + 3.5 (- 2 – 2) + 3 (2 + 4)]
= \(\frac{1}{2}\) [- 10 – 14 + 18]
= \(\frac{1}{2}\) × – 6 = – 3
= 3 sq. units(∵ area cannot be negalive)
From above discussion it is clear that area of ∆ADC = area of ∆CDB = 3 sq. units
Hence, a median of a triangle divides it into two triangles of equal areas.

Leave a Comment