PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 3 Matrices Miscellaneous Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 3 Matrices Miscellaneous Exercise

Question 1.
Let A = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\), show that (aI + bA)n = anI + nan – 1bA, where I is the identity matrix of order 2 and n ∈ N.
Solution.
It is given that A = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\)
To show:
P(n): {aI + bA)n =(aI + bA)n = anI + nan – 1bA, n ∈ N.
We shall prove that the result by using the principle of mathematical induction.
For n = 1, we have
P(1): (aI + bA) = aI + ba°A = aI + bA
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is, P(k): (aI + bA)k = akI = kak – 1 bA
Now, we prove that the result is true for n = k +1.
Consider
(aI + bA)k + 1 = (aI + bA)k (aI + bA)
(∵ ax + y = ax x ay)
= (akI + kak – 1bA) (aI + bA)
= ak + 1 I + kakbAI + akbIA + kak – 1 b2A2
= ak + 1I + (k + 1)akbA + kak – 1b2A2

Now, A2 = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\) = 0

From Eq. (i) we have,
(aI + bA)k + 1 = ak + 1I + (k + 1)akbA + 0
= ak + 1I + (k + 1)akbA

Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have
(aI + bA)n = anI + nan – 1bA, where A = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\) n ∈ N.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 2.
If A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\), prove that An = \(\left[\begin{array}{lll}
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1}
\end{array}\right]\), n ∈ N.
Solution.
It is given that A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\)
To show:
P(n) = An = \(\left[\begin{array}{lll}
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1}
\end{array}\right]\), n ∈ N

We shall prove the result by using the principle of mathematical induction.
For n= 1, we have
P(1) = \(\left[\begin{array}{lll}
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1}
\end{array}\right]=\left[\begin{array}{lll}
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\) = A
Therefore, the result is true for n = 1.
Let the result be true for n = k.
i.e., P(k) = Ak = \(\left[\begin{array}{lll}
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1}
\end{array}\right]\)
Now, we prove that the result is true for n = k + 1.
Now, Ak + 1 = A . Ak
= \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1}
\end{array}\right]\)

= \(\left[\begin{array}{lll}
3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} \\
3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} \\
3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1}
\end{array}\right]=\left[\begin{array}{lll}
3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1} \\
3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1} \\
3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1}
\end{array}\right]\)

Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have
An = \(\left[\begin{array}{lll}
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1}
\end{array}\right]\), n ∈ N.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 3.
If A = \(\left[\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right]\), then prove An = \(\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right]\), where n is any positive integer.
Solution.
It is given that A = \(\left[\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right]\)

To prove:
P(n) : An = \(\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right]\), n ∈ N
We shall prove that result by using the principle of mathematical induction.
For n = 1, we have
P(1) : A1 = \(\left[\begin{array}{cc}
1+2 & -4 \\
1 & 1-2
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]\) = A

Therefore, the result is true for n = 1.
Let the result be true for n = k.

i.e., p(k) = Ak = \(\left[\begin{array}{cc}
1+2 k & -4 k \\
k & 1-2 k
\end{array}\right]\), n ∈ N

Now, we prove that the result is true for n = k +1.
Consider Ak+1 = Ak . A

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise 1

Therefore, the result is true for n = k +1.
Thus, by the principle of mathematical induction, we have

An = \(\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right]\), n ∈ N.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 4.
If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.
Solution.
It is given that A and B are symmetric matrices. Therefore, we have
A’ = A and B’ = B …………..(i)
Now, (AB – BA)’ = (AB)’ – (BA)’ [(A -B)’ = A’ – B’]
= B’A’ – A’B’ [(AB)’ = B’A’]
= BA – AB [UsingEq. (i)]
= – (AB – BA)
∴ (AB – BA)’ = – (AB – BA)
Thus, (AB – BA) is a skew symmetric matrix.

Question 5.
Show that the matrix B’ AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Solution.
We suppose that A is a symmetric matrix, then A’ = A ………… (i)
Consider
(B’ABX = {B’ (AB)}’
= (AB)’ (B’)’ [(AB)’ = B’A’]
= B’A'(B) [∵ (B’)’ = B]
= B'(A’B)
= B'(AB) [Using Eq. (i)]
∴ (B’AB)’ = B’ AB
Thus, if A is a symmetric matrix, then B’AB is a symmetric matrix.
Now, we suppose that A is a skew symmetric matrix.
Then, A’ = – A
Consider
(B’AB)’ = [B’ (AB)]’ = (AB)’ (B’ )’ [∵ (AB)’ = B’A’ and (A’)’ = A]
= (B’A’)B = B’ (-A)B
= – B’AB
∴ (B’ AB)’ = – B’ AB
Thus, if A is a skew-symmetric matrix, then B’ AB is a skew symmetric matrix.
Hence, if A is a symmetric or skew symmetric matrix, then B’AB is a symmetric or skew symmetric matrix accordingly.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 6.
Find the values of x, y and z if the matrix A = \(\left[\begin{array}{ccc}
0 & 2 y & z \\
x & y & -z \\
x & -y & z
\end{array}\right]\) satisfy the equation A’ A = I.
Solution.
Given, A’A = I

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise 2

On comparing the corresponding elements, we have
2x2 = 1,
⇒ x2 = \(\frac{1}{2}\),
⇒ x = ± \(\frac{1}{\sqrt{2}}\)

6y2 = 1,
⇒ y2 = \(\frac{1}{6}\),
⇒ y = ± \(\frac{1}{\sqrt{6}}\)

3z2 = 1
⇒ z2 = \(\frac{1}{3}\)
⇒ z = ± \frac{1}{\sqrt{3}}\(\).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 7.
For what values of x:[1 2 1] \(\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]\) = 0?
Solution.
We have [1 2 1] \(\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]\) = 0
⇒ [1 + 4 + 1 2 + 0 + 0 0 + 2 + 2] \(\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]\) = 0

⇒ [6 2 4] \(\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]\) = 0
⇒ [6(0) + 2(2) + 4(x)]= 0
[4 + 4x] = [0]
∴ 4 + 4x = 0
⇒ x = – 1
Thus, the required value of x is – 1.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 8.
If A = \(\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\) show that A2 – 5A + 7I = 0.
Solution.
k is given that A = \(\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise 3

Question 9.
Find x, if [x – 5 – 1] \(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
4 \\
1
\end{array}\right]\) = 0.
Solution.
[x – 5 – 1] \(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
4 \\
1
\end{array}\right]\)

⇒ [x + 0 – 2 0 – 10 + 0 2x – 5 – 3] \(\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]\) = 0
⇒ [x – 2 -10 2x – 8] \(\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]\) = 0

⇒ [x(x – 2) – 40 + 2x – 8] = 0
⇒ [x2 – 2x – 40 + 2x – 8] = 0
⇒ [x2 – 48] = [0]
⇒ x2 – 48 = 0
⇒ x2 = 48
⇒ x = ± 4√3.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 10.
A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise 4

(a) If unit sale prices of x, y and z are ₹ 2.50, ₹ 1.50 and ₹ 1.00, respectively, then find the total revenue In each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are ₹ 2.00, ₹ 1.00 and 50 paise respectively. Find the gross profit.
Solution.
(a) The unit sale prices of x, y and z are respectively given as ₹ 2.50, ₹ 1.50, and ₹ 1.00.
Consequently, the total revenue in market I can be represented in the form of a matrix as
[10000 2000 18000] \(\left[\begin{array}{l}
2.50 \\
1.50 \\
1.00
\end{array}\right]\)
= 10000 × 2.50 + 2000 × 1.50 + 18000 × 1.00
= 25000 +3000 + 18000 = 46000
The total revenue in market II can be represented in the form of a matrix as
[6000 2000 8000] \(\left[\begin{array}{l}
2.50 \\
1.50 \\
1.00
\end{array}\right]\)
= 6000 × 2.50 + 20000 × 1.50 + 8000 × 1.00
= 15000 + 30000 + 8000 = 53000
Therefore, the total revenue in market I is ₹ 46000 and the same in market II is ₹ 53000.

(b) The unit cost prices of x, y, and z are respectively given as 2.00, U.00, and 50 paise.
Consequently, the total cost prices of all the products in market I can be represented in the form of a matrix as
[10000 2000 18000] \(\left[\begin{array}{l}
2.00 \\
1.00 \\
0.50
\end{array}\right]\)
= 10000 × 2.00 + 2000 × 1.00 + 18000 × 0.50
= 20000 + 2000 + 9000 = 31000
Since the total revenue in market I is ₹ 46000, the gross profit in this market is (₹ 46000 – ₹ 31000) = ₹ 15000.
The total cost prices of all the products in market Il can be represented in the form of a matrix as
[6000 20000 8000] \(\left[\begin{array}{l}
2.00 \\
1.00 \\
0.50
\end{array}\right]\)
= 6000 × 2.00 + 20000 × 1.00 + 8000 × 0.50
= 12000 + 20000 + 4000 = 36000
Since the total revenue in market is ₹ 53000, the gross profit in this market is ( 53000 – 36000) = 17000.
Total gross profit = ₹ (15000 + 17000) = ₹ 32000.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 11.
Find the matrix X so that X \(\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\) = \(\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]\)
Solution.
It is given that

\(\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\) = \(\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]\)

The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2 × 3 matrix. Therefore, X has to be a 2 × 2 matrix.
Now, let x = \(\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\)
Therefore, we have

\(\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]\)

⇒ \(\left[\begin{array}{ccc}
a+4 c & 2 a+5 c & 3 a+6 c \\
b+4 d & 2 b+5 d & 3 b+6 d
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]\)

On equating the corresponding elements of the two matrices, we have
a + 4c = – 7,
b + 4d = 2,

2a + 5c = – 8,
2b + 5d = 4,

3a + 6c = – 9,
3b + 6d = 6

Now, a + 4c = – 7
⇒ a = – 7 – 4c

∴ 2a + 5c = – 8
⇒ – 14 – 8c + 5c = – 8
⇒ – 3c = 6
⇒ c = – 2
∴ a = – 7 – 4(- 2)
= – 7 + 8 = 1

Now, b + 4d = 2
⇒ b = 2 – 4d
∴ 2b + 5d = 4
⇒ 4 – 8d + 5d = 4
⇒ – 3d = 0
⇒ d = 0.
Thus, a = 1, b = 2, c = – 2, d = 0
Hence, the required matrix X is \(\left[\begin{array}{cc}
1 & -2 \\
2 & 0
\end{array}\right]\).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 12.
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB” = B” A. Further, provethat(AB)” =A”B” for all n ∈ N.
Solution.
A and B are square matrices of the same order such that AB = BA.
To prove:
P(n): ABn = BnA, n e N
For n = 1,we have P(1): AB = BA (Given)
AB1 = B1A
Therefore, the result is true for n = 1.
Let the result be true for n = k.
P(k): ABk = BkA ………….(i)
Now, we prove that the result is true for n = k + 1.
ABk + 1 = ABk . B = (BkA)B [From Eq. (j)]
= Bk (AB) [By associative law]
= Bk (BA) [: AB = BA (Given)]
= (BkB)A [By associative law]
= Bk + 1 A
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have
ABn = BnA, n e N.
Now, we prove that (AB)n = AnBn for all n ∈ N
For n = 1, we have
(AB)1 = A1B1 = AB
Therefore, the result is true for n = 1.
Let the result be true for n = k.
(AB)k = AkBk …………….(ii)
Now, we prove that the result is true for n = k + 1.
(AB)k + 1 = (AB)k . (AB)
= (AkBk).(AB)
= Ak(BkA)B
= Ak(ABk)B
= (AkA).(BkB)
= Ak + 1Bk + 1
Therefore, the result is true for n = k +1.
Thus, by the principle of mathematical induction, we have (AB)n = AnBn, for all natural numbers.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Direction (13 – 15) Choose the correct answer in the following questions.

Question 13.
If A = \(\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right]\) is such that A2 = I, then
(A) 1 + α2 + βγ = 0
(C) 1 – α2 – βγ = 0
(B) 1 – α2 + βγ = 0
(D) 1 + α2 – βγ = 0
Solution.
We have, A = \(\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise 5

On comparing the corresponding elements, we have
α2 + βγ = 1
α2 + βγ – 1 = 0
1 – α2 – βγ = 0
Hence, the correct answer is (C).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 14.
If the matrix A is both symmetric and skew symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
Solution.
If A is both symmetric and skew symmetric matrix, then we should have
A’ = A and A’ = – A
⇒ A = – A
⇒ A + A = 0
⇒ 2A = 0 A = 0
Therefore, A is a zero matrix.
Hence, the correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Miscellaneous Exercise

Question 15.
If A is square matrix such that A2 = A, then (I + A)3 – 7A is equal to
(A) A
(B) I – A
(C) I
(D)3A
Solution.
(I + A)3 – 7A = I3 + A3 + 3I2A + 3A2I – 7A
= I + A3 + 3A + 3A2 – 7A
= I + A2 . A + 3A + 3A – 7A [∵ A2 = A (given)]
= I + A.A – A
= I + A2 – A
I + A – A = 1
∴ (I + A)3 – 7A = 1
Hence, the correct answer is (C).

PSEB 12th Class Geography Book Solutions Guide in Punjabi English Medium

Punjab State Board Syllabus PSEB 12th Class Geography Book Solutions Guide Pdf in English Medium and Punjabi Medium are part of PSEB Solutions for Class 12.

PSEB 12th Class Geography Guide | Geography Guide for Class 12 PSEB

Geography Guide for Class 12 PSEB | PSEB 12th Class Geography Book Solutions

PSEB 12th Class Geography Book Solutions in Hindi Medium

PSEB 12th Class Geography Book Solutions in English Medium

  • Chapter 1 Human Geography and its Branches
  • Chapter 2 Human Resources – Population and its Change
  • Chapter 3 Human Resources – Human Development and Settlements
  • Chapter 4 Economic Geography – Agriculture and Overview (Activities of Primary Sector)
  • Chapter 5 Economic Geography – Minerals and Energy Resources
  • Chapter 6 Economic Geography Manufacturing (Secondary Care and Knowledge/Activities of Specialised Areas
  • Chapter 7 Transport, Communication and Trade
  • Chapter 8 Geographical Perspective on selected Issues
  • Chapter 9 Practical Geography

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 3 Matrices Ex 3.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 1.
Let A = \(\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]\), B = \(\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\), C = \(\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]\)
Find each of the following:
(i) A + B
(ii) A – B
(iii) 3A – C
(iv) AB
(v) BA
Solutions.
(i) A + B = \(\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]+\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\)

= \(\left[\begin{array}{cc}
2+1 & 4+3 \\
3-2 & 2+5
\end{array}\right]=\left[\begin{array}{ll}
3 & 7 \\
1 & 7
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

(ii) A – B = \(\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]-\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\)

= \(\left[\begin{array}{cc}
2-1 & 4-3 \\
3-(-2) & 2-5
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
5 & -3
\end{array}\right]\)

(iii) 3A – C = 3\(\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]-\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]\)

= \(\left[\begin{array}{ll}
3 \times 2 & 3 \times 4 \\
3 \times 3 & 3 \times 2
\end{array}\right]-\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]\)

= \(\left[\begin{array}{cc}
6 & 12 \\
9 & 6
\end{array}\right]-\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]\)

= \(\left[\begin{array}{cc}
6+2 & 12-5 \\
9-3 & 6-4
\end{array}\right]\)

= \(\left[\begin{array}{ll}
8 & 7 \\
6 & 2
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

(iv) Matrix A has 2 columns. This number is equal to the number of rows in matrix B. Therefore, AB is defined as
AB = \(\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\)

= \(\left[\begin{array}{ll}
2(1)+4(-2) & 2(3)+4(5) \\
3(1)+2(-2) & 3(3)+2(5)
\end{array}\right]\)

= \(\left[\begin{array}{ll}
2-8 & 6+20 \\
3-4 & 9+10
\end{array}\right]=\left[\begin{array}{ll}
-6 & 26 \\
-1 & 19
\end{array}\right]\)

(v) Matrix B has 2 columns. This number is equal to the number of rows in matrix A.
Therefore, BA is defined as
BA = \(\left[\begin{array}{cc}
1 & 3 \\
-2 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]\)

= \(\left[\begin{array}{cc}
1(2)+3(3) & 1(4)+3(2) \\
-2(2)+5(3) & -2(4)+5(2)
\end{array}\right]\)

= \(\left[\begin{array}{cc}
2+9 & 4+6 \\
-4+15 & -8+10
\end{array}\right]=\left[\begin{array}{cc}
11 & 10 \\
11 & 2
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 2.
Compute the following:
(i) \(\left[\begin{array}{cc}
\boldsymbol{a} & \boldsymbol{b} \\
-\boldsymbol{b} & \boldsymbol{a}
\end{array}\right]+\left[\begin{array}{cc}
\boldsymbol{a} & \boldsymbol{b} \\
\boldsymbol{b} & \boldsymbol{a}
\end{array}\right]\)

(ii) \(\left[\begin{array}{cc}
a^{2}+b^{2} & b^{2}+c^{2} \\
a^{2}+c^{2} & a^{2}+b^{2}
\end{array}\right]+\left[\begin{array}{cc}
2 a b & 2 b c \\
-2 a c & -2 a b
\end{array}\right]\)

(iii) \(\left[\begin{array}{ccc}
-1 & 4 & -6 \\
8 & 5 & 16 \\
2 & 8 & 5
\end{array}\right]+\left[\begin{array}{ccc}
12 & 7 & 6 \\
8 & 0 & 5 \\
3 & 2 & 4
\end{array}\right]\)

(iv) \(\left[\begin{array}{cc}
\cos ^{2} x & \sin ^{2} x \\
\sin ^{2} x & \cos ^{2} x
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} x & \cos ^{2} x \\
\cos ^{2} x & \sin ^{2} x
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Solution.
(i) \(\left[\begin{array}{cc}
\boldsymbol{a} & \boldsymbol{b} \\
-\boldsymbol{b} & \boldsymbol{a}
\end{array}\right]+\left[\begin{array}{cc}
\boldsymbol{a} & \boldsymbol{b} \\
\boldsymbol{b} & \boldsymbol{a}
\end{array}\right]\) = \(\left[\begin{array}{cc}
a+a & b+b \\
-b+b & a+a
\end{array}\right]=\left[\begin{array}{cc}
2 a & 2 b \\
0 & 2 a
\end{array}\right]\)

(ii) \(\left[\begin{array}{cc}
a^{2}+b^{2} & b^{2}+c^{2} \\
a^{2}+c^{2} & a^{2}+b^{2}
\end{array}\right]+\left[\begin{array}{cc}
2 a b & 2 b c \\
-2 a c & -2 a b
\end{array}\right]\) = \(\left[\begin{array}{ll}
a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\
a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b
\end{array}\right]\)

= \(\left[\begin{array}{ll}
(a+b)^{2} & (b+c)^{2} \\
(a-c)^{2} & (a-b)^{2}
\end{array}\right]\).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

(iii) \(\left[\begin{array}{ccc}
-1 & 4 & -6 \\
8 & 5 & 16 \\
2 & 8 & 5
\end{array}\right]+\left[\begin{array}{ccc}
12 & 7 & 6 \\
8 & 0 & 5 \\
3 & 2 & 4
\end{array}\right]\) = \(\left[\begin{array}{ccc}
-1+12 & 4+7 & -6+6 \\
8+8 & 5+0 & 16+5 \\
2+3 & 8+2 & 5+4
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
11 & 11 & 0 \\
16 & 5 & 21 \\
5 & 10 & 9
\end{array}\right]\)

(iv) \(\left[\begin{array}{cc}
\cos ^{2} x & \sin ^{2} x \\
\sin ^{2} x & \cos ^{2} x
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} x & \cos ^{2} x \\
\cos ^{2} x & \sin ^{2} x
\end{array}\right]\) = \(\left[\begin{array}{ll}
\cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\
\sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x
\end{array}\right]\)

= \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\) [∵ sin2 x + cos2 x = 1].

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 3.
Compute the indicated products:
(i) \(\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\)

(ii) \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]\)

(iii) \(\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]\)

(iv) \(\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 2 & 4 \\
3 & 0 & 5
\end{array}\right]\)

(v) \(\left[\begin{array}{cc}
2 & 1 \\
3 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right]\)

(vi) \(\left[\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
1 & 0 \\
3 & 1
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Solution.
(i) \(\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\) = \(\left[\begin{array}{cc}
a(a)+b(b) & a(-b)+b(a) \\
-b(a)+a(b) & -b(-b)+a(a)
\end{array}\right]\)

=\(\left[\begin{array}{cc}
a^{2}+b^{2} & -a b+a b \\
-a b+a b & b^{2}+a^{2}
\end{array}\right]\)

= \(\left[\begin{array}{cc}
a^{2}+b^{2} & 0 \\
0 & a^{2}+b^{2}
\end{array}\right]\)

(ii) \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]\) = \(\left[\begin{array}{lll}
1(2) & 1(3) & 1(4) \\
2(2) & 2(3) & 2(4) \\
3(2) & 3(3) & 3(4)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 6 & 8 \\
6 & 9 & 12
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

(iii) \(\left[\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]\) = \(\left[\begin{array}{lll}
1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\
2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1)
\end{array}\right]\)

= \(\left[\begin{array}{lll}
1-4 & 2-6 & 3-2 \\
2+6 & 4+9 & 6+3
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -4 & 1 \\
8 & 13 & 9
\end{array}\right]\)

(iv) \(\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 2 & 4 \\
3 & 0 & 5
\end{array}\right]\) =

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 1

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

(v) \(\left[\begin{array}{cc}
2 & 1 \\
3 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 2 & 1
\end{array}\right]\) =

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 2

(vi) \(\left[\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
1 & 0 \\
3 & 1
\end{array}\right]\) =

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 3

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 4.
If A = \(\left[\begin{array}{ccc}
1 & 2 & -3 \\
5 & 0 & 2 \\
1 & -1 & 1
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 2 & 5 \\
2 & 0 & 3
\end{array}\right]\) and C = \(\left[\begin{array}{ccc}
4 & 1 & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]\) then compute (A + B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 4

(A + B) – C = \(\left[\begin{array}{ccc}
4 & 1 & -1 \\
9 & 2 & 7 \\
3 & -1 & 4
\end{array}\right]-\left[\begin{array}{ccc}
4 & 1 & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
4-4 & 1-1 & -1-2 \\
9-0 & 2-3 & 7-2 \\
3-1 & -1-(-2) & 4-3
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
0 & 0 & -3 \\
9 & -1 & 5 \\
2 & 1 & 1
\end{array}\right]\)
Hence, verified that A + (B – C) = (A + B) – C.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 5.
If A = \(\left[\begin{array}{ccc}
\frac{2}{3} & 1 & \frac{5}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\
\frac{7}{3} & 2 & \frac{2}{3}
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
\frac{2}{5} & \frac{3}{5} & 1 \\
\frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\
\frac{7}{5} & \frac{6}{5} & \frac{2}{5}
\end{array}\right]\)
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 5

Question 6.
Simplify cos θ \(\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\) + sin θ \(\left[\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right]\).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 6

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 7.
Find X and Y, if
(i) X + Y = \(\left[\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right]\) and X – Y = \(\left[\begin{array}{ll}
\mathbf{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{3}
\end{array}\right]\)

(ii) 2X + 3Y = \(\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]\) and 3X + 2Y = \(\left[\begin{array}{cc}
2 & -2 \\
-1 & 5
\end{array}\right]\).
Solution.

(i) PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 7

(ii) PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 8

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 9

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 8.
Find X, if Y = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]\) and 2X + Y = \(\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]\).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 10

Question 9.
Find x and y, if 2\(\left[\begin{array}{ll}
1 & 3 \\
0 & x
\end{array}\right]+\left[\begin{array}{ll}
y & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]\)
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 11

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 10.
Solve the equation for x, y, z and t, if 2 \(\left[\begin{array}{cc}
x & z \\
y & t
\end{array}\right]+3\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]=3\left[\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right]\).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 12

On comparing the corresponding elements of these two matrices, we have
2x + 3 = 9
⇒ 2x = 6
⇒ x = 3

2y = 12
⇒ y = 6

2z – 3 = 15
⇒ 2z = 12
⇒ z = 6

2t + 6 = 18
⇒ 2t = 12
⇒ t = 6
Hence x = 3, y=6, z = 6 and t = 6.

Question 11.
If x\(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\) + y\(\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\) = \(\left[\begin{array}{c}
10 \\
5
\end{array}\right]\), then find the values of x and y.
Solution.
If, \(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\) + y\(\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\) = \(\left[\begin{array}{c}
10 \\
5
\end{array}\right]\)
⇒ \(\left[\begin{array}{l}
2 x \\
3 x
\end{array}\right]+\left[\begin{array}{c}
-y \\
y
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]\)

⇒ \(\left[\begin{array}{l}
2 x-y \\
3 x+y
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]\)

On comparing the corresponding elements of these two matrices, we get 2x – y = 10 and 3x + y = 5 ………….(ii)
On adding Eq. (i) and (ii), we get
5x = 15
⇒ x = 3
Now, 3x + y = 5
⇒ y = 5 – 3x
⇒ y = 5 – 9 = – 4
Hence, x = 3 and y = – 4.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 12.
Given 3 \(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
x & 6 \\
-1 & 2 w
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right]\) find the values of x, y and z.
Solution.
Given, 3 \(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
x & 6 \\
-1 & 2 w
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right]\)

⇒ \(\left[\begin{array}{ll}
3 x & 3 y \\
3 z & 3 w
\end{array}\right]=\left[\begin{array}{cc}
x+4 & 6+x+y \\
-1+z+w & 2 w+3
\end{array}\right]\)

On comparing the corresponding elements of these two matrices, we get
3x = x + 4
⇒ 2x = 4
⇒ x = 2
and 3y = 6 + x + y
⇒ 2y = 6 + x
⇒ 2y = 6+ 2
⇒ 2y = 8
⇒ y = 4
3w = 2w + 3
⇒ w = 3
3z = – 1 + z + w
⇒ 2z = – 1 + w = – 1 + 3 = 2
⇒ z = 1
Hence, x = 2, y = 4, z = 1, and w = 3.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 13.
If F(x) = \(\left[\begin{array}{ccc}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{array}\right]\), show that F(x) F(y) = F(x + y).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 13

Question 14.
Show that
(i) \(\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
3 & 4
\end{array}\right] \neq\left[\begin{array}{cc}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
6 & 7
\end{array}\right]\)

(ii) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right] \neq\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\)
Solution.
(i) PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 14

(ii) PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 15

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 15.
Find A2 – 5A + 6I, if A = \(\left[\begin{array}{ccc}
\mathbf{2} & \mathbf{0} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{3} \\
\mathbf{1} & -\mathbf{1} & \mathbf{0}
\end{array}\right]\).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 16

Question 16.
If A = \(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\), prove that A3 – 6A2 + 7A + 2I = 0.
Solution.
A2 = A . A
= \(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\)

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 17

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 17.
If A = \(\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\) and I = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\), find k so that A2 = kA – 2I
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 18

⇒ \(\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right]=\left[\begin{array}{cc}
3 k-2 & -2 k \\
4 k & -2 k-2
\end{array}\right]\)
On comparing the corresponding elements, we get
3k – 2 = 1
⇒ 3k = 3
⇒ k = 1
Thus, the value of k is 1.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 18.
If A = \(\left[\begin{array}{cc}
0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]\) and I is the identity matrix of order 2, show that I + A = (I – A) \(\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\).
Solution.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 19

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2 20

Thus, from Eqs. (i) and (ii), we get L.H.S = R.H.S.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 19.
A trust fund has ₹ 30000 that must be invested in two different types of bonds. The first bond pays 5 % interest per year, and the second bond pays 7 % interest per year. Using matrix multiplication, determine how to divide ₹ 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of:
(a) ₹ 1800
(b) ₹ 2000
Solution.
(a) Let ₹ x be invested in the first bond. Then, the sum of money invested in the second bond will be ₹ (30000 – x).
It is given that the first bond pays 5% interest per year and the second bond pays 7% interest per year.
Therefore, in order to obtain an annual total interest of ₹ 1800, we have
⇒ 2x = 30000
⇒ x = 15000
Thus, in order to obtain an annual total interest of ₹ 1800, the trust fund should invest ₹ 15000 in the first bond and the remaining ?15000 in the second bond.

(b) Let ₹ x be invested in the first bond. Then, the sum of money invested in the second bond will be ₹ (30000 – x).
Therefore, in order to obtain an annual total interest of ₹ 2000, we have
[x (30000 – x)] \(\left[\begin{array}{c}
\frac{5}{100} \\
\frac{7}{100}
\end{array}\right]\) = [2000]

⇒ \(\frac{5 x}{100}+\frac{7(30000-x)}{100}\) = [2000]
⇒ 5x + 210000 – 7x = 200000
⇒ 210000 – 2x = 200000
⇒ 2x = 210000 – 200000
⇒ 2x = 10000
⇒ x = 5000
Thus, in order to obtain an annual total interest of ?2000, the trust fund should invest ₹ 5000 in the first bond and the remaining ₹ 25000 in the second bond.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 20.
The bookshop of a particular school has 10 dozen Chemistry books, 8 dozen Physics books and 10 dozen Economics books. Their selling prices are ₹ 80, ₹ 60, and ₹ 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Solution.
The bookshop has 10 dozen Chemistry books, 8 dozen Physics book and 10 dozen Economics books.
The selling prices of a Chemistry book, a Physics book and an Economics book are respectively given as ₹ 80, ₹ 60 and ₹ 40.
The total amount of money that will be received from the sale of all,these books can be represented in the form of a matrix as
12 [10 8 10] \(\left[\begin{array}{l}
80 \\
60 \\
40
\end{array}\right]\)
= 12[10 × 80 + 8 × 60 + 10 × 40]
= 12 [800 + 480 + 400]
= 12(1680) = 20160
Thus, the bookshop will receive ₹ 20160 from the sale of all these books.

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Direction (21 – 22)
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3, and p × k, respectively. Choose the correct answer in Q. 21 and Q. 22.

Question 21.
The restrictions on n, k and p so that PY + WY will be defined, are
(A) k – 3, p = n
(B) k is arbitrary, p = 2
(C) p is arbitrary, k – 3
(D) k = 2, p = 3
Solution.
Matrices P and Y are of the orders p × k and 3 × k, respectively.
Therefore, matrix PY will be defined if k – 3. Consequently, PY will be of the order p × k.
Matrices W and Y are of the orders n × 3 and 3 × k, respectively.
Since, the number of columns in W is equal to the number of rows in Y, matrix WY is well-defined and is of the order n × k.
Matrices PY and WY can be added only when their orders are the same. However, PY is of the order p × k and WY is of the order n × k. Therefore, we must have p = n.
Thus, k = 3 and p = n are the restrictions on n, k and p so that PY + WY will be defined.
Hence, the correct answer is (A).

PSEB 12th Class Maths Solutions Chapter 3 Matrices Ex 3.2

Question 22.
If n = p, then the order of the matrix IX – 5Z is
(A) p × 2
(B) 2 × n
(C) C n × 3
(D) p × n
Solution.
Matrix X is of the order 2 × n.
Therefore, matrix 7X is also of the same order.
Matrix Z is of the order 2 × p,i.e., 2 × n [∵ n = p]
Therefore, matrix 5Z is also of the same order.
Now, both the matrices 7X and 5Z are of the order 2 × n.
Thus, matrix 7X – 5Z is well-defined and is of the order 2 × n.
Hence, the correct answer is (B).

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements Important Questions and Answers.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Very Short Answer Type Questions

Question 1.
Why first ionisation enthalpy of Cr is lower than that of Zn?
Answer:
Ionisation enthalpy of Cr is less than that of Zn configuration. In case of zinc, electron comes out from completely filled 4s-orbital. So, removal of electron from zinc requires more energy as compared to the chromium.

Question 2.
Zn, Cd and Hg are soft metals. Why?
Answer:
Because they have one or more typical metallic structures at normal temperatures.

Question 3.
Although fluorine is more electronegative than oxygen, but the ability of oxygen to stabilise higher oxidation states exceeds that of fluorine. Why?
Answer:
Oxygen can form multiple bonds with metals, while fluorine can’t form multiple bond with metals. Hence, oxygen has more ability to stabilise higher oxidation state rather than fluorine.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 4.
Mn shows the highest oxidation state of + 7 with oxygen but with fluorine it shows the highest oxidation state of +4. Why?
Answer:
This is due to ability of oxygen to form pπ – dπ bond.

Question 5.
Mn2O7 is acidic whereas MnO is basic.
Answer:
Mn has +7 oxidation state in Mn2O7 and +2 in MnO. In low oxidation state of the metal, some of the valence electrons of the metal atom are not involved in bonding. Hence, it can donate electrons and behave as a base. On the other hand, in higher oxidation state of the metal, valence electrons are involved on bonding and are not available. Instead effective nuclear charge is high and hence it can accept electrons and behave as an acid.

Question 6.
Copper atom has completely filled d-orbitals in its ground state but it is a transition element. Why?
Answer:
Copper exhibits +2 oxidation state wherein it has incompletely filled d orbitals (3d9 4s0) hence a transition elements.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 7.
Why is zinc not regarded as a transition element?
Answer:
As zinc atom has completely filled d-orbitals (3d10) in its ground state as well as oxidised state, therefore, it is not regarded as transition element.

Question 8.
Zn2+ salts are white while Cu2+ salts are coloured. Why?
Answer:
Cu2+(3d94s0) has one unpaired electron in d-subshell which absorbs radiation in visible region resulting in d-d transition and hence Cu2+ salts are coloured. Zn2+(3d104s0) has completely filled d-orbitals. No radiation is absorbed for d-d transition and hence Zn2+ salts are colourless.

Question 9.
The second and third row of transition elements resemble each other much more than they resemble the first row. Explain, why?
Answer:
Due to lanthanoid contraction, the atomic radii of the second and third row transition elements is almost same. So, they resemble each other much more as compared to first row elements and show similar character.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 10.
Why does copper not replace hydrogen from acids?
Answer:
Because Cu shows E positive value.

Short Answer Type Questions

Question 1.
Why do transition elements show variable oxidation states? How is the variability in oxidation states of d-block different from that of the p-block elements?
Answer:
In transition elements, the energies of (n – 1)d orbitals and ns orbitals are nearly same. Therefore, electrons from both can participate in bond formation and hence show variable oxidation states.

In transition elements, the oxidation states differ from each other by unity e.g., Fe2+ and Fe3+, Cu+ and Cu2+ etc., while in p-block elements the oxidation state differ by units of two, e.g., Sn2+ and Sn4+, Pb2+ and Pb4+ etc. In transition elements, the higher oxidation states are more stable for heavier elements in a group e.g., Mo(VI) and W(VI) are more stable than Cr(VI) in group 6 whereas in p-block, elements the lower oxidation states are more stable for heavier elements due to the inert pair effect, e.g., Pb(II) is more stable than Pb(IV) in group 16.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 2.
When a chromite ore (A) is fused with sodium carbonate in free excess of air and the product is dissolved in water, a yellow solution of compound (B) is obtained. After treatment of this yellow solution with sulphuric acid, compound (C) can be crystallised from the solution. When compound (C) is treated with KC1, orange crystals of compound (D) crystallise out. Identify A to D and also explain the reactions.
Answer:
K2Cr2O7 is an orange compound. It is formed when Na2Cr2O7 reacts with KCl. In acidic medium, yellow coloured \(\mathrm{CrO}_{4}^{2-}\) (chromate ion) changes into dichromate.
The given process is the preparation method of potassium dichromate from chromite ore.
A = FeCr2O4; B = Na2CrO4; C = Na2Cr2O7; D = K2Cr2O7
PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements 1

Question 3.
Mention the type of compounds formed when small atoms like H, C and N get trapped inside the crystal lattice of transition metals. Also give physical and chemical characteristics of these compounds.
Answer:
When small atoms like H, C and N get trapped inside the crystal lattice of transition metals.
(a) Such compounds are called interstitial compounds.
(b) Their characteristic properties are :

  1. They have high melting point, higher than those of pure metals.
  2. They are very hard.
  3. They retain metallic conductivity.
  4. They are chemically inert.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 4.
On the basis of lanthanoid contraction, explain the following:
(i) Nature of bonding in La2O3 and Lu2O3.
(ii) Trends in the stability of oxosalts of lanthanoids from La to Lu.
(iii) Stability of the complexes of lanthanoids.
(iv) Radii of 4d and 5d block elements.
(v) Trends in acidic character of lanthanoid oxides.
Answer:
(i) As the size decreases covalent character increases. Therefore, La2O3 is more ionic and Lu2O3 is more covalent.
(ii) As the size decreases from La to Lu, stability of oxosalts also decreases.
(iii) Stability of the complexes increases as the size of lanthanoids decreases.
(iv) Radii of 4d and 5d block elements will be almost same.
(v) Acidic character of oxides increases from La to Lu.

Question 5.
A solution of KMnO4 on reduction yields either a colourless solution of a brown precipitate or a green solution depending on pH of the solution. What different stages of the reduction do these represent and how are they carried out?
Answer:
Oxidising behaviour of KMnO4 depends on pH of the solution.
In acidic medium (pH < 7),
PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements 2

Question 6.
Identify the following:
(i) Oxoanion of chromium which is stable in acidic medium.
(ii) The lanthanoid element that exhibits + 4 oxidation state.
Answer:
(i) Cr2O7
(ii) Cerium

Question 7.
The magnetic moments of few transition metal ions are given below:

Metal ion Metal ion
Sc3+ 0.00
Cr2+ 4.90
Ni2+ 2.84
Ti3+ 1.73

(at no. Sc = 21, Ti = 22, Cr = 24, Ni = 28)
Which of the given metal ions :
(i) has the maximum number of unpaired electrons?
(ii) forms colourless aqueous solution?
(iii) exhibits the most stable + 3 oxidation state?
Answer:
(i) Cr2+
(ii) Sc3+
(iii) Sc3+

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 8.
Consider the standard electrode potential values (M2+/M) of the elements of the first transition series.
PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements 3
Explain:
(i) E0 value for copper is positive.
(ii) E0 value of Mn is more negative as expected from the trend.
(iii) Cr2+ is a stronger reducing agent than Fe2+.
Answer:
(i) E0 value for copper is positive because the high energy to transform Cu(s) to Cu2+(aq) is not balanced by its hydration enthalpy.
(ii) E0 value of Mn is more negative as expected from the trend because Mn2+ has d5 configuration i. e., stable half-filled configuration.
(iii) Cr2+ is a stronger reducing agent than Fe2+ because d4 to d3 occurs in case of Cr2+ to Cr3+ (more stable \(t_{2 g}^{3}\)) while it changes from d6 to d5 in case of Fe2+ to Fe3+.

Long Answer Type Questions

Question 1.
Write similarities and differences between the chemistry of lanthanoids and that of actinoids.
Answer:
Similarities between lanthanoids and actinoids :

  1. Both lanthanoids and actinoids mainly show an oxidation state of +3.
  2. Actinoids show actinoid contraction like lanthanoid contraction is exhibited by lanthanoids.
  3. Both lanthanoids and actinoids are electropositive.

Differences between lanthanoids and actinoids :

  1. The members of lanthanoid exhibit less number of oxidation states than the corresponding members of actinoid series.
  2. Lanthanoid contraction is smaller than the actinoid contraction.
  3. Lanthanoids except promethium cure non-radioactive metals while actinoids are radioactive metals.

PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements

Question 2.
(a) Assign reasons for the following:
(i) Zr and Hf have almost identical radii.
(ii) The PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements 4, value for copper is positive (+0.34 V).
(b) Although +3 oxidation state is the characteristic oxidation state of lanthanoids but cerium shows +4 oxidation state also. Why?
Answer:
(a) (i) This is due to filling of 4/ orbitals which have poor shielding effect (lanthanoid contraction).
(ii) This is because the sum of enthalpies of sublimation and ionisation is not balanced by hydration enthalpy.
(b) It is because after losing one more electron Ce acquires stable 4f0 electronic configuration.

Question 3.
(a) How do you prepare :
(i) K2MnO4 from MnO2?
(ii) Na2Cr2O7 from Na2CrO4?
(b) Account for the following :
(i) The enthalpy of atomisation is lowest for Zn in 3d series of the transition elements.
(ii) Actinoid elements show wide range of oxidation states.
Answer:
(a) (i) Pyrolusite is fused with KOH in the presence of atmospheric oxygen to give K2MnO4.
PSEB 12th Class Chemistry Important Questions Chapter 8 The d-and f-Block Elements 5

(b) (i) In the formation of metallic bonds, no electrons from 3d-orbitals are involved in case of zinc, while in all other metals of the 3d series, electrons from the d-orbitals are always involved in the formation of metallic bonds. That is why the enthalpy of atomisation of zinc is the lowest in the series.
(ii) This is due to comparable energies of 5f, 6d and 7s orbitals.

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

Punjab State Board PSEB 12th Class Physical Education Book Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physical Education Chapter 4 ਖੇਡ ਸੱਟਾਂ

Physical Education Guide for Class 12 PSEB ਖੇਡ ਸੱਟਾਂ Textbook Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਖੇਡ ਸੱਟਾਂ ਕੀ ਹਨ ?
ਉੱਤਰ-
ਖੇਡ ਸੱਟਾਂ ਆਮ ਤੌਰ ‘ਤੇ ਜ਼ਿਆਦਾ ਵਰਤੋਂ (Overuse), ਜ਼ਿਆਦਾ ਮਰੋੜ (Overtwisting), ਜ਼ਿਆਦਾ ਖਿੱਚਣਾ (Overstreching) ਜਾਂ ਟੱਕਰ ਕਾਰਨ ਹੁੰਦੀਆਂ ਹਨ । ਇਹ ਜ਼ਿਆਦਾਤਰ ਸੱਟਾਂ ਦੇ ਗਿਆਨ ਦੀ ਕਮੀ ਕਾਰਨ ਵੀ ਵਾਪਰਦੀਆਂ ਹਨ । ਖੇਡ ਸੱਟਾਂ, ਖੇਡ ਦੇ ਮੈਦਾਨ ਜਾਂ ਖੇਡਦੇ ਹੋਏ ਲੱਗਦੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 2.
ਮੋਚ ਦੇ ਕੋਈ ਦੋ ਲੱਛਣ ਦੱਸੋ ।
ਉੱਤਰ-

  1. ਜਲਣ, ਦਰਦ ਅਤੇ ਸੋਜ ਹੋਣਾ
  2. ਹਰਕਤ ਕਰਨ ਵੇਲੇ ਤੇਜ਼ ਦਰਦ ਹੋਣਾ ।

ਪ੍ਰਸ਼ਨ 3.
ਖਿਡਾਰੀਆਂ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਕਿਹੜੇ ਵਿਅਕਤੀ ਖੇਡਾਂ ਵਿੱਚ ਭਾਗ ਲੈਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਜੋ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਅਤੇ ਰੋਜ਼ਾਨਾ ਸਰੀਰਕ ਗਤੀਵਿਧੀਆਂ ਜਾਂ ਕਸਰਤਾਂ ਕਰਦੇ ਹਨ ।

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 4.
ਖੁੱਲ੍ਹੀ ਟੁੱਟ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਟੁੱਟ ਵਿੱਚ ਹੱਡੀ ਮਾਸਪੇਸ਼ੀਆਂ ਤੋਂ ਬਾਹਰ ਨਿਕਲ ਆਉਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਕੱਚੀ ਟੁੱਟ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਵਿਚ ਹੱਡੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਟੁੱਟਦੀ ਨਹੀਂ ਬਲਕਿ ਇਕ ਪਾਸੇ ਨੂੰ ਝੁਕ ਜਾਂਦੀ ਹੈ । ਇਹ ਟੁੱਟ ਅਕਸਰ ਬੱਚਿਆਂ ਵਿਚ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 6.
ਪ੍ਰਤੱਖ ਸੱਟਾਂ ਕੀ ਹਨ ?
ਉੱਤਰ-
ਸਿੱਧੀ ਸੱਟ ਬਾਹਰੀ ਝਟਕੇ ਜਾਂ ਤਾਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 7.
ਖਿਚਾਅ ਕੀ ਹੈ ? ਇਸ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ?
ਉੱਤਰ-
ਇਹ ਮਾਸਪੇਸ਼ੀ ਦੀ ਖਿੱਚ ਹੁੰਦੀ ਹੈ ਜੋ ਅਕਸਰ ਪੱਠਿਆਂ ਦੀ ਖਿੱਚ ਵਲੋਂ ਵੀ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਪਿੱਠ ਦੇ ਰੇਸ਼ੇ ਟੁੱਟਦੇ ਜਾਂ ਓਵਰਸਤੁੰਚ (Overstretch) ਹੁੰਦੇ ਹਨ, ਜਾਂ ਪੱਠੇ ਜਲਦੀ ਸੁੰਗੜਦੇ ਹਨ । ਖਿੱਚ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਝਟਕੇ ਨਾਲ ਭਾਰੀ ਉਪਕਰਨ ਨੂੰ ਚੁੱਕਣਾ, ਮਾਸਪੇਸ਼ੀ ਦਾ ਅਚਾਨਕ ਖਿੱਚਣਾ ਜਾਂ ਜਰਕ ਦੇਣਾ, ਗਿੱਟਿਆਂ ਤੇ ਗ਼ਲਤ ਤਰੀਕੇ ਨਾਲ ਉਤਰਨਾ (Land), ਅਸਮਾਨ ਮੈਦਾਨ ਤੇ ਤੁਰਨਾ ਜਾਂ ਭੱਜਣਾ ਆਦਿ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਸਰੀਰ ਨੂੰ ਸਹੀ ਢੰਗ ਨਾਲ ਨਾ ਗਰਮਾਉਣਾ । ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਸੱਟ ਜ਼ਿਆਦਾਤਰ ਗੋਡਿਆਂ ਜਾਂ ਗਿੱਟਿਆਂ ਵਿਚ ਲੱਗਦੀ ਹੈ ।

ਖਿੱਚ ਦੇ ਚਿੰਨ੍ਹ ਅਤੇ ਪਹਿਚਾਣ (Signs and symptoms)-

  1. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਅਚਾਨਕ ਦਰਦ ਹੋਣਾ
  2. ਅਕੜਣਾ ਜਾਂ ਪੀੜ ਹੋਣਾ ਅਤੇ ਚੱਲਣ, ਦੌੜਨ ਵਿਚ ਮੁਸ਼ਕਿਲ ਹੋਣਾ
  3. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਸੋਜ ਜਾਂ ਲਾਲੀ ਆਉਣਾ
  4. ਨਾਜ਼ੁਕਤਾ
  5. ਕੋਈ ਗਤੀ ਨਾ ਹੋਣਾ ਅਤੇ ਸੁੰਨ ਹੋ ਜਾਣਾ ।

ਪ੍ਰਸ਼ਨ 8.
ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਸੱਟ ਦਾ ਇਲਾਜ ਦੱਸੋ ।
(ਉ) ਮੋਚ
(ਅ) ਰਗੜ
(ਈ) ਖਿਚਾਅ
(ਸ) ਹੱਡੀ ਦਾ ਉਤਰਨਾ ।
ਉੱਤਰ-
(ੳ) ਮੋਚ-ਮੋਚ ਦੇ ਬਚਾਓ ਲਈ ਕੁੱਝ ਹੇਠ ਲਿਖੇ ਉਪਾਅ ਹਨ-

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੋਚ ਨੂੰ PRICE ਨਾਲ ਸਮਝਿਆ ਜਾਵੇ ਇੱਥੇ P (Protection) ਭਾਵ ਬਚਾਅ | R ਦਾ ਅਰਥ ਹੈ ਰੈਸਟ | I ਤੋਂ ਭਾਵ ਬਰਫ਼ (Ice) 1cਤੋਂ ਭਾਵ ਕੰਪ੍ਰੈਸ਼ਨ (ਟਕੋਰ) ਅਤੇ E ਤੋਂ ਭਾਵ ਐਲੀਵੇਸ਼ਨ (ਉੱਪਰ ਚੁੱਕਣਾ) ਤੋਂ ਹੈ । ਮੋਚ ਆਈ ਥਾਂ ਨੂੰ ਪੂਰਾ ਅਰਾਮ ਦਿਓ । ਜੇ ਲੋੜ ਪਵੇ ਤਾਂ ਬਾਂਹ ਦੀ ਸੱਟ ਲਈ ਸਲਿੰਗ ਅਤੇ ਲੱਤ ਦੀ ਸੱਟ ਲਈ ਫੌਹੜੀ ਦੀ ਵਰਤੋਂ ਕਰੋ ।
  2. ਮਰੀਜ਼ ਨੂੰ ਅਰਾਮ ਦੀ ਥਾਂ ਦੇਵੋ ।
  3. ਸੱਟ ਲੱਗੇ ਭਾਗ ਨੂੰ ਸਹਾਇਤਾ ਦਿਓ ।
  4. ਸੱਟ ਲੱਗੇ ਭਾਗ ਨੂੰ ਪਹਿਲਾਂ ਅਹਿੱਲ ਕਰੋ ਫਿਰ ਉਸ ਨੂੰ ਉੱਚਾ ਚੁੱਕੋ ।
  5. ਸੱਟ ਲੱਗੇ ਭਾਗ ਤੇ ਠੰਡਾ ਦਬਾਅ ਪਾਓ ।
  6. ਸੱਟ ਲੱਗਣ ਦੇ 72 ਘੰਟੇ ਬਾਅਦ, ਖੂਨ ਇਕੱਠਾ ਹੋਣ ਤੋਂ ਰੋਕਣ ਲਈ ਅਤੇ ਨੀਲ ਨੂੰ ਘਟਾਉਣ ਲਈ ਗਰਮ ਟਕੋਰ ਕਰੋ ।
  7. ਘੁੱਟਵੀਂ ਇਲਾਸਟਿਕ ਬੈਂਡੇਜ ਲਗਾਓ ।
  8. ਮੈਡੀਕਲ ਸਹਾਇਤਾ ਲਈ ਮਰੀਜ਼ ਨੂੰ ਤੁਰੰਤ ਹਸਪਤਾਲ ਲੈ ਕੇ ਜਾਓ ।

(ਅ) ਰਗੜ-
ਰਗੜਾਂ ਦਾ ਬਚਾਓ ਅਤੇ ਇਲਾਜ (Prevention and Remedies)-

  1. ਸਰੀਰਕ ਕ੍ਰਿਆਵਾਂ ਕਰਦੇ ਸਮੇਂ ਸੁਰੱਖਿਆ ਸਾਜ਼ੋ-ਸਮਾਨ ਜਿਵੇਂ ਹੈਲਮੈਟ, ਗੋਡਿਆਂ ਦੇ ਪੈਡ, ਕੂਹਣੀਆਂ ਦੇ ਪੈਡ ਅਤੇ ਐਨਕਾਂ ਆਦਿ ਦੀ ਵਰਤੋਂ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ।
  2. ਰਗੜ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਕਰੀਮ ਲਗਾਓ ।
  3. ਜੇਕਰ ਕੱਟ ਵਿਚੋਂ ਖੂਨ ਵੱਗਦਾ ਹੋਵੇ ਤਾਂ ਸਾਫ਼ ਕੱਪੜੇ ਨਾਲ ਹਲਕਾ ਜਿਹਾ ਦਬਾ ਪਾਓ । ਇਸ ਦਬਾ ਨੂੰ 20-30 ਮਿੰਟ ਤੱਕ ਬਣਾ ਕੇ ਰੱਖੋ ।
  4. ਤੁਰੰਤ ਜ਼ਖ਼ਮ ਨੂੰ ਸਾਫ਼ ਪਾਣੀ ਨਾਲ ਧੋਵੋ ।
  5. ਜ਼ਖ਼ਮ ਨੂੰ ਧੋਣ ਤੋਂ ਬਾਅਦ ਐਂਟੀਬਾਇਓਟੈਕ ਕਰੀਮ ਲਗਾਓ ।
  6. ਜ਼ਖ਼ਮ ਨੂੰ ਸਾਫ਼ ਰੱਖਣ ਲਈ ਪੱਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ ।
  7. ਸੋਜ ਨੂੰ ਘਟਾਉਣ ਲਈ ਬਰਫ਼ ਦੀ ਵਰਤੋਂ ਕਰੋ ।
  8. ਜੇਕਰ ਜ਼ਖ਼ਮ ਵੱਡਾ ਹੋਵੇ ਤਾਂ ਡਾਕਟਰ ਕੋਲ ਲੈ ਕੇ ਜਾਵੋ ।

(ਈ ਖਿਚਾਅ-
ਖਿੱਚ ਦੇ ਬਚਾਓ ਅਤੇ ਇਲਾਜ (Prevention and Remedies)-
ਖਿੱਚ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ PRICE ਪ੍ਰਾਈਸ ਦੇ ਸਿਧਾਂਤ ਨਾਲ ਇਲਾਜ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਇੱਥੇ ? (Protection) ਭਾਵ ਬਚਾਅ | R ਦਾ ਅਰਥ ਹੈ ਅਰਾਮ (Rest) il ਦਾ ਅਰਥ ਹੈ ਬਰਫ (Ice) C ਦਾ ਅਰਥ ਹੈ ਕੰਪ੍ਰੈਸ਼ਨ ਭਾਵ ਟਕੋਰ ਕਰਨਾ ਅਤੇ E ਦਾ ਅਰਥ ਹੈ ਐਲੀਵੇਸ਼ਨ ਭਾਵ ਜ਼ਖ਼ਮੀ ਭਾਗ ਨੂੰ ਉੱਚਾ ਚੁੱਕਣਾ (Elevation) ! ਖਿੱਚ ਵਾਲੇ ਭਾਗ ਨੂੰ ਆਰਾਮ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ।

  1. ਹਰ ਘੰਟੇ ਬਾਅਦ 20 ਮਿੰਟ ਲਈ ਬਰਫ਼ ਲਗਾਓ । ਚਮੜੀ ਤੇ ਬਰਫ਼ ਸਿੱਧੀ ਨਾ ਲਗਾਓ। ਇਸ ਨਾਲ ਚਮੜੀ ਖ਼ਰਾਬ ਹੋ ਜਾਂਦੀ ਹੈ ।
  2. ਮਰੀਜ਼ ਨੂੰ ਆਰਾਮਦੇਹ ਦੀ ਸਥਿਤੀ ਵਿਚ ਰੱਖੋ ।
  3. ਮੋਚ ਵਾਲੇ ਭਾਗ ਤੇ ਹਿੱਲ-ਜੁਲ ਨਾ ਹੋਣ ਦਿਓ ।
  4. ਜ਼ਖ਼ਮੀ ਹੋਏ ਭਾਗ ਨੂੰ ਉੱਚਾ ਰੱਖੋ ।
  5. 24 ਤੋਂ 48 ਘੰਟਿਆਂ ਤਕ RICE ਉਪਾਅ ਨੂੰ ਕਰਦੇ ਰਹੋ ।
  6. ਮਰੀਜ਼ ਨੂੰ ਹਸਪਤਾਲ ਪਹੁੰਚਾਓ ।

(ਸ) ਹੱਡੀ ਦਾ ਉਤਰਨਾ-
ਜੋੜ ਹਿੱਲਣ ਦੇ ਉਪਚਾਰ (Remedies For Dislocation)-

  1. ਦਰਦ ਨੂੰ ਘਟਾਉਣਾ-ਇਸ ਵਿਚ ਹੱਡੀ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਲੈ ਕੇ ਆਇਆ ਜਾਂਦਾ ਹੈ ਤੇ ਜ਼ਿਆਦਾ ਦਰਦ ਹੋਣ ਦੀ ਸੂਰਤ ਵਿਚ ਉਸ ਥਾਂ ਨੂੰ ਸੁੰਨ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ।
  2. ਅਹਿੱਲ-ਹੱਡੀਆਂ ਨੂੰ ਆਪਣੀ ਥਾਂ ਤੇ ਬਿਠਾਉਣ ਤੋਂ ਬਾਅਦ ਕਈ ਦਿਨਾਂ ਤੱਕ ਉਸ ਵਿਚ ਹਿਲਜੁਲ ਬੰਦ ਕਰਨ | ਲਈ ਸਪਲਿਟ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।
  3. ਸਰਜਰੀ-ਜੇਕਰ ਹੱਡੀਆਂ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਨਾ ਲਿਆ ਜਾ ਸਕੇ ਤਾਂ ਸਰਕਾਰੀ ਤਕਨੀਕ ਦੀ ਸਹਾਇਤਾ ਲਈ ਜਾਂਦੀ ਹੈ ।
  4. ਮੁੜ-ਵਸੇਬਾ-ਸਲਿੰਗ ਹਟਾਉਣ ਤੋਂ ਬਾਅਦ ਮੁੜ-ਵਸੇਬਾ ਦਾ ਕੰਮ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਇਸ ਵਿਚ ਕਈ ਕ੍ਰਿਆਵਾਂ ਕਰਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤੇ ਜੋੜਾਂ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਭਾਰ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 9.
ਸਿੱਧੀ ਟੱਕਰ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ-
ਖੇਡਾਂ ਮੁਕਾਬਲਿਆਂ ਸਮੇਂ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸੱਟਾਂ ਲੱਗਣਾ ਸੁਭਾਵਿਕ ਹੁੰਦਾ ਹੈ । ਆਪਣੀ ਟੀਮ ਨੂੰ ਜਿਤਾਉਣ ਲਈ ਵਿਰੋਧੀ ਟੀਮ ਦਾ ਮੁਕਾਬਲਾ ਬੜੇ ਜੋਸ਼ ਅਤੇ ਗਤੀ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਅਜਿਹੇ ਸਮੇਂ ਵਿਚ ਖਿਡਾਰੀਆਂ ਦੀ ਆਪਸ ਵਿਚ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਸਿੱਧੇ ਤੌਰ ਤੇ ਟੱਕਰ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸੱਟ ਲੱਗ ਜਾਂਦੀ ਹੈ । ਜ਼ਿਆਦਾਤਰ ਕਬੱਡੀ ਕੁਸ਼ਤੀ, ਬਾਕਸਿੰਗ, ਫੁੱਟਬਾਲ, ਹਾਕੀ ਆਦਿ ਖੇਡਾਂ ਵਿਚ ਸਿੱਧੀ ਟੱਕਰ ਨਾਲ ਸੱਟ ਲੱਗਣ ਦਾ ਖਤਰਾ ਰਹਿੰਦਾ ਹੈ ।

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 10.
ਹੱਡੀ ਦੀ ਟੁੱਟ ਦੀਆਂ ਕਿਸਮਾਂ ਬਾਰੇ ਵਿਸਥਾਰਪੂਰਵਕ ਜਾਣਕਾਰੀ ਦਿਉ ।
ਉੱਤਰ-
ਹੱਡੀ ਦਾ ਨਿਰੰਤਰ ਵਿਚ ਟੁੱਟਣਾ ਹੀ ਹੱਡੀ ਟੁੱਟਣਾ ਅਖਵਾਉਂਦਾ ਹੈ । ਫੈਕਚਰ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦ ਹੱਡੀ ਉੱਪਰ ਉਸਦੀ ਸਮਰੱਥਾ ਤੋਂ ਜ਼ਿਆਦਾ ਤਨਾਅ (Stress) ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਫਿਰ ਹੱਡੀ ਨੂੰ ਸਿੱਧਾ ਝਟਕਾ ਲੱਗਦਾ ਹੈ । ਹੱਡੀ ਦਾ ਅਚਾਨਕ ਮੋੜਨਾ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਉਤਪੰਨ ਹੋਣਾ ਆਦਿ ਹੱਡੀ ਟੁੱਟਣ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ।ਫੈਕਚਰ ਸਿੱਧੇ, ਅਸਿੱਧੇ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਜਾਂ ਲਿੰਗਾਮੈਂਟ ਦੀ ਤਾਕਤ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ । ਟ੍ਰੈਕਚਰ ਦੇ ਹੇਠ ਲਿਖੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਖੇਡਣ ਸਮੇਂ ਜਾਂ ਫਿਰ ਦੁਰਘਟਨਾ ਵਿਚ ਵਾਪਰਦੇ ਹਨ-

  1. ਸਾਦੀ ਟੁੱਟ (Close/Simple Fracture) – ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਟੁੱਟ ਵਿਚ ਹੱਡੀ ਦੋ ਹਿੱਸਿਆਂ ਵਿਚ ਵੰਡੀ ਜਾਂਦੀ ਹੈ ।
  2. ਖੁੱਲ੍ਹੀ ਟੁੱਟ (Open/Compound Fracture) – ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਟੁੱਟ ਵਿੱਚ ਹੱਡੀ ਮਾਸਪੇਸ਼ੀਆਂ ਤੋਂ ਬਾਹਰ ਨਿਕਲ ਆਉਂਦੀ ਹੈ ।
  3. ਬਹੁਖੰਡੀ ਟੁੱਟ (Commuted Fracture) – ਇਸ ਵਿਚ ਸੱਟ ਲੱਗਣ ਵਾਲੀ ਥਾਂ ਤੇ ਹੱਡੀ ਦੇ ਛੋਟੇ-ਛੋਟੇ ਟੁੱਕੜੇ ਹੋ ਜਾਂਦੇ ਹਨ ।
  4. ਗੁੰਝਲਦਾਰ ਟੁੱਟ (Complicated Fracture) – ਇਸ ਵਿੱਚ ਹੱਡੀ ਟੁੱਟ ਕੇ ਦੂਜੀ ਹੱਡੀ ਜਾਂ ਫਿਰ ਅੰਗਾਂ ਵਿਚ ਧਸ ਜਾਂਦੀ ਹੈ ।
  5. ਕੱਚੀ ਟੁੱਟ (Green Stick Fracture) – ਇਸ ਵਿਚ ਹੱਡੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਟੁੱਟਦੀ ਨਹੀਂ ਬਲਕਿ ਇਕ ਪਾਸੇ ਨੂੰ ਝੁਕ ਜਾਂਦੀ ਹੈ। ਇਹ ਟੁੱਟ ਅਕਸਰ ਬੱਚਿਆਂ ਵਿਚ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ।
  6. ਤਰੇੜ ਆਉਣਾ (Hair Line Fracture) – ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਟੁੱਟ ਵਿਚ ਹੱਡੀ ਤੇ ਤਰੇੜ ਦਿਖਾਈ ਦਿੰਦੀ ਹੈ ।
  7. ਦੱਬੀ ਹੋਈ ਟੁੱਟ (Depressed Fracture) – ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਟੁੱਟ ਵਿਚ ਹੱਡੀ ਟੁੱਟਦੀ ਨਹੀਂ ਬਲਕਿ ਅੰਦਰ ਵੱਲ ਧੱਸ ਜਾਂਦੀ ਹੈ ।

ਹੱਡੀ ਟੁੱਟਣ ਦੇ ਚਿੰਨ੍ਹ ਅਤੇ ਪਛਾਣ (Signs and Symptoms of Bone Fracture)-

  1. ਸੱਟ ਲੱਗਣ ਵਾਲੀ ਥਾਂ ਤੇ ਬਹੁਤ ਦਰਦ ਹੁੰਦਾ ਹੈ ।
  2. ਜ਼ਖ਼ਮੀ ਹੋਏ ਖੇਤਰ ਤੇ ਸੋਜ ਆ ਜਾਂਦੀ ਹੈ ।
  3. ਹੱਡੀ ਚਮੜੀ ਤੋਂ ਬਾਹਰ ਆ ਜਾਂਦੀ ਹੈ ।
  4. ਜ਼ਖ਼ਮੀ ਥਾਂ ਤੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਖੂਨ ਵੱਗਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ 1
ਇਲਾਜ ਅਤੇ ਪਰਹੇਜ਼ (Remedies and Prevention)-

  1. ਹੱਡੀ ਦਾ ਟੁੱਟਣਾ, ਜੀਵਨ ਲਈ ਖ਼ਤਰਾ ਨਹੀਂ ਹੁੰਦਾ ਪਰੰਤੂ ਇਸ ਲਈ ਤੁਰੰਤ ਇਲਾਜ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ । ਲਹੂ ਵੱਗਣ ਦੀ ਵਰਗ ਦੀ ਸੂਰਤ ਵਿਚ ਜ਼ਖ਼ਮ ਤੇ ਸਾਫ਼ ਕੱਪੜਾ ਬੰਨ੍ਹ ਕੇ ਦਬਾ ਪਾਉ । ਕਈ ਵਾਰ ਹੱਡੀ ਟੁੱਟਣ ਸਮੇਂ ਫਸਟ ਏਡ ਵੀ ਕਰਨੀ ਪੈਂਦੀ ਹੈ ।
  2. ਜੇ ਜ਼ਖ਼ਮੀ ਹੋਏ ਵਿਅਕਤੀ ਨੂੰ ਚੱਕਰ ਆਉਣ, ਕਮਜ਼ੋਰੀ ਅਨੁਭਵ ਹੋਏ, ਰੰਗ ਪੀਲਾ ਹੋ ਰਿਹਾ ਹੋਵੇ, ਚਿਹਰਾ ਸਿੱਲ ਹੋਵੇ, ਸਾਹ ਛੋਟੇ ਹੋ ਜਾਣ ਅਤੇ ਦਿਲ ਦੀ ਧੜਕਣ ਵੱਧ ਜਾਵੇ ਤਾਂ ਵਿਅਕਤੀ ਨੂੰ ਆਪਣੇ ਪੈਰ ਲਗਭਗ ਇਕ ਫੁੱਟ ਉੱਚੇ ਕਰਕੇ ਚੁੱਪ-ਚਾਪ ਲੇਟ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ।
  3. ਇਸ ਤੋਂ ਬਾਅਦ ਜ਼ਖ਼ਮੀ ਖੇਤਰ ਨੂੰ ਹੱਲ ਕਰ ਦਿਓ ।
  4. ਜ਼ਖ਼ਮ ਵਾਲੀ ਥਾਂ ਨੂੰ ਠੰਡੀ ਟਕੋਰ ਕਰੋ ।
  5. ਬਰਫ਼ ਨੂੰ ਚਮੜੀ ਤੇ ਸਿੱਧਾ ਨਾ ਲਗਾਓ ।
  6. ਜੇਕਰ ਵਿਅਕਤੀ ਕੋਈ ਜਵਾਬ ਨਹੀਂ ਦੇ ਰਿਹਾ, ਤਾਂ ਸੀ.ਪੀ.ਆਰ. (C.P.R.) ਵੀ ਦਿੱਤੀ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ ।
  7. ਟੁੱਟੀ ਹੱਡੀ ਦੇ ਉੱਪਰ ਅਤੇ ਥੱਲੇ ਦੋਵੇਂ ਥਾਂਵਾਂ ਤੇ ਫੱਟੀ ਬੰਨੋ ।

ਪ੍ਰਸ਼ਨ 11.
ਖੇਡ ਸੱਟਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਦੀ ਜਾਣਕਾਰੀ ਦਿਉ । ਸੱਟਾਂ ਦੇ ਕਾਰਨ ਵੀ ਦੱਸੋ ।
ਉੱਤਰ-
ਖੇਡ ਸੱਟਾਂ ਨੂੰ ਕਸਰਤ ਨਾਲ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਵਜੋਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਖੇਡ ਸੱਟਾਂ ਨੂੰ ਸੱਟਾਂ ਦੇ ਕਾਰਨ ਜਾਂ ਫਿਰ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਅਨੁਸਾਰ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ-
(ੳ) ਸਿੱਧੀ ਸੱਟ (Direct Injury) – ਸਿੱਧੀ ਸੱਟ ਬਾਹਰੀ ਝਟਕੇ ਜਾਂ ਤਾਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ ।

(ਅ) ਅਸਿੱਧੀ ਸੱਟ (Indirect Injury) – ਇਹ ਸੱਟ ਕਿਸੇ ਵਸਤੂ ਜਾਂ ਵਿਅਕਤੀ ਦੇ ਸਰੀਰ ਸੰਪਰਕ ਤੋਂ ਨਹੀਂ ਲੱਗਦੀ ਬਲਕਿ ਅੰਦਰੂਨੀ ਤਾਕਤ ਜਿਵੇਂ ਓਵਰਸਟ੍ਰੈਚਿੰਗ (Overstreching) ਮਾੜੀ ਤਕਨੀਕ ਆਦਿ ਕਾਰਨਾਂ ਦੇ ਅਭਿਆਸ ਕਾਰਨ ਲੱਗਦੀ ਹੈ ।

(ਈ) ਵਾਧੂ ਸੱਟਾਂ (Overuse Injury) – ਇਹ ਸੱਟਾਂ ਉਦੋਂ ਲੱਗਦੀਆਂ ਹਨ ਜਦ ਬਹੁਤ ਜ਼ਿਆਦਾ ਅਤੇ ਦੁਹਰਾਉਣ ਵਾਲੀਆਂ ਸ਼ਕਤੀਆਂ ਹੱਡੀਆਂ ਅਤੇ ਸਰੀਰ ਦੇ ਦੂਜੇ ਜੁੜੇ ਟਿਸ਼ੂਆਂ ਉੱਪਰ ਵਾਧੂ ਭਾਰ ਪਾਉਂਦੀਆਂ ਹਨ । ਜੇਕਰ ਇਹਨਾਂ ਸੱਟਾਂ ਨੂੰ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਵਜੋਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-

  • ਸਾਫ਼ਟ ਟਿਸ਼ੂ ਸੱਟਾਂ (Soft Tissue Injuries) – ਇਹ ਸੱਟਾਂ ਖੇਡਾਂ ਵਿਚ ਹਿੱਸਾ ਲੈਣ ਕਾਰਨ ਆਮ ਲੱਗਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ । ਇਹ ਅਕਸਰ ਮਾਸਪੇਸ਼ੀ, ਚਮੜੀ, ਟਿਸ਼ੂ ਜਾਂ ਖੇਡਣ ਤੇ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਮੋਚ, ਖਿੱਚ, ਰਗੜ, ਜ਼ਖ਼ਮ ਅਤੇ ਛਾਲੇ ਆਦਿ ਹਨ ।
  • ਹਾਰਡ ਟਿਸ਼ੂ ਸੱਟਾਂ (Hard Tissue Injuries) – ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਸੱਟਾਂ ਵਿਚ ਫੈਕਚਰ (Fracture) ਅਤੇ ਡਿਸਲੋਕੇਸ਼ਨ (Dislocation) ਸ਼ਾਮਿਲ ਹਨ ।

ਕਾਰਨ-
1. ਖਿਡਾਰੀ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਨਾ ਹੋਣਾ (Poor Physical Fitness of Player) – ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਲਈ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਨਿਯਮਿਤ ਅਭਿਆਸ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ | ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੇ ਸਾਰੇ ਤੱਤ ਜਿਵੇਂ ਕਿ ਤਾਕਤ, ਗਤੀ, ਲਚਕਤਾ, ਸਹਿਣਸ਼ੀਲਤਾ, ਚੁਸਤੀ, ਸ਼ਕਤੀ, ਸੰਤੁਲਨ ਆਦਿ ਖਿਡਾਰੀ ਵਿਚ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਨਹੀਂ ਤਾਂ ਇਹਨਾਂ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ ਸੱਟਾਂ ਲੱਗਣ ਦਾ ਖਤਰਾ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ ।

2. ਮਨੋਵਿਗਿਆਨ ਤਿਆਰੀ ਦਾ ਨਾ ਹੋਣਾ (Due to Poor Psychological Preparation) – ਜੇਕਰ ਐਥਲੀਟ ਤਨਾਅਪੂਰਨ ਹੈ, ਚਿੰਤਾ ਨਾਲ ਭਰਿਆ ਹੋਇਆ ਹੈ ਜਾਂ ਫਿਰ ਚਿੰਤਾ ਵਿਚ ਖੇਡ ਰਿਹਾ ਹੈ ਤਾਂ ਉਹ ਆਸਾਨੀ ਨਾਲ ਜਖ਼ਮੀ ਹੋ ਜਾਵੇਗਾ | ਸੱਟਾਂ ਦੀ ਰੋਕਥਾਮ ਲਈ ਮਾਨਸਿਕ ਜਾ ਮਨੋਵਿਗਿਆਨਿਕ ਤਿਆਰੀ ਕਰਨਾ ਲਾਜ਼ਮੀ ਹੈ ।

3. ਮੈਚ ਤੋਂ ਪਹਿਲਾਂ ਥੋੜ੍ਹਾ ਗਰਮਾਉਣਾ (Inadequate Warming-up Before Match) – ਸੱਟਾਂ ਦੀ ਰੋਕਥਾਮ ਲਈ ਗਰਮਾਉਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਗਰਮਾਉਣ ਦੇ ਦੌਰਾਨ ਖਿੱਚਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਕਰਨ ਕਈ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ ਖਿੱਚ ਜਾਂ ਮੋਚ ਤੋਂ ਬਚਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣ ਤੋਂ ਬਾਅਦ ਸਰੀਰ
ਕਿਸੇ ਵੀ ਤਣਾਅ ਨੂੰ ਸਹਿਣ ਲਈ ਤਿਆਰ ਹੋ ਜਾਂਦਾ ਹੈ । ਕੋਈ ਸ਼ਕਤੀਸ਼ਾਲੀ ਗਤੀਵਿਧੀ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਗਰਮਾਉਣਾ (Warming-up) ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ।

4. ਸਹੀ ਤਕਨੀਕ ਦਾ ਗਿਆਨ ਨਾ ਹੋਣਾ (Lack of Knowledge of Technique) – ਸਟੀਕ ਤਕਨੀਕ ਦਾ ( ਗਿਆਨ ਜਾਂ ਵਰਤੋਂ ਕਰਕੇ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿਚ ਸੱਟਾਂ ਦੇ ਜ਼ੋਖ਼ਮ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਜਿਵੇਂ ਟੈਂਡਨਾਈਸ ਅਤੇ ਤਣਾਅ ਫੈਕਚਰ ਜਾਂ ਟੈਨਿਸ ਟੈਲਬੋ ਆਦਿ ਸੱਟਾਂ ਨੂੰ ਸਹੀ ਤਕਨੀਕ ਦੇ ਪ੍ਰਯੋਗ ਜਾਂ ਫਿਰ ਜ਼ਿਆਦਾ ਵਰਤੋਂ ਕਾਰਨ ਹੁੰਦੇ ਹਨ | ਜੇਕਰ ਅਸੀਂ ਜਾਂ ਖਿਡਾਰੀ ਸਹੀ ਤਕਨੀਕ ਬਾਰੇ ਗਿਆਨ ਨਹੀਂ ਰੱਖਦੇ ਤਾਂ ਕਾਬਲ ਕੋਚ ਦੀ ਮੱਦਦ ਲੈਣੀ ਚਾਹੀਦੀ ਹੈ ।

5. ਘਟੀਆ ਖੇਡ ਯੰਤਰਾਂ ਦਾ ਇਸਤੇਮਾਲ ਕਰਨਾ (By Using Substandard Sports Equipment) – ਅੱਧੀ ਖੇਡ ਸਹੀ ਸਾਜ਼ੋ-ਸਮਾਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਜਿੱਤਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਘਟੀਆ ਉਪਕਰਨ ਕਈ ਵਾਰ ਖੇਡਾਂ ਵਿਚ ਸੱਟਾਂ ਦੇ ਕਾਰਨ ਬਣਦੇ ਹਨ ।

6. ਖੇਡ ਨਿਯਮਾਂ ਦੇ ਗਿਆਨ ਦੀ ਕਮੀ ਹੋਣਾ (Lack of Knowledge of Rules and Regulation of Games) – ਖਿਡਾਰੀਆਂ ਦੀ ਸੁਰੱਖਿਆ ਦੇ ਮੱਦੇਨਜ਼ਰ ਕਈ ਨਿਯਮ ਬਣਾਏ ਜਾਂਦੇ ਹਨ । ਵਿਵਹਾਰ ਨਿਯਮ ਵਿਚ ਗਲਤ ਢੰਗ ਨਾਲ ਖੇਡਣ ਤੇ ਖਿਡਾਰੀ ਨੂੰ ਸਜ਼ਾ ਦਿੱਤੀ ਜਾਵੇ | ਅਨੁਸ਼ਾਸਨ ਅਧੀਨ ਖੇਡਾਂ, ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ
ਸੱਟਾਂ ਨੂੰ ਰੋਕਦੀਆਂ ਹਨ ।

7. ਮੈਦਾਨ ਦੀ ਹਾਲਤ ਸਹੀ ਨਾ ਹੋਣਾ (Bad Condition of Play Field) – ਸੁਰੱਖਿਆ ਪੂਰਨ ਮੈਦਾਨ ਅਤੇ ਸਾਜ਼ੋ-ਸਮਾਨ ਨਾਲ ਖੇਡਣ ਖੇਤਰਾਂ ਵਿਚ ਬਹੁਤ ਸਾਰੀਆਂ ਸੱਟਾਂ ਤੋਂ ਬਚਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਉਦਾਹਰਨ ਵਜੋਂ ਚਿੱਕੜ ਵਾਲੇ ਟਰੈਕ ਦੇ ਮੁਕਾਬਲੇ ਸਿੰਥੈਟਿਕ ਟਰੈਕ ਦੇ ਮੁਕਾਬਲੇ ਸੱਟਾਂ ਘੱਟ ਲੱਗਦੀਆਂ ਹਨ ।

8. ਖਿਡਾਰੀ ਦੇ ਘਮੰਡ ਦੇ ਕਾਰਨ (Due to Arrogance) – ਕਈ ਵਾਰ ਹਮਲਾਵਾਰ ਖਿਡਾਰੀ ਹੋਰ ਖਿਡਾਰੀਆਂ ਨੂੰ ਬੇਹੱਦ ਜ਼ਖ਼ਮੀ ਕਰਦੇ ਹਨ, ਅਜਿਹੀਆਂ ਸੱਟਾਂ ਤੋਂ ਬਚਣ ਲਈ ਉਹਨਾਂ ਨੂੰ ਸਜ਼ਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ।

9. ਖ਼ਰਾਬ ਮੌਸਮ ਕਾਰਨ (Due to Bad Climate) – ਖਰਾਬ ਮੌਸਮ ਜਿਵੇਂ ਮੀਂਹ ਹੋਣਾ ਜਾਂ ਮੈਦਾਨਾਂ ਦਾ ਇਕ ਸਮਾਨ ਨਾ ਹੋਣਾ, ਠੰਡਾ ਜਾਂ ਗਰਮ ਮੌਸਮ ਆਦਿ ਦੇ ਕਾਰਨ ਸੱਟ ਲੱਗ ਜਾਂਦੀ ਹੈ ।

10. ਮੈਚ ਪੈਕਟਿਸ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ (Due to lack of Match Practice) – ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਅਭਿਆਸ ਆਦਮੀ ਨੂੰ ਸੰਪੂਰਨ ਬਣਾਉਂਦਾ ਹੈ | ਐਥਲੀਟ ਨੂੰ ਮੈਚ ਤੋਂ ਪਹਿਲਾਂ ਚੰਗੀ ਤਰ੍ਹਾਂ ਤਿਆਰ ਅਤੇ ਅਭਿਆਸ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ । ਸੱਟਾਂ ਦੀ ਰੋਕਥਾਮ ਲਈ ਹਰੇਕ ਦਿਨ ਦੇ ਅਭਿਆਸ ਦੀ ਤਾਲ-ਮੇਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ | ਸਾਥੀ ਟੀਮ ਦੇ ਸਾਥੀਆਂ ਨੂੰ ਸਮਝਣਾ, ਸਰੀਰ ਦੀਆਂ ਹਰਕਤਾਂ ਦਾ ਤਾਲਮੇਲ ਅਤੇ ਅਨੁਕੂਲਣ ਕਰਨਾ ਆਦਿ ਸੱਟਾਂ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 12.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦਾ ਅਰਥ ਅਤੇ ਸਿਧਾਂਤ ਲਿਖੋ ।
ਉੱਤਰ-
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਡਾਕਟਰ ਦੇ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਤੁਰੰਤ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਸਹਾਇਤਾ ਹੁੰਦੀ ਹੈ । ਇਹ | ਵਿਵਹਾਰਕ ਤੌਰ ਤੇ ਹੋਰ ਸੱਟਾਂ ਨੂੰ ਰੋਕਣਾ, ਮਰੀਜ਼ ਦੇ ਦਰਦ ਨੂੰ ਘਟਾਉਣਾ ਅਤੇ ਉਸਨੂੰ ਸੱਟ ਦੇ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਦੀ ਹੈ । ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦਾ ਮੂਲ ਸੰਕਲਪ ਖੂਨ ਵੱਗਣ ਤੋਂ ਰੋਕਣਾ, ਸਾਹ ਲੈਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ਅਤੇ ਇਲਾਜ ਕਰਨ ਤੋਂ ਹੈ । ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਵਿਚ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਮਰੀਜ਼ ਦਾ ਸਾਹ ਰਸਤਾ ਖੁੱਲਾ ਹੈ ਅਤੇ ਉਹ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਹ ਲੈ ਰਿਹਾ ਹੈ । ਉਸਦਾ ਖ਼ਨ ਦੌਰਾ ਜਿਵੇਂ ਨਾੜੀ ਗਤੀ, ਚਮੜੀ ਦਾ ਰੰਗ, ਬੇਕਾਬੂ ਖੂਨ ਵੱਗਣਾ ਆਦਿ ਠੀਕ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਅਗਰ ਮਰੀਜ਼ ਸਥਿਰ ਹੈ ਤਾਂ ਹੋਰਨਾਂ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ ਕੱਟਣਾ, ਸੁੱਜਣਾ ਜਾਂ ਹੱਡੀ ਟੁੱਟਣਾ ਦੀ ਸੰਭਾਲ ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਵਿਚ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਕੁੱਝ ਬੁਨਿਆਦੀ ਸੰਕਲਪ ਜਿਵੇਂ ਖੂਨ ਨੂੰ ਵੱਗਣ ਤੋਂ ਰੋਕਣਾ ਜਾਂ ਟੁੱਟੀਆਂ ਹੱਡੀਆਂ ਨੂੰ ਤਦ ਤਕ ਸਥਿਰ ਰੱਖਣਾ ਜਦ ਤਕ ਉਹਨਾਂ ਦਾ ਮੁੱਲਾਂਕਣ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਜਾਂ ਫਿਰ ਜੋੜ ਨਹੀਂ ਦਿੱਤਾ ਜਾਂਦਾ, ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ (Principle of First Aid) – ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਬਿਨਾਂ ਘਬਰਾਏ, ਚੁੱਪਚਾਪ, ਸ਼ਾਂਤੀ ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਮੱਦਦ ਕਰਨਾ ।
  2. ਜਿੰਨਾ ਹੋ ਸਕੇ ਪੀੜਤ ਨੂੰ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ।
  3. ਬਿਨਾਂ ਮਤਲਬ ਜ਼ਿਆਦਾ ਕੋਸ਼ਿਸ਼ਾਂ ਨਾ ਕਰਨਾ ।
  4. ਤਣਾਅ ਨੂੰ ਘਟਾਉਣ ਲਈ ਪੀੜਤ ਨੂੰ ਭਰੋਸਾ ਜਾਂ ਹੌਂਸਲਾ ਦੇਣਾ ।
  5. ਜੇ ਲੋੜ ਹੋਵੇ ਤਾਂ ਨਕਲੀ ਸਾਹ (Artificial respiration) ਦੇਣਾ ।
  6. ਖੂਨ ਵੱਗਣ ਤੋਂ ਰੋਕਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨਾ ।
  7. ਪੀੜਤ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਭੀੜ ਇਕੱਠੀ ਨਾ ਹੋਣ ਦੇਣਾ ।

PSEB 12th Class Physical Education Guide ਖੇਡ ਸੱਟਾਂ Important Questions and Answers

ਇੱਕ ਅੰਕ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (One Mark Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਪਰਾਈਸ (PRICE) ਸ਼ਬਦ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ ।
ਉੱਤਰ-
ਪ੍ਰੋਟੈਕਸ਼ਨ, ਰੈਸਟ, ਆਈਸ, ਕੰਮਪਰੈਸ਼ਨ ਅਤੇ ਐਲੀਵੇਸ਼ਨ ।

ਪ੍ਰਸ਼ਨ 2.
ਕੋਈ ਵੀ ਦੋ ਨਰਮ ਟਿਸ਼ੂਆਂ ਦੀਆਂ ਸੱਟਾਂ ਦੇ ਨਾਮ ਦਿਉ ।
ਉੱਤਰ-
ਮੋਚ ਅਤੇ ਗੁੱਝੀ ਸੱਟ ।

ਪ੍ਰਸ਼ਨ 3.
ਕਿਸੇ ਵੀ ਦੋ ਸਖ਼ਤ ਟਿਸ਼ੂਆਂ ਦੀਆਂ ਸੱਟਾਂ ਦੇ ਨਾਮ ਲਿਖੋ ।
ਉੱਤਰ-
ਹੱਡੀ ਉਤਰਨਾ ਅਤੇ ਟੁੱਟਣਾ ।

ਪ੍ਰਸ਼ਨ 4.
ਸਿੱਧੀ ਸੱਟ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਸਿੱਧੀ ਸੱਟ ਬਾਹਰੀ ਝਟਕੇ ਜਾਂ ਤਾਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 5.
ਖੇਡ ਸੱਟਾਂ ਦੇ ਕੋਈ ਦੋ ਕਾਰਨ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਖਿਡਾਰੀ ਦਾ ਸਰੀਰਕ ਤੌਰ ਦੇ ਤੰਦਰੁਸਤ ਨਾ ਹੋਣਾ
  2. ਸਰੀਰ ਦਾ ਚੰਗੀ ਤਰ੍ਹਾਂ ਨਾ ਗਰਮਾਉਣਾ ।

ਪ੍ਰਸ਼ਨ 6.
ਖੇਡ ਸੱਟਾਂ ਦੀ ਸੁਰੱਖਿਆ ਦੇ ਉਪਾਅ ਦਿਓ ।
ਉੱਤਰ-
ਨਿਵਾਰਕ ਪਹਿਲੂ ਅਤੇ ਉਪਚਾਰਾਤਮਕ ਪਹਿਲੂ ।

ਪ੍ਰਸ਼ਨ 7.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਦੋ ਸਿਧਾਂਤਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਬਿਨਾਂ ਘਬਰਾਏ ਚੁੱਪਚਾਪ ਸ਼ਾਂਤੀ ਨਾਲ ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਮੱਦਦ ਕਰਨ
  2. ਬਿਨਾਂ ਮਤਲਬ ਜ਼ਿਆਦਾ ਕੋਸ਼ਿਸ਼ ਨਾ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 8.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਡਾਕਟਰ ਦੇ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਸਹਾਇਤਾ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 9.
ਖੇਡ ਸੱਟਾਂ ਵਿਚ ਖਿੱਚ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ।
ਉੱਤਰ-

  1. ਗੰਭੀਰ ਖਿੱਚ
  2. ਲੰਬੇ ਸਮੇਂ ਦੀ ਖਿੱਚ ।

ਪ੍ਰਸ਼ਨ 10.
ਖਿੱਚ ਦੇ ਕੋਈ ਦੋ ਕਾਰਨ ਦੱਸੋ ।
ਉੱਤਰ-

  1. ਜ਼ਿਆਦਾ ਖਿਚਾਵ
  2. ਅਚਾਨਕ ਗਤੀ ।

ਪ੍ਰਸ਼ਨ 11.
ਖਿੱਚ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ? ਕਿਸੇ ਦੋ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਜਲਣ, ਦਰਦ, ਸਮੇਤ ਮੋਚ,

  1. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਅਚਾਨਕ ਦਰਦ
  2. ਅੜਕਣ ਜਾਂ ਪੀੜ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 12.
ਮੋਚ ਉੱਪਰ ਬਰਫ਼ ਕਿੰਨੇ ਸਮੇਂ ਲਈ ਲਗਾਉਣੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਹਰ ਘੰਟੇ ਬਰਫ਼ 20 ਮਿੰਟ ਲਈ ।

ਪ੍ਰਸ਼ਨ. 13.
‘ਗੁੱਝੀ ਸੱਟ’ ਨੀਲ ਪੈਣਾ ਦੇ ਕੋਈ ਦੋ ਲੱਛਣ ਦਿਓ ।
ਉੱਤਰ-

  1. ਚਮੜੀ ਵਿਚ ਜਲਣ
  2. ਸੱਟ ਵਾਲੇ ਭਾਗ ਤੇ ਦਰਦ ।

ਪ੍ਰਸ਼ਨ 14.
ਰਗੜ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਝਰੀਟ, ਛਿੱਲਿਆ ਜਾਣਾ, ਦਬਾਅ ਰਗੜ ਅਤੇ ਟੱਕਰ ਰਗੜ ।

ਪ੍ਰਸ਼ਨ 15.
ਕਿਸੇ ਦੋ ਪ੍ਰਕਾਰ ਦੇ ਫ਼ੈਕਚਰ ਬਾਰੇ ਲਿਖੋ ।.
ਉੱਤਰ-

  1. ਖੁੱਲ੍ਹੀ ਟੁੱਟ
  2. ਬਹੁਖੰਡੀ ਟੁੱਟ ।

ਪ੍ਰਸ਼ਨ 16.
ਵੈਕਚਰ ਦੇ ਕੋਈ ਦੋ ਲੱਛਣ ਦਿਉ ।
ਉੱਤਰ-
ਹੱਡੀ ਚਮੜੀ ਤੋਂ ਬਾਹਰ ਆ ਜਾਣਾ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 17.
ਲੰਬੇ ਸਮੇਂ ਦੀ ਖਿੱਚ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਖਿੱਚ ਲੰਬੇ ਸਮੇਂ ਤਕ ਬਾਰ-ਬਾਰ ਹਰਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ । ਇਹ ਜਿਮਨਾਸਟਿਕ, ਟੈਨਿਸ, ਕਿਸ਼ਤੀ ਚਲਾਉਣਾ ਅਤੇ ਗੋਲਫ ਵਰਗੀਆਂ ਖੇਡਾਂ ਵਿਚ ਵਾਪਰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 18.
ਪ੍ਰਾਈਸ ‘PRICE’ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਕਿੰਨੇ ਘੰਟਿਆਂ ਤੱਕ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
24 ਤੋਂ 48 ਘੰਟਿਆਂ ਤੱਕ ।

ਪ੍ਰਸ਼ਨ 19.
ਹਲਕੀ ਮਾਮੂਲੀ ਮੋਚ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਹਲਕੀ ਮੋਚ ਹੁੰਦੀ ਹੈ । ਸੋਜ ਦਾ ਹਰਕਤਾਂ ਵਾਲੀ ਥਾਂ ਤੇ ਕੋਈ ਖ਼ਾਸ ਅਸਰ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਉਸਦੇ ਕੰਮ ਕਰਨ ਵਿਚ ਕੋਈ ਵਿਘਨ ਆਉਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 20.
ਵੰਨੇ ਹੋਏ ਜ਼ਖ਼ਮ ਕੀ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਇਹ ਚਮੜੀ ਦੇ ਉਹ ਜ਼ਖ਼ਮ ਹਨ ਜਿਸ ਵਿਚ ਚਮੜੀ ਕੱਟ ਜਾਂਦੀ ਹੈ । ਕਹਿਣ ਤੋਂ ਭਾਵ ਇਹ ਚਮੜੀ ਦੇ ਮਾਮੂਲੀ ਜ਼ਖ਼ਮ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 21.
ਦੱਬੀ ਹੋਈ ਟੁੱਟ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਵਿਚ ਹੱਡੀ ਟੁੱਟਦੀ ਨਹੀਂ ਹੈ ਬਲਕਿ ਅੰਦਰ ਵੱਲ ਧੱਸ ਜਾਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 22.
ਬਹੁਖੰਡੀ ਟੁੱਟ ਕੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਵਿਚ ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਹੱਡੀ ਦੇ ਛੋਟੇ-ਛੋਟੇ ਟੁੱਕੜੇ ਹੋ ਜਾਂਦੇ ਹਨ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 23.
ਗੁੰਝਲਦਾਰ ਫੁੱਟ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਇਸ ਵਿਚ ਹੱਡੀ ਟੁੱਟ ਕੇ ਦੂਜੀ ਹੱਡੀ ਜਾਂ ਫਿਰ ਅੰਗਾਂ ਵਿਚ ਧੱਸ ਜਾਂਦੀ ਹੈ ।

ਦੋ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Two Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਪ੍ਰਮੁੱਖ ਸੱਟਾਂ ਕੀ ਹਨ ?
ਉੱਤਰ-
ਇਹ ਅਕਸਰ ਮਾਸਪੇਸ਼ੀ, ਚਮੜੀ, ਟਿਸ਼ੂ ਜਾਂ ਖੇਡਣ ਤੇ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਮੋਚ, ਖਿੱਚ, ਰਗੜ, ਜ਼ਖ਼ਮ ਅਤੇ ਛਾਲੇ ਆਦਿ ਹਨ ।

ਪ੍ਰਸ਼ਨ 2.
ਮੋਚ ਤੋਂ ਤੁਹਾਡਾ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
ਮੋਚ ਹੱਡੀਆਂ ਅਤੇ ਜੋੜਾਂ ਦੀ ਸੱਟ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਜਾਂ ਜੋੜ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲੇ ਲਿੰਗਾਮੈਂਟ ਰੇਸ਼ੇ ਮਾਸਪੇਸ਼ੀ ਕੋਲੋਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਬਿਨਾਂ ਘਬਰਾਏ, ਚੁੱਪਚਾਪ, ਸ਼ਾਂਤੀ ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਮੱਦਦ ਕਰਨਾ ।
  2. ਜਿੰਨਾ ਹੋ ਸਕੇ ਪੀੜਤ ਨੂੰ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ।
  3. ਬਿਨਾਂ ਮਤਲਬ ਜ਼ਿਆਦਾ ਕੋਸ਼ਿਸ਼ ਨਾ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 4.
ਖੇਡ ਵਿੱਚ ਸੱਟਾਂ ਦੇ ਕਾਰਨਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਖੇਡ ਸੱਟਾਂ ਆਮ ਤੌਰ ‘ਤੇ ਜ਼ਿਆਦਾ ਵਰਤੋਂ (Overuse), ਜ਼ਿਆਦਾ ਮਰੋੜ (Over twisting), ਜ਼ਿਆਦਾ ਖਿੱਚਣਾ (Overstreching) ਜਾਂ ਟੱਕਰ ਕਾਰਨ ਹੁੰਦੀਆਂ ਹਨ । ਇਹ ਜ਼ਿਆਦਾਤਰ ਸੱਟਾਂ ਦੇ ਗਿਆਨ ਦੀ ਕਮੀ ਕਾਰਨ ਵੀ ਵਾਪਰਦੀਆਂ ਹਨ | ਖੇਡ ਸੱਟਾਂ, ਖੇਡ ਦੇ ਮੈਦਾਨ ਜਾਂ ਖੇਡਦੇ ਹੋਏ ਲੱਗਦੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 5.
ਨਰਮ ਟਿਸ਼ੂ ਨਾਲ ਸੰਬੰਧਿਤ ਸੱਟਾਂ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਖੇਡਾਂ ਵਿਚ ਭਾਗ ਲੈਣ ਨਾਲ ਲੱਗਣ ਵਾਲੀਆਂ ਸੱਟਾਂ ਆਮ ਹੁੰਦੀਆਂ ਹਨ । ਇਹਨਾਂ ਨੂੰ ਨਰਮ ਟਿਸ਼ੂ ਸੱਟਾਂ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਸੱਟਾਂ ਮਾਸਪੇਸ਼ੀ, ਤੰਤੂ, ਲਿਗਾਮੈਂਟ ਅਤੇ ਚਮੜੀ ਤੇ ਆਮ ਲੱਗਦੀਆਂ ਹਨ । ਇਹ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ ਮੋਚ, ਖਿੱਚ, ਰਗੜ, ਚੀਰਾ ਜਾਂ ਛਾਲੇ ਆਦਿ ਹੁੰਦੀਆਂ ਹਨ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 6.
ਗੁੱਝੀ ਸੱਟ ਜਾਂ ਨੀਲ ਪੈਣ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ।
ਉੱਤਰ-
ਗੁੱਝੀ ਸੱਟ ਨਰਮ ਟਿਸ਼ੂਆਂ ਦੇ ਵਿਚ ਖੂਨ ਵੱਗਣਾ ਜਾਂ ਜਮਾਂ ਹੋ ਜਾਣ ਤੋਂ ਹੁੰਦੀ ਹੈ । ਇਹ ਕਿਸੇ ਵਿਅਕਤੀ ਜਾਂ ਖੁੱਡੀ ਚੀਜ਼ ਦੀ ਟੱਕਰ ਨਾਲ ਹੁੰਦੀ ਹੈ । ਇਹ ਸਰੀਰ ਵਿਚ ਕਿਸੇ ਵੀ ਨਰਮ ਟਿਸ਼ੂ ਤੇ ਹੋ ਸਕਦੀ ਹੈ । ਇਸ ਵਿਚ ਖੂਨ ਵਹਿਣੀਆਂ (Capillaries) ਫੱਟ ਜਾਂ ਦਬ (Rapture) ਜਾਂਦੀਆਂ ਹਨ, ਉਸ ਸਥਾਨ ਤੇ ਸੋਜ ਆ ਜਾਂਦੀ, ਖ਼ੂਨ ਅਤੇ ਦਰਦ ਮਹਿਸੂਸ ਹੁੰਦਾ ਹੈ । ਖੂਨ ਚਮੜੀ ਦੀ ਸਤਹਿ ਤੇ ਜੰਮ ਜਾਂਦਾ ਹੈ ਅਤੇ ਚਮੜੀ ਦਾ ਰੰਗ ਹਲਕਾ ਨੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਰਗੜ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ ।
ਉੱਤਰ-
ਰਗੜ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਛਿੱਲ ਜਾਂਦੀ ਹੈ । ਇਹ ਆਮ ਤੌਰ ਤੇ ਫਿਸਲਣ ਜਾਂ ਰਗੜਨ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਹ ਕਿਸੇ ਵੀ ਗਰੇਡ ਦੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਆਮ ਰਗੜ ਤੋਂ ਗੰਭੀਰ ਰਗੜ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਖੁਰਦਰੇ ਧਰਾਤਲ ਨਾਲ ਘਿਰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਸਖ਼ਤ ਟਿਸ਼ੂਆਂ ਦੀ ਸੱਟਾਂ ਦੇ ਨਾਮ ਲਿਖੋ। ਉੱਤਰ-

  1. ਫ੍ਰੈਕਚਰ (Fracture)
  2. ਜੋੜ ਹਿੱਲਣ ਜਾਂ ਡਿਸਲੋਕੇਸ਼ਨ (Dislocation) ।

ਪ੍ਰਸ਼ਨ 9.
ਹੱਡੀ ਹਿੱਲਣ ਦੇ ਕੋਈ ਦੋ ਲੱਛਣ ਦਿਓ ।
ਉੱਤਰ-

  1. ਜੋੜ ਵਿਚ ਜ਼ੋਰ ਦਾ ਦਰਦ ਹੁੰਦਾ ਹੈ ।
  2. ਜੋੜ ਵਿਚ ਗਤੀ ਘੱਟ ਜਾਂਦੀ ਹੈ
  3. ਜੋੜ ਬੇਸ਼ਕਲ ਹੋ ਜਾਂਦੇ ਹਨ।
  4. ਸੋਜ ਆ ਜਾਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਪਰਾਈਸ (PRICE) ਤੋਂ ਕੀ ਭਾਵ ਹੈ ?
ਉੱਤਰ-
P = ਰੋਕਥਾਮ (Protection)
R = ਆਰਾਮ (Rest)
I = ਬਰਫ਼ (Ice)
C = ਕੰਮਪ੍ਰੈਸ਼ਨ (Compresion)
E = ਉੱਚਾ ਚੁੱਕਣਾ (Elevation) ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 11.
ਕੋਮਲ ਤੰਤੂਆਂ ਦੀਆਂ ਸੱਟਾਂ ਦੇ ਨਾਮ ਲਿਖੋ ।
ਉੱਤਰ-
ਖੇਡਾਂ ਵਿਚ ਭਾਗ ਲੈਣ ਨਾਲ ਲੱਗਣ ਵਾਲੀਆਂ ਸੱਟਾਂ ਆਮ ਹੁੰਦੀਆਂ ਹਨ । ਇਹਨਾਂ ਨੂੰ ਕੋਮਲ ਤੰਤੂਆਂ ਦੀ ਸੱਟ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਸੱਟਾਂ ਮਾਸਪੇਸ਼ੀ, ਤੰਤੂ, ਲਿਗਾਮੈਂਟ ਅਤੇ ਚਮੜੀ ਤੇ ਆਮ ਲੱਗਦੀਆਂ ਹਨ ।ਇਹ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ-ਮੋਚ, ਚ, ਰਗੜ, ਜ਼ਖ਼ਮ ਅਤੇ ਛਾਲੇ ਆਦਿ ਹਨ ।

ਪ੍ਰਸ਼ਨ 12.
ਸੱਟਾਂ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ।
ਉੱਤਰ-

  1. ਪ੍ਰਤੱਖ ਸੱਟ (Direct Injury) – ਸਿੱਧੀ ਸੱਟ ਬਾਹਰੀ ਝਟਕੇ ਜਾਂ ਤਾਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ ।
  2. ਅਪ੍ਰਤੱਖ ਸੱਟ (Indirect Injury – ਇਹ ਸੱਟ ਕਿਸੇ ਵਸਤੂ ਜਾਂ ਵਿਅਕਤੀ ਦੇ ਸਰੀਰ ਸੰਪਰਕ ਤੋਂ ਨਹੀਂ ਲੱਗਦੀ ਬਲਕਿ ਅੰਦਰੂਨੀ ਤਾਕਤ ਜਿਵੇਂ ਓਵਰਸਟ੍ਰੈਚਿੰਗ (Overstreching) ਮਾੜੀ ਤਕਨੀਕ ਆਦਿ ਕਾਰਨਾਂ ਦੇ ਅਭਿਆਸ ਕਾਰਨ ਲੱਗਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 13.
ਨਾਜ਼ੁਕ ਤੰਤੂਆਂ ਅਤੇ ਸਖ਼ਤ ਤੰਤੂਆਂ ਦੀ ਸੱਟਾਂ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਸੱਟਾਂ ਖੇਡਾਂ ਵਿਚ ਹਿੱਸਾ ਲੈਣ ਕਾਰਨ ਆਮ ਲੱਗਦੀਆਂ ਹਨ । ਇਹ ਅਕਸਰ ਮਾਸਪੇਸ਼ੀਆਂ ਚਮੜੀ, ਤੰਤੂਆਂ ਜਾਂ ਖੇਡਣ ਤੇ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਕਿ ਮੋਚ, ਖਿੱਚ, ਰਗੜ, ਜ਼ਖ਼ਮ ਅਤੇ ਛਾਲੇ ਆਦਿ । ਸਖ਼ਤ ਤੰਤੂਆਂ ਦੀਆਂ ਸੱਟਾਂ-ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਸੱਟਾਂ ਵਿਚ ਹੱਡੀ ਟੁੱਟਣਾ ਜਾਂ ਜੋੜ ਉਤਰਨਾ ਵਰਗੀਆਂ ਸੱਟਾਂ ਆਉਂਦੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 14,
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਕੋਈ ਤਿੰਨ ਸਿਧਾਂਤ ਦੱਸੋ ।
ਉੱਤਰ-

  1. ਤਣਾਅ ਨੂੰ ਘਟਾਉਣ ਲਈ ਪੀੜਤ ਨੂੰ ਭਰੋਸਾ ਜਾਂ ਹੌਸਲਾ ਦੇਣਾ ।
  2. ਜੇ ਲੋੜ ਹੋਵੇ ਤਾਂ ਨਕਲੀ ਸਾਹ (Artificial respiration) ਦੇਣਾ ।
  3. ਖੂਨ ਵੱਗਣ ਤੋਂ ਰੋਕਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨਾ ।

ਪ੍ਰਸ਼ਨ 15.
ਮੋਚ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ।
ਉੱਤਰ-

  1. ਜਲਣ, ਦਰਦ ਅਤੇ ਸੋਜ ਹੋਣਾ,
  2. ਹਰਕਤ ਕਰਨ ਵਾਲੇ ਤੇਜ਼ ਦਰਦ ਹੋਣਾ,
  3. ਚਮੜੀ ਦਾ ਰੰਗ ਬਦਲਣਾ,
  4. ਨਾਜੁਕਤਾ,
  5. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਲਾਲ ਹੋਣਾ,
  6. ਹਿਲ-ਜੁਲ ਦੀ ਸਮਰੱਥਾ ਖ਼ਤਮ ਹੋਣਾ |

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 16.
ਮੋਚ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ।
ਉੱਤਰ-
ਇਹ ਹੱਡੀਆਂ ਅਤੇ ਜੋੜਾਂ ਦੀ ਸੱਟ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਜਾਂ ਜੋੜ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲੇ ਲਿੰਗਾਮੈਂਟ ਫਾਇਬਰ ਮਾਸਪੇਸ਼ੀ ਕੋਲੋਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਕੋਈ ਅਚਾਨਕ ਹਰਕਤ ਜਾਂ ਜੋੜ ਦੇ ਮੁੜ ਜਾਣ ਤੇ ਆਉਂਦੀ ਹੈ | ਆਮ ਕਰਕੇ ਮੋਚ ਤਿੰਨ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 17.
ਗੁੱਝੀ ਸੱਟ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ?
ਉੱਤਰ-

  1. ਚਮੜੀ ਦੀ ਜਲਣ
  2. ਸੋਜ
  3. ਸੱਟ ਦੇ ਖੇਤਰ ਵਿੱਚ ਦਰਦ
  4. ਤੁਰਨ ਸਮੇਂ ਦਰਦ ।

ਪ੍ਰਸ਼ਨ 18.
ਰਗੜ ਕੀ ਹੈ ?
ਉੱਤਰ-
ਰਗੜ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਛਿੱਲ ਹੋ ਜਾਂਦੀ ਹੈ । ਇਹ ਆਮ ਤੌਰ ਤੇ ਫਿਸਲਣ ਜਾਂ ਰਗੜਨ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਹ ਕਿਸੇ ਵੀ ਗਰੇਡ ਦੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਆਮ ਰਗੜ ਤੋਂ ਗੰਭੀਰ ਰਗੜ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਖੁਰਦਰੇ ਧਰਾਤਲ ਨਾਲ ਘਿਸਰਦੀ ਹੈ ।

ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ (Three Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਖਿੱਚ ਤੋਂ ਤੁਹਾਡਾ ਕੀ ਭਾਵ ਹੈ । ਖਿੱਚ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ।
ਉੱਤਰ-
ਇਹ ਮਾਸਪੇਸ਼ੀ ਦੀ ਖਿੱਚ ਹੁੰਦੀ ਹੈ ਜੋ ਅਕਸਰ ਪੱਠਿਆਂ ਦੀ ਖਿੱਚ ਵਲੋਂ ਵੀ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਪਿੱਠ ਦੇ ਰੇਸ਼ੇ ਟੁੱਟਦੇ ਜਾਂ ਓਵਰਸਵੈਚ (Overstrech) ਹੁੰਦੇ ਹਨ ਜਾਂ ਪੱਠੇ ਜਲਦੀ ਸੁੰਗੜਦੇ ਹਨ ।
ਲੱਛਣ-

  1. ਦਰਦ (Pain)
  2. ਲਾਲੀ (Redness)
  3. ਚੀਘਾ (Rashes)
  4. ਸੋਜ (Swelling)
  5. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੋਂ ਲਹੂ ਸਿੰਮਣਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤਾਂ ਦੀ ਸੂਚੀ ਬਣਾਉ ।
ਉੱਤਰ-
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਬਿਨਾਂ ਘਬਰਾਏ, ਚੁੱਪਚਾਪ, ਸ਼ਾਂਤੀ ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਮੱਦਦ ਕਰਨਾ ।
  2. ਜਿੰਨਾ ਹੋ ਸਕੇ ਪੀੜਤ ਨੂੰ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ।
  3. ਬਿਨਾਂ ਮਤਲਬ ਜ਼ਿਆਦਾ ਕੋਸ਼ਿਸ਼ਾਂ ਨਾ ਕਰਨਾ ।
  4. ਤਣਾਅ ਨੂੰ ਘਟਾਉਣ ਲਈ ਪੀੜਤ ਨੂੰ ਭਰੋਸਾ ਜਾਂ ਹੌਸਲਾ ਦੇਣਾ ।
  5. ਜੇ ਲੋੜ ਹੋਵੇ ਤਾਂ ਨਕਲੀ ਸਾਹ (Artificial respiration) ਦੇਣਾ ।
  6. ਖੂਨ ਵੱਗਣ ਤੋਂ ਰੋਕਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨਾ ।
  7. ਪੀੜਤ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਭੀੜ ਇਕੱਠੀ ਨਾ ਹੋਣ ਦੇਣਾ ।

ਪ੍ਰਸ਼ਨ 3.
ਤੁਸੀਂ ਮੋਚ ਲਈ ਕਿਹੜੀ ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇਵੋਗੇ ।
ਉੱਤਰ-

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੋਚ ਨੂੰ RICE ਨਾਲ ਸਮਝਿਆ ਜਾਵੇ । ਇੱਥੇ R ਦਾ ਅਰਥ ਹੈ ਆਰਾਮ (Rest), I ਤੋਂ ਭਾਵ ਬਰਫ (Ice), Cਤੋਂ ਭਾਵ ਕੰਮਪ੍ਰੈਸ਼ਨ (ਟਕੋਰ) ਅਤੇ E ਤੋਂ ਭਾਵ ਐਲੀਵੇਸ਼ਨ ਉੱਪਰ ਚੁੱਕਣਾ) ਤੋਂ ਹੈ । ਮੋਚ ਆਈ ਥਾਂ ਨੂੰ ਪੂਰਾ ਆਰਾਮ ਦਿਓ । ਜੇ ਲੋੜ ਪਵੇ ਤਾਂ ਬਾਂਹ ਦੀ ਸੱਟ ਲਈ ਲਿੰਗ ਅਤੇ ਲੱਤ ਦੀ ਸੱਟ ਲਈ ਫੌਹੜੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
  2. ਮਰੀਜ਼ ਨੂੰ ਆਰਾਮ ਦੀ ਥਾਂ ਦੇਵੋ ।
  3. ਸੱਟ ਲੱਗੇ ਭਾਗ ਨੂੰ ਸਹਾਇਤਾ ਦਿਓ ।
  4. ਸੱਟ ਲੱਗੇ ਭਾਗ ਨੂੰ ਉੱਚਾ ਚੁੱਕੋ ਅਤੇ ਅਹਿੱਲ ਰੱਖੋ ।
  5. ਸੋਜ ਘੱਟ ਕਰਨ ਲਈ ਟਕੋਰ ਦਿਉ ।

ਪ੍ਰਸ਼ਨ 4.
ਜੋੜ ਹਿੱਲਣ ਦੀ ਰੋਕਥਾਮ ਦੇ ਉਪਾਅ ਬਾਰੇ ਵੀ ਲਿਖੋ ।
ਉੱਤਰ-
ਰੋਕਥਾਮ ਦੇ ਉਪਾਅ-

  • ਦਰਦ ਨੂੰ ਘਟਾਉਣਾ-ਇਸ ਵਿਚ ਹੱਡੀ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਲੈ ਕੇ ਆਇਆ ਜਾਂਦਾ ਹੈ ਤੇ ਜ਼ਿਆਦਾ ਦਰਦ ਹੋਣ ਦੀ ਸੂਰਤ ਵਿਚ ਉਸ ਥਾਂ ਨੂੰ ਸੁੰਨ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ।
  • ਅਹਿੱਲ-ਹੱਡੀਆਂ ਨੂੰ ਆਪਣੀ ਥਾਂ ਤੇ ਬਿਠਾਉਣ ਤੋਂ ਬਾਅਦ ਕਈ ਦਿਨਾਂ ਤੱਕ ਉਸ ਵਿਚ ਹਿਲਜੁਲ ਬੰਦ ਕਰਨ ਲਈ ਸਪਲਿਟ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।
  • ਸਰਜਰੀ-ਜੇਕਰ ਹੱਡੀਆਂ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਨਾ ਲਿਆ ਜਾ ਸਕੇ ਤਾਂ ਸਰਜਰੀ ਤਕਨੀਕ ਦੀ ਸਹਾਇਤਾ ਲਈ ਜਾਂਦੀ ਹੈ ।
  • ਪੁਨਰ-ਵਸੇਬਾ-ਸਲਿੰਗ ਹਟਾਉਣ ਤੋਂ ਬਾਅਦ ਮੁੜ-ਵਸੇਬਾ ਦਾ ਕੰਮ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਇਸ ਵਿਚ ਕਈ ਕ੍ਰਿਆਵਾਂ ਕਰਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤੇ ਜੋੜਾਂ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਭਾਰ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 5.
ਟੁੱਟਣ ਤੇ ਹਿੱਲਣ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ।
ਉੱਤਰ-
ਹੱਡੀ ਦਾ ਟੁੱਟਣਾ (Bone Fracture) – ਹੱਡੀ ਦਾ ਨਿਰੰਤਰ ਵਿਚ ਟੁੱਟਣਾ ਹੀ ਹੱਡੀ ਟੁੱਟਣਾ ਅਖਵਾਉਂਦਾ ਹੈ । ਫੈਕਚਰ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦ ਹੱਡੀ ਉੱਪਰ ਉਸਦੀ ਸਮਰੱਥਾ ਤੋਂ ਜ਼ਿਆਦਾ ਤਨਾਅ (Stress) ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਫਿਰ ਹੱਡੀ ਨੂੰ ਸਿੱਧਾ ਝਟਕਾ ਲੱਗਦਾ ਹੈ । ਹੱਡੀ ਦਾ ਅਚਾਨਕ ਮੋੜਨਾ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਉਤਪੰਨ ਹੋਣਾ ਆਦਿ ਹੱਡੀ ਟੁੱਟਣ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ । ਬੈਕਚਰ ਸਿੱਧੇ, ਅਸਿੱਧੇ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਜਾਂ ਗਾਮੈਂਟ ਦੀ ਤਾਕਤ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ । ਫੈਕਚਰ ਦੇ ਹੇਠ ਲਿਖੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਖੇਡਣ ‘ ਸਮੇਂ ਜਾਂ ਫਿਰ ਦੁਰਘਟਨਾ ਵਿਚ ਵਾਪਰਦੇ ਹਨ ।

ਜੋੜ ਹਿੱਲਣਾ (Dislocation) – ਜੋੜ ਹਿੱਲਣਾ ਅਜਿਹੀ ਸੱਟ ਹੈ ਜੋ ਕਿਸੇ ਜੋੜ ਤੇ ਵਾਧੂ ਦਬਾਅ ਪੈਣ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀਆਂ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਹਿਲ ਜਾਂਦੀਆਂ ਹਨ | ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ, ਸਰੀਰ ਦੇ ਲੰਬੇ ਜੋੜ ਜਿਵੇਂ ਕਿ-ਮੋਢਾ ਆਦਿ ਦੇ ਜੋੜ ਤੇ ਹੁੰਦੀ ਹੈ । ਜੋੜ ਹਿੱਲਣ ਤੇ ਬਹੁਤ ਦਰਦ ਹੁੰਦਾ ਹੈ । ਆਮ ਤੌਰ ਤੇ ਜੋੜ ਉਦੋਂ ਹਿੱਲਦਾ ਹੈ ਜਦ ਹੱਡੀਆਂ ਅੰਸ਼ਕ ਤੌਰ ਤੇ ਪੂਰੀਆਂ ਹੀ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਖਿੱਚੀਆਂ ਜਾਣ | ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ ਮੋਢੇ, ਗੋਡੇ ਜਾਂ ਉਂਗਲੀਆਂ ਦੇ ਜੋੜਾਂ ਵਿਚ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਰਗੜ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ | ਰਗੜ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਦਿਓ ।
ਉੱਤਰ-
ਰਗੜ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਛਿੱਲ ਹੋ ਜਾਂਦੀ ਹੈ । ਇਹ ਆਮ ਤੌਰ ਤੇ ਫਿਸਲਣ ਜਾਂ ਰਗੜਨ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਹ ਕਿਸੇ ਵੀ ਗਰੇਡ ਦੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਆਮ ਰਗੜ ਤੋਂ ਗੰਭੀਰ ਰਗੜ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਲੱਗਦੀ ਹੈ ਜਦ ਚਮੜੀ ਖੁਰਦਰੇ ਧਰਾਤਲ ਨਾਲ ਸਰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਚਮੜੀ ਦੀ ਉੱਪਰਲੀ ਤਹਿ ਉਤਰ ਜਾਂਦੀ ਹੈ । ਖੁੱਲੇ ਜ਼ਖ਼ਮ ਵਿਚ ਗੰਦਗੀ ਜਾਂ ਬੱਜਰੀ ਚਲੀ ਜਾਂਦੀ ਹੈ। ਜੋ ਕਈ ਵਾਰ ਇੰਨਫੈਕਸ਼ਨ ਕਰਦੀ ਹੈ । ਰਗੜ ਦੇ ਕਈ ਪ੍ਰਕਾਰ ਹੁੰਦੇ ਹਨ ।

ਰਗੜ ਦੇ ਪ੍ਰਕਾਰ (Types of Abrasion) – ਰਗੜ ਚਾਰ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ । ਇਹ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ-

  • ਝਰੀਟ (Scratches) – ਕਿਸੇ ਤਿੱਖੀ ਜਾਂ ਤੇਜ਼ ਚੀਜ਼ ਨਾਲ ਲੱਗੀ ਰਗੜ ਨੂੰ ਝਰੀਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਪਿੰਨ, ਚਾਕੂ ਜਾਂ ਤੇਜ਼ ਨਹੁੰ ਆਦਿ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਝਰੀਟ ਦੀ ਕੇਵਲ ਲੰਬਾਈ ਹੁੰਦੀ ਹੈ ਪਰ ਚੌੜਾਈ ਬਹੁਤ ਥੋੜੀ ਹੁੰਦੀ ਹੈ ।
  • ਛਿੱਲਿਆ ਜਾਣਾ (Grazes) – ਇਹ ਚਮੜੀ ਦੇ ਕਿਸੇ ਖੁਰਦਰੇ ਧਰਾਤਲ ਨਾਲ ਸਰ ਕੇ ਲੰਘ ਜਾਣ ਨਾਲ ਹੁੰਦਾ ਹੈ । ਇਹ ਆਮ ਤੌਰ ਤੇ ਦੁਰਘਟਨਾਵਾਂ ਸਮੇਂ ਹੁੰਦਾ ਹੈ ।
  • ਦਬਾਅ ਰਗੜ (Pressure Abrasion) – ਇਹ ਚਮੜੀ ਦੀ ਉੱਪਰਲੀ ਪਰਤ ਦੀਆਂ ਸਤਹਿਆਂ ਦੇ ਕੁਚਲ ਜਾਣ ਨਾਲ ਹੁੰਦੇ ਹਨ । ਇਸ ਦੇ ਆਸ-ਪਾਸ ਥਾਂ ਤੇ ਰਗੜਾਂ ਲੱਗ ਜਾਂਦੀਆਂ ਹਨ । ਇਸ ਵਿਚ ਰਗੜ ਥੋੜ੍ਹਾ ਅੰਦਰ ਵੱਲ ਦੱਬ ਜਾਂਦੀ ਹੈ ।
  • ਟੱਕਰ ਰਗੜ (Impact Abrasion) – ਇਹ ਕਿਸੇ ਵਸਤੂ ਨਾਲ ਟੱਕਰ ਹੋ ਜਾਣ ਤੇ ਵਾਪਰਦਾ ਹੈ | ਕਈ ਵਾਰ ਜਦ ਵਿਅਕਤੀ ਕਾਰ ਦੀ ਟੱਕਰ ਨਾਲ ਜ਼ਮੀਨ ਤੇ ਡਿੱਗਦਾ ਹੈ ਤਾਂ ਉਸ ਕਾਰ ਦੇ ਟਾਇਰ ਜਾਂ ਨਿੰਮ ਦੇ ਨਿਸ਼ਾਨ ਚਮੜੀ ਤੇ ਦਿਖਾਈ ਦਿੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 7.
ਖੇਡ ਸੱਟਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਕਾਰਨਾਂ ਬਾਰੇ ਦੱਸੋ ।
ਉੱਤਰ-
ਖੇਡ ਸੱਟਾਂ ਦੇ ਕਾਰਨ ਹੇਠ ਲਿਖੇ ਹਨ-
1. ਖਿਡਾਰੀ ਸਰੀਰਕ ਤੌਰ ਤੇ ਤੰਦਰੁਸਤ ਨਾ ਹੋਣਾ (Poor Physical Fitness of Player) – ਬੇਹਤਰ ਪ੍ਰਦਰਸ਼ਨ ਲਈ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਨਿਯਮਿਤ ਅਭਿਆਸ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਤੇ ਸਾਰੇ ਤੱਤ ਜਿਵੇਂ ਕਿ ਤਾਕਤ, ਗਤੀ, ਲਚਕਤਾ, ਸਹਿਣਸ਼ੀਲਤਾ, ਚੁਸਤੀ, ਸ਼ਕਤੀ, ਸੰਤੁਲਨ ਆਦਿ ਖਿਡਾਰੀ ਵਿਚ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਨਹੀਂ ਤਾਂ ਇਹਨਾਂ ਦੀ ਕਮੀ ਦੇ ਕਾਰਨ ਸੱਟਾਂ ਲੱਗਣ ਦਾ ਖਤਰਾ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ ।

2. ਮਨੋਵਿਗਿਆਨ ਤਿਆਰੀ ਦਾ ਨਾ ਹੋਣਾ (Due to Poor Psychological Preparation) – ਜੇਕਰ ਐਥਲੀਟ ਤਨਾਅਪੂਰਨ ਹੈ, ਚਿੰਤਾ ਨਾਲ ਭਰਿਆ ਹੋਇਆ ਹੈ ਜਾਂ ਫਿਰ ਚਿੰਤਾ ਵਿਚ ਖੇਡ ਰਿਹਾ ਹੈ ਤਾਂ ਉਹ ਆਸਾਨੀ ਨਾਲ ਜ਼ਖ਼ਮੀ ਹੋ ਜਾਵੇਗਾ | ਸੱਟਾਂ ਦੀ ਰੋਕਥਾਮ ਲਈ ਮਾਨਸਿਕ ਜਾ ਮਨੋਵਿਗਿਆਨਿਕ ਤਿਆਰੀ ਕਰਨਾ ਲਾਜ਼ਮੀ ਹੈ ।

3. ਮੈਚ ਤੋਂ ਪਹਿਲਾਂ ਥੋੜ੍ਹਾ ਗਰਮਾਉਣਾ (Inadequate Warming-up Before Match) – ਸੱਟਾਂ ਦੀ ਰੋਕਥਾਮ ਲਈ ਗਰਮਾਉਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ । ਗਰਮਾਉਣ ਦੇ ਦੌਰਾਨ ਖਿੱਚਣ ਵਾਲੀਆਂ ਕਸਰਤਾਂ ਕਰਨ ਕਈ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ ਖਿੱਚ ਜਾਂ ਮੋਚ ਤੋਂ ਬਚਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣ ਤੋਂ ਬਾਅਦ ਸਰੀਰ ਕਿਸੇ ਵੀ ਤਣਾਅ ਨੂੰ ਸਹਿਣ ਲਈ ਤਿਆਰ ਹੋ ਜਾਂਦਾ ਹੈ । ਕੋਈ ਸ਼ਕਤੀਸ਼ਾਲੀ ਗਤੀਵਿਧੀ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਗਰਮਾਉਣਾ (Warming-up) ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਖੇਡ ਸੱਟਾਂ ਦੇ ਉਪਾਅ ਕੀ ਹਨ ।
ਉੱਤਰ-
1. ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣਾ (Proper Warming-up) – ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣਾ, ਸੱਟਾਂ ਨੂੰ ਰੋਕਣ ਦਾ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਉਪਾਅ ਹੈ । ਕਿਸੇ ਵੀ ਅਭਿਆਸ ਤੋਂ ਪਹਿਲਾਂ ਚੰਗੇ ਤਰੀਕੇ ਨਾਲ ਵਾਰਮ ਅੱਪ ਕਰਨ ਨਾਲ ਖਿਡਾਰੀ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤੌਰ ਤੇ ਤਿਆਰ ਹੋਣ ਵਿਚ ਮੱਦਦ ਮਿਲਦੀ ਹੈ ਅਤੇ ਸੱਟਾਂ ਲੱਗਣ ਦੇ ਖਤਰੇ ਵੀ ਘੱਟ ਜਾਂਦੇ ਹਨ ।

2. ਇਕ ਐਥਲੀਟ ਦੀ ਤੰਦਰੁਸਤੀ ਦੇ ਪੱਧਰ ਅਨੁਸਾਰ (After Complete Recovery From an Injury) – ਕਈ ਵਾਰ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਵਾਧੂ ਵਰਤੋਂ ਨਾਲ, ਜਿਸ ਵਿਚ ਟਿਸ਼ੂਆਂ ਵਿਚ ਟੁੱਟ-ਭੱਜ ਜ਼ਿਆਦਾ ਹੋ ਜਾਂਦੀ ਹੈ, ਸੱਟਾਂ ਦਾ ਕਾਰਨ ਬਣਦੇ ਹਨ । ਇਸ ਲਈ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਫਿੱਟਨੈਸ ਲੋਡ ਇਕ ਐਥਲੀਟ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਅਨੁਸਾਰ ਹੋਵੇ ।

3. ਸਹੀ ਤਕਨੀਕ (Proper Technique) – ਸਿਖਲਾਈ ਦੇ ਗ਼ਲਤ ਤਰੀਕੇ ਜਾਂ ਗ਼ਲਤ ਤਕਨੀਕ ਦੀ ਵਰਤੋਂ ਨਾਲ ਸੱਟਾਂ ਦੇ ਅਵਸਰ ਵੱਧ ਜਾਂਦੇ ਹਨ । ਇਸ ਲਈ ਟੀਚਰ ਨੂੰ ਲਗਾਤਾਰ ਇਹ ਦੇਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਐਥਲੀਟ ਸਹੀ ਤਕਨੀਕ ਵਿਚ ਅਭਿਆਸ ਕਰ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ । ਅਗਰ ਖਿਡਾਰੀ ਦੀ ਤਕਨੀਕ ਸਹੀ ਨਹੀਂ ਤਾਂ ਉਸਨੂੰ ਜਲਦੀ ਹੀ ਸੁਧਾਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 9.
ਮੋਚ ਅਤੇ ਖਿੱਚ ਵਿਚ ਅੰਤਰ ਦੱਸੋ ।
ਉੱਤਰ-
ਮੋਚ (Sprain) – ਇਹ ਹੱਡੀਆਂ ਅਤੇ ਜੋੜਾਂ ਦੀ ਸੱਟ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਜਾਂ ਜੋੜ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲੇ ਲਿੰਗਾਮੈਂਟ ਫਾਇਬਰ ਮਾਸਪੇਸ਼ੀ ਕੋਲੋਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਓਦੋਂ ਆਉਂਦੀ ਹੈ ਜਦੋਂ ਕੋਈ ਅਚਾਨਕ ਹਰਕਤ ਜਾਂ ਜੋੜ ਦੇ ਮੁੜ ਜਾਣ ਤੇ ਆਉਂਦੀ ਹੈ ।

ਖਿੱਚ (Strain/Tear) – ਇਹ ਮਾਸਪੇਸ਼ੀ ਦੀ ਖਿੱਚ ਹੁੰਦੀ ਹੈ ਜੋ ਅਕਸਰ ਪੱਠਿਆਂ ਦੀ ਖਿੱਚ ਵਲੋਂ ਵੀ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਪਿੱਠ ਦੇ ਰੇਸ਼ੇ ਟੁੱਟਦੇ ਜਾਂ ਓਵਰਸਟੈਚਿ (Overstrech) ਹੁੰਦੇ ਹਨ, ਜਾਂ ਪੱਠੇ ਜਲਦੀ ਸੁੰਗੜਦੇ ਹਨ । ਖਿੱਚ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਝਟਕੇ ਨਾਲ ਭਾਰੀ ਉਪਕਰਨ ਨੂੰ ਚੁੱਕਣਾ, ਮਾਸਪੇਸ਼ੀ ਦਾ ਅਚਾਨਕ ਖਿੱਚਣਾ ਜਾਂ ਜਰਕ, ਦੇਣਾ, ਗਿੱਟਿਆਂ ਤੇ ਗਲਤ ਤਰੀਕੇ ਨਾਲ ਉਤਰਨਾ (Land), ਅਸਮਾਨ ਮੈਦਾਨ ਤੇ ਤੁਰਨਾ ਜਾਂ ਭੱਜਣਾ ਆਦਿ । ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਸੱਟ ਜ਼ਿਆਦਾਤਰ ਗੋਡਿਆਂ ਜਾਂ ਗਿੱਟਿਆਂ ਵਿਚ ਲੱਗਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਹੇਠ ਦਿੱਤਿਆਂ ‘ਤੇ ਇੱਕ ਛੋਟਾ ਨੋਟ ਲਿਖੋ ।
(ਉ) ਮਾਸਪੇਸ਼ੀ ਖਿੱਚ ਤੇ ਹੱਡੀ ਦੀ ਗੁੱਝੀ ਸੱਟ ।
ਉੱਤਰ-
(ੳ) ਮਾਸਪੇਸ਼ੀ ਖਿੱਚ-ਇਹ ਮਾਸਪੇਸ਼ੀ ਦੀ ਖਿੱਚ ਹੁੰਦੀ ਹੈ ਜੋ ਅਕਸਰ ਪੱਠਿਆਂ ਦੀ ਖਿੱਚ ਵਲੋਂ ਵੀ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਪਿੱਠ ਦੇ ਰੇਸ਼ੇ ਟੁੱਟਦੇ ਜਾਂ ਓਵਰਸਟੈਚ (Overstrech) ਹੁੰਦੇ ਹਨ ਜਾਂ ਪੱਠੇ ਜਲਦੀ ਸੁੰਗੜਦੇ ਹਨ ।

(ਅ) ਹੱਡੀ ਦੀ ਗੁੱਝੀ ਸੱਟ-ਇਹ ਡੂੰਘੀ ਗੁੱਝੀ ਸੱਟ ਹੈ । ਇਸ ਹੱਡੀ ਤਕ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸਦੇ ਆਸ-ਪਾਸ ਦਰਦ ਅਤੇ ਸੋਜ ਹੁੰਦੀ ਹੈ । ਖ਼ੂਨ ਦਾ ਵਹਾਅ ਰੁਕ ਜਾਣ ਕਾਰਨ ਗੁੱਝੀ ਸੱਟ ਕਾਫ਼ੀ ਸਮੇਂ ਤੱਕ ਰਹਿੰਦੀ ਹੈ । ਇਹ ਸਭ ਤੋਂ ਵੱਧ ਦਰਦ ਦੇਣ ਵਾਲੀ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਰਹਿਣ ਵਾਲੀ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 11.
ਖਿੱਚ ਵਿੱਚ ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਖਿੱਚ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ RICE ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਵਿਚ R ਦਾ ਅਰਥ ਹੈ ਅਰਾਮ (Rest), I ਦਾ ਅਰਥ ਹੈ ਬਰਫ਼ (Ice), ਤੇ C ਦਾ ਅਰਥ ਹੈ ਕੰਮਪੈਸ਼ਨ ਟਕੋਰ) (Compresion) ਅਤੇ E ਦਾ ਅਰਥ ਹੈ ਐਲੀਵੇਸ਼ਨ (Elevation) । ਖਿੱਚ ਵਾਲੇ ਭਾਗ ਨੂੰ ਆਰਾਮ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ।

ਪੰਜ ਅੰਕਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ ਤੋਂ (Five Marks Question Answers)

ਪ੍ਰਸ਼ਨ 1.
ਹਿੱਲਣੇ ਦਾ ਡਿਸਲੋਕੇਸ਼ਨ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਇਸ ਦੇ ਲੱਛਣ ਅਤੇ ਰੋਕਥਾਮ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਜੋੜ ਹਿੱਲਣਾ (Dislocation) – ਜੋੜ ਹਿੱਲਣਾ ਅਜਿਹੀ ਸੱਟ ਹੈ ਜੋ ਕਿਸੇ ਜੋੜ ਤੇ ਵਾਧੂ ਦਬਾਅ ਪੈਣ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀਆਂ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਹਿਲ ਜਾਂਦੀਆਂ ਹਨ । ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ, ਸਰੀਰ ਦੇ ਲੰਬੇ ਜੋੜ ਜਿਵੇਂ ਕਿ-ਮੋਢਾ ਆਦਿ ਦੇ ਜੋੜ ਤੇ ਹੁੰਦੀ ਹੈ । ਜੋੜ ਹਿੱਲਣ ਤੇ ਬਹੁਤ ਦਰਦ ਹੁੰਦਾ ਹੈ । ਆਮ ਤੌਰ ਤੇ ਜੋੜ ਉਦੋਂ ਹਿੱਲਦਾ ਹੈ ਜਦ ਹੱਡੀਆਂ ਅੰਸ਼ਕ ਤੌਰ ਤੇ ਪੂਰੀਆਂ ਹੀ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਖਿੱਚੀਆਂ ਜਾਣ । ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ ਮੋਢੇ, ਗੋਡੇ ਜਾਂ ਉਂਗਲੀਆਂ ਦੇ ਜੋੜਾਂ ਵਿਚ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ।

ਚਿੰਨ੍ਹ ਲੱਛਣ (Symptoms of Dislocation)-

  1. ਜੋੜ ਵਿਚ ਜ਼ੋਰ ਦਾ ਦਰਦ ਹੁੰਦਾ ਹੈ।
  2. ਜੋੜ ਵਿਚ ਗਤੀ ਘੱਟ ਜਾਂਦੀ ਹੈ
  3. ਜੋੜ ਬੇਸਕਲ ਹੋ ਜਾਂਦੇ ਹਨ
  4. ਸੋਜ ਆ ਜਾਂਦੀ ਹੈ ।

ਜੋੜ ਹਿੱਲਣ ਤੇ ਉਪਚਾਰ (ਰੋਕਥਾਮ (Remedies For Dislocation)-

  1. ਦਰਦ ਨੂੰ ਘਟਾਉਣਾ–ਇਸ ਵਿਚ ਹੱਡੀ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਲੈ ਕੇ ਆਇਆ ਜਾਂਦਾ ਹੈ ਤੇ ਜ਼ਿਆਦਾ ਦਰਦ ਹੋਣ ਦੀ ਸੂਰਤ ਵਿਚ ਉਸ ਥਾਂ ਨੂੰ ਸੁੰਨ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ।
  2. ਅਹਿੱਲਤਾ-ਹੱਡੀਆਂ ਨੂੰ ਆਪਣੀ ਥਾਂ ਤੇ ਬਿਠਾਉਣ ਤੋਂ ਬਾਅਦ ਕਈ ਦਿਨਾਂ ਤੱਕ ਉਸ ਵਿਚ ਹਿਲਜੁਲ ਬੰਦ ਕਰਨ ਲਈ ਸਪਲਿਟ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।
  3. ਸਰਜਰੀ-ਜੇਕਰ ਹੱਡੀਆਂ ਨੂੰ ਪਹਿਲੇ ਵਾਲੇ ਸਥਾਨ ਤੇ ਨਾ ਲਿਆ ਜਾ ਸਕੇ ਤਾਂ ਸਰਜਰੀ ਤਕਨੀਕ ਦੀ ਸਹਾਇਤਾ ਲਈ ਜਾਂਦੀ ਹੈ ।
  4. ਮੁੜ-ਵਸੇਬਾ-ਸਲਿੰਗ ਹਟਾਉਣ ਤੋਂ ਬਾਅਦ ਮੁੜ-ਵਸੇਬਾ ਦਾ ਕੰਮ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਇਸ ਵਿਚ ਕਈ ਕ੍ਰਿਆਵਾਂ ਕਰਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤੇ ਜੋੜਾਂ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਭਾਰ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 2.
ਹੇਠ ਦਿੱਤਿਆਂ ‘ਤੇ ਨੋਟ ਲਿਖੋ ।
(ਉ) ਟੁੱਟ
(ਅ) ਹਿੱਲਣਾ ਦਾ ਡਿਸਲੋਕੇਸ਼ਨ
(ਬ ਮੋਚ ।
ਉੱਤਰ-
(ੳ) ਹੱਡੀ ਦਾ ਟੁੱਟਣਾ (Bone Fracture) – ਹੱਡੀ ਦਾ ਨਿਰੰਤਰ ਵਿਚ ਟੁੱਟਣਾ ਹੀ ਹੱਡੀ ਟੁੱਟਣਾ ਅਖਵਾਉਂਦਾ ਹੈ । ਫ਼ੈਕਚਰ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦ ਹੱਡੀ ਉੱਪਰ ਉਸਦੀ ਸਮਰੱਥਾ ਤੋਂ ਜ਼ਿਆਦਾ ਤਨਾਅ (Stress) ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਫਿਰ ਹੱਡੀ ਨੂੰ ਸਿੱਧਾ ਝਟਕਾ ਲੱਗਦਾ ਹੈ । ਹੱਡੀ ਦਾ ਅਚਾਨਕ ਮੋੜਨਾ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਉਤਪੰਨ ਹੋਣਾ ਆਦਿ ਹੱਡੀ ਟੁੱਟਣ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ । ਫ਼ੈਕਚਰ ਸਿੱਧੇ, ਅਸਿੱਧੇ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਜਾਂ ਲਿੰਗਾਮੈਂਟ ਦੀ ਤਾਕਤ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ ।

(ਅ) ਜੋੜ ਹਿੱਲਣਾ (Dislocation) – ਜੋੜ ਹਿੱਲਣਾ ਅਜਿਹੀ ਸੱਟ ਹੈ ਜੋ ਕਿਸੇ ਜੋੜ ਤੇ ਵਾਧੂ ਦਬਾਅ ਪੈਣ ਨਾਲ ਲੱਗਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀਆਂ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਹਿਲ ਜਾਂਦੀਆਂ ਹਨ । ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ, ਸਰੀਰ ਦੇ ਲੰਬੇ ਜੋੜ ਜਿਵੇਂ ਕਿ-ਮੋਢਾ ਆਦਿ ਦੇ ਜੋੜ ਤੇ ਹੁੰਦੀ ਹੈ । ਜੋੜ ਹਿੱਲਣ ਤੇ ਬਹੁਤ ਦਰਦ ਹੁੰਦਾ ਹੈ । ਆਮ ਤੌਰ ਤੇ ਜੋੜ ਉਦੋਂ ਹਿੱਲਦਾ ਹੈ ਜਦ ਹੱਡੀਆਂ ਅੰਸ਼ਕ ਤੌਰ ਤੇ ਪੂਰੀਆਂ ਹੀ ਆਪਣੇ ਸਥਾਨ ਤੋਂ ਖਿੱਚੀਆਂ ਜਾਣ | ਆਮ ਤੌਰ ਤੇ ਡਿਸਲੋਕੇਸ਼ਨ ਮੋਢੇ, ਗੋਡੇ ਜਾਂ ਉਂਗਲੀਆਂ ਦੇ ਜੋੜਾਂ ਵਿਚ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ।

(ਬ) ਮੋਚ (Sprain) – ਇਹ ਹੱਡੀਆਂ ਅਤੇ ਜੋੜਾਂ ਦੀ ਸੱਟ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਜਾਂ ਜੋੜ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲੇ ਲਿੰਗਾਮੈਂਟ ਫਾਇਬਰ ਮਾਸਪੇਸ਼ੀ ਕੋਲੋਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਓਦੋਂ ਆਉਂਦੀ ਹੈ ਜਦੋਂ ਕੋਈ ਅਚਾਨਕ ਹਰਕਤ ਜਾਂ ਜੋੜ ਦੇ ਮੁੜ ਜਾਣ ਤੇ ਆਉਂਦੀ ਹੈ । ਆਮ ਕਰਕੇ ਮੋਚ ਤਿੰਨ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ-
1. ਹਲਕੀ ਮਾਮੂਲੀ ਮੋਚ (Sprain – ਇਹ ਹਲਕੀ ਮੋਚ ਹੁੰਦੀ ਹੈ । ਸੋਜ ਦਾ ਹਰਕਤਾਂ ਵਾਲੀ ਥਾਂ ਤੇ ਕੋਈ ਖ਼ਾਸ ਅਸਰ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਉਸਦੇ ਕੰਮ ਕਰਨ ਵਿਚ ਕੋਈ ਵਿਘਨ ਆਉਂਦਾ ਹੈ ।

2. ਦਰਮਿਆਨੀ ਮੋਚ (Sprain or Moderate Sprain) – ਇਹ ਦਰਮਿਆਨੀ ਮੋਚ ਹੁੰਦੀ ਹੈ । ਥੋੜੀ ਸੋਜ ਕਾਰਨ ਹਰਕਤ ਅਤੇ ਕੰਮ ਵਿਚ ਔਖ ਮਹਿਸੂਸ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਵਿਚ ਦਰਮਿਆਨੀ ਸੋਜ ਅਤੇ ਦਰਦ ਹੁੰਦਾ ਹੈ ।

3. ਗੰਭੀਰ ਮੋਚ (Sprain or Severe Sprain)-ਇਹ ਇਕ ਗੰਭੀਰ ਪ੍ਰਕਾਰ ਦੀ ਮੋਚ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਸੰਵੇਦੀ ਫਾਈਬਰ ਅਤੇ ਲਿੰਗਾਮੈਂਟ ਪੂਰੀ ਤਰ੍ਹਾਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਜ਼ਿਆਦਾ ਹੋਣ ਕਾਰਨ ਕੰਮ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਖ਼ਤਮ ਹੋ ਜਾਂਦੀ ਹੈ । ਪ੍ਰਭਾਵਿਤ ਵਿਅਕਤੀ ਆਪਣੇ ਸੰਬੰਧਿਤ ਜੋੜ ਤੇ ਕੋਈ ਭਾਰ ਨਹੀਂ ਪਾ ਸਕਦਾ ।

ਪ੍ਰਸ਼ਨ 3.
ਮੋਚ ਕੀ ਹੈ ? ਇਸਦੇ ਕਾਰਨ, ਕਿਸਮਾਂ, ਲੱਛਣ ਅਤੇ ਉਪਚਾਰ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਇਹ ਹੱਡੀਆਂ ਅਤੇ ਜੋੜਾਂ ਦੀ ਸੱਟ ਵਜੋਂ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਜਾਂ ਜੋੜ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲੇ ਲਿੰਗਾਮੈਂਟ ਫਾਇਬਰ ਮਾਸਪੇਸ਼ੀ ਕੋਲੋਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਓਦੋਂ ਆਉਂਦੀ ਹੈ ਜਦੋਂ ਕੋਈ ਅਚਾਨਕ ਹਰਕਤ ਜਾਂ ਜੋੜ ਦੇ ਮੁੜ ਜਾਣ ਤੇ ਆਉਂਦੀ ਹੈ । ਆਮ ਕਰਕੇ ਮੋਚ ਤਿੰਨ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ-
1. ਹਲਕੀ ਮਾਮੂਲੀ ਮੋਚ (Mild Sprain) – ਇਹ ਹਲਕੀ ਮੋਚ ਹੁੰਦੀ ਹੈ । ਸੋਜ ਦਾ ਹਰਕਤਾਂ ਵਾਲੀ ਥਾਂ ਤੇ ਕੋਈ ਖ਼ਾਸ ਅਸਰ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਉਸਦੇ ਕੰਮ ਕਰਨ ਵਿਚ ਕੋਈ ਵਿਘਨ ਆਉਂਦਾ ਹੈ ।

2. ਦਰਮਿਆਨੀ ਮੋਚ (Moderate Sprain) – ਇਹ ਦਰਮਿਆਨੀ ਮੋਚ ਹੁੰਦੀ ਹੈ । ਥੋੜੀ ਸੋਜ ਕਾਰਨ ਹਰਕਤ ਅਤੇ ਕੰਮ ਵਿਚ ਔਖ ਮਹਿਸੂਸ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਵਿਚ ਦਰਮਿਆਨੀ ਸੋਜ ਅਤੇ ਦਰਦ ਹੁੰਦਾ ਹੈ ।

3. ਗੰਭੀਰ ਮੋਚ (Severe Sprain)-ਇਹ ਇਕ ਗੰਭੀਰ ਪ੍ਰਕਾਰ ਦੀ ਮੋਚ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਸੰਵੇਦੀ ਫਾਈਬਰ ਅਤੇ ਲਿੰਗਾਮੈਂਟ ਪੂਰੀ ਤਰ੍ਹਾਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ । ਮੋਚ ਜ਼ਿਆਦਾ ਹੋਣ ਕਾਰਨ ਕੰਮ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਖ਼ਤਮ ਹੋ ਜਾਂਦੀ ਹੈ । ਪ੍ਰਭਾਵਿਤ ਵਿਅਕਤੀ ਆਪਣੇ ਸੰਬੰਧਿਤ ਜੋੜ ਤੇ ਕੋਈ ਭਾਰ ਨਹੀਂ ਪਾ ਸਕਦਾ ।

ਮੋਚ ਦੇ ਕਾਰਨ (Causes of Sprain)-
ਮੋਚ ਦੇ ਹੇਠ ਲਿਖੇ ਕਾਰਨ ਹਨ-

  1. ਅਚਾਨਕ ਹਰਕਤ (Sudden movement)
  2. ਜੋੜ ਵਾਲੇ ਅੰਗ ਦੀ ਵਾਧੂ-ਮਕੋੜ (Twisting of the joint)
  3. ਜੋੜ ਦੇ ਸਹਾਇਕ ਲਿਗਾਮੈਂਟ ਦੀ ਓਵਰ-ਸਵੈਚਿੰਗ ਜਾਂ ਟੁੱਟ
  4. ਅਚਾਨਕ ਬਾਂਹ ਉੱਪਰ ਡਿੱਗਣਾ ।

ਮੋਚ ਦੇ ਚਿੰਨ੍ਹ ਅਤੇ ਪਹਿਚਾਣ (Sign and symptoms of Sprain)-

  1. ਜਲਣ, ਦਰਦ ਅਤੇ ਸੋਜ ਹੋਣਾ
  2. ਹਰਕਤ ਕਰਨ ਵਾਲੇ ਤੇਜ਼ ਦਰਦ ਹੋਣਾ
  3. ਚਮੜੀ ਦਾ ਰੰਗ ਬਦਲਣਾ
  4. ਨਾਜ਼ੁਕਤਾ
  5. ਹਿਲ-ਜੁਲ ਦੀ ਸਮਰੱਥਾ ਖ਼ਤਮ ਹੋਣਾ
  6. ਸੱਟ ਵਾਲੀ ਥਾਂ ਦਾ ਲਾਲ ਹੋਣਾ ।

ਮੋਚ ਬਚਾਓ ਅਤੇ ਇਲਾਜ (Prevention and Remedies)-
ਮੋਚ ਦੇ ਬਚਾਓ ਲਈ ਕੁੱਝ ਹੇਠ ਲਿਖੇ ਉਪਾਅ ਹਨ-
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੋਚ ਨੂੰ RICE ਨਾਲ ਸਮਝਿਆ ਜਾਵੇ । ਇੱਥੇ R ਦਾ ਅਰਥ ਹੈ ਰੈਸਟ, (Rest), I ਤੋਂ ਭਾਵ ਬਰਫ਼ (Ice), Cਤੋਂ ਭਾਵ ਕੰਮਪ੍ਰੈਸ਼ਨ (ਟਕੋਰ) ਅਤੇ E ਤੋਂ ਭਾਵ ਐਲੀਵੇਸ਼ਨ (ਉੱਪਰ ਚੁੱਕਣਾ) ਤੋਂ ਹੈ । ਮੋਚ ਆਈ ਥਾਂ ਨੂੰ ਪੂਰਾ ਆਰਾਮ ਦਿਓ । ਜੇ ਲੋੜ ਪਵੇ ਤਾਂ ਬਾਂਹ ਦੀ ਸੱਟ ਲਈ ਸਲਿੰਗ ਅਤੇ ਲੱਤ ਦੀ ਸੱਟ ਲਈ ਫੌਹੜੀ ਦੀ ਵਰਤੋਂ ਕਰੋ ।

ਪ੍ਰਸ਼ਨ 4.
ਖਿੱਚ ਬਾਰੇ ਤੁਹਾਨੂੰ ਕੀ ਪਤਾ ਹੈ । ਇਸਦੇ ਲੱਛਣ ਅਤੇ ਇਲਾਜ ਬਾਰੇ ਲਿਖੋ ।
ਉੱਤਰ-
ਇਹ ਮਾਂਸਪੇਸ਼ੀ ਦੀ ਖਿੱਚ ਹੁੰਦੀ ਹੈ ਜੋ ਅਕਸਰ ਪੱਠਿਆਂ ਦੀ ਖਿੱਚ ਵਲੋਂ ਵੀ ਜਾਣੀ ਜਾਂਦੀ ਹੈ । ਇਹ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਪਿੱਠ ਦੇ ਰੇਸ਼ੇ ਟੁੱਟਦੇ ਜਾਂ ਓਵਰਸਟੈਚ (Overstretch) ਹੁੰਦੇ ਹਨ, ਜਾਂ ਪੱਠੇ ਜਲਦੀ ਸੁੰਗੜਦੇ ਹਨ । ਖਿੱਚ ਉਦੋਂ ਵਾਪਰਦੀ ਹੈ ਜਦ ਝਟਕੇ ਨਾਲ ਭਾਰੀ ਉਪਕਰਨ ਨੂੰ ਚੁੱਕਣਾ, ਮਾਸਪੇਸ਼ੀ ਦਾ ਅਚਾਨਕ ਖਿੱਚਣਾ ਜਾਂ ਜਰਕ ਦੇਣਾ, ਗਿੱਟਿਆਂ ਤੇ ਗਲਤ ਤਰੀਕੇ ਨਾਲ ਉਤਰਨਾ (land), ਅਸਮਾਨ ਮੈਦਾਨ ਤੇ ਤੁਰਨਾ ਜਾਂ ਭੱਜਣਾ ਆਦਿ । ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਸੱਟ ਜ਼ਿਆਦਾਤਰ ਗੋਡਿਆਂ ਜਾਂ ਗਿੱਟਿਆਂ ਵਿਚ ਲੱਗਦੀ ਹੈ । ਖਿੱਚ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ-
ਗੰਭੀਰ ਖਿੱਚ (Acute Strain) – ਗੰਭੀਰ ਖਿੱਚ ਉਦੋਂ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਮਾਸਪੇਸ਼ੀ ਜ਼ਰੂਰਤ ਤੋਂ ਜ਼ਿਆਦਾ ਖਿੱਚੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਕਿ ਅਚਾਨਕ ਪੱਠਾ ਫੱਟ ਜਾਂਦਾ ਹੈ : ਇਹ ਤਿੰਨ ਪ੍ਰਕਾਰ ਨਾਲ ਹੁੰਦਾ ਹੈ-

  1. ਜ਼ਮੀਨ ਤੇ ਤਿਲਕ ਜਾਣਾ ।
  2. ਦੌੜਨਾ, ਛਲਾਂਗ ਲਗਾਉਣਾ ।
  3. ਭਾਰੀ ਚੀਜ਼ਾਂ ਨੂੰ ਚੁੱਕਣਾ ਆਦਿ ।

ਲੰਬੇ ਸਮੇਂ ਦੀ ਖਿੱਚ (Chronic Strain) – ਇਹ ਖਿੱਚ ਲੰਬੇ ਸਮੇਂ ਤਕ ਬਾਰ-ਬਾਰ ਹਰਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ । ਇਹ ਜਿਮਨਾਸਟਿਕ, ਟੈਨਿਸ, ਕਿਸ਼ਤੀ ਚਲਾਉਣਾ ਅਤੇ ਗੋਲਫ ਵਰਗੀਆਂ ਖੇਡਾਂ ਵਿਚ ਵਾਪਰਦੀ ਹੈ

ਖਿੱਚ ਦੇ ਕਾਰਨ (Causes of Strain)-

  1. ਭਾਰ ਚੁੱਕਦੇ ਸਮੇਂ
  2. ਬਾਰ-ਬਾਰ ਹਰਕਤ ਕਰਦੇ ਰਹਿਣ ਨਾਲ
  3. ਖੇਡ ਦੇ ਦੌਰਾਨ
  4. ਜਦ ਮਸਲੇ ਅਚਾਨਕ ਖਿੱਚਿਆ ਜਾਵੇ ।

ਖਿੱਚ ਦੇ ਚਿੰਨ੍ਹ (ਲੱਛਣ) ਅਤੇ ਪਹਿਚਾਣ (Sign and symptoms of Strain)-

  1. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਅਚਾਨਕ ਦਰਦ ਹੋਣਾ
  2. ਅਕੜਣਾ ਜਾਂ ਪੀੜ ਹੋਣਾ ।
  3. ਸੱਟ ਵਾਲੀ ਥਾਂ ਤੇ ਸੋਜ ਜਾਂ ਲਾਲੀ ਆਉਣਾ
  4. ਨਾਜ਼ੁਕਤਾ ।
  5. ਕੋਈ ਗਤੀ ਨਾ ਹੋਣਾ ਅਤੇ ਸੁੰਨ ਹੋ ਜਾਣਾ ।

ਬਚਾਓ ਅਤੇ ਇਲਾਜ (Prevention and Remedies)-
ਖਿੱਚ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ RICE ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਵਿਚ R ਦਾ ਅਰਥ ਹੈ ਅਰਾਮ (Rest), I ਦਾ ਅਰਥ ਹੈ ਬਰਫ਼ (Ice), ਤੇ C ਦਾ ਅਰਥ ਹੈ ਕੰਮਪ੍ਰੈਸ਼ਨ ਟਕੋਰ) (Compresion) ਅਤੇ E ਦਾ ਅਰਥ ਹੈ ਐਲੀਵੇਸ਼ਨ (Elevation) । ਖਿੱਚ ਵਾਲੇ ਭਾਗ ਨੂੰ ਆਰਾਮ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 12th Class Physical Education Solutions Chapter 4 ਖੇਡ ਸੱਟਾਂ

ਪ੍ਰਸ਼ਨ 5.
ਤੁਹਾਨੂੰ ਖੇਡ ਸੱਟਾਂ ਬਾਰੇ ਕੀ ਪਤਾ ਹੈ । ਖੇਡ ਸੱਟਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਉਪਾਅ ਬਾਰੇ ਚਰਚਾ ਕਰੋ ।
ਉੱਤਰ-
ਖੇਡ ਸੱਟਾਂ ਤੋਂ ਭਾਵ-ਖੇਡ ਸੱਟਾਂ ਨੂੰ ਕਸਰਤ ਨਾਲ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਵਜੋਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਖੇਡ ਸੱਟਾਂ ਨੂੰ ਸੱਟਾਂ ਦੇ ਕਾਰਨ ਜਾਂ ਫਿਰ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਅਨੁਸਾਰ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ- .
(ੳ) ਸਿੱਧੀ ਸੱਟ (Direct Injury) – ਸਿੱਧੀ ਸੱਟ ਬਾਹਰੀ ਝਟਕੇ ਜਾਂ ਤਾਕਤ ਕਾਰਨ ਹੁੰਦੀ ਹੈ।

(ਅ) ਅਸਿੱਧੀ ਸੱਟ (Indirect Injury) – ਇਹ ਸੱਟ ਕਿਸੇ ਵਸਤ ਜਾਂ ਵਿਅਕਤੀ ਦੇ ਸਰੀਰ ਸੰਪਰਕ ਤੋਂ ਨਹੀਂ ਲੱਗਦੀ ਬਲਕਿ ਅੰਦਰੂਨੀ ਤਾਕਤ ਜਿਵੇਂ ਓਵਰਸਟ੍ਰੈਚਿੰਗ (Overstreching) ਮਾੜੀ ਤਕਨੀਕ ਆਦਿ ਕਾਰਨਾਂ ਦੇ ਅਭਿਆਸ ਕਾਰਨ ਲੱਗਦੀ ਹੈ ।

(ਇ) ਵਾਧੂ ਸੱਟਾਂ (Overuse Injury) – ਇਹ ਸੱਟਾਂ ਉਦੋਂ ਲੱਗਦੀਆਂ ਹਨ ਜਦ ਬਹੁਤ ਜ਼ਿਆਦਾ ਅਤੇ ਦੁਹਰਾਉਣ ਵਾਲੀਆਂ ਸ਼ਕਤੀਆਂ ਹੱਡੀਆਂ ਅਤੇ ਸਰੀਰ ਦੇ ਦੂਜੇ ਜੁੜੇ ਟਿਸ਼ੂਆਂ ਉੱਪਰ ਵਾਧੂ ਭਾਰ ਪਾਉਂਦੀਆਂ ਹਨ । ਜੇਕਰ | ਇਹਨਾਂ ਸੱਟਾਂ ਨੂੰ ਟਿਸ਼ੂਆਂ ਦੇ ਨੁਕਸਾਨ ਵਜੋਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-

  • ਸਾਫ਼ਟ ਟਿਸ਼ੂ ਸੱਟਾਂ (Soft Tissue Injuries) – ਇਹ ਸੱਟਾਂ ਖੇਡਾਂ ਵਿਚ ਹਿੱਸਾ ਲੈਣ ਕਾਰਨ ਆਮ ਲੱਗਦੀਆਂ | ਰਹਿੰਦੀਆਂ ਹਨ । ਇਹ ਅਕਸਰ ਮਾਸਪੇਸ਼ੀ, ਚਮੜੀ, ਟਿਸ਼ੂ ਜਾਂ ਖੇਡਣ ਤੇ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਮੋਚ, ਖਿੱਚ, ਰਗੜ, ਜ਼ਖ਼ਮ ਅਤੇ ਛਾਲੇ ਆਦਿ ਹਨ ।
  • ਹਾਰਡ ਟਿਸ਼ੂ ਸੱਟਾਂ (Hard Tissue Injuries) – ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਸੱਟਾਂ ਵਿਚ ਟ੍ਰੈਕਚਰ (Fracture) ਅਤੇ ਡਿਸਲੋਕੇਸ਼ਨ (Dislocation) ਸ਼ਾਮਿਲ ਹਨ ।

ਖੇਡ ਸੱਟਾਂ ਉਪਾਅ-
1. ਨਿਵਾਰਕ ਪਹਿਲੂ (Preventive Aspect) – ਨਿਵਾਰਕ ਜਾਂ ਰੋਕਥਾਮ ਪਹਿਲੂ ਸਾਨੂੰ ਸਮੱਸਿਆਵਾਂ ਦੇ ਨਿਵਾਰਨ ਦੇ ਤਰੀਕਿਆਂ ਬਾਰੇ ਦੱਸਦਾ ਹੈ ਅਰਥਾਤ ਸਾਨੂੰ ਸੱਟਾਂ-ਚੋਟਾਂ, ਦੁਰਘਟਨਾਵਾਂ ਜਾਂ ਹੋਰ ਖ਼ਤਰਿਆ ਤੋਂ ਕਿਵੇਂ ਬਚਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਹ ਸਾਨੂੰ ਨਿਵਾਰਕ ਕੱਪੜੇ, ਸੁਰੱਖਿਆ ਉਪਕਰਨ, ਸੁਰੱਖਿਆ ਸਾਧਨ, ਆਰਾਮ ਅਤੇ ਖ਼ੁਰਾਕ
ਆਦਿ ਬਾਰੇ ਵੀ ਮਾਰਗਦਰਸ਼ਨ ਕਰਦਾ ਹੈ ।

2. ਉਪਚਾਰਾਤਮਕ ਪਹਿਲੂ (Curative Aspect) – ਇਹ ਸੱਟਾਂ ਦਾ ਇਲਾਜ ਉਹਨਾਂ ਦੇ ਪ੍ਰਬੰਧਨ ਅਤੇ ਇਲਾਜ . ਵਿਚ ਮਾਰਗਦਰਸ਼ਨ ਕਰਦਾ ਹੈ । ਇਸ ਵਿਚ ਸੁਧਾਰ ਅਤੇ ਮੁੜ-ਵਸੇਬੇ (Rehabilitation) ਦੇ ਪ੍ਰੋਗਰਾਮਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਅੱਗੇ ਲਿਖਿਆਂ ਦਾ ਧਿਆਨ ਸਵੈ-ਸੁਰੱਖਿਆ ਲਈ ਜ਼ਰੂਰੀ ਹੈ-

(i) ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣਾ (Proper Warming-up) – ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਗਰਮਾਉਣਾ, ਸੱਟਾਂ ਨੂੰ ਰੋਕਣ ਦਾ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਉਪਾਅ ਹੈ । ਕਿਸੇ ਵੀ ਅਭਿਆਸ ਤੋਂ ਪਹਿਲਾਂ ਚੰਗੇ ਤਰੀਕੇ ਨਾਲ ਵਾਰਮ ਅੱਪ ਕਰਨ ਨਾਲ ਖਿਡਾਰੀ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤੌਰ ਤੇ ਤਿਆਰ ਹੋਣ ਵਿਚ ਮੱਦਦ ਮਿਲਦੀ ਹੈ ਅਤੇ ਸੱਟਾਂ ਲੱਗਣ ਦੇ ਖਤਰੇ ਵੀ ਘੱਟ ਜਾਂਦੇ ਹਨ ।

(ii) ਇਕ ਐਥਲੀਟ ਦੀ ਤੰਦਰੁਸਤੀ ਦੇ ਪੱਧਰ ਅਨੁਸਾਰ (After Complete Recovery from an Injury) – ਕਈ ਵਾਰ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਵਾਧੂ ਵਰਤੋਂ ਨਾਲ, ਜਿਸ ਵਿਚ ਟਿਸ਼ੂਆਂ ਵਿਚ ਟੁੱਟ-ਭੱਜ ਜ਼ਿਆਦਾ ਹੋ ਜਾਂਦੀ ਹੈ, ਸੱਟਾਂ ਦਾ ਕਾਰਨ ਬਣਦੇ ਹਨ । ਇਸ ਲਈ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਫਿੱਟਨੈਸ ਲੋਡ ਇਕ ਐਥਲੀਟ ਸਰੀਰਕ ਤੰਦਰੁਸਤੀ ਦੇ ਅਨੁਸਾਰ ਹੋਵੇ ।

(iii) ਸਹੀ ਤਕਨੀਕ (Proper Technique – ਸਿਖਲਾਈ ਦੇ ਗ਼ਲਤ ਤਰੀਕੇ ਜਾਂ ਗਲਤ ਤਕਨੀਕ ਦੀ ਵਰਤੋਂ ਨਾਲ ਸੱਟਾਂ ਦੇ ਅਵਸਰ ਵੱਧ ਜਾਂਦੇ ਹਨ । ਇਸ ਲਈ ਟੀਚਰ ਨੂੰ ਲਗਾਤਾਰ ਇਹ ਦੇਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਐਥਲੀਟ ਸਹੀ ਤਕਨੀਕ ਵਿਚ ਅਭਿਆਸ ਕਰ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ । ਅਗਰ ਖਿਡਾਰੀ ਦੀ ਤਕਨੀਕ ਸਹੀ ਨਹੀਂ ਤਾਂ ਉਸਨੂੰ ਜਲਦੀ ਹੀ ਸੁਧਾਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ । ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ ਕੀ ਹਨ ?
ਉੱਤਰ-
ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਡਾਕਟਰ ਦੇ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਤੁਰੰਤ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਸਹਾਇਤਾ ਹੁੰਦੀ ਹੈ । ਇਹ ਵਿਵਹਾਰਕ ਤੌਰ ਤੇ ਹੋਰ ਸੱਟਾਂ ਨੂੰ ਰੋਕਣਾ, ਮਰੀਜ਼ ਦੇ ਦਰਦ ਨੂੰ ਘਟਾਉਣਾ ਅਤੇ ਉਸਨੂੰ ਸੱਟ ਦੇ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਦੀ ਹੈ । ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦਾ ਮੂਲ ਸੰਕਲਪ ਖ਼ੂਨ ਵਗਣ ਤੋਂ ਰੋਕਣਾ, ਸਾਹ ਲੈਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ਅਤੇ ਇਲਾਜ ਕਰਨ ਤੋਂ ਹੈ । ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਵਿਚ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਮਰੀਜ਼ ਦਾ ਸਾਹ ਰਸਤਾ ਖੁੱਲ੍ਹਾ ਹੈ ਅਤੇ ਉਹ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਹ ਲੈ ਰਿਹਾ ਹੈ । ਉਸਦਾ ਖੂਨ ਦੌਰਾ ਜਿਵੇਂ ਨਾੜੀ ਗਤੀ, ਚਮੜੀ ਦਾ ਰੰਗ, ਬੇਕਾਬੂ ਖੂਨ ਵੱਗਣਾ ਆਦਿ ਠੀਕ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਅਗਰ ਮਰੀਜ਼ ਸਥਿਰ ਹੈ ਤਾਂ ਹੋਰਨਾਂ ਸੱਟਾਂ ਜਿਵੇਂ ਕਿ ਕੱਟਣਾ, ਸੁੱਜਣਾ ਜਾਂ ਹੱਡੀ ਟੁੱਟਣਾ ਦੀ ਸੰਭਾਲ ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਵਿਚ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ । ਇਸ ਤੋਂ ਇਲਾਵਾ ਕੁੱਝ ਬੁਨਿਆਦੀ ਸੰਕਲਪ ਜਿਵੇਂ ਖੂਨ ਨੂੰ ਵੱਗਣ ਤੋਂ ਰੋਕਣਾ ਜਾਂ ਟੁੱਟੀਆਂ ਹੱਡੀਆਂ ਨੂੰ ਤਦ ਤਕ ਸਥਿਰ ਰੱਖਣਾ ਜਦ ਤਕ ਉਹਨਾਂ ਦਾ ਮੁੱਲਾਂਕਣ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਜਾਂ ਫਿਰ ਜੋੜ ਨਹੀਂ ਦਿੱਤਾ ਜਾਂਦਾ, ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ।

ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ (Principle of First Aid) – ਮੁੱਢਲੀ ਸਹਾਇਤਾ ਦੇ ਸਿਧਾਂਤ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ, ਹਨ

  1. ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਬਿਨਾਂ ਘਬਰਾਏ, ਚੁੱਪਚਾਪ, ਸ਼ਾਂਤੀ ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਮੱਦਦ ਕਰਨਾ ।
  2. ਜਿੰਨਾ ਹੋ ਸਕੇ ਪੀੜਤ ਨੂੰ ਸਦਮੇ ਵਿਚੋਂ ਬਾਹਰ ਕੱਢਣ ਵਿਚ ਮੱਦਦ ਕਰਨਾ ।
  3. ਬਿਨਾਂ ਮਤਲਬ ਜ਼ਿਆਦਾ ਕੋਸ਼ਿਸ਼ਾਂ ਨਾ ਕਰਨਾ ।
  4. ਤਣਾਅ ਨੂੰ ਘਟਾਉਣ ਲਈ ਪੀੜਤ ਨੂੰ ਭਰੋਸਾ ਜਾਂ ਹੌਸਲਾ ਦੇਣਾ ।
  5. ਜੇ ਲੋੜ ਹੋਵੇ ਤਾਂ ਨਕਲੀ ਸਾਹ (Artificial Respiration) ਦੇਣਾ ।
  6. ਖੂਨ ਵੱਗਣ ਤੋਂ ਰੋਕਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨਾ ।
  7. ਪੀੜਤ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਭੀੜ ਇਕੱਠੀ ਨਾ ਹੋਣ ਦੇਣਾ ।

ਪ੍ਰਸ਼ਨ 7.
ਤੁਹਾਨੂੰ ਟੁੱਟ ਬਾਰੇ ਕੀ ਪਤਾ ਹੈ । ਇਸਦੀਆਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਨੂੰ ਬਿਆਨ ਕਰੋ ।
ਉੱਤਰ-
ਹੱਡੀ ਦਾ ਨਿਰੰਤਰ ਵਿਚ ਟੁੱਟਣਾ ਹੀ ਹੱਡੀ ਟੁੱਟਣਾ ਅਖਵਾਉਂਦਾ ਹੈ । ਟ੍ਰੈਕਚਰ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦ ਹੱਡੀ ਉੱਪਰ ਉਸਦੀ ਸਮਰੱਥਾ ਤੋਂ ਜ਼ਿਆਦਾ ਤਨਾਅ (Stress) ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਫਿਰ ਹੱਡੀ ਨੂੰ ਸਿੱਧਾ ਝਟਕਾ ਲੱਗਦਾ ਹੈ । ਹੱਡੀ ਦਾ ਅਚਾਨਕ ਮੋੜਨਾ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਵਿਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੁੰਗੜਨ ਉਤਪੰਨ ਹੋਣਾ ਆਦਿ ਹੱਡੀ ਟੁੱਟਣ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ । ਟ੍ਰੈਕਚਰ ਸਿੱਧੇ, ਅਸਿੱਧੇ ਜਾਂ ਫਿਰ ਮਾਸਪੇਸ਼ੀਆਂ ਜਾਂ ਲਿੰਗਾਮੈਂਟ ਦੀ ਤਾਕਤ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ ।

  1. ਨ ਸਟਿੱਕ ਫ੍ਰੈਕਚਰ (Green Stick Fracture) – ਅਜਿਹੀ ਸੱਟ ਜੋ ਬੱਚਿਆਂ ਦੀ ਹੱਡੀ ਉੱਤੇ ਆਉਂਦੀ ਹੈ । ਇਸ ਵਿਚ ਹੱਡੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਨਹੀਂ ਟੁੱਟਦੀ ਅਤੇ ਹੱਡੀ ਇਕ ਪਾਸੇ ਥੋੜੀ ਝੁਕੀ (Bend) ਦਿਖਾਈ ਦਿੰਦੀ ਹੈ ।
  2. ਆਰ-ਪਾਰ ਟੁੱਟ (Transverse Fracture) – ਹੱਡੀ ਦੇ ਲੰਬਕਾਰ ਰੂਪ ਵਿਚ ਟੁੱਟ ਜਾਣ ਨੂੰ ਆਰ-ਪਾਰ ਟੁੱਟ | ਕਹਿੰਦੇ ਹਨ ।
  3. ਉਬਲੀਕ ਫੈਕਚਰ (Oblique Fracture) – ਇਸ ਵਿਚ ਹੱਡੀ ਤਿਰਛੇ ਰੂਪ ਵਿਚ ਟੁੱਟਦੀ ਹੈ ।
  4. ਸਪਾਈਰਲ ਟੁੱਟ (Spiral Fracture) – ਇਸ ਵਿਚ ਹੱਡੀ ਆਪਣੇ ਸਾਫ਼ਟ ਦੇ ਆਸ-ਪਾਸ ਟੁੱਟਦੀ ਹੈ ।
  5. ਟੋਟੇ-ਟੋਟੇ ਹੋ ਜਾਣਾ (Comminute Fracture) – ਇਸ ਵਿਚ ਸੱਟ ਲੱਗਣ ਵਾਲੀ ਥਾਂ ਤੇ ਹੱਡੀ ਦੇ ਛੋਟੇ-ਛੋਟੇ ਟੁੱਕੜੇ ਹੋ ਜਾਂਦੇ ਹਨ ।
  6. ਡੈਪਰੈਸਡ ਫੈਕਚਰ (Depressed Fracture) – ਇਹ ਬਹੁਤ ਛੋਟੀ ਤੇੜ ਹੁੰਦੀ ਹੈ ਜੋ ਅੰਦਰ ਦੀ ਤਰਫ਼ ਨੂੰ ਆਉਂਦੀ ਹੈ ।
  7. ਐਵਲੂਸ਼ਨ ਫੈਕਚਰ (Avulsion Fracture) – ਇਸ ਵਿਚ ਹੱਡੀ ਦੇ ਲਿੰਗਾਮੈਂਟ ਜਾਂ ਟੈਂਡਨ ਪੂਰੀ ਤਰ੍ਹਾਂ ਟੁੱਟ ਜਾਂਦੇ ਹਨ ਅਤੇ ਹੱਡੀ ਟੁੱਟ ਕੇ ਬਾਹਰ ਆ ਜਾਂਦੀ ਹੈ ।
  8. ਇੰਪੈਕਟਡ ਫ੍ਰੈਕਚਰ (Impacted Fracture) – ਇਸ ਵਿਚ ਹੱਡੀ ਟੁੱਟ ਕੇ ਦੂਜੀ ਹੱਡੀ ਵਿਚ ਫਸ ਜਾਂਦੀ ਹੈ ।

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 6 Electromagnetic Induction Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 6 Electromagnetic Induction

PSEB 12th Class Physics Guide Electromagnetic Induction Textbook Questions and Answers

Question 1.
Predict the direction of induced current in the situations described by the following Figs. 6.18 (a) to (f).
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 1
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 2
Answer:
(a) As the magnet moves towards the solenoid, the magnetic flux linked with the solenoid increases. According to Lenz’s law, the induced e.m.f. produced in the solenoid in such that it opposes the very cause producing it i. e., it opposes the motion of the magnet. Hence the face q of it becomes the south pole and p becomes north pole. Therefore, the current will flow along pqin the coili. e., along qrpqin this figurei. e., clockwise when seen from the side of the magnet according to clock rule.

(b) As the north pole moves away from xy coil, so the magnetic flux linked with this coil decreases. Thus according to Lenz’s law, the induced e.m.f. produced in the coil will oppose the motion of the magnet. Hence the face, X becomes S-pole, so the current will flow in the clockwise direction i.e., along yzx in the cone.

For coil pq, the south pole of the magnet moves towards end q and thus this end will acquire south polarity so as to oppose the motion of the magnet, hence the current will flow along prq in the coil.

(c) The induced current will be in the anticlockwise direction i.e., along yzx.

(d) The induced current will be in the clockwise direction i.e., along zyx.

(e) The battery current in the left coil will be from right to left, so by mutual induction, the induced current in the right coil will be in the opposite direction i.e., from left to right or along xry.

(f) In this case, there is no change in magnetic flux linked with the wire, so no current will flow through the wire since there is no induced current as the field lines lie in the plane of the loop.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 2.
Use Lenz’s law to determine the direction of induced current in the situations described by Fig. 6.19.
(a) A wire of irregular shape turning into a circular shape;
(b) A circular loop being deformed into a narrow straight wire.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 3
(a) When a wire of irregular shape turns into a circular loop, the magnetic flux linked with the loop increases due to increase in area. The circular loop has greater area than the loop of irregular shape. The induced e.m.f. will cause current to flow in such a direction so that the wire forming the loop is pulled inward from all sides i.e., current must flow in the direction adcba as shown in Fig. (a) i.e., in anticlock-wise direction so that the magnetic field produced by the current ((directed out of the paper) opposes the applied field.

In Fig. (b), a circular loop deforms into a narrow straight wire i.e., upper side of loop should move downwards and lower end should move upwards to oppose the motion of the circular loop, thus its area decreases as a result of which the magnetic flux linked with it decreases. To oppose the decrease in magnetic flux, the induced current should flow anti clockwise in the loop i. e., along a’d’ d b’ a’. Due to the flow of anti-clockwise current, the magnetic field produced will be out of the page and hence the applied field is supplemented.

Question 3.
A long solenoid with 15 turns per cm has a small loop of area 2.0 cm2 placed inside the solenoid normal to its axis. If the current carried hy the solenoid changes steadily from 2.0 A to
4.0 A in 0.1 s, what is the induced emf in the loop while the current is changing?
Answer:
Number of turns per unit length of the solenoid, n = 15 turns/cm = 1500 turns/m
The solenoid has a small loop of area, A = 2.0 cm2 = 2 × 10-4 m2
Current carried by the solenoid changes from 2 A to 4 A.
.-. Change in current in the solenoid, dI = 4 – 2 = 2A
Change in time, dt = 0.1 s
We know that the magnetic field produced inside the solenoid is given by
B = μ0nI
If Φ be the magnetic flux linked with the loop, then
Φ = BA = μ0nI A
Induced emf in the solenoid is given by Faraday’s law as
e = –\(\frac{d \phi}{d t}\)
e = – \(\frac{d}{d t}\) (Φ) = –\(\frac{d}{d t}\) μ0nI A
μ0n A \(\frac{d I}{d t}\)
∴ Magnitude of e is given by
= A μ0n × (\(\frac{d I}{d t}\))
= 2 × 10-4 × 4π × 10-7 × 500 × \(\frac{2}{0.1}\)
7.54 × 10 -6 V
Hence, the induced voltage in the loop is = 7.54 × 10 -6 V

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 4.
A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s-1 in a direction normal to the (a) longer side, (b) shorter side of the loop? For how long does the induced voltage last in each case?
Answer:
Length of the rectangular wire, l = 8 cm = 0.08 m
Width of the rectangular wire, b = 2 cm = 0.02 m
Hence, area of the rectangular loop A = lb
= 0.08 × 0.02
= 16 × 10-4 m2
Magnetic field strength, B = 0.3 T
Velocity of the loop, v = 1 cm/s = 0.01 m / s

(a) Emf developed in the loop is given as
e = Blv
= 0.3 × 0.08 × 0.01 = 2.4 × 10-4 V
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 4
= \(\frac{b}{v}\) = \(\frac{0.02}{0.01}\) = 2 s
Hence, the induced voltage is 2.4 × 10-4 V which lasts for 2s.

(b) Emf developed,
e = Bbv = 0.3 × 0.02 × 0.01 = 0.6 × 10-4 V
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 5
\(\frac{l}{v}\) = \(\frac{0.08}{0.01}\) 8s
Hence, the induced voltage is 0.6 × 10-4 V which lasts for 8 s.

Question 5.
A 1.0 m long metallic rod is rotated with an angular frequency of 400 rad s-1 about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.
Answer:
Length of the rod, l = 1m
Angular frequency, ω = 400 rad/s
Magnetic field strength, B = 0.5 T
One end of the rod has zero linear velocity, while the other end has a linear velocity of l ω.
Average linear velocity of the rod, v = \(\frac{l \omega+0}{2}=\frac{l \omega}{2}\)
Emf developed between the centre and the ring,
e = Blv = Bl(\(\frac{l \omega}{2}\)) = \(\frac{B l^{2} \omega}{2}\)
= \(\frac{0.5 \times(1)^{2} \times 400}{2}\) = 100V
Hence, the emf developed between the centre and the ring is 100 V.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 6.
A circular coil of radius 8.0 cm and 20 turns is rotated about its vertical diameter with an angular speed of 50 rad s-1 in a uniform horizontal magnetic field of magnitude 3.0 × 10-2 T. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10 Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?
Answer:
Here, n = number of turns in the coil = 20
r = radius ofcoil = 8.0 cm = 8 × 10-2 m
ω = angular speed of the coil = 50 rad s-1.
B = magnetic field = 3.0 × 10-2 T
Let e0 be the maximum e.m.f. in the coil = ?
and eav be the average e.m.f. in the coil = ?
We know that the instantaneous e.m.f. produced in a coil is given by
e = BA ω sinωt.
for e to be maximum emax, sin ωt = 1.
∴ emax = B A n ω = B.πr2
where A = πr2 is the area of the coil
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 6
i.e., eav is zero as the average value of sincot for one complete cycle is always zero.
Now R = resistance of the closed loop formed by the coil = 10 Ω
Let Imax = maximum current in the coil = ?
∴ Using the relation,
Imax = \(\frac{e_{\max }}{R}\), we get
Imax = \(\frac{0.603}{10}\) = 0.0603 A
Let Pav be the average power loss due to Joule heating = ?
∴ Pav = \(\frac{e_{\max } \cdot I_{\max }}{2}\) = \(\frac{0.603 \times 0.0603}{2}\)
= 0.018 Watt
The induced current causes a torque opposing the rotation of the coil. An external agent must supply torque and do work to counter this torque in order to keep the coil rotating uniformly. Thus the source of the power dissipated as heat in the coil is the external agent i. e., rotor.

Question 7.
A horizontal straight wire 10 m long extending from east to west is falling with a speed of 5.0 m s-1, at right angles to the horizontal component of the earth’s magnetic field, 0.30 × 10-4 Wb m-2.
(a) What is the instantaneous value of the emf induced in the wire?
(b) What is the direction of the emf?
(c) Which end of the wire is at the higher electrical potential?
Answer:
Length of the wire, l = 10 m
Falling speed of the wire, v = 5.0 m/s
Magnetic field strength, B = 0.3 × 10-4 Wb m-2

(a) emf induced in the wire,
e = Blv = 0.3 × 10-4 × 5 × 10
= 1.5 × 10-3 V

(b) Using Fleming’s right hand rule, it can be inferred that the direction of the induced emf is from west to east.

(c) The eastern end of the wire is at a higher electrical potential.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 8.
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Initial current, I1 = 5.0 A
Final current, I2 = 0.0 A
Change in current, dl = I1 – I2 = 5 – 0 = 5 A
Time taken for the change, dt = 0.1 s
Average emf, e = 200 V
For self-inductance (I) of the circuit, we have the relation for average emf as
e = L\(\frac{d I}{d t}\)
L = \(\frac{e}{\left(\frac{d I}{d t}\right)}\)
= \(\frac{200}{\frac{5}{0.1}}=\frac{200 \times 0.1}{5}\) 4H
Hence, the self induction of the circuit is 4 H.

Question 9.
A pair of adjacent coils has a mutual inductance of 1.5 H. If the current in one coil changes from 0 to 20 A in 0.5 s, what is the change of flux linkage with the other coil?
Answer:
Mutual inductance of the pair of coils, μ = 1.5 H
Initial current, I1 = 0 A
Final current, I2 – 20 A
Change in current, dI = I2 – I1 = 20 – 0 = 20 A
Time taken for the change, dt = 0.5 s
Induced emf, e = \(\frac{d \phi}{d t}\) ………… (1)

Where d Φ is the change in the flux linkage with the coil.
Emf is related with mutual inductance as
e = μ\(\frac{d I}{d t}\) ……………. (2)
Equating equations (1) and (2), we get
\(\frac{d \phi}{d t}\) = μ\(\frac{d I}{d t}\)
or dΦ = μdI
∴ dΦ = 1.5 × (20) = 30 Wb
Hence, the change in the flux linkage is 30 Wb.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 10.
A jet plane is travelling towards west at a speed of 1800 km/h. What is the voltage difference developed between the ends of the wings having a span of 25 m, if the Earth’s magnetic field at the location has a magnitude of 5 × 10-4 T and the dip angle is 30°.
Answer:
Speed of the jet plane, v = 1800 km/h = 1800 × \(\frac{5}{18}\) = 500 m/s
Wing span of the jet plane, l = 25 m
Earth’s magnetic field strength, B = 5.0 × 10-4 T
Angle of dip, δ = 30°
Vertical component of Earth’s magnetic field,
BV = B sinδ
= 5 × 10-4 × sin30°
= 5 × 10-4 × \(\frac{1}{2}\) = 2.5 × 10-4 T
Voltage difference between the ends of the wing can be calculated as
e = (BV) × l × v
= 2.5 × 10-4 × 25 × 500 = 3.125 V
Hence, the voltage difference developed between the ends of the wings is 3.125 V.

Question 11.
Suppose the loop in Exercise 6.4 is stationary but the current feeding the electromagnet that produces the magnetic field is gradually reduced so that.the field decreases from its initial value of 0.3 T at the rate of 0.02 Ts-1. If the cut is joined and the loop has a resistance of 1.6 Ω, how much power is dissipated by the loop as heat? What is the source of this power?
Answer:
Sides of the rectangular wire loop are 8 cm and 2 cm.
Hence, area of the rectangular wire loop,
A = length × width = 8 × 2 = 16 cm
= 16 × 10-4 m2
Initial value of the magnetic field, B = 0.3 T
Rate of decrease of the magnetic field, \(\frac{d B}{d t}\) = 0.02 T/s
emf developed in the loop is given as
e = \(\frac{d \phi}{d t}\)
where, Φ = Change in flux through the loop area
= AB
∴ e = \(\frac{d(A B)}{d t}=\frac{A d B}{d t}\)
= 16 × 10-4 × 0.02 =0.32 × 10-4 V
= 3.2 × 10-5 V
Resistance of the loop, R = 1.6 Ω
The current induced in the loop is given as
i = \(\frac{e}{R}\)
= \(\frac{0.32 \times 10^{-4}}{1.6}\) = 2 × 10-5A
Power dissipated in the loop in the form of heat is given as
P = i2R
= (2 × 10-5)2 × 1.6
= 6.4 × 10-10 W
The source of this heat loss is an external agent, which is responsible for changing the magnetic field with time.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 12.
A square loop of side 12 cm with its sides parallel to X and F axes is moved with a velocity of 8 cm s-1 in the positive x-direction in an environment containing a magnetic field in the positive 2-direction. The field is neither uniform in space nor constant in time. It has a gradient of 10-3 T cm-1 along the negative jtr-direction (that is it increases by 10-3 T cm-1 as one moves in the negative x-direction), and it is decreasing in time at the rate of 10-3 T s1. Determine the direction and magnitude of the induced current in the loop if its resistance is 4.50 mΩ.
Answer:
Here, a = side of the square loop = 12 cm = 12 × 10-2 m
\(\vec{v}\) = velocity of loop parallel to x-axis = 8 cms-1
= 8 × 10-2 ms-1.
Let B = variable magnetic field acting away from us ⊥ ar to the XY plane along z axis i. e., plane of paper represented by x.
\(\) = 10-3 Tcm-1
= 10-3 × 102 Tm-1
= 0.1 Tm-1
= field gradient along – ve x direction.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 7
\(\frac{d B}{d t}\) = rate of variation with me
= 10-3 Ts-1
R = resistance of the loop = 4.5 mΩ = 4.5 × 10-3 Ω
Let I = induced current = ? and its direction = ?
∴ A = area of loop = a2 = (12 × 10-2)2 m2 = 144 × 10-4 m2.
The magnetic flux changes (i) due, to the variation of B with time and
(ii) due to motion of the loop in non-uniform \(\vec{B}\).
Thus if Φ be the total magnetic flux of the loop, then Φ is calculated as Area of shaded part = adx
Let dΦ = magnetic flux linked with shaded part = B(x,t)adx
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 8
∴ From (3), \(\) = 144 × 10-7 + 1152 × 10-7
= 1296 × 10-7 Wbs-1
Clearly the two effect add up as these cause a decrease in flux along the + z direction.
∴ If e be the induced e.m.f. produced, then
e = –\(\frac{d \phi}{d t}\) = -1296 × 10-7 V
= -12.96 × 10-5 V
∴ e = 12.96 × 10-5 V
∴ I = \(\frac{e}{R}\) = \(\frac{12.96 \times 10^{-5}}{4.5 \times 10^{-3}}\) 2.88 × 10-2 A.
The direction of induced current is such as to increase the flux through the loop along +z-direction. Thus if for the observer, the loop moves to the right, the current will be seen to be anti-clockwise.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 13.
It is desired to measure the magnitude of field between the poles of a powerful loud speaker magnet. A small fiat search coil of area 2 cm2 with 25 closely wound turns, is positioned normal to the field direction, and then quickly snatched out of the field region. Equivalently, one can give it a quick 90° turn to bring its plane parallel to the field direction. The total charge flown in the coil (measured by a ballistic galvanometer connected to coil) is 7.5 mC. The combined resistance of the coil and the galvanometer is 0.50 Q. Estimate the field strength of magnet.
Answer:
Area of the small flat search coil, A = 2cm2 = 2 × 10-4m2
Number of turns on the coil, N = 25
Total charge flown in the coil, Q = 7.5 mC = 7.5 × 10 -3 C
Total resistance of the coil and galvanometer, R = 0.50 Ω
Induced current in the coil,
I = \(\frac{\text { Induced emf }(e)}{R}\) ………….. (1)
Induced emf is given us
e = -N\(\frac{d \phi}{d t}\) ……………… (2)
Combining equations (1) and (2), we get
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 9
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 10
Hence, the field strength of the magnet is 0.75 T.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 14.
Figure 6.20 shows a metal rod PQ resting on the smooth rails AB and positioned between the poles of a permanent magnet. The rails, the rod, and the magnetic Held are in three mutual perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the rod = 15 cm, B = 0.50 T, resistance of the closed loop containing the rod = 9.0 mfl. Assume the field to be uniform.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 11
(a) Suppose K is open and the rod is moved with a speed of 12 cm s-1 in me airection snown. dive me polarity ana magnitude of the induced emf.

(b) Is there an excess charge built up at the ends of the rods when K is open? What if K is closed?

(c) With K open and the rod moving uniformly, there is no net force on the electrons in the rod PQ even though they do experience magnetic force due to the motion of the rod. Explain.

(d) What is the retarding force on the rod when K is closed?

(e) How much power is required (by an external agent) to keep the rod moving at the same speed (= 12 cm s-1) when K is closed? How much power is required when K is open?

(f) How much power is dissipated as heat in the closed circuit? What is the source of this power?

(g) What is the induced emf in the moving rod if the magnetic field is parallel to the rails instead of being perpendicular?
Answer:
Here, B = 0.50 T
l = length of the rod = 15 cm = 15 × 10-2 m
R = resistance of the closed loop containing the rod = 9.0 mΩ
= 9 × 10-3 Ω.

(a) v = speed of the rod = 12 cms-1 = 12 × 10-2 ms-1.
The magnitude of the induced e.m.f. is
E = Blv = 0.50 × 15 × 10-2 × 12 × 10-12 = 9 × 10-3 V
According to Fleming’s left hand rule, the direction of Lorentz force —^ ^ ^
\(\vec{F}\) = -e(\(\vec{V} \times \vec{B}\)) on electrons in PQ is from P to Q. So the end P of the rod will acquire positive charge and Q will acquire negative charge,

(b) Yes. When the switch K is open, the electrons collect at the end Q, so excess charge is built up at the end Q. But when the switch K is closed, the accumulated charge at the end Q is maintained by the continuous flow of current.

(c) This is because the presence of excess charge at the ends P and Q of the rod sets up an electric field \(\vec{E}\). The force due to the electric field (q\(\vec{E}\)) balances the Lorentz magnetic force q(\(\vec{V} \times \vec{B}\)). Hence the net force on the electrons is zero.

(d) When the key K is closed, current flows through the rod. The retarding force experienced by the rod is
F = BIl = B(\(\frac{E}{R}\)) l
where, I = \(\) is the induced current. R
F = \(\frac{0.50 \times 9 \times 10^{-3} \times 15 \times 10^{-2}}{9 \times 10^{-3}}\)
= 7.5 × 10-2 N.

(e) The power required by the external agent against the above retarding force to keep the rod moving uniformly at speed 12 cms-1 (= 12 × 10-2 m/s) when K is closed is given by
p = FV = 7. 5 × 10-2 × 12 × 10-2
= 90 × 10-4 W
= 9 × 10-3 W

(f) Power dissipated as heat is given by
P = I2R = (\(\frac{E}{R}\))2 R = \(\frac{E^{2}}{R}\)
= \(\frac{\left(9 \times 10^{-3}\right)^{2}}{9 \times 10^{-3}}\)
= 9 × 10-3 W.
The source of this power is the power provided by the external agent calculated in (e).

Zero. This is because when the magnetic field is parallel to the rails, θ = 0°, so induced e.m.f. E = Blv sinθ = Blv sin 0 = 0. In this situation, the moving rod does not cut the field lines, so there is no change in the magnetic flux, hence E = 0.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 15.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 500, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3 s. How much is the average back emf induced across the ends of the open switch in the circuit? Ignore the variation in magnetic Held near the ends of the solenoid.
Answer:
Length of the solenoid, l = 30 cm = 0.3 m
Area of cross-section, A = 25 cm2 = 25 x 10-4 m2
Number of turns on the solenoid, N = 500
Current in the solenoid, I = 2.5 A
Current flows for time, t = 10-3 s
Average back emf, e = \(\frac{d \phi}{d t}\) ……………. (1)
where,
dΦ = NAB ………….. (2)
and B = μ0 \(\frac{N I}{l}\) …………. (3)
Using equations (2) and (3) in equation (1), we get
e = \(\frac{\mu_{0} N^{2} I A}{l t}\)
\(=\frac{4 \pi \times 10^{-7} \times(500)^{2} \times 2.5 \times 25 \times 10^{-4}}{0.3 \times 10^{-3}}\)
= 6.5 V
Hence, the average back emf induced in the solenoid is 6.5 V.

Question 16.
(a) Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in Figure 6.21.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 12
(b) Now assume that the straight wire carries a current of 50 A and the loop is moved to the right with a constant velocity, v = 10 m/s.
Calculate the induced emf in the loop at the instant when x = 0.2 m.
Take a = 0.1 m and assume that the loop has a large resistance.
Answer:
(a) Take a small element dy in the loop at a distance y from the long straight wire (as shown in the given figure).
Magnetic flux associated with element dy, dΦ = BdA
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 13
= where,
dA = Area of element dy = a dy
B = Magnetic field at distance y = \(\frac{\mu_{0} I}{2 \pi y}\)
I = Current in the wire
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 14

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 17.
A line charge λ per unit length is lodged uniformly onto the rim of a wheel of mass M and radius R. The wheel has light non-conducting spokes and is free to rotate without friction about its axis as shown in Fig. 6.22. A uniform magnetic field extends over a circular region within the rim. It is given by,
B = -Bk (r ≤ a; a < R)
= 0 (otherwise)
What is the angular velocity of the wheel after the field is suddenly switched off?
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 15
Answer:
Let ω be the angular velocity of the wheel of mass M and radius R.
Let e = Induced e.m.f. produced.
The rotational K.E. of the rotating wheel = \(\frac{1}{2}\) Iω2 ………… (1)
where, I = Moment of inertia of wheel
= \(\frac{1}{2}\) MR2 …………… (2)
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 16
or Work done = eQ
Applying the work energy theorem, we get
Rotational K.E. = Work done
or RotationalK.E. = Q × e …………… (3)
We know that the e.m.f. of a rod rotating in a uniform magnetic field is
given by \(\frac{1}{2}\) Bωa2 , since here the magnetic field is changing, we assume the average over the time span and thus average value of e.m.f. is given by
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 17

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 5 Continuity and Differentiability Ex 5.1 Textook Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1

Question 1.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Solution.
The given functions is f(x) = 5x – 3
At x = 0, f(0) = 5 × 0 – 3 = – 3
\(\lim _{x \rightarrow 0}\) f(x) = \(\lim _{x \rightarrow 0}\) (5x – 3)
= 5 × 0 – 3 = -3
∴ \(\lim _{x \rightarrow 0}\) f(x) = f(0)
Therefore, f is continuous at x = 0.
At x = – 3, f(- 3) = 5 × (- 3) – 3 = -18
\(\lim _{x \rightarrow-3}\) f(x) = \(\lim _{x \rightarrow-3}\) (5x – 3)
= 5 × (- 3) – 3 = – 18
∴ \(\lim _{x \rightarrow-3}\) f(x) = f(- 3)
Therefore, f is continuous at x = – 3.
At x = 5, f(x) = f(5) = 5 × 5 – 3
= 25 – 3 = 22
\(\lim _{x \rightarrow 5}\) f(x) = \(\lim _{x \rightarrow 5}\) (5x – 3)
= 5 × 5 – 3 = 22
\(\lim _{x \rightarrow 5}\) f(x) = f(5)
Therefore, f is continuous at x = 5.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 2.
Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.
Solution.
The given functions is f(x) = 2x2 – 1
At x = 3, f(3) = 2 × 32 – 1 = 17
\(\lim _{x \rightarrow 3}\) f(x) = \(\lim _{x \rightarrow 3}\) (2x2 – 1)
= 2 × 32 – 1 = 17
∴ \(\lim _{x \rightarrow 3}\) f(x) = f(3)
Thus, f is continuous at x = 3.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 3.
Examine the following functions for continuity.
(a) f(x) = x – 5
(b) f(x) = \(\frac{1}{x-5}\) x ≠ 5
(c) f(x) = \(\frac{x^{2}-25}{x+5}\)
(d) f(x) = |x – 5|
Sol.
(a) The given function is f(x) = x – 5
x – 5 is a polynomial, therefore it is continuous at each x ∈ R.

(b) The given function is f(x) = \(\frac{1}{x-5}\)
At x = 5, f(x) is not defined.
when x ≠ 5, \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) \(\frac{1}{x-5}=\frac{1}{c-5}\)
∴ f is not continuous at x = 5.
∴ f is continuous at x ∈ R – {5}.

(c) The given function is f(x) = \(\frac{x^{2}-25}{x+5}\)
At x = – 5, function f is not defined.
∴ f is discontinuous at x = – 5.
At x = c ≠ – 5
\(\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \frac{x^{2}-25}{x+5}\) = x – 5
and f(c) = c – 5
∴ f is continuous for all x ∈ R – {- 5}

(d) The given function is f(x) = |x – 5|
At x = 5, f(5) = |5 – 5| = 0
\(\lim _{x \rightarrow 5}\) |x – 5| = 0
∴ f is continuous at x = 5
At x = c > 5, \(\lim _{x \rightarrow c}\) |x – 5| = c – 5 [c > 5]
Also, f(c) = c – 5
∴ f is continuous at x = c > 5.
Similarly at x = c < 5
\(\lim _{x \rightarrow c}\) |x – 5| = 5 – c, f(c) = 5 – c
∴ f is continuous at x = c < 5
Thus, f is continuous for all x ∈ R.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 4.
Prove that the function f(x) = xn is continuous at x – n, where n is a positive integer.
Solution.
The given function is f(x) = xn.
It is evident that / is defined at all positive integers n, and its value at n is nn.
Then, \(\lim _{x \rightarrow n}\) f(n) = \(\lim _{x \rightarrow n}\) (xn) = nn
\(\lim _{x \rightarrow n}\) f(x) = f(n)
Therefore, f is continuous at n, where n is a positive integer.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 5.
Is the function f defined by f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 1 continuous at x = 0? At x = 1? At x = 2?
Solution.
The given function f is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 1
At x = 0, it is evident that f is defined at 0 and its value at 0 is 0.
Then, \(\lim _{x \rightarrow 0}\) f(x) = \(\lim _{x \rightarrow 0}\) x = 0
∴ \(\lim _{x \rightarrow 0}\) f(x) = f(0)
Therefore, f is continuous at x = 0.
At x = 1, f is defined at 1 and its value at 1 is 1.

The left hand limit of f at x = 1 is lim f(x) lim x – 1
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) x = 1

The right hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{+}}\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) (5) = 5.

∴ \(\lim _{x \rightarrow 1^{-}}\) f(x) ≠ \(\lim _{x \rightarrow 1^{+}}\) f(x)
Therefore, f is not continuous at x = 1.
At x = 2, f is defined at 2 and its value at 2 is 5.
Then, \(\lim _{x \rightarrow 2}\) f(x) = \(\lim _{x \rightarrow 2}\) (5) = 5 ‘
∴ \(\lim _{x \rightarrow 2}\) f(x) = f(2)
Therefore, f is continuous at x = 2.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Direction (6 – 12): Find all points of discontinuity of f, where f is defined by

Question 6.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 2
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 2
It is evident that the given function f is defined at all the points of the real line.
Let c be a point on the real line. Then, three cases arise.
I. c < 2; II. c > 2;
III. c = 2

Case I. c < 2
Then, f(c) = 2c + 3
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (2x + 3) = 2c +3
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 2. Case II. c > 2
Then, f(c) = 2c – 3
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (2x – 3) = 2c – 3
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 2.

Case III. c = 2
Then, the left hand limit of f at x = 2 is
\(\lim _{x \rightarrow 2^{-}}\) f(x) = \(\lim _{x \rightarrow 2^{-}}\) (2x + 3)
= 2 × 2 + 3 = 7

The right hand limit of f at x = 2 is
\(\lim _{x \rightarrow 2^{+}}\) f(x) = \(\lim _{x \rightarrow 2^{+}}\) (2x – 3)
= 2 × 2 – 3 = 1

It is observed that the left and right hand limits of f at x = 2 do not coincide.
Therefore, f is not continuous at x = 2.
Hence, x = 2 is the only point of discontinuity of f.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 7.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 3
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 3
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < – 3, then f(c) = – c + 3
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (- x + 3) = – c + 3
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < – 3.

Case II:
If c = – 3, then f(- 3) = – (- 3) + 3 = 6
\(\lim _{x \rightarrow-3^{-}}\) f(x) = \(\lim _{x \rightarrow-3^{-}}\) (- x + 3)
= – (- 3) + 3 = 6

\(\lim _{x \rightarrow-3^{+}}\) f(x) = \(\lim _{x \rightarrow-3^{+}}\) (- 2x)
= – 2 × (- 3) = 6
∴ \(\lim _{x \rightarrow-3}\) f(x) = f(- 3)
Therefore, f is continuous at x = – 3.

Case III:
If – 3 < c < 3, then f(c) – 2c and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (- 2x) = – 2c \(\lim _{x \rightarrow c}\) f(x) = f(c) Therefore, f is continuous in (- 3, 3).

Case IV:
If c = 3, then the left hand limit of f at x = 3 is \(\lim _{x \rightarrow 3^{-}}\) f(x) = \(\lim _{x \rightarrow 3^{-}}\) (- 2x) = – 2 × 3 = – 6
The right hand limit of f at x = 3 is \(\lim _{x \rightarrow 3^{+}}\) f(x) = \(\lim _{x \rightarrow 3^{+}}\) (6x + 2) = 6 × 3 + 2 = 20
It is observed that the left and right hand limits of f at x = 3 do not coincide.
Therefore, f is not continuous at x = 3.

Case V:
If c > 3, then f(c) = 6c + 2 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (6x + 2) = 6c + 2
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 3.
Hence, x = 3 is the only point of discontinuity of f.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 8.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 4
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 4
It is known that, x < 0 ⇒ |x| = – x and x > 0
⇒ |x| = x
Therefore, the given function can be rewritten as
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 5
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < 0, then f(c) = – 1
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (- 1) = – 1
⇒ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 0.

Case II:
If c = 0, then
the left hand limit of f at x = 0 is \(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) (- 1) = – 1
The right hand limit of f at x = 0 is \(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) (1) = 1
It is observed that the left and right hand limits of f at x = 0 do not coincide.
Therefore, f is not continuous at x = 0.

Case III: If c > 0, then f(c) = 1
\(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) (1) = 1
∴ \(\lim _{x \rightarrow 0^{-}}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 0.
Hence, x = 0 is the only point of discontinuity of f.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 9.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 6
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 6
It is known that, x < 0 ⇒ |x| = – x
Therefore, the given function can be written as
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 7
⇒ f(x) = – 1 for all x ∈ R
Let c be any real number.
Then, \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (- 1) = – 1
Also, f(c) = – 1 = \(\lim _{x \rightarrow c}\) f(x)
Therefore, the given function is a continuous function.
Hence, the given function has no point of discontinuity.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 10.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 8
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 8
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < 1, then f(c) = c2 + 1 and lim f(x) = lim(x2 + 1) = c2 + 1
X ~+ c x->c
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 1.

Case II:
If c = 1, then f(c) = f(1) = 1 + 1 = 2.
The left hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (x2 + 1)
= 12 + 1 = 2

The right hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{+}}\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) (x + 1)
= 1 + 1 = 2
∴ \(\lim _{x \rightarrow c}\) f(x) = f(1)
Therefore, f is continuous at x = 1

Case III:
If c > 1, then f(c) = c + 1
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x +1) = c + 1
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 1.
Hence, the given function f has no point of discontinuity.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 11.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 9
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 9

The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < 2, then f(c) = c3 – 3 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x3 – 3) = c3 – 3
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 2.

Case II:
If c = 2, then f(c) = f(2) = 23 – 3 = 5
\(\lim _{x \rightarrow 2^{-}}\) f(x) = \(\lim _{x \rightarrow 2^{-}}\) (x3 – 3)
= 23 – 3 = 5

\(\lim _{x \rightarrow 2^{+}}\) f(x) = \(\lim _{x \rightarrow 2^{+}}\) (x2 + 1)
= 22 + 1 = 5
∴ \(\lim _{x \rightarrow 2}\) f(x) = f(2)
Therefore, f is continuous at x = 2.

Case III:
If c > 2, then f(c) = c2 + 1
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x2 + 1) = c2 + 1
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 2.
Thus, the given function f is continuous at every point on the real line.
Hence, f has no point of discontinuity.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 12.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 10
Solution.
The given function f is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 10
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < 1, then f(c) = c10 – 1 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x10 – 1) = c10 – 1
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 1.

Case II:
If c = 1, then the left hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{-}}\) (x) = \(\lim _{x \rightarrow 1^{-}}\) (x10 – 1)
= 110 – 1 = 1 – 1 = 0

The right hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{+}}\) (x) = \(\lim _{x \rightarrow 1^{+}}\) (x2)
= 12 = 1

It is observed that the left and right hand limit of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1.

Case III:
If c > 1, then f(c) = c2
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x2) = c2
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 1.
Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 13.
Is the function defined by
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 11
a continuous function?
Solution.
The given function f is PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 11
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c < 1, then f(c) = c + 5 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x + 5) = c + 5
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 1.

Case II:
If c = 1, then f(1) = 1 + 5 = 6
The left hand limit of f at x = 1 is \(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (x + 5) = 1 + 5 = 6
The right hand limit of f at x = 1 is \(\lim _{x \rightarrow 1^{+}}\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) (x – 5) = 1 – 5 = – 4
It is observed that the left and right hand limits of f at x = 1 do not coincide. Therefore, f is not continuous at x = 1.

Case III:
If c > 1, then f(c) = c – 5 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x – 5) = c – 5
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 1.
Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Direction (14 – 16) : Discuss the continuity of the function f, where f is defined by

Question 14.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 12
Solution.
The given function is PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 12
The given function is defined at all points of the interval [0, 10].
Let c be a point in the interval [0, 10].

Case I:
If 0 < c < 1, then f(c) = 3 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (3) = 3
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous in the interval (0, 1).

Case II:
If c = 1, then f(3) = 3
The left hand limit of f at x – 1 is
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (3) = 3

The right hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{+}}\) f(x) \(\lim _{x \rightarrow 1^{
+}}\) (4) = 4

It is observed that the left and right hand limits of f at x -1 do not coincide.
Therefore, f is not continuous at x = 1.

Case III:
If 1 < c < 3, then f(c) = 4 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) f(4) = 4
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points of the interval (1, 3).

Case IV:
If c = 3, then /(c) = 5
The left hand limit of / at x = 3 is
\(\lim _{x \rightarrow 3^{-}}\) f(x) = \(\lim _{x \rightarrow 3^{-}}\) (4) = 4

The right hand limit of / at x = 3 is
\(\lim _{x \rightarrow 3^{+}}\) f(x) = \(\lim _{x \rightarrow 3^{+}}\) (5) = 5

It is observed that the left and right hand limits of f at x = 3 do not coincide.
Therefore, f is not continuous at x = 3.

Case V:
If 3 < c ≤ 10, then f(c) = 5 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (5) = 5
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points of the interval (3, 10).
Hence, f is not continuous at x = 1 and x = 3.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 15.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 13
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 13
The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:
If c < 0, then f(c) = 2c
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (2x) = 2c
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)

Case II:
If c = 0, then f(c) = f(0) = 0
The left hand limit of f at x = 0 is
\(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) (2x)
= 2 × 0 = 0

The right hand limit of f at x = 0 is
\(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) f(0) = 0

∴ \(\lim _{x \rightarrow 0}\) f(x) = f(0)
Therefore, f is continuous at x = 0.

Case III:
If 0 < c < 1, then f(x) = 0 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (0) = 0
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points of the interval (0, 1).

Case IV:
If c = 1, then f(c) = f(1) = 0
The left hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (0) = 0

The right hand limit of f at x = 1 is
\(\lim _{x \rightarrow 1^{+}}\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) (4x) = 4 × 1 = 4

It is observed that the left and right hand limits of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1.

Case V:
If c < 1, then f(c) = 4c and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (4x) = 4c ∴ \(\lim _{x \rightarrow c}\) f(x) = f(c) Therefore, f is continuous at all points x, such that x > 1.
Hence, f is continuous only at x = 1.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 16.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 14
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 14
The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:
If c < – 1, then f(c) = – 2 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) f(- 2) = – 2
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < – 1.

Case II:
If c = – 1, then f(c) = f(- 1) = – 2
The left hand limit of f at x = – 1 is
\(\lim _{x \rightarrow-1^{-}}\) f(x) =\(\lim _{x \rightarrow-1^{-}}\) (- 2) = – 2

The right hand limit of f at x = – 1 is
\(\lim _{x \rightarrow-1^{+}}\) f(x) = \(\lim _{x \rightarrow-1^{+}}\) (2x)
= 2 × (- 1) = – 2

∴ \(\lim _{x \rightarrow-1}\) f(x) = f(- 1)
Therefore, f is continuous at x = – 1.

Case III:
If – 1 < c < 1, then f(c) = 2c \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (2x) = 2c ∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points of the interval (- 1, 1).

Case IV:
If c = 1, then f(c) = f(1) = 2 x 1 = 2.
The left hand limit of f at x = 1 is \(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (2x) = 2 x 1 = 2
The right hand limit of f at x = 1 is \(\) f(x) = \(\lim _{x \rightarrow 1^{+}}\) 2 = 2
⇒ \(\lim _{x \rightarrow 1}\) f(x) = f(c)
Therefore, f is continuous at x = 2.

Case V:
If c > 1, then f(c) = 2 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (2) = 2
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 1.
Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 17.
Find the relationship between a and b so that the function f defined by f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 15
is continuous at x = 3.
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 15
If f is continuous at x = 3, then
\(\lim _{x \rightarrow 3^{-}}\) f(x) = \(\lim _{x \rightarrow 3^{-}}\) f(x) = f(3) ……… (i)

\(\lim _{x \rightarrow 3^{-}}\) f(x) = \(\lim _{x \rightarrow 3^{-}}\) (ax + 1) = 3a + 1

\(\lim _{x \rightarrow 3^{+}}\) f(x) = \(\lim _{x \rightarrow 3^{+}}\) (bx + 3) = 3b + 3

Therefore, from Eq. (i), we get
3a + 1 = 3b + 3
⇒ 3a = 3b + 2
⇒ a = b + \(\frac{2}{3}\)
Therefore, the required relationship is given by, a = b + \(\frac{2}{3}\).

Question 18.
For what value of λ, is the function defined by
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 16
continuous at x = 0 ? What about continuity at x = 1 ?
Solution.
The given finction is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 16
If f is continuous at x = 0, then
\(\lim _{x \rightarrow 0^{-}}\) f{x) = \(\lim _{x \rightarrow 0^{+}}\) f(x) = f(0)

⇒ \(\lim _{x \rightarrow 0^{-}}\) (x2 – 2x) = \(\lim _{x \rightarrow 0^{+}}\) (4x + 1)
= λ (02 – 2 × 0)
⇒ λ (02 – 2 × 0) = 4 × 0 + 1 = 0
⇒ 0 = 1 = 0, which is not possible.
Therefore, there is no value of λ, for which f is continuous at x = 0.
At x = 1,
f(x) = 4x + 1 = 4 x 1 + 1 = 5
\(\lim _{x \rightarrow 1}\) (4x + 1) = 4 x 1 + 1 = 5
∴ \(\lim _{x \rightarrow 1}\) f(x) = f(1)
Therefore, for any values of λ, f is continuous at x = 1.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 19.
Show that the function defined by g(x) = x – [x] is discontinuous at all integral points. Here, [x] denotes the greatest integer less than or equal to x.
Solution.
The given function is g(x) = x – [x].
It is evident that g is defined at all integral points.
Let n be an integer.
Then, g(n) = n – [n] = n – n = 0
The left hand limit of f at x = n is
\(\lim _{x \rightarrow n^{-}}\) g(c) = \(\lim _{x \rightarrow n^{-}}\) (x – [x])
= \(\lim _{x \rightarrow n^{-}}\) (x) – \(\lim _{x \rightarrow n^{-}}\) [x] = n – (n – 1) = 1

The right hand limit of f at x = n is
\(\lim _{x \rightarrow n^{+}}\) g(x) = \(\lim _{x \rightarrow n^{+}}\) (x – [x])
= \(\lim _{x \rightarrow n^{+}}\) (x) – \(\lim _{x \rightarrow n^{+}}\) [x] = n – n = 0
It is observed that the left and right hand limits of f at x = n do not coincide.
Therefore, f is not continuous at x = n.
Hence, g is discontinuous at all integral points.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 20.
Is the function defined by f(x) = x2 – sin x + 5 continuous at x = π?
Solution.
The given function is f(x)= x2 – sin x + 5.
It is evident that f is defined at x = π.
At x = π, f(x) = f(π) = π2 – sin π + 5
= π2 – 0 + 5
= π2 + 5

Consider \(\lim _{x \rightarrow \pi}\) f(x) = \(\lim _{x \rightarrow \pi}\) (x2 – sin x + 5)
Put x = π + h
If x → π, then it is evident that h → 0
∴ \(\lim _{x \rightarrow \pi}\) f(x) = \(\lim _{x \rightarrow \pi}\) (x2 – sin x + 5)
= \(\lim _{h \rightarrow 0}\) [(π + h)2 – sin (π + h) + 5]

= \(\lim _{h \rightarrow 0}\) (π+ h)2 – \(\lim _{h \rightarrow 0}\) sin (π + h) + \(\lim _{h \rightarrow 0}\) 5

= (π + 0)2 – \(\lim _{h \rightarrow 0}\) [sin π cos h + cos π sin h] + 5

= π2 – \(\lim _{h \rightarrow 0}\) sin π cos h – \(\lim _{h \rightarrow 0}\) cos π sin h + 5
= π2 – sin π cos 0 – cos π sin 0 + 5
= π2 – 0 × 1 – (- 1) × 0 + 5
= π2 + 5
= \(\lim _{x \rightarrow \pi}\) f(x) = f(π)
Therefore, the given function f is continuous at x = π.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 21.
Discuss the continuity of the following functions.
(a) f(x) = sin x + cos x
(b) f(x) = sin x – cos x
(c) f(x) = sin x . cos x
Solution.
We know that if g and h are two continuous functions, then g + h, g-h, and g . h are also continuous.
It has to proved first that g(x) = sin x and h(x) = cos x are continuous functions.
Let g(x) = sin x
It is evident that g(x) = sin x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
g(c) = sin c
⇒ \(\lim _{x \rightarrow c}\) g(x) = \(\lim _{x \rightarrow c}\) sinx
= \(\lim _{h \rightarrow 0}\) sin(c + h)

= \(\lim _{h \rightarrow 0}\) [sin c cos h + cos c sin h]

= \(\lim _{h \rightarrow 0}\) (sin c cos h) + \(\lim _{h \rightarrow 0}\) (cos c sin h)

= sin c cos 0 + cos c sin 0
= sin c + 0
= sin c
∴ \(\lim _{x \rightarrow c}\) g(x) = g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
h (c) = cos c
\(\lim _{x \rightarrow c}\) h(x) = \(\lim _{x \rightarrow c}\) cos x
= \(\lim _{h \rightarrow 0}\) cos (c + h) – \(\lim _{h \rightarrow 0}\) [cos c cos h – sin c sin h]

= \(\lim _{h \rightarrow 0}\) cos c cos h – \(\lim _{h \rightarrow 0}\) sin c sin h
= cos c cos 0 – sin c sin 0
= cos c × 1 – sin c × 0 = cos c
∴ = \(\lim _{x \rightarrow c}\) h(x) = h(c)
Therefore, h is a continuous function.
Therefore, it can be concluded that
(a) f(x) = g(x) + h(x) = sin x + cos x is a continuous function.
(b) f(x) = g(x) – h(x) = sin x – cos x is a continuous function.
(c) f(x) = g(x) x h(x) = sin x × cos x is a continuous function.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 22.
Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Solution.
It is known that if g and h are two continuous functions, then
(i) \(\frac{h(x)}{g(x)}\), g(x) ≠ 0 is continuous.

(ii) \(\frac{1}{g(x)}\), g(x) ≠ 0 is continuous.

(iii) \(\frac{1}{h(x)}\), h(x) ≠ 0 is continuous.
It has to be proved first that g(x) = sin x and h(x) = cos x are continuous functions.
Let g(x) = sin x
It is evident that g(x) = sin x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
g(c) = sin c
\(\lim _{x \rightarrow c}\) g(x) = \(\lim _{x \rightarrow c}\) sin x

= \(\lim _{h \rightarrow 0}\) sin (c + h)

= \(\lim _{h \rightarrow 0}\) [sin c cos h + cos c sin h]

= \(\lim _{h \rightarrow 0}\) (sin c cos h) + \(\lim _{h \rightarrow 0}\) (cos c sin h)

= sin c cos 0 + cos c sin 0
= sin c + 0 = sin c
= \(\lim _{x \rightarrow c}\) g(x) = g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
h (c) = cos c
\(\lim _{x \rightarrow c}\) h(x) = \(\lim _{x \rightarrow c}\) cos x

= \(\lim _{h \rightarrow 0}\) cos(c + h)

= \(\lim _{h \rightarrow 0}\) [cos c cosh – sin c sin h]

= \(\lim _{h \rightarrow 0}\) cos c cos h – \(\lim _{h \rightarrow 0}\) sin c sin h

= cos c cos 0 – sin c sin 0
= cos c × 1 – sin c × 0 = cos c
∴ \(\lim _{x \rightarrow c}\) h(x) = h(c)
Therefore, h (x) = cos x is a continuous function.
It can be concluded that,
cosec x = \(\frac{1}{\sin x}\), sin x ≠ 0 is continuous.
⇒ cosec x, x ≠ nπ (n ∈ Z) is continuous.
Therefore, cosecant is continuous except at x = nπ, n ∈ Z
sec x = \(\frac{1}{\cos x}\), cos x ≠ 0 is continuous.
⇒ sec x, x ≠ (2n + 1) \(\frac{\pi}{2}\) (n ∈ Z) is continuous.
Therefore, secant is continuous except at x = (2n + 1) \(\frac{\pi}{2}\) (n ∈ Z)
cot x = \(\frac{\cos x}{\sin x}\), sin x ≠ 0 is continuous.
⇒ cot x, x ⇒ nπ (n ∈ Z) is continuous.
Therefore, cotangent is continuous except at x = nπ, n ∈ Z.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 23.
Find the points of discontinuity of f, where
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 17
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 17
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
If c < 0, then f(c) = \(\frac{\sin c}{c}\) and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\left(\frac{\sin x}{x}\right)=\frac{\sin c}{c}\)
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x < 0. Case II: If c > 0, then /(c) = c + 1 and \(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (x + 1) = c + 1.
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 0.

Case III:
If c = 0, then f(c) = f(0) = 0 + 1 = 1
The left hand limit of f at x = 0 is
\(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) = 1

The right hand limit of f at x = 0 is ,
\(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) (x + 1) = 1

∴ \(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) f(x) = f(0)
Therefore, f is continuous at x = 0.
From the above observations, it can be concluded that f is continuous at all points of the real line.
Thus, f has no point of discontinuity.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 24.
Determine if f defined by f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 18
is a continuous function?
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 18
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
If c ≠ 0, then f(c) = c2 sin \(\frac{1}{c}\)

\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\left(x^{2} \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow c} x^{2}\right)\left(\lim _{x \rightarrow c} \sin \frac{1}{x}\right)=c^{2} \sin \frac{1}{c}\)

∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)

Therefore, f is continuous at all points x ≠ 0.

Case II:
If c = 0, then f(0) = 0

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 19

Therefore, f is continuous at x = 0.
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 25.
Examine the continuity of f, where f is defined by f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 20
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 20
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
If c ≠ 0, then f(c) = sin c – cos c
\(\lim _{x \rightarrow c}\) f(x) = \(\lim _{x \rightarrow c}\) (sin x – cos x) = sin c – cos c
∴ \(\lim _{x \rightarrow c}\) f(x) = f(c)
Therefore, f is continuous at all points x, such that x ≠ 0.

Case II:
If c = 0, then f(0) = – 1
\(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0}\)] (sin x -cosx)
= sin 0 – cos 0 = 0 – 1 = – 1

\(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0}\) (sin x – cos x)
= sin 0 – cos 0 = 0 – 1 = – 1

∴ \(\lim _{x \rightarrow 0^{-}}\) f(x) = \(\lim _{x \rightarrow 0^{-}}\) f(x) = f(0)

Therefore, f is continuous at x = 0.
From the above observations it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Direction (26 – 29):
Find the values of k so that the function f is continuous at the indicated point.

Question 26.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 21 at x = \(\frac{\pi}{2}\).
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 21
The given function f is continuous at x = \(\frac{\pi}{2}\) if f is defined at x = \(\frac{\pi}{2}\) and if the value of the f at x = \(\frac{\pi}{2}\) equals the limit of f at x = \(\frac{\pi}{2}\)
It is evident that f is defined at x = \(\frac{\pi}{2}\) and f(\(\frac{\pi}{2}\)) = 3.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 22

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 27.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 23
Solution.
The given function f is continuous at x = 2, if f is defined at x = 2 and if the value o f f at x = 2 equals the limit of f at x = 2.
It is evident that f is defined at x = 2 and f(2) = k(2)2 = 4k
∴ \(\lim _{x \rightarrow 2^{-}}\) f(x) = \(\lim _{x \rightarrow 2^{+}}\) f(x) = f(2)
⇒ \(\lim _{x \rightarrow 2^{-}}\) (kx2) = \(\lim _{x \rightarrow 2^{+}}\) (3) = 4k
⇒ k × 22 = 3 = 4k
⇒ 4k = 3 = 4k
⇒ 4k = 3
⇒ k = \(\frac{3}{4}\)
Therefore, the required value of k is \(\frac{3}{4}\).

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 28.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 24 at x = π.
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 24
The given function f is continuous at x = π, if f is defined at x = n and if the value of π at x = π equals the limit of f at x = π.
It is evident that f is defined at x = π and f(π) = kπ + 1.
∴ \(\lim _{x \rightarrow \pi^{-}}\) f(x) = \(\lim _{x \rightarrow \pi^{+}}\) f(x) = f(π)
⇒ \(\lim _{x \rightarrow \pi^{-}}\) (kx + 1) = \(\lim _{x \rightarrow \pi^{+}}\) cos x = kπ + 1
⇒ kπ + 1 = cos π = kπ + 1
⇒ kπ + 1 = – 1 = kπ + 1
⇒ k = – \(\frac{2}{\pi}\)
Therefore, the required value of k is \(\frac{2}{\pi}\).

Question 29.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 25 at x = 5
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 25
The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f at x = 5 equals the limit of f at x = 5.
It is evident that f is defined at x = 5 and f(5) = kx + 1 = 5k + 1.
∴ \(\lim _{x \rightarrow 5^{-}}\) f(x) = \(\lim _{x \rightarrow 5^{+}}\) f(5) = f(5)
⇒ \(\lim _{x \rightarrow 5^{-}}\) (kx + 1) = \(\lim _{x \rightarrow 5^{+}}\) (3x – 1) = 5k + 1
⇒ 5k + 1 = 15 – 5 = 5k + 1
⇒ 5k + 1 = 10
⇒ 5k = 9
⇒ k = \(\frac{9}{5}\)
Therefore, the required value of k is \(\frac{9}{5}\).

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 30.
f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 26
is a continuous function.
Solution.
The given function is f(x) = PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 26
It is evident that the given function f is defined at all points of the real line.
If f is a continuous function, then f is continuous at all real numbers.
In particular, f is continuous at x = 2 and x = 10.
Since, f is continuous at x = 2, then we get
\(\lim _{x \rightarrow 2^{-}}\) f(x) = \(\lim _{x \rightarrow 2^{+}}\) f(x) = f(2)

⇒ \(\lim _{x \rightarrow 2^{-}}\) (5) = \(\lim _{x \rightarrow 2^{+}}\) (ax + b)= 5

⇒ 5 – 2a + b = 5
⇒ 2a + b = 5 ………….(i)
Since, f is continuous at x = 10, then we get
\(\lim _{x \rightarrow 10^{-}}\) f(x) = \(\lim _{x \rightarrow 10^{+}}\) f(x) = f(10)

⇒ \(\lim _{x \rightarrow 10^{-}}\) (ax + b) = \(\lim _{x \rightarrow 10^{+}}\)(21) = 21

⇒ 10a + b = 21 = 21
⇒ 10a + b = 21 …………(ii)
On subtracting Eq. (i) from Eq. (ii),
we get 8a = 16
⇒ a = 2
Putting a = 2 in Eq. (i), we get
2 × 2 + b = 5
⇒ 4 + b = 5
⇒ 6 = 1
Therefore, the values of a and b for which f is a continuous function, are 2 and 1, respectively.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 31.
Show that the function defined by f(x) = cos(x2) is a continuous function.
Solution.
Now f(x) = cos x2, let g(x) = cos x and h(x) = x2
∴ (goh) (x) = g(h(x)) = cos x2
Now g and h both are continuous for all x ∈ R
f(x) = (goh) (x) = cos x2 is also continuous at all x ∈ R.

Question 32.
Show that the function defined by f(x) = |cos x| is a continuous function.
Solution.
Let g(x) = |x| and h(x) = cos x
f(x) = (goh) (x) = g(h(x)) = g(cos x) = |cos x|
Now g(x) = |x| and h(x) = cos x both are continuous for all values of x ∈ R
∴ (goh) (x) is also continuous.
Hence f(x) = (goh) (x)
= |cos x| is continuous for all values of x ∈ R.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

Question 33.
Examine that sin |x| is a continuous function.
Solution.
Let g(x) = sinx, h(x) = |x|
(goh) (x) = g(h(x)) = g(|x|) = sin |x| = f(x)
Now g(x) = sin x and h(x) = |x| both are continuous for all x ∈ R.
∴ f(x) = (goh)(x) = sin |x| is continuous at all x ∈ R.

Question 34.
Find all the points of discontinuity of f defined by f(x) =|x| – |x + 1|
Solution.
f(x) = |x| – |x + 1|

when x < – 1
f(x) = – x – [- (x + 1)]
= – x + x + 1 = 1

when – 1 ≤ x < 0
f(x) = – x – (x + 1) = – 2x – 1

when x ≥ 0
f(x) = x – (x + 1) = – 1

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1 27

At x = – 1,
LHL = \(\lim _{x \rightarrow 1^{-}}\) f(x) = \(\lim _{x \rightarrow 1^{-}}\) (1) = 1

RHL = \(\lim _{x \rightarrow 1^{+}}\) f (x) = \(\lim _{x \rightarrow 1^{+}}\) (- 2x – 1) = 1

f(- 1) = – 2 (- 1) – 1 = 2 – 1 = 1
∴ LHL = RHL = f(- 1)
⇒ f is continuous at x = – 1.

PSEB 12th Class Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.1

At x = 0,
LHL = \(\lim _{x \rightarrow 0^{-}}\) (- 2x – 1) = – 1
f(0) = – 1 [Given]
RHL = \(\lim _{x \rightarrow 0^{+}}\) f(x) = \(\lim _{x \rightarrow 0^{+}}\) (- 1) = – 1
LHL = RHL = f(0)
f is continuous at x = 0
⇒ There is no point of discountinuous.
Hence, f is continuous for all x ∈ R.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics Important Questions and Answers.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Very Short Answer Type Questions

Question 1.
For which type of reactions, order and molecularity have the same value?
Answer:
If the reaction is an elementary reaction, order is same as molecularity.

Question 2.
Why is the probability of reaction with molecularity higher than three very rare?
Answer:
The probability of more than three molecules colliding simultaneously is very small. Hence, possibility of molecularity being three is very low.

Question 3.
State a condition under which a bimolecular reaction is kinetically first order.
Answer:
A bimolecular reaction may become kinetically of first order if one of the reactants is in excess.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 4.
Thermodynamic feasibility of the reaction alone cannot decide the rate of the reaction. Explain with the help of one example.
Answer:
Thermodynamically the conversion of diamond to graphite is highly feasible but this reaction is very slow because its activation energy is high.

Question 5.
Why is it that instantaneous rate of reaction does not change when a part of the reacting solution is taken out?
Answer:
Instantaneous rate is measured over a very small interval of time, hence, it does not change when a part of solution is taken out.

Question 6.
A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is the order of the reaction?
Solution:
As t75% = 2t50%
Therefore, it is a first order reaction.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 7.
Define threshold energy of a reaction.
Answer:
Threshold energy is the minimum energy which must be possessed by reacting molecules in order to undergo effective collision which leads to formation of product molecules.

Question 8.
Why does the rate of a reaction increase with rise in temperature?
Answer:
At higher temperatures, larger fraction of colliding particles can cross the energy barrier (i.e., the activation energy), which leads to faster rate.

Question 9.
What is the difference between rate law and law of mass action?
Answer:
Rate law is an experimental law. On the other hand, law of mass action is a theoretical law based on the balanced chemical reaction.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 10.
What do you understand by ‘Rate of reaction’?
Answer:
The change in the concentration of any one of the reactants or products per unit time is termed as the rate of reaction.

Question 11.
In the Arrhenius equation, what does the factor e a corresponds to?
Answer:
e-Ea/RT corresponds to the fraction of molecules that have kinetic energy greater than Ea,

Short Answer Type Questions

Question 1
What do you understand by the ‘order of a reaction’? Identify the reaction order from each of the following units of reaction rate constant:
(i) L-1mols-1
(ii) Lmol-1s-1.
Solution:
The sum of powers of the concentration of the reactants in the rate law expression is called order of reaction.
For a general reaction: aA + bB → Products
If rate = k[A]m [B]n; order of reaction = m + n

(i) General unit of rate constant, k = (mol L-1 )1-ns-1
L-1mol s-1 = (mol L-1 )1-ns-1
-1 = -1 + n ⇒ n = 0 ∴ Reaction order = 0

(ii) L mol-1 s-1 = (mol L-1)1-n s-1
1 = -1 + n ⇒ n = 2 ∴ Reaction order = 2

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 2.
The rate constant for the first order decomposition of H2O2 is given by the following equation :
log k = 14.2 – \(\frac{1.0 \times 10^{4}}{T}\)K
Calculate Ea for this reaction and rate constant k if its half-life period be 200 minutes.
(Given: R = 8.314 JK-1 mol-1)
Solution:
Comparing the equation, log k = 14.2 – \(\frac{1.0 \times 10^{4}}{T}\) K with the equation,
log k = log A = \(\frac{E_{a}}{2.303 R T}\), we get
\(\frac{E_{a}}{2.303 R}\) = 1.0 × 104 K or Ea = 1.0 × 104 K × 2.303 × R
Ea = 1.0 × 104 K × 2.303 × 8.314 JK-1
= 19.1471 × 104 Jmol-1
= 191.47 kJ mol-1
For a first order reaction, tt/2 = \(\frac{0.693}{k}\) or k = \(\frac{0.693}{t_{1 / 2}}\)
k = \(\frac{0.693}{200 \mathrm{~min}}\) = 3.465 × 10 -3min-1

Question 3.
The reaction, N2(g) + O2(g) ⇌ 2NO(g) contributes to air pollution whenever a fuel is burnt in air at a high temperature. At 1500 K, equilibrium constant K for it is 1.0 × 10-5. Suppose in a case [N2] = 0.80 mol L-1 and [O2] = 0.20 mol L-1 before any reaction occurs. Calculate the equilibrium concentrations of the reactants and the product after the mixture has been heated to 1500 K.
Solution:
PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics 1
[N2] = 0.8 – 6.324 × 104 mol L-1
= 0.799 molL-1
[O2] = 0.2 – 6.324 × 10-4 mol L-1
= 0.199 mol L-1

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 4.
For a general reaction, A → B, plot of concentration of A vs time is given in figure. Answer the following questions on the basis of this graph.
PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics 2
(i) What is the order of the reaction?
(ii) What is the slope of the curve?
(iii) What are the units of rate constant?
Answer:
(i) Zero order
(ii) Slope = – k
(iii) Units of rate constant = mol L-1 s-1

Question 5.
For a reaction, A + B → products, the rate law is rate = k [A][B]a3/2. Can the reaction be an elementary reaction? Explain.
Answer:
During an elementary reaction, the number of atoms or ions colliding to react is referred to as molecularity. Had this been an elementary reaction the order of reaction with respect to B would have been 1, but in the given rate law it is \(\frac{3}{2}\). This indicated that the reaction is not an elementary reaction.

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 6.
The rate constant for a first order reaction is 60 s-1. How much time will it take to reduce 1 g of the reactant to 0.0625 g?
Answer:
We know that, t = \(\frac{2.303}{k}\) log \(\frac{[R]_{0}}{[R]}\)
t = \(\frac{2.303}{60}\) log \(\frac{1}{0.0625}\)
t = 0.0462 s

Long Answer Type Questions

Question 1.
For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s 0 30 60
[CH3COOCH3]/mol L-1 0.60 0.30 0.15

(i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
(ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
(Given log 2 = 0.3010, log 4 = 0.6021)
Solution:
PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics 3
As the value of k is same in both the cases, therefore, hydrolysis of methylacetate in aqueous solution follows pseudo first order reaction.

(ii) Average rate = \(-\frac{\Delta\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]}{\Delta t}\)
= \(\frac{-[0.15-0.30]}{60-30}\) = \(\frac{0.15}{30}\)
Average rate = 0.005 mol L-1s-1

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 2.
Describe how does the enthalpy of reaction remain unchanged when a catalyst is used in the reaction?
Answer:
A catalyst is a substance which increases the speed of a reaction without itself undergoing any chemical change.
According to “intermediate complex formation theory” reactants first combine with the catalyst to form an intermediate complex which is short-lived and decomposes to form the products and regenerating the catalyst.

The intermediate formed has much lower potential energy than the intermediate complex formed between the reactants in the absence of the catalyst.

Thus, the presence of catalyst lowers the potential energy barrier and the reaction follows a new alternate pathway which require less activation energy.

We know that, lower the activation energy, faster is the reaction because more reactant molecules can cross the energy barrier and change into products.

Enthalpy, △H is a ‘state function. Enthalpy of reaction, i.e., difference in energy between reactants and product is constant, which is clear from potential energy diagram.
Potential energy diagram of catalysed reaction is given as:
PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics 4

PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics

Question 3.
All energetically effective collisions do not result in a chemical change. Explain with the help of an example.
Answer:
Only effective collision lead to the formation of products. It means that collisions in which molecules collide with sufficient kinetic energy (called threshold energy = activation energy + energy possessed by reacting species).

And proper orientation lead to a chemical change because it facilitates the breaking of old bonds between (reactant) molecules and formation of the new ones i.e., in products.
e.g., formation of methanol from bromomethane depends upon the orientation of the reactant molecules.
PSEB 12th Class Chemistry Important Questions Chapter 4 Chemical Kinetics 5
The proper orientation of reactant molecules leads to bond formation whereas improper orientation makes them simply back and no products are formed.

To account for effective collisions, another factor P (probability of steric factor) is introduced K = PZABe-Ea/RT.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 7 Alternating Current Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 7 Alternating Current

PSEB 12th Class Physics Guide Alternating Current Textbook Questions and Answers

Question 1.
A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?
Answer:
The given voltage of 220 V is the rms or effective voltage.
Given Vrms = 220 V, v = 50 Hz, R = 100 Ω
(a) RMS value of current,
Irms = \(\frac{V_{r m s}}{R}\) = \(\frac{220}{100}\) = 2.2 A
Net power consumed, P = I2rmsR
= (2.20)2 × 100 = 484 W

Question 2.
(a) The peak voltage of an ac supply is 300 V. What is the rms voltage?
(b) The rms value of current in an ac circuit is 10 A. What is the peak current?
Answer:
(a) Given, V0 = 300 V
Vrms = \(\frac{V_{0}}{\sqrt{2}}=\frac{300}{\sqrt{2}}\) = 150√2 ≈ 212 V

(b) Given, Irms = 10 A
I0 = Irms √2 = 10 × 1.41 = 14.1 A

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 3.
A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.
Answer:
Inductance of inductor, L = 44 mH = 44 × 10-3 H
Supply voltage, V = 220 V
Frequency, v = 50 Hz
Angular frequency, ω = 2 πv
Inductive reactance, XL = ωL = 2πvL × 2π × 50 × 44 × 10-3Ω
rms value of current is given as
I = \(\frac{V}{X_{L}}\) = \(\frac{220}{2 \pi \times 50 \times 44 \times 10^{-3}}\) = 15.92 A
Hence, the rms value of current in the circuit is 15.92 A.

Question 4.
A 60 μF capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit.
Answer:
Capacitance of capacitor, C = 60μF = 60 × 10-6F
Supply voltage, V = 110 V
Frequency, v = 60 Hz
Angular frequency, ω = 2 πv
Capacitive reactance,
XC = \(\frac{1}{\omega C}\) = \(\frac{1}{2 \pi v C}\) = \(\frac{1}{2 \pi \times 60 \times 60 \times 10^{-6}}\)Ω
rms value of current is given as
I = \(\frac{V}{X_{C}}\) = \(\frac{110}{\frac{1}{2 \pi \times 60 \times 60 \times 10^{-6}}}\)
= 110 × 2 × 3.14 × 3600 × 10-6
= 2.49 A
Hence, the rms value of current in the circuit is 2.49 A.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 5.
In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer.
Answer:
In the inductive circuit,
rms value of current, I = 15.92 A
rms value of voltage, V = 220 V
Hence, the net power absorbed by the circuit, can be obtained by the relation,
P = VIcosΦ
where,
Φ = Phase difference between V and I.
For a pure inductive circuit, the phase difference between alternating voltage and current is 90°i. e., Φ = 90°
Hence, P = 0 i. e., the net power is zero.

In the capacitive circuit,
rms value of current, I = 2.49 A
rms value of voltage, V = 110 V
Hence, the net power absorbed by the circuit, can be obtained as
P = VIcosΦ
For a pure capacitive circuit, the phase difference between alternating voltage and current is 90°i. e., Φ = 90 °
Hence, P = 0 i. e., the net power is zero.

Question 6.
Obtain the resonant frequency ωr of a series LCR circuit with L = 2.0 H, C = 32 μF and R = 10 Ω. What is the Q-value of this circuit?
Answer:
Resonant frequency,
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{2.0 \times 32 \times 10^{-6}}}\)
= \(\frac{1}{8}\) × 103 = 125 rads-1
Q = \(\frac{\omega_{r} L}{R}\) = \(\frac{125 \times 2.0}{10}\) = 25

Question 7.
A charged 30 μF capacitor is connected to a 27 mH inductor.
What is the angular frequency of free oscillations of the circuit?
Answer:
Capacitance of the capacitor, C = 30 μF = 30 × 10-6 F,
Inductance of the inductor, L = 27 mH = 27 × 10-3H
Angular frequency is given as
ωr = \(\frac{1}{\sqrt{L C}}\)
= \(\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}\)
= \(\frac{1}{9 \times 10^{-4}}=\frac{10^{4}}{9}\)
= 1.11 × 103 rad/s
Hence, the angular frequency of free oscillations of the circuit is 1.11 × 103 rad/s.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 8.
Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?
Answer:
Capacitance of the capacitor, C = 30 μF = 30 × 10-6F
Inductance of the inductor, L = 27 mH = 27 × 10-3 H
Charge on the capacitor, Q = 6 mC = 6 × 10-3 C
Total energy stored in the capacitor can be calculated as
E = \(\frac{1}{2} \frac{Q^{2}}{C}\) = \(\frac{1}{2} \frac{\left(6 \times 10^{-3}\right)^{2}}{\left(30 \times 10^{-6}\right)}\)
= \(\frac{36 \times 10^{-6}}{2\left(30 \times 10^{-6}\right)}\)
= \(\frac{6}{10}\) = 0.6 J
Total energy at a later time will remain the same because energy is shared between the capacitor and the inductor.

Question 9.
A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 μF is connected to a variable frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
Answer:
When frequency of supply is equal to natural frequency of circuit, then resonance is obtained. At resonance XC = XL
⇒ Impedance, Z = \(\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}\)
= R = 20Ω
Current in circuit,
Irms = \(\frac{V_{r m s}}{R}\) = \(\frac{200}{20}\) = 10A
Power factor
cosΦ = \(\frac{R}{Z}=\frac{R}{R}\) = 1
∴ Average power pav = Vrms Irms cosΦ = Vrms Irms
= 20 × 10 = 2000 W = 2 kW

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 10.
A radio can tune over the frequency range of a portion of MW broadcast band : (800 kHz to 1200 kHz). If its LC circuit has an effective inductance of 200 μH, what must be the range of its variable capacitor?
[Hint: For timing, the natural frequency i. e., the frequency of free oscillations of the LC circuit should be equal to the frequency of the radiowave.]
Answer:
The range of frequency (v) of the radio is 800 kHz to 1200 kHz
Lower tuning frequency, v1 = 800 kHz = 800 × 103 Hz
Upper tuning frequency, v2 = 1200 kHz = 1200 × 106 Hz
Effective inductance of circuit, L = 200 μH = 200 × 10-6 H
Capacitance of variable capacitor for v1 is given as
C1 = \(\frac{1}{\omega_{1}^{2} L}\)
where, ω1 = Angular frequency for capacitor C1
= 2 πv1
= 2 π × 800 × 103 rad/s
∴ C1 = \(\frac{1}{\left(2 \pi \times 800 \times 10^{3}\right)^{2} \times 200 \times 10^{-6}}\)
= 197.8 × 10-12F
= 197.8 pF
Capacitance of variable capacitor for v2 is given as
C2 = \(\frac{1}{\omega_{2}^{2} L}\)
where,
ω2 = Angular frequency for capacitor C2
= 2πv2
= 2 π × 1200 × 103 rad/s
∴ C 2 = \(\frac{1}{\left(2 \pi \times 1200 \times 10^{3}\right)^{2} \times 200 \times 10^{-6}}\)
= 87.95 × 10-12 F = 87.95 pF
Hence, the range of the variable capacitor is from 87.95 pF to 197.8 pF.

Question 11.
Figure 7.21 shows a series LCR circuit connected to a variable frequency 230 V source. Z, = 5.0H, C = 80 μF, R = 40Ω.
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 1
(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.
Answer:
Given, the rms value of voltage Vrms = 230 V
Inductance L = 5H
Capacitance C = 80 μF = 80 × 10-6 F
Resistance R = 40 Ω

(a) For resonance frequency of circuit
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{5 \times 80 \times 10^{-6}}}\) = 50 rad/s
Source frequency at resonance, then
v0 = \(\frac{\omega_{0}}{2 \pi}\) = \(\frac{50}{2 \times 3.14}\) = 7.76 Hz

(b) At the resonant frequency, XL = XC
So, impedance of the circuit Z = R
∴ Impedance Z = 40 Ω
The rms value of current in the circuit
Irms = \(\frac{V_{r m s}}{Z}\) = \(\frac{230}{40}\) = 5.75 A
Amplitude of current, I0 = Irms √2
= 5.75 × √2 = 8.13 A

(c) The rms potential drop across I,
VL = Irms × XL = Irms × ωrL
= 5.75 × 50 × 5 = 1437.5V
The rms potential drop across R
VR = Irms R = 5.75 × 40 = 230 V
The rms potential drop across C,
VC = Irms × XC = Irms × \(\frac{1}{\omega_{r} C}\)
= 5.75 × \(\frac{1}{50 \times 80 \times 10^{-6}}\)
= 1437.5V
Potential drop across LC combinations
= Irms(XL – XC)
= Irms (XL – XL) = 0
(∵ XL = XC in resonance)

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 12.
An LC circuit contains a 20 mH inductor and a 50 μF capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0.
(a) What is the total energy stored initially? Is it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored (i) completely electrical (Lestored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?
Answer:
Inductance of the inductor, L = 20 mH = 20 × 10-3H
Capacitance of the capacitor, C = 50 μF = 50 × 10-6 F
Initial charge on the capacitor, Q = 10 mC = 10 × 10-3C

(a) Total energy stored initially in the circuit is given as
E = \(\frac{1}{2} \frac{Q^{2}}{C}\)
= \(\frac{\left(10 \times 10^{-3}\right)^{2}}{2 \times 50 \times 10^{-6}}=\frac{10^{-4}}{10^{-4}}\) = 1J
Hence, the total energy stored in the LC circuit will be conserved because there is no resistor connected in the circuit.

(b) Natural frequency of the circuit is given by the relation,
v = \(\frac{1}{2 \pi \sqrt{L C}}\)
= \(\frac{1}{2 \pi \sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}\)
= \(\frac{10^{3}}{2 \pi}\) = 159.24 Hz
Natural angular frequency,
ωc = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}\)
= \(\frac{1}{\sqrt{10^{-6}}}\) = 103 rad/s
Hence, the natural frequency of the circuit is 10 rad/s.

(c) (i) For time period (T = \(\frac{1}{v}\) = \(\frac{1}{159.24}\) = 6.28 ms), total charge on the
capacitor at time t,
Q’ = Q cos\(\frac{2 \pi}{T}\)t
For energy stored is electrical, we can write Q’ = Q
Hence, it can be inferred that the energy stored in the capacitor is completely electrical at time, t = 0, \(\frac{T}{2}\), T, \(\frac{3 T}{2}\),…

(ii) Magnetic energy is the maximum when electrical energy, Q’ is equal to 0.
Hence, it can be inferred that the energy stored in the capacitor is
completely magnetic at time, t = \(\frac{T}{4}\), \(\frac{3 T}{4}\), \(\frac{5 T}{4}\),….

(d) Q’ = Charge on the capacitor when total energy is equally shared between the capacitor and the inductor at time t.
When total energy is equally shared between the inductor and capacitor,
the energy stored in the capacitor = \(\frac{1}{2}\) (maximum energy)
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 2
Hence, total energy is equally shared between the inductor and the capacitor at time,
t = \(\frac{T}{8}\), \(\frac{3 T}{8}\),\(\frac{5 T}{8}\)

(e) If a resistor is inserted in the circuit, then total initial energy is dissipated as heat energy in the circuit. The resistance damps out the LC oscillation.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 13.
A coil of inductance 0.50 H and resistance 100 Ω is connected to a 240 V, 50 Hz ac supply.
(a) What is the maximum current in the coil?
(b) What is the time lag between the voltage maximum and the current maximum?
Answer:
Given, L = 0.50 H ,R = 100 Ω, V = 240 V, v = 50 Hz
(a) Maximum (or peak) voltage V0 = V – √2
Maximum current, I0 = \(\frac{V_{0}}{Z}\)
Inductive reactance, XL = ωL = 2πvL
= 2 × 3.14 × 50 × 0.50
= 157 Ω.
Z = \(\sqrt{R^{2}+X_{L}^{2}}\)
= \(\sqrt{(100)^{2}+(157)^{2}}\) = 186 Ω
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 3

Question 14.
Obtain the answers (a) to (b) in Exercise 7.13 if the circuit is connected to a high frequency supply (240 V, 10 kHz). Hence, explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a dc circuit after the steady state?
Answer:
Inductance of the inductor, L = 0.5 Hz
Resistance of the resistor, R = 100 Ω
Potential of the supply voltage, V = 240 V
Frequency of the supply, v = 10 kHz = 104 Hz
Angular frequency, ω = 2πv = 2 π × 104 rad/s

(a) Peak voltage, V0 = √2 × V = 240√2 V
Maximum current, I0 = \(\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}}\)
= \(\frac{240 \sqrt{2}}{\sqrt{(100)^{2}+\left(2 \pi \times 10^{4}\right)^{2} \times(0.50)^{2}}}\)
= 1.1 × 10-2 A

(b) For phase difference, Φ, we have the relation
tanΦ = \(\frac{\omega L}{R}\) = \(\frac{2 \pi \times 10^{4} \times 0.5}{100}\) = 100π
Φ = 89.82° = \(\frac{89.82 \pi}{180}\) rad
ωt = \(\frac{89.82 \pi}{180}\)
t = \(\frac{89.82 \pi}{180 \times 2 \pi \times 10^{4}}\) = 25 μs

It can be observed that I0 is very small in this case. Hence, at high frequencies, the inductor amounts to an open circuit.
In a dc circuit, after a steady state is achieved, ω = 0. Hence, inductor L behaves like a pure conducting object.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 15.
A 100 μF capacitor in series with a 40 Ω resistance is connected to a 110 V, 60 Hz supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between the current maximum and the voltage maximum?
Answer:
Capacitance of the capacitor, C = 100 μF = 100 × 10-6 F = 10-4 F
Resistance of the resistor, R = 40 Ω
Supply voltage, V = 110 V
Frequency of oscillations, v = 60 Hz
Angular frequency, co = 2πv = 2π × 60 rad/s = 120 π rad/s
For a RC circuit, we have the relation for impedance as
Z = \(\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}\)
peak voltage V0 = V√2 = 110√2
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 4

(b) In an RC circuit, the voltage lags behind the current by a phase angle of Φ. This angle is given by the relation
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 5
= 1.55 × 10-3 s
= 1.55 ms
Hence, the time lag between maximum current and maximum voltage is 1.55 ms.

Question 16.
Obtain the answers to (a) and (b) in Exercise 7.15 if the circuit is connected to a 110 V, 12 kHz supply? Hence, explain the statement that a capacitor is a conductor at very high frequencies. Compare this behaviour with that of a capacitor in a dc circuit after the steady state.
Answer:
Capacitance of the capacitor, C = 100 μF = 100 × 10-6 F
Resistance of the resistor, R = 40 Ω
Supply voltage, V = 110 V
Frequency of the supply, v = 12 kHz = 12 × 103 Hz
Angular frequency, ω = 2πv = 2 × π × 12 × 103
= 24 π × 103 rad/s
Peak voltage, V0 = V√2 = 110 √2V
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 6
= 0.04 μs
Hence, Φ tends to become zero at high frequencies. At a high frequency, capacitor C acts as a conductor.
In a dc circuit, after the steady state is achieved, ω = 0. Hence, capacitor C acts an open circuit.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 17.
Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements, L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 7.11 for this frequency.
Answer:
Here, L = 5.0 H
C = 80 μF = 80 × 10-6 F
R = 40Ω
The effective impedance of the parallel LCR is given by
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 7

Question 18.
A circuit containing a 80 mH inductor and a 60 µF capacitor in series is connected to a 230 V, 50 Hz supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit?
[‘Average’ implies ‘averaged over one cycle’.]
Answer:
Given,
V = 230 V, v = 50 Hz, L = 80 mH = 80 × 10-3 H,
C = 60µF = 60 × 10-6 F

(a) Inductive reactance XL = ωL = 2πvL
= 2 × 3.14 × 50 × 80 × 10-3
= 25.1 Ω
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 8
(b) RMS value of potential drops across L and C are
VL = XL Irms = 25.1 × 8.23 = 207 V
VC = XC Irms = 53.1 × 8.23 = 437 V
Net voltage = VC – VL = 230 V

(c) The voltage across L leads the current by angle \(\frac{\pi}{2}\) , therefore, average
power
Pav Vrms Irms cos \(\frac{\pi}{2}\) = 0 (zero)

(d) The voltage across C lags behind the current by angle \(\frac{\pi}{2}\),
∴ pav = Vrms Irms cos \(\frac{\pi}{2}\) = 0

(e) As circuit contains pure I and pure C, average power consumed by LC circuit is zero.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 19.
Suppose the circuit in Exercise 7.18 has a resistance of 15 Ω. Obtain the average power transferred to each element of the circuit, and the total power absorbed.
Answer:
Here, R – 15Ω, L = 80 mH = 80 × 10-3 H
C = 60 μF = 60 × 10-6 F.
Er.m.s. = 230 V
v = 50 Hz
> ω = 2πv = 2π × 50 =100 π
Z = impedance of LCR circuit
= \(\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\)
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 9
= 7.258 = 7.26 A
∴ Average power consumed by R or transferred to R is given by
(Pav)R = I2r.m.s..R = (7.26)2 × 15 = 790.614 W
= 791 W.
Also (Pav)L and (Pav)C be the average power transferred to I and C respectively.
(Pav)L = Er.m.s. . Ir.m.s. cosΦ
Here e.m.f. leads current by \(\frac{\pi}{2}\)
∴ (Pav)L= Er.m.s. . Ir.m.s. cos \(\frac{\pi}{2}\)
= 0
and (Pav )C = = Er.m.s. . Ir.m.s. cosΦ
= 0
( ∵ Φ = \(\frac{\pi}{2}\) and cos \(\frac{\pi}{2}\) = 0

If Pav be the total power absorbed in the circuit, then
Pav = (Pav)L + (Pav )C + (Pav )R
= 0 + 0 + 791
= 791 W

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 20.
A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to a 230 V variable frequency supply.
(a) What is the source frequency for which current amplitude is maximum? Obtain this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum? Obtain the value of this maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?
Answer:
Inductance, L = 0.12 H
Capacitance, C = 480 nF = 480 × 10-9 F
Resistance, R = 23 Ω
Supply voltage, V = 230 V
Peak voltage is given as V0 = √2V
V0 = √2 × 230 = 325.22 V

(a) Current flowing in the circuit is given by the relation,
I0 = \(\frac{V_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}\)
where, I0 = maximum at resonance
At resonance, we have
ωRL – \(\frac{1}{\omega_{R} C}[latex] = 0
where, ωR = Resonance angular frequency
∴ ωR = [latex]\frac{1}{\sqrt{L C}}\)
= \(\frac{1}{\sqrt{0.12 \times 480 \times 10^{-9}}}\)
= \(\frac{10^{5}}{\sqrt{12 \times 48}}=\frac{10^{5}}{24}\)
= 4166.67 rad/s
∴ Resonant frequency; vR = \(\frac{\omega_{R}}{2 \pi}\) = \(\frac{4166.67}{2 \times 3.14}\) = 663.48 HZ
and, maximum current (I0)max = \(\frac{V_{0}}{R}\) = \(\frac{325.22}{23}\) 14.14 A

(b) Average power absorbed by the circuit is given as
Pav = \(\frac{1}{2}\)I02R

The average power is maximum at ω = ω0 at which I0 = (I0)max
∴ (pav )max = \(\frac{1}{2}\)(I0)2maxR
= \(\frac{1}{2}\) × (14.14)2 × 23 = 2299.3 W
= 2300 W

(c) The power transferred to the circuit is half the power at resonant frequency.
Frequencies at which power transferred is half, ω = ωR ± Δ ω
= 2π (vR ± Δv)
where, Δω = \(\frac{R}{2 L}\)
= \(\frac{23}{2 \times 0.12}\) = 95.83 rad/s
Hence, change in frequency, Δ v = \(\frac{1}{2 \pi}\) Δω = \(\frac{95.83}{2 \pi}\) = 15.26 Hz
Thus power absorbed is half the peak power at
vR + Δv = 663.48 + 15.26 = 678.74 Hz
and, vR ΔV = 663.48 – 15.26 = 648.22 Hz
Hence, at 648.22 Hz and 678.74 Hz frequencies, the power transferred is half.
At these frequencies, current amplitude can be given as
I’ = \(\frac{1}{\sqrt{2}}\) × (I0)max = \(\frac{14.14}{\sqrt{2}}=\frac{14.14}{1.414}\) = 10 A

(d) Q-factor of the given circuit can be obtained using the relation,
Q = \(\frac{\omega_{R} L}{R}\) = \(\frac{4166.67 \times 0.12}{23}\) = 21.74
Hence, the Q-factor of the given circuit is 21.74.

Question 21.
Obtain the resonant frequency and Q-factor of a series LCR circuit with L = 3.0 H, C = 27 μF and R = 7.4 Ω. It is desired to improve the sharpness of the resonance of the circuit by reducing its ‘full width at half maximum’ by a factor of 2. Suggest a suitable way.
Answer:
Inductance, L = 3.0 H
Capacitance, C = 27 μF = 27 × 10-6F
Resistance, R = 7.4 Ω
At resonance, resonant frequency of the source for the given LCR series circuit is given as
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{3 \times 27 \times 10^{-6}}}\)
\(\frac{10^{3}}{9}\) = 111.11 rad s-1
Q-factor of the series
Q = \(\frac{\omega_{r} L}{R}\) = \(\frac{111.11 \times 3}{7.4}\) = 45.0446
To improve the sharpness of the resonance by reducing its ‘full width at half maximum’ by a factor of 2 without changing cor, we need to reduce R to half i. e., Resistance = \(\frac{R}{2}=\frac{7.4}{2}\) = 3.7 Ω.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 22.
Answer the following questions :
(a) In any ac circuit, is the applied instantaneous voltage equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit? Is the same true for rms voltage?

(b) A capacitor is used in the primary circuit of an induction coil.

(c) An applied voltage signal consists of a superposition of a dc voltage and an ac voltage of high frequency. The circuit consists of an inductor and a capacitor in series. Show that the dc signal will appear across C and the ac signal across L.

(d) A choke coil in series with a lamp is connected to a dc line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp’s brightness. Predict the corresponding observations if the connection is to an ac line.

(e) Why is choke coil needed in the use of fluorescent tubes with ac mains? Why can we not use an ordinary resistor instead of the choke coil?
Answer:
(a) Yes; the statement is not true for rms voltage.
It is true that in any ac circuit, the applied voltage is equal to the average sum of the instantaneous voltages across the series elements of the circuit. However, this is not true for rms voltage because voltages across different elements may not be in phase.

(b) High induced voltage is used to charge the capacitor.
A capacitor is used in the primary circuit of an induction coil. This is because when the circuit is broken, a high induced voltage is used to charge the capacitor to avoid sparks.

(c) The dc signal will appear across capacitor C because for dc signals, the impedance of an inductor (L) is negligible while the impedance of a capacitor (C) is very high (almost infinite). Hence, a dc signal appears across C. For an ac signal of high frequency, the impedance of L is high and that of C is very low. Hence, an ac signal of high frequency appears across L.

(d) If an iron core is inserted in the choke coil (which is in series with a lamp connected to the ac line), then the lamp will glow dimly. This is because the choke coil and the iron core increase the impedance of the circuit.

(e) A choke coil is needed in the use of fluorescent tubes with ac mains because it reduces the voltage across the tube without wasting much power. An ordinary resistor cannot be used instead of a choke coil for this purpose because it wastes power in the form of heat.

Question 23.
A power transmission line feeds input power at 2300 V to a stepdown transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary in order to get output power at 230 V?
Answer:
Input voltage, V1 = 2300 V
Number of turns in primary coil, n1 = 4000
Output voltage, V2 = 230 V
Number of turns in secondary coil = n2
Voltage is related to the number of turns as
\(\frac{V_{1}}{V_{2}}=\frac{n_{1}}{n_{2}}\)
\(\frac{2300}{230}=\frac{4000}{n_{2}}\)
n2 = \(\frac{4000 \times 230}{2300}\) = 400
Hence, there are 400 turns in the second winding.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 24.
At a hydroelectric power plant, the water pressure head is at a height of 300 m and the water flow available is 100 m3s-1 . If the turbine generator efficiency is 60%, estimate the electric power available from the plant (g = 9.8 ms-2).
Answer:
Height of the water pressure head, h = 300 m
Volume of water flow per second, V = 100 m3/s
Efficiency of turbine generator, η = 60% = 0.6
Acceleration due to gravity, g = 9.8 m/ s2
Density of water, ρ = 103 kg/m3
Electric power available from the plant = η × h ρ gV
= 0.6 × 300 × 103 × 9.8 × 100
= 176.4 × 106 W
= 176.4 MW

Question 25.
A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away from an electric plant generating power at 440 V. The resistance of the two wire line carrying power is 0.5 Ω per km. The town gets power from the line through a 4000-220 V step-down transformer at a sub-station in the town.
(a) Estimate the line power loss in the form of heat.
(b) How much power must the plant supply, assuming there is negligible power loss due to leakage?
(c) Characterise the step up transformer at the plant.
Answer:
Total electric power required, P = 800 kW = 800 × 103 W
Supply voltage, V = 220 V
Voltage at which electric plant is generating power, V’ = 440 V
Distance between the town and power generating station, d = 15 km
Resistance of the two wire lines carrying power = 0.5 Ω/km
Total resistance of the wires, R = (15 + 15)0.5 = 15Ω
A step-down transformer of rating 4000 – 220 V is used in the sub-station.
Input voltage, V1 = 4000 V
Output voltage, V2 = 220 V
rms current in the wire lines is given as
I = \(\frac{P}{V_{1}}\) = \(\frac{800 \times 10^{3}}{4000}\) = 200 A

(a) Line power loss = I2R = (200)2 × 15 = 600 × 103 W = 600 kW

(b) Assuming that the power loss is negligible due to the leakage of the current.
Total power supplied by the plant = 800 kW + 600 kW = 1400 kW

(c) Voltage drop in the power line = IR = 200 × 15 = 3000 V
Hence, total voltage transmitted from the plant = 3000 + 4000 = 7000 V Also, the power generated is 440 V.
Hence, the rating of the step-up transformer situated at the power plant is 440 V – 7000 V.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 26.
Do the same exercise as above with the replacement of the earlier transformer by a 40,000-220 V step-down transformer (Neglect, as before, leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved). Hence, explain why high voltage transmission is preffered?
Answer:
The rating of the step-down transformer is 40000 V – 220 V
Input voltage, V1 = 40000 V
Output voltage, V2 = 220 V
Total electric power required, P = 800 kW = 800 × 103 W
Source potential, V = 220 V
Voltage at which the electric plant generates power, V’ = 440 V
Distance between the town and power generating station, d = 15 km
Resistance of the two wire lines carrying power = 0.5 Ω/km
Total resistance of the wire lines, R = (15 + 15)0.5 = 15 Ω
rms current in the wire line is given as
I = \(\frac{P}{V_{1}}\) = \(\frac{800 \times 10^{3}}{40000}\) = 20A

(a) Line power loss = I2R
= (20)2 × 15 = 6000 W = 6 kW

(b) Assuming that the power loss is negligible due to the leakage of current.
Hence, total power supplied by the plant = 800 kW + 6 kW = 806 kW

(c) Voltage drop in the power line = 7R = 20 × 15 = 300 V
Hence, voltage that is transmitted by the power plant
= 300 + 40000 = 40300 V
The power is being generated in the plant at 440 V.
Hence, the rating of the step-up transformer needed at the plant is 440 V – 40300 V. ‘
Hence, power loss during transmission = \(\frac{600}{1400}\) x 100 = 42.8%
In the previous exercise, the power loss due to the same reason is
\(\frac{6}{800}\) × 100 = 0.744%
Since the power loss is less for a high voltage transmission, high voltage transmissions are preferred for this purpose.

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds Important Questions and Answers.

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Very Short Answer Type Questions

Question 1.
Why is CO a stronger ligand than Cl ?
Answer:
CO forms π bonds so it is a stronger ligand than Cl.

Question 2.
What is the relationship between observed colour of the complex and the wavelength of light absorbed by the complex?
Answer:
When white light falls on the complex, some part of it is absorbed. Higher the crystal field splitting, lower will be the wavelength absorbed by the complex. The observed colour of complex is the colour generated from the wavelength left over.

Question 3.
How many isomers are there for octahedral complex [CoCl2 (en) (NH3)2]+?
Answer:
There will be three isomers: cis and trans isomers. Cis will also show optical isomerism.

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 4.
Why are low spin tetrahedral complexes not formed?
Answer:
Because for tetrahedral complexes, the crystal field stabilisation energy is lower than pairing energy.

Question 5.
A complex of the type [M(AA)2X2]n+ is known to be optically active. What does this indicate about the structure of the complex? Give one example of such complex.
Answer:
An optically active complex of the type [M(AA)2X2]n+ indicates cis- octahedral structure, e.g., cis-[Pt(en)2Cl2]2+ or cis-[Cr(en)2Cl2]+.

Question 6.
Why is the complex [Co(en)3]3+ more stable than the complex [CoF6]3-?
Answer:
Due to chelate effect as the complex [Co(en)3]3+ contains chelating ligand \(\ddot{\mathrm{NH}}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\ddot{\mathrm{NH}}_{2}\).

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 7.
What do you understand by ‘denticity of a ligand’?
Answer:
The number of coordinating groups present in ligand is called the denticity of ligand. For example, denticity of ethane-1, 2-diamine is 2, as it has two donor nitrogen atoms which can link to central metal atom.

Question 8.
What type of isomerism is shown by the complex [CO(NH3)5(SCN)]2+?
Answer:
Linkage isomerism.

Question 9.
Arrange the following complex ions in increasing order of crystal field splitting energy △0 :
[Cr(Cl)6]3-, [Cr(CN)6]3-, [Cr(NH3)6]3+
Answer:
[Cr(Cl)6]3- < [Cr(NH3)6]3+ < [Cr(CN)6]3-

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 10.
A coordination compound with molecular formula CrCl3.4H2O precipitates one mole of AgCl with AgNO3 solution. Its molar conductivity is found to be equivalent to two ions. What is the structural formula and name of the compound?
Answer:
[Cr(H2O)4Cl2] Cl
[Tetraaquadichloridochromium (III) chloride]

Short Answer Type Questions

Question 1.
Give the electronic configuration of the following complexes on the basis of crystal field splitting theory.
[CoF6]3-, [Fe(CN)6]4- and [Cu(NH3)6]2+
Answer:
[CoF6]3-: Co3+(d6) \(t_{2 g}^{4} e_{g}^{2}\)
[Fe(CN)6]4- : Fe2+ (d6) \(t_{2 g}^{6} e_{g}^{0}\)
[Cu(NH3)6]2+ : Cu2+ (d9) \(t_{2 g}^{6} e_{g}^{3}\)

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 2.
(i) What type of isomerism is shown by [Co(NH3) 5ONO]Cl2?
(ii) On the basis of crystal field theory, write the electronic configuration for d4 ion, if △0 < P.
(iii) Write the hybridisation and shape of [Fe(CN)6]3-.
(Atomic number of Fe = 26)
Answer:
(i) Linkage isomerism and the linkage isomer is [Co(NH3) 5ONO]Cl2.
(ii) If △0 < P, the fourth electron enters one of two eg orbitals giving the configuration \(t_{2 g}^{3} e_{g}^{1}\).
(iii) Fe3+ : 3d5 4s0
PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds 1

Question 3.
Explain why [Fe(H2O)6]3+ 5.92 BM whereas [Fe(CN)6]3- has a value of only 1.74 BM.
Answer:
[Fe(CN)6]3- involves d2sp3 hybridisation with one unpaired electron and [Fe(H2O)6]3+ involves sp3d2 hybridisation with five unpaired electrons. This difference is due to the presence of strong CN and weak ligand H2O in these complexes.

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 4.
CuSO4∙5H2O is blue in colour while CuSO4 is colourless. Why?
Answer:
In CuSO4∙5H2O, water acts as ligand as a result it causes crystal field splitting. Hence, d-d transition is possible in CuSO4∙5H2O and shows colour. In the anhydrous CuSO4 due to the absence of water (ligand), crystal field splitting is not possible and hence it is colourless.

Question 5.
Why do compounds having similar geometry have different magnetic moment?
Answer:
It is due to the presence of weak and strong ligands in complexes, if CFSE is high, the complex will show low value of magnetic moment and vice versa, e.g., [CoF6]3- and [Co(NH3)6]3+, the former is paramagnetic and the latter is diamagnetic.

Question 6.
A metal ion Mn+ having d4 valence electronic configuration combines with three bidentate ligands to form a complex compound. Assuming △0 > P:
(i) Write the electronic configuration of d4 ion.
(ii) What type of hybridisation will Mn+ ion has?
(iii) Name the type of isomerism exhibited by this complex.
Answer:
(i) \(t_{2 g}^{4} e_{g}^{0}\)
(ii) sp3d2
(iii) Optical isomerism

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Long Answer Type Questions

Question 1.
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following: [COF6]3-, [CO(H2O)6]2+, [CO(CN)6]3
Answer:
Magnetic moment, μ = \(\sqrt{n(n+2)}\)
Where, n = Number of unpaired electrons
PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds 2
No unpaired electrons, so it is diamagnetic.

PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds

Question 2.
(i) Draw the geometrical isomers of complex [Pt(NH3)2Cl2].
(ii) Write the hybridisation and magnetic behaviour of the complex [Ni(CO)4].
(Atomic no. of Ni = 28)
Answer:
PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds 3
Geometrical isomers of [Pt(NH3)2Cl2]

(ii) The complex [Ni(CO)4] involves sp3 hybridisation.
PSEB 12th Class Chemistry Important Questions Chapter 9 Coordination Compounds 4
The complex is diamagnetic as evident from the absence of unpaired electrons.