PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.2

Q.uestion 1.
Find the co-ordinates of the point which divides the join (- 1, 7) and (4, – 3) in the ratio 2 : 3.
Solution:
Let required point be P (x, y) which divides the join of given points A (- 1, 7)
and B (4, – 3) in the ratio of 2 : 3.
(-1, 7) (x, y) (4, – 3)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 1

∴ x = \(\frac{2 \times 4+3 \times-1}{2+3}=\frac{8-3}{5}=\frac{5}{5}=1\)

and y = \(\frac{2 \times-3+3 \times 7}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3\)
Hence, required point be (1, 3).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 2.
Find the co-ordinates of the points of trisection of the line segment joining (4, – 1) and (2, – 3).
Solution:
Let P (x1, y1) and Q (x2, y2) be the required points which trisect the line segment joining A (4, – 1)and B (- 2, – 3) i.e., P(x1, y1) divides AB in ratio 1: 2 and Q divides AB in ratio 2 : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 2

∴ x1 = \(\frac{1 \times-2+2 \times 4}{1+2}=\frac{-2+8}{3}=\frac{6}{3}=2\)

and y1 = \(\frac{1 \times-3+2 \times-1}{1+2}=\frac{-3-2}{3}=-\frac{5}{3}\)
∴ P(x1, y1) be (2, \(-\frac{5}{3}\))

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 3

Now, x2 = \(\frac{2 \times-2+1 \times 4}{2+1}\)
= \(\frac{-4+4}{3}\) = 0

y2 = \(\frac{2 \times-3+1 \times-1}{2+1}=\frac{-6-1}{3}=-\frac{7}{3}\)

∴ Q(x2, y2) be (0, \(-\frac{7}{3}\))
Hence, required points be (2, \(-\frac{5}{3}\)) and (0, \(-\frac{7}{3}\)).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 3.
To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1m from each other along AD, as shown in fig. Niharika runs \(\frac{1}{4}\) th the distance AD on the 2nd line and posts a green flag.

Preet runs \(\frac{1}{5}\) th the distance AD on the eighth line and posts a red flag. What is the distance betweenboth the flags? If Rashmi has to post a blue flag exactly half way between the line (segment) joining the two flags, where should she post her flag?

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 4

Solution:
In the given figure, we take A as origin. Taking x-axis along AB and y-axis along AD.
Position of green flag = distance covered by Niharika
= Niharika runs \(\frac{1}{4}\)th distance AD on the 2nd line
= \(\frac{1}{4}\) × 100 = 25 m
∴ Co-ordinates of the green flag are (2, 25)
Now, position of red flag = distance covered by Preet = Preet runs \(\frac{1}{5}\)th the distance AD on the 8th line
= \(\frac{1}{5}\) × 100 = 20 m.
Co-ordinates of red flag are (8, 20)
∴ distance between Green and Red flags = \(\sqrt{(8-2)^{2}+(20-25)^{2}}\)
= \(\sqrt{36+25}=\sqrt{61}\) m.
Position of blue flag = mid point of green flag and red flag
= \(\left(\frac{2+8}{2}, \frac{25+20}{2}\right)\)
= (5, 22.5).
Hence, blue flag is in the 5th line and at a distance of 22.5 m along AD.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 4.
Find the ratio in which (he segment joining the points (- 3, 10) and (6, – 8) is divided by (- 1, 6).
Solution:
Let point P (- 1, 6) divides the line segment joining the points A (- 3, 10) and B (6, – 8) the ratio K : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 5

∴ -1 = \(\frac{6 \times \mathrm{K}-3 \times 1}{\mathrm{~K}+1}\)
or – K – 1 = 6K – 3
or – K – 6K = – 3 + 1
or – 7K = – 2
K : 1 = \(\frac{2}{7}\) : 1 = 2 : 7
Hence, required ratio is 2 : 7.

Question 5.
Find the ratio in which the line segment joining A (1, – 5) and B (- 4, 5) is divided by the x-axis. Also find the co
ordinates of the point of division.
Solution:
Let required point on x-axis is P (x, 0) which divides the line segment joining the points A (1, – 5) and B (- 4, 5) in the
ratio K : 1.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 6

Consider, y co-ordinates of P ¡s:
0 = \(\frac{5 \times \mathrm{K}+(-5) \times 1}{\mathrm{~K}+1}\)

or 0 = \(\frac{5 \mathrm{~K}-5}{\mathrm{~K}+1}\)
or 5K – 5 = 0
or 5K = 5
or K = \(\frac{5}{5}\) = 1
∴ Required ratio is K : 1 = 1 : 1.
Now, x co-ordinate of P is:
x = \(\frac{-4 \times K+1 \times 1}{K+1}\)
Putting the value of K = 1, we get:
x = \(\frac{-4 \times 1+1 \times 1}{1+1}=\frac{-4+1}{2}\)
x = \(-\frac{3}{2}\)
Hence, required point be (\(-\frac{3}{2}\), 0).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 6.
If (1, 2); (4, y); (x, 6) and (3, 5)are the vertices of a parallelogram taken in order, find x and y.
Solution:
Let points of parallelogram ABCD are A (1, 2) (4, y) ; C (x, 6) and D (3, 5)
But diagonals of a || gm bisect each other.
Case I. When E is the mid point of A (1, 2) and C (x, 6)
∴ Co-ordinates of E are:
E = \(\left(\frac{x+1}{2}, \frac{6+2}{2}\right)\)
E = (\(\frac{x+1}{2}\), 4) …………..(1)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 7

Case II. When E is the mid point B (4, y) and D (3, 5)
∴ Co-ordinates of E are:

E = \(\left(\frac{3+4}{2}, \frac{5+y}{2}\right)\)

E = \(\left(\frac{7}{2}, \frac{5+y}{2}\right)\) …………….(2)
But values of E in (1) and (2) are same, so comparing the coordinates, we get
\(\frac{x+1}{2}=\frac{7}{2}\)
or x + 1 = 7
or x = 6.

and 4 = \(\frac{5+y}{2}\)
or 8 = 5 + y
or y = 3
Hence, values of x and y are 6 and 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 7.
Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, – 3) and B is (1, 4).
Solution:
Let, coordinates of A be (x, y). But, centre is the’ niij ioint of the vertices of the diameter.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 8

∴ O is the mid point of A(x, y) and B(1, 4)
∴ \(\left(\frac{x+1}{2}, \frac{y+4}{2}\right)\) = (2, -3)
On comparing, we get
\(\frac{x+1}{2}\)
or x + 1 = 4
or x = 3

and \(\frac{y+4}{2}\) = – 3
or y + 4 = – 6
or y = – 10
Hence, required point A be (3, – 10).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 8.
If A and B are (- 2, – 2) and (2, – 4) respectively, find the coordinates of P such that AP = AB and P lies ¡n the line segment AB.
Solution:
Let required point P be (x, y)
Also AP = \(\frac{3}{7}\) AB …(Given)
But, PB = AB – AP
= AB – \(\frac{3}{7}\) AB = \(\frac{7-3}{7}\) AB
PB = \(\frac{4}{7}\) AB
∴ \(\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\frac{3}{7} \mathrm{AB}}{\frac{4}{7} \mathrm{AB}}=\frac{3}{4}\).

∴ P divides given points A and B in ratio 3 : 4.
Now,
x = \(\frac{3 \times 2+4 \times-2}{3+4}\)

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 9

or x = \(\frac{6-8}{7}=-\frac{2}{7}\)

and y = \(\frac{3 \times-4+4 \times-2}{3+4}\)
= \(\frac{-12-8}{7}=-\frac{20}{7}\)

Hence, coordinates of P be (\(-\frac{2}{7}\), \(-\frac{20}{7}\)).

Question 9.
Find the coordinates of the points which divides the line segment joining A (- 2, 2) and B (2, 8) into four equal parts.
Solution:
Let required points are C, D and E which divide the line segment joming the points A (- 2, 2) and B (2, 8) into four equal parts. Then D is mid point of A and B ; C is the mid point of A and D ; E is the mid point of D and B such that
AC = CD = DE = EB

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 10

Now, mid point of A and B (i.e., Coordinates of D)
= \(\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)\) = (0, 5)

Mid point of A and D (i.e., Coordinates of C)
= \(\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(-1, \frac{7}{2}\right)\)

Mid point of D and B (i.e., Coordinates of E)
= \(\left(\frac{2+0}{2}, \frac{8+5}{2}\right)=\left(1, \frac{13}{2}\right)\)

Hence, requned points be (0, 5), (-1, \(\frac{7}{2}\)), (1, \(\frac{13}{2}\)).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.2

Question 10.
Find the area of a rhombus if the vertices are (3, 0); (4, 5); (- 1, 4) and(- 2, – 1) taken in order.
[Hint: Areas of a rhombus = \(\frac{1}{2}\) (Product of its diagonals)]
Solution:
Let coordinates of rhombus ABCD are A (3, 0); B(4, 5); C(-1, 4) and D(- 2, – 1).
Diagonal, AC = \(\sqrt{(-1-3)^{2}+(4-0)^{2}}\)
= \(\sqrt{16+16}=\sqrt{32}=\sqrt{16 \times 2}\) = 4√2

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.2 11

and diagonal BD
BD = \(\sqrt{(-2-4)^{2}+(-1-5)^{2}}\)
= \(\sqrt{36+36}=\sqrt{72}=\sqrt{36 \times 2}\) = 6√2.

∴ Area of rhombus ABCD = \(\frac{1}{2}\) × AC × BD
ABCD = [\(\frac{1}{2}\) × 4√2 × 6√2] sq. units
(\(\frac{1}{2}\) × 24 × 2) sq. units
= 24 sq. units
Hence, area of rhombus is 24 sq. units.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 7 Coordinate Geometry Ex 7.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1

Question 1.
Find the distance between the following pairs of points:
(i) (2, 3); (4, 1)
(ii)(-5, 7); (-1, 3)
(iii) (a, b); (-a, -b).
Solution:
(i) Given points are: (2, 3); (4, 1)
Required distance = \(\sqrt{(4-2)^{2}+(1-3)^{2}}\)
\(\sqrt{4+4}=\sqrt{8}=\sqrt{4 \times 2}\)
= 2√2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points are: (-5, 7); (-1, 3)
Required distance = \(\sqrt{(-1+5)^{2}+(3-7)^{2}}\)
\(\sqrt{16+16}=\sqrt{32}\)
= \(\sqrt{16 \times 2}\)
= 4√2.

(iii) Given points are: (a, b); (-a, -b)
Required distance = \(\sqrt{(-a-a)^{2}+(-b-b)^{2}}\)
= \(\sqrt{(-2 a)^{2}+(-2 b)^{2}}\)
= \(\sqrt{4 a^{2}+4 b^{2}}\)
= √4 \(\sqrt{a^{2}+b^{2}}\)
= \(2 \sqrt{a^{2}+b^{2}}\)

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 2.
Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B
discussed in section 7.2.
Solution:
Given points are: A (0, 0) and B (36, 15)
Distance, AB = \(\sqrt{(0-36)^{2}+(0-15)^{2}}\)
\(\sqrt{1296+225}=\sqrt{1521}\) = 39.
According to Section 7.2
Draw the distinct points A (0, 0) and B (36, 15) as shown in figure.

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 1

Draw BC ⊥ on X-axis.
Now, In rt. ∠d ∆ACB,
AB = \(\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}\)
= \(\sqrt{(36)^{2}+(15)^{2}}\)
= \(\sqrt{1296+225}=\sqrt{1521}\)
= 39.
Hence, required distance between points is 39.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 3.
Determine if the points (1, 5), (2, 3) and (- 2, – 11) are collinear.
Solution:
Given point are : A (1. 5); B (2.3) and C (- 2, – 11).
AB = \(\sqrt{(2-1)^{2}+(3-5)^{2}}\)
= \(\sqrt{1+4}=\sqrt{5}\)

BC = \(\sqrt{(-2-2)^{2}+(-11-3)^{2}}\)
= \(\sqrt{16+196}=\sqrt{212}\)

CA = \(\sqrt{(1+2)^{2}+(5+11)^{2}}\)
= \(\sqrt{9+256}=\sqrt{265}\)
From above distances, it is clear that sum of any two is not equal to third one.
Hence, given points are not collinear

Question 4.
Check whether (5, – 2); (6, 4) and (7, – 2) are the Vertices of an isosceles triangle.
Solution:
Given points be A (5, – 2); B (6, 4) and C (7, – 2).
AB = \(\sqrt{(5-6)^{2}+(-2-4)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

BC = \(\sqrt{(6-7)^{2}+(4+2)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

CA = \(\sqrt{(7-5)^{2}+(-2+2)^{2}}\)
= \(\sqrt{4+0}=2\)
From above discussion, it is clear that AB = BC = √37.
Given points are vertices of an isosceles triangle.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 5.
In a classroom, 4 friends are seated at the points A, B, C and D as shown in fig. Champa and Charnel walk into the class and after observing for a few minutes Champa asks Chameli, “Don’t you think ABCD is a square”? Chameli disagrees. Using distance formula, find which of them is correct, and why?

PSEB 10th Class Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1 2

Solution:
In the given diagram, the vertices of given points are : A (3, 4); B (6, 7); C (9, 4) and D (6, 1).
Now,
AB = \(\sqrt{(6-3)^{2}+(7-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

BC = \(\sqrt{(9-6)^{2}+(4-7)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

CD = \(\sqrt{(6-9)^{2}+(1-4)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

DA=\(\sqrt{(3-6)^{2}+(4-1)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)

AC = \(\sqrt{(9-3)^{2}+(4-4)^{2}}\)
= \(\sqrt{36+0}=6\)

BD = \(\sqrt{(6-6)^{2}+(1-7)^{2}}\)
= \(\sqrt{0+36}\) = 6
From above discussion, it is clear that
AB = BC = CD = DA = √18 and AC = BD = 6.
ABCD formed a square and Champa is correct about her thinking.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 6.
Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
(i) ( 1,- 2), (1, 0),(- 1, 2), (- 3, 0)
(ii) ( 3, 5), (3, 1), (0, 3), (- 1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2).
Solution:
(i) Given points be A (- 1, – 2); B(1, 0); C(- 1, 2) and D(- 3, 0).
AB = \(\sqrt{(1+1)^{2}+(0+2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

BC = \(\sqrt{(-1-1)^{2}+(2-0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

CD = \(\sqrt{(-3+1)^{2}+(0-2)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

DA = \(\sqrt{(-1+3)^{2}+(-2+0)^{2}}\)
= \(\sqrt{4+4}=\sqrt{8}\)

AC = \(\sqrt{(-1+1)^{2}+(2+2)^{2}}\)
= \(\sqrt{0+16}=4\)

BD = \(\sqrt{(-3-1)^{2}+(0-0)^{2}}\)
= \(\sqrt{16+0}=4\)

From above discussion, it is clear that
AB = BC = CD = DA = √8 and AC = BD = 4.
Hence, given quadrilateral ABCD is a square.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

(ii) Given points be A (- 3, 5); B (3, 1); C (0, 3) and D (- 1,- 4)
AB = \(\sqrt{(-3-3)^{2}+(5-1)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}=\sqrt{4 \times 13}\)
= 2√13

BC = \(\sqrt{(3-0)^{2}+(1-3)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)

CA = \(\sqrt{(0+3)^{2}+(3-5)^{2}}\)
= \(\sqrt{9+4}=\sqrt{13}\)
Now, BC + CA = \(\sqrt{13}+\sqrt{13}\) = 2√13 = AB
∴A, B and C are collinear then A, B, C and D do not form any quadrilateral.

(iii) Given points are A (4, 5); B (7, 6); C (4, 3) and D (1, 2)
AB = \(\sqrt{(7-4)^{2}+(6-5)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

BC = \(\sqrt{(4-7)^{2}+(3-6)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

CD = \(\sqrt{(1-4)^{2}+(2-3)^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\)

DA = \(\sqrt{(4-1)^{2}+(5-2)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

AC = \(\sqrt{(4-4)^{2}+(3-5)^{2}}\)
= \(\sqrt{0+4}\) = 2

BD = \(\sqrt{(1-7)^{2}+(2-6)^{2}}\)
= \(\)

From above discussion, it is clear that AB = CD and BC = DA. and AC ≠ BD.
i.e., opposite sides are equal but their diagonals are not equal.
Hence, given quadrilateral ABCD is a parallelogram.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 7.
Find the points on the x-axis which is equidistant from (2, – 5) and (- 2, 9).
Solution:
Let required point be P (x, 0) and given points be A (2, – 5) and B (- 2, 9).
According to question,
PA = PB
(PA)2 = (PB)2
or (2 – x)2 + (- 5- 0)2 = (- 2 – x)2 + (9 – 0)2
or 4 + x2 – 4x + 25 = 4 + x2+ 4x + 81
-8x = 56
x = \(\frac{4}{4}\) = – 7
Hence, required point be (- 7, 0).

Question 8.
Find the values of y for which the distance between the points P (2, – 3) and Q (10, y) is 10 units.
Solution:
Given points are P (2, – 3) and Q (10, y)
PQ = \(\sqrt{(10-2)^{2}+(y+3)^{2}}\)
= \(\sqrt{64+y^{2}+9+6 y}\)
= \(\sqrt{y^{2}+6 y+73}\)
According to question,
PQ = 10
or \(\sqrt{y^{2}+6 y+73}\) = 10
Squaring
or y2 + 6y + 73 = 100
or y2 + 6y – 27 = 0
or y2 + 9y – 3y – 27 = 0
S = 6 P = – 27
or y (y + 9) – 3 (y + 9) = 0
or (y + 9) (y – 3) = 0
Either y + 9 = 0 or y – 3 = 0
y = – 9 or y = 3
Hence, y = – 9 and 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 9.
If Q (0, 1) is equidistant from P (5, – 3) and R (x, 6), find the values of x. Also find the distances QR and PR.
Solution:
Given points Q (0, 1); P (5, – 3) and R (x, 6)
QP = \(\sqrt{(5-0)^{2}+(-3-1)^{2}}\)
= \(\sqrt{25+16}=\sqrt{41}\)

and QR = \(\sqrt{(x-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{x^{2}+25}\)

According to question,
QP = QR
or \(\sqrt{41}=\sqrt{x^{2}+25}\)
Squaring
or 41 = x2 + 25
or x2 = 16
or x = ± √16 = ± √4.

When x = 4 then R (4, 6).
QR = \(\sqrt{(4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{1+81}=\sqrt{82}\)

When x = – 4 then R (- 4, 6).
QR = \(\sqrt{(-4-0)^{2}+(6-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

PR = \(\sqrt{(-4-5)^{2}+(6+3)^{2}}\)
= \(\sqrt{81+81}=\sqrt{162}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Coordinate Geometry Ex 7.1

Question 10.
Find a relation between x and y such that the point (x, y) is equidistant from the point (3, 6) and (- 3, 4).
Solution:
Let required points be P (x, y) and given points are A (3, 6) and B (- 3, 4)
PA = \(\sqrt{(3-x)^{2}+(6-y)^{2}}\)
= \(\sqrt{9+x^{2}-6 x+36+y^{2}-12 y}\)
= \(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\)

and PB = \(\sqrt{(-3-x)^{2}+(4-y)^{2}}\)
= \(\sqrt{9+x^{2}+6 x+16+y^{2}-8 y}\)
= \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)

According to question,
PA = PB
\(\sqrt{x^{2}+y^{2}-6 x-12 y+45}\) = \(\sqrt{x^{2}+y^{2}+6 x-8 y+25}\)
sq,. both sides, we have,
or x2 + y2 – 6x – 12y + 45 = x2 + y2 + 6x – 8y – 25
or -12x – 4y + 20 = 0
or 3x + y – 5 = 0 is the required relation.

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1

Question 1.
In which of the following situations, does the list of numbers involved make an arithmetic progression, and why ?
(i) The taxi fare after each km when the fare is 15 for the first km and 8 for each additional km.

(ii) The amount of air present in a cylinder when a vacuum pump removes of the air remaining in the cylinder at a time.

(iii) The cost of digging a well after every metre of digging, when it costs 150 for the first metre and rises by 50 for each msubsequent metre.

(iv) The amount of money in the account every year when 10000 is deposited at compound interest at 8% per annum.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Solution:
(i) Let Tn denotes the taxi fare in nth km.
According to question,
T1 = 15 km;
T2 = 15 + 8 = 23;
T3 = 23 + 8 = 31
Now, T3 – T2 = 31 – 23 = 8
T2 – T1 = 23 – 15 = 8
Here, T3 – T2 = T2 – T1 = 8
∴ given situation form an AP.

(ii) Let Tn denotes amount of air present in a cylinder.
According to question,
T1 = x;
T2 = x – \(\frac{1}{4}\)x
= \(\frac{4-1}{4}\)x = \(\frac{3}{4}\)x
T3 = \(\frac{3}{4} x-\frac{1}{4}\left[\frac{3}{4} x\right]=\frac{3}{4} x-\frac{3}{16} x\)

= \(\left(\frac{12-3}{16}\right) x=\frac{9}{16}\)x and so on
Now, T3 – T2 = \(\frac{9}{16}\)x – \(\frac{3}{4}\)x
= \(\left(\frac{9-12}{16}\right) x=-\frac{3}{16}\)x

T2 – T1 = \(\frac{3}{4}\)x – x
= \(\left(\frac{3-4}{4}\right) x=-\frac{1}{4}\)x
Here, T3 – T2 ≠ T2 – T1
∴ given situation donot form an AP.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Let Tn denotes cost of digging a well for the nth metre,
According to question,
T1 = ₹ 150; T2 = (150 + 50) = ₹ 200;
T3 = ₹ (200 + 5o) = 250 and so on
Now, T3 – T2 = ₹ (250 – 200) = 50
T2 – T1 = ₹ (200 – 150) = 50
Here, T3 – T2 = T2– T1 = 50
∴ given situation form an A.P.

(iv) Let Tn denotes amount of money in the nth year.
According to question
T1 = ₹ 10,000
T2 = ₹ 10,000 + ₹ \(\left[\frac{10,000 \times 8 \times 1}{100}\right]\)
= ₹ 10,000 + ₹ 800 = ₹ 10,800
T3 = ₹ 10,800 + ₹ \(\left[\frac{10,800 \times 8 \times 1}{100}\right]\)
= ₹ 10,800 + ₹ 864
= ₹ 11,640 and so on.
Now, T3 – T2 = ₹ (11,640 – 10,800) = ₹ 840
T2 – T1 = ₹ (10,800 – 10,000) = ₹ 800
Here, T3 – T2 ≠ T2 – T1
∴ given situation do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

Question 2.
Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(1) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = -3
(iv) a = -1, d = \(\frac{1}{2}\)
(w) a = -1.25, d = -0.25
Solution:
(i) Given that first term = a = 10
and common difference = d = 10
∴ T1 = a = 10;
T2 = a + d = 10 + 10 = 20;
T3 = a + 2d
= 10 + 2 × 10 = 10 + 20 = 30;
T4 = a + 3d = 10 + 3 × 10
= 10 + 30 = 40
Hence, first four terms of an A.P. are 10, 20, 30, 40………….

(ii) Given that first term = a = -2
and common iifference = d = 0
∴ T1 = a = -2;
T2 = a + d = -2 + 0 = -2
T3 = a + 2d = -2 + 2 × 0 = -2
T4 = a + 3d = -2 + 3 × 0 = -2
Hence, first four terms of an A.P. are -2, -2, -2, -2,…………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Given that first term = a = 4
and common difference = d = -3
∴ T1 = a = 4;
T2= a + d = 4 – 3 = 1
T3 = a + 2d = 4 + 2(-3) = 4 – 6 = -2
T4 = a + 3d = 4 + 3(-3) = 4 – 9 = -5
Hence, first four terms of an A.P. are 4, 1, -2, -5, ……….

(iv) Given that first term = a = -1
and common difference = d = \(\frac{1}{2}\)
∴ T1 = a = -1; T2 = a + d
= -1 + \(\frac{1}{2}\) = \(-\frac{1}{2}\)
T3 = a + 2d = -1 + 2(\(\frac{1}{2}\))
= -1 + 1 = 0
T4 = a + 3d = -1 + 3(\(\frac{1}{2}\))
= \(\frac{-2+3}{2}=\frac{1}{2}\)
Hence, first four terms of an AP are -1, –\(\frac{1}{2}\), 0, \(\frac{1}{2}\), …………..

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(v) Given that first term = a = – 1.25
and common difference = d = – 0.25
∴ T1 = a = – 1.25;
T2 = a + d = – 1.25 – 0.25 = -1.50
T3 = a + 2d = – 1.25 + 2(- 0.25)
= – 1.25 – 0.50 = – 1.75
T4 = a + 3d = – 1.25 + 3(- 0.25)
= – 1.25 – 0.75 = – 2
Hence, first four terms of an A.P. are – 1.25, – 1.50, – 1.75, – 2, ……………..

Question 3.
For the following APs, wilte the first term and the common difference:
(i) 3, 1, -1, -3, …………
(ii) 5, -1, 3, 7, ………….
(iii) \(\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}\), …………..
(iv) 0.6, 1.7, 2.8, 3.9, ………..
Solution:
(i) Given A.P., is 3, 1, -1, -3, ………
Here T1 = 3, T2 = 1,
T3 = -1, T4 = -3
First term = T1 = 3
Now, T2 – T1 = 1 – 3 = – 2
T3 – T2 = – 1 – 1 = -2
T4 – T3 = -3 + 1 = -2
∴ T2 – T1 = T3 – T2 = T4 – T3 = – 2
Hence, common difference = – 2 and first term = 3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(ii) Given A.P. is – 5, – 1, 3, 7, ………….
Here T1 = – 5, T2 = – 1,
T3 = 3, T4 = 7
First term T1 = -5
Now, T2 – T1 = -1 + 5 = 4
T3– T2 = 3 + 1 = 4
T4 – T3 = 7 – 3 = 4
∴ T2 – T1 = T3 – T2 = T4 – T3 = 4
Hence, common difference = 4 and first term = – 5.

(iii) Given AP. is:
\(\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots\)
Here T1 = \(\frac{1}{3}\), T2 = \(\frac{5}{3}\),
T3 = \(\frac{9}{3}\), T4 = \(\frac{13}{3}\)
First term = T1 = \(\frac{1}{3}\)
Now, T2 – T1 = \(\frac{5}{3}-\frac{1}{3}=\frac{5-1}{3}=\frac{4}{3}\)
T3 – T2 = \(\frac{9}{3}-\frac{5}{3}=\frac{9-5}{3}=\frac{4}{3}\)
T4 – T3 = \(\frac{13}{3}-\frac{9}{3}=\frac{13-9}{3}=\frac{4}{3}\)
∴ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{4}{3}\)

Hence, common difference = \(\frac{4}{3}\) and first term = \(\frac{1}{3}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iv) Given A.P. is 0.6, 1.7, 2.8, 3.9,…
Here, T1 = 0.6, T2 = 1.7, T3 = 2.8, T4 = 3.9
First term = T1 = 0.6
Now, T2 – T1 = 1.7 – 0.6 = 1.1
T3 – T2 = 2.8 – 1.7 = 1.1
T4 – T3 = 3.9 – 2.8 = 1.1
Hence, common difference = 1.1 and first term = 0.6.

Question 4.
WhIch of the following are APs? If they form an AP, find the common difference d and write three more terms.
(i) 2, 4, 8, 16
(ii) 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), ………
(iii) – 1.2, – 3.2, – 5.2, – 7.2, ………….
(iv) – 10, – 6, – 2, 2, ………….
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2, ……….
(vi) 0.2, 0.22, 0.222, 0.2222, ………….
(vii) 0, -4, -8, -12, …………..
(viii) \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ………..
(ix) 1, 3, 9, 27 …………….
(x) a, 2a, 3a, 4a, ………………
(xi) a, a2, a3, a4, ……………….
(xii) √2, √8, √18, √32, …………
(xiii) √3, √6, √9, √12, ……………..
(xiv) 12, 32, 52, 72, ………..
(xv) 12, 52, 72, 73, ………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1
Solution:
(i) Given terms are 2, 4, 8, 16 ………………
Here T1 = 2, T2 = 4, T3 = 8, T4 = 16
T2 – T1 = 4 – 2 = 2
T3 – T2 = 8 – 4 = 4
∵ T2 – T1 ≠ T3 – T2
Hence, given terms do not form an A.P.

(ii) Given terms are 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), ………
Here T1 = 2, T2 = 4, T3 = 3, T4 = 16
T2 – T1 = \(\frac{4}{4}\) – 2 = \(\frac{5-4}{2}\) = \(\frac{1}{2}\)
T3 – T2 = 3 – \(\frac{5}{2}\) = \(\frac{6-5}{2}=\frac{1}{2}\)
T4 – T3 = \(\frac{7}{2}-3=\frac{7-6}{2}=\frac{1}{2}\)
∵ T2 – T1 = T3 – T2 = T4 – T3 = \(\frac{1}{2}\)
∴ Common difference = d = \(\frac{1}{2}\)
Now, T5 = a + 4d = 2 + 4\(\frac{1}{2}\) = 4

T6 = a + 5d = 2 + 5(\(\frac{1}{2}\)) = \(\frac{4+5}{2}=\frac{9}{2}\)

T7 = a + 6d = 2 + 6(\(\frac{1}{2}\)) = 2 + 3 = 5.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(iii) Given terms are – 1.2, – 3.2, – 5.2, – 7.2, …………
Here T1 = – 1.2, T2 = – 3.2,
T3 = – 5.2, T4 = – 7.2
T2 – T1 = – 3.2 + 1.2 = – 2
T3 – T2 = – 5.2 + 3.2 = – 2
T 4 – T3 = – 7.2 + 5.2 = – 2
∵ T2 – T1 = T3 – T2 = T4 – T3 = – 2
∴ Common difference = d = – 2
Now, T5 = a + 4d = – 1.2 + 4(-2) = – 1.2 – 8 = – 9.2
T6 = a + 5d = – 1.2 + 5(-2) = – 1.2 – 10 = – 11.2
T7 = a + 6d = – 1.2 + 6(-2) = -1.2 – 12 = – 13.2

(iv) Given terms are – 10, – 6, – 2, 2, ………..
Here T1 = – 10,T2 = – 6
T3 = – 2, T4=2 .
T2 – T1 = – 6 + 10 = 4
T3 – T2 = – 2 + 6 =4
T4 – T3 = 2 + 2 = 4
∵ T2 – T1=T3 – T2 = T4 – T3 = 4 .
∴ Common difference = d = 4
Now, T5 = a + 4d = – 10 + 4(4) = – 10 + 16 = 6
T6 = a + 5d = – 10 + 5(4) = – 10 + 20 = 10
T7 = a + 6d = – 10 + 6(4) = – 10 + 24 = 14.

(v) Given terms are 3, 3 + √2, 3 + 2√2, 3 + 3√2, …………
Here T1 = 3, T2 = 3 + √2,
T3 = 3 + 2√2, T4= 3 + 3√2
T2 – T1 = 3 + √2 – 3 = √2
T3 – T2 = 3 + 2√2 – (3 + √2)
= 3 + 2√2 – 3 – √2 = √2
T4 – T3 = 3 + 3√2 – (3 + 2√2)
= 3 + 3√2 – 3 – 2√2 = √2
∵ T2 -T1 = T3 – T2 = T4 – T3 = √2
∴ Common difference = d = √2
Now, T5 = a + 4d = 3 + 4(√2) = 3 + 4√2
T6 = a + 5d = 3 + 5√2
T7 = a + 6d = 3 + 6√2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(vi) Given terms are 0.2, 0.22, 0.222, 0.2222, …………..
Here Here T1 = 0.2, T2 = 0.22,
T3 = 0.222, T4 = 0.2222.
T2 – T1 = 0.22 – 0.2 = 0.02
T3 – T2 = 0.222 – 0.22 = 0.002
∵ T2 – T1 ≠ T3 – T2
∴ given terms do not form an A.P.

(vii) Given terms are 0, -4, -8, -12
Here T1 = 0, T2 = -4,
T3 = -8, T4 = -12
T2 – T1 = – 4 – 0 = -4
T3 – T2= – 8 + 4 = -4
T4 – T3= – 12 + 8 = -4.
T2 – T1 = T3 – T2 = T4 – T3
∴ Common difference = d = -4
Now, T5= a + 4d = 0 + 4(-4) = -16
T6 = a + 5d = 0 + 5(-4) = -20
T7 = a + 6d = 0 + 6(-4) = -24.

(viii) Given terms are \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), ……….
Here T1 = \(-\frac{1}{2}\), T2 = –\(\frac{1}{2}\)
T3 = \(-\frac{1}{2}\), T4 = \(-\frac{1}{2}\)
T2 – T1 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
T3 – T2 = \(-\frac{1}{2}\) + \(\frac{1}{2}\) = 0
∵ T2 – T1 = T3 – T2 = 0
∴ Common difference = d = 0
Now, T5 = T6 = T7 = –\(\frac{1}{2}\)
[∵ a = –\(\frac{1}{2}\), d = 0]

(ix) Given terms are 1, 3, 9, 27
T1 = 1, T2 = 3, T3 = 9, T4 = 27
T2 – T1 = 3 1 = 2
T3 – T2 = 9 – 3 = 6.
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(x) Given terms are a, 2a, 3a, 4a, …
T1 = a, T2 = 2a, T3 = 3a, T4 = 4a
T2 – T1 = 2a – a = a
T3 – T2 = 3a – 2a = a
T4 – T3 = 4a – 3a = a
∵ T2 – T1 = T3 – T2 = T4 – T3 = a
∴ Common difference = d = a
Now T5 = a + 4d = a + 4(a) = a + 4a = 5a
T6 = a + 5d = a + 5a = 6a
T7 = a + 6d = a + 6a = 7a

(xi) Given terms are a, a2, a3, a4, …………
T1 = a, T2 = a2, T3 = a3, T4 = a4
T2 – T1 = a2 – a
T3 – T2 = a3 – a2
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(xii) Given terms are √2, √8, √18, √32, …………
T1 = √2, T2 = √8, T3 = √18, T4 = √32
or T1 = √2, T2 = 2√2 T3 = 3√2, T4 = 4√2
T2 – T1 = 2√2 – √2 = √2
T3 – T = 3√2 – 2√2 = √2
T4 – T3 = 4√2 – 3√2 = √2
∵ T2 – T1 = T3 – T2 = T4 – T3= √2
∴ Common difference = d = √2
Now, T5 = a + 4d = √2 + 4√2 = 5√2
T6 = a + 5d = √2 + 5√2 = 6√2
T7 = a + 6d = √2 + 6√2 = 7√2

(xiii) Given terms are √3, √6, √9, √12, ……………..
T1 = √3, T2= √6, T3= √9, T4= √12
or T1 = √3, T2 = √6, T3 = 3, T4 = 2√3
T4 – T1 = √6 – √3
T3 – T2 = 3 – √6
∵ T2 – T1 ≠ T3 – T2
∴Given terms do not form an A.P.

(xiv) Given terms are 12, 32, 52, 72, ………..
T1 = 12, T2 = 32, T3 = 52, T4 = 72
or T1 = 1, T2 = 9, T3 = 25, T4 = 49
T4 – T1 = 9 – 1 = 8
T3 – T2 = 25 – 9 = 16
∵ T2 – T1 ≠ T3 – T2
∴ Given terms do not form an A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.1

(xv) Given terms are 12, 52, 72, 73
T1 = 12, T2 = 52, T3 = 72, T4 = 73
or T1 = 1, T2 = 25, T3 = 49, T4 = 73
T2 – T1 = 25 – 1 = 24
T3 – T2 =49 – 24= 24
T4 – T3 = 73 – 49 = 24
∵ T2 – T1 = T3 – T2 = T4 – T3 = 24
∴ Common difference = d = 24
T5 = a + 4d = 1 + 4(24) = 1 + 96 = 97
T6 = a + 5d = 1 + 5(24) = 1 + 120 = 121
T7 = a + 6d = 1 +6(24) = 1 + 144 = 145

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2

Question 1
Fill in the blanks in the following table, given that a is the first term, d the common difference and a the nth term of the
AP:

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 1

Solution:
(i) Here a = 7, d = 3, n = 8
∵ an = a + (n – 1)d
∴ a8 = 7 + (8 – 1)3
= 7 + 21 = 28.

(ii) Here a = – 18, n = 10, an = 0
∵ an = a + (n – 1)d
∴ a10 = – 18 + (10 – 1)d
or 0 = – 18 + 9d .
or 9d = 18
d = \(\frac{18}{2}\) = 2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(iii) Here d = – 3, n = 18, an = – 5
∵ an = a + (n – 1)d
∴ a18 = a + (18 – 1)(-3)
or -5 = a – 51
or a = – 5 + 51 = 46.

(iv) Here a = – 18.9, d = 2.5 an = 3.6
∵ an = a + (n – 1)d
∴ 3.6 = – 18.9 + (n – 1) 2.5
or 3.6 + 18.9 = (n – 1) 2.5
or (n – 1) 2.5 = 22.5
or n – 1 = \(\frac{22.5}{2.5}\)
or n = 9 + 1 = 10.

(v) Here a = 3.5, d = 0, n = 105
∵ an = a + (n – 1) d
∴ an = 3.5 + (105 – 1) 0
an = 3.5 + 0 = 3.5.

Question 2.
Choose the correct choice in the following and justify:
(i) 30th term of the AP: 10, 7, 4, …………….. is
(A) 97 (B) 77 (C) – 77 (D) – 87

(ii) 11th term of the AP: – 3, – \(\frac{1}{2}\), 2, ………. is
(A) 28 (B) 22 (C) – 38 (D) – 48\(\frac{1}{2}\)

Solution:
(i) Given A.P. is 10, 7, 4 ……………
T1 = 10, T2 = 7, T3 = 4
T2 – T1 = 7 – 10 = – 3
T3 – T2 = 4 – 7 = – 3
∵ T2 – T1 = T3 – T2 = – 3 = d(say)
∵ Tn = a + (n – 1) d
Now, T30 = 10 + (30 – 1)(-3)
= 10 – 87 = – 77
∴ Correct choice is (C).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A.P. is – 3, –\(\frac{1}{2}\), 2, ……….
T1 = – 3 T2 = –\(\frac{1}{2}\), T3 = 2, …………..
T2 – T1 = –\(\frac{1}{2}\) + 3 = \(\frac{-1+6}{2}=\frac{5}{2}\)
T3 – T2 = 2 + \(\frac{1}{2}\) = \(\frac{4+1}{2}=\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{5}{2}\) = d(say)
∵ Tn = a + (n – 1) d
Now, T11 = -3 + (11 – 1) \(\frac{5}{2}\)
= -3 + 10 × \(\frac{5}{2}\) = – 3 + 25 = 22
∴ Correct choice is (B).

Question 3.
In the following APs, find the missing terms in the boxes:
(i) 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 26
(ii)PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 13, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 3
(iii) 5,PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 9
(iv) – 4, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 6
(v) PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 38, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, – 22
Solution:
Let a be the first term and ‘d’ be the common difference of given A.P.
(i) Here T1 = a = 2
and T3 = a + 2d = 26
or 2 + 2d = 26
or 2d = 26 – 2 = 24
or d = 12
∴ Missing term = T2 = a + d = 2 + 12 = 14.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Here, T2 = a + d = 13 ……………(1)
and T4 = a + 3d = 3 …………….(3)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 3

Substitute this value of d in (1), we get
a – 5 = 13
a = 13 + 5 = 18.
∴ T1 = a = 18
T3 = a + 2d = 18 + 2(-5)
= 18 – 10 = 8.

(iii)Here T1 = a = 5
and T4 = a + 3d = 9
or a + 3d = \(\frac{19}{2}\)
or 5 + 3d = \(\frac{19}{2}\)
or 3d = \(\frac{19}{2}\) – 5
or 3d = \(\frac{19-10}{2}=\frac{9}{2}\)
or d = \(\frac{9}{2} \times \frac{1}{3}=\frac{3}{2}\)
T2 = a + d = 5 + \(\frac{3}{2}\)
= \(\frac{10+3}{2}=\frac{13}{2}\)
T3 = a + 2d = 5 + 2(\(\frac{3}{2}\)) = 5 + 3 = 8.

(iv) Here T1 = a = —
T6 = a + 5d = 6
or -4 + 5d = 6
or 5d = 6 + 4
or 5d = 10
or d = \(\frac{10}{2}\) = 2
Now, T2 = a + d = -4 + 2 = -2
T3 = a + 2d = – 4 + 2(2)
= – 4 + 4 = 0
T4 = a + 3d = – 4 + 3(2)
= – 4 + 6 = 2
T5 = a + 4d = – 4 + 4(2)
= – 4 + 8 = 4

(v) Here T2 = a + d = 38 ………….(1)
and T6 = a + 5d = -22 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 4.

Substitute this value of d in (1), we get
a + (-15) = 38
a = 38 + 15 = 53
∴ T1 = a = 53
T3 = a + 2d = 53 + 2(-15) = 53 – 30 = 23.
T4 = a + 3d = 53 + 3(-15) = 53 – 45 = 8
T5 = a + 4d = 53 + 4(-15) = 53 – 60 = – 7.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 4
Which term of the A.P. 3, 8, 13, 18, …………… is 78?
Solution:
Given A.P. is 3, 8, 13, 18, ………….
T1 = 3, T2 = 8, T3 = 13, T4 = 18
T2 – T1 =8 – 3=5
T3 – T2= 13 – 8=5
T2 – T1 = T3 – T,= 5 = d (say)
Using, Tn = a + (n – I) d
or 78 = 3 + (n – 1) 5
or 5(n – 1) = 78 – 3 = 75
or n – 1 = 15
or n = 15 + 1 = 16
Hence, 16th term of given AP. is 78.

Question 5.
Find the number of terms in each of the following APs:
(i) 7, 13, 19,…, 205
(ii) 18, 15\(\frac{1}{2}\), 13, ………….., – 47
Solution:
(i) Given A.P. is 7, 13, 19, …………..
T1 = 7, T2 = 13, T3 = 19
T2 – T1 = 13 – 7 = 6
T3 – T2 = 19 – 13 = 6
T2 – T1 = T3 – T2 = 6 = d(say)
Using formula, Tn = a + (n – 1) d
205 = 7 + (n – 1) 6
or (n – 1) 6 = 205 – 7 = 198
or (n – 1) = \(\frac{198}{6}\)
or n – 1 = 33
n = 33 + 1 = 34
Hence, 34th term of an AP. is 205.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A P. is 18, 15\(\frac{1}{2}\), 13, …………..
T1 = 18, T2 = 15\(\frac{1}{2}\) = \(\frac{31}{2}\), T3 = 13
T2 – T1 = \(\frac{31}{2}\) – 18 = \(\frac{31-36}{2}=-\frac{5}{2}\)
T3 – T2 = 13 – \(\frac{31}{2}\) = \(\frac{26-31}{2}=-\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{-5}{2}\) = d (say)
Using formula. Tn = a + (n – 1) d
– 47 = 18 + (n – 1) \(\frac{-5}{2}\)
or (n – 1) (\(\frac{-5}{2}\)) = – 47 – 18
or (n – 1) (\(\frac{-5}{2}\)) = – 65
or n – 1 = – 65 × – \(\frac{2}{5}\)
or n – 1 = 26
or n = 26 + 1 = 27
Hence, 27th term of an A.P. is – 47.

Question 6.
Is – 150 a term of 11, 8, 5, 2….? why?
Solution:
Given sequence is 11, 8, 5, 2, ………..
T1 = 11, T2 = 8, T3 = 5, T4 = 2
T2 – T1 = 8 – 11 = – 3
T3 – T2 = 5 – 8 = – 3
T4 – T3 = 2 – 5 = – 3
T2 – T1 = T3 – T2 = T4 – T3 = – 3 = d (say).
Let – 150 be any term of given A.P.
then Tn = – 150
a+(n – 1)d = – 150
or 11 +(n – 1)(- 3) = – 150
or (n – 1)( – 3) = – 150 – 11 = – 161
or n – 1 = \(\frac{161}{3}\)
or n = \(\frac{161}{3}\) + 1 = \(\frac{161+3}{3}\)
n = \(\frac{164}{3}\) = 54\(\frac{2}{3}\),
which is not a natural number.
Hence, – 150 cannot be a term of given A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 7.
Find the 31st term of an AP whose 11th term is 38 and 16th term is 73.
Solution:
Let ‘a’ and 4d’ be the first term and common difference of given A.P.
Given that T11 = 38
a +(11 – 1) d = 38
[∵ Tn = a + (n – 1) d]
a + 10 d = 38
and T16 = 73
a + (16 – 1) d = 73
[∵ Tn = a + (n – 1) d]
a + 15 d = 73
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 5

Substitute this value of d in (1), we get
a + 10 (7) = 38
or a + 70 = 38
or a = 38 – 70 = – 32
Now, T31 = a + (31 – 1) d
= – 32 + 30 (7) = – 32 + 210 = 178.

Question 8.
An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 291h term.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that, T3 = 12
a + (3 – 1) d = 12
∵ Tn = a + (n – 1) d
or a + 2d = 12 ………………(1)
and Last term = T50 = 106
a + (50 – 1) d = 106
∵ Tn = a + (n – 1) d
a + 49 d = 106 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 6

Substitute this value of d in (1), we get
a + 2(2) = 12
or a + 4 = 12
or a + 12 – 4 = 8
Now, T29 = a + (29 – 1) d
= 8 + 28 (2) = 8 + 56 = 64.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 9.
If the 3rd and 9th tenus of an A.P. are 4 and – 8 respectively, which term of this A.P. is zero.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given AP.
Given that: T3 = 4
a + (3 – 1) d = 4
∵ Tn = a + (n – 1) d
a + 2d = 4 …………..(1)
and T9 = – 8
a + (9 – 1) d = 8
and T9 = – 8
a + (9 – 1)d = 8
∵ Tn = a + (n – 1) d
or a + 8d = – 8
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 7

Substitute this value of d in (1), we get
a + 2(- 2) = 4
or a – 4 = 4
or a = 4 + 4 = 8
Now, Tn = 0 (Given)
a + (n – 1) d = 0
or 8 + (n – 1)(- 2)=0
or -2 (n – 1) = – 8
or n – 1 = 4
or n = 4 + 1 = 5
Hence, 5th term of an AP. is zero.

Question 10.
The 17th term of an A.P. exceeds its 10th term by 7. Find the common difference.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Now, T17 = a + (17 – 1) d = a + 16 d
and T10 = a + (10 – 1) d = a + 9 d
According to question
T17 – T10 = 7
(a + 16 d) – (a + 9 d) = 7
or a + 16 d – a – 9 d = 7
7 d = 7
or d = \(\frac{7}{7}\) = 1
Hence, common difference is 1.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 11.
Which term of the A.P. 3, 15, 27, 39, …………. will be 132 more than its 54th term?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given A.P. is 3, 15, 27, 39, …
T1 = 3, T2 = 15, T3 = 27, T4 = 39
T2 – T1 = 15 – 3 = 12
T3 – T2 = 27 – 15 = 12
:. d=T2 – T1 = T3 – T2 =12
Now, T54 = a + (54 – 1) d
= 3 + 53 (12) = 3 + 636 = 639
According to question
T = T54 + 132
a + (n – 1)d = 639 + 132
3 + (n – 1)(12) = 771
(n – 1) 12 = 771 – 3 = 768
or n – 1 = \(\frac{768}{12}\) = 64
or n = 64 + 1 = 65
Hence, 65th term of A.P. is 132 more than its 54th term.

Question 12.
Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of first AP.
Also, ‘A’ and ‘d’ be the first term and common difference of second A.P.
According to question
[T100 of second A.P.] – [T100 of first A.P.] = 100
or[A +(100 – 1)d] – [a +(100 – 1)d] = 100
or A + 99d – a – 99d = 100
or A – a = 100
Now, [T1000 of second A.P.] – [T1000 of first A.P.]
= [A + (1000 – 1) d) – (a + (1000 – 1) d]
= A + 999 d – a – 999 d
= A – a = 100 [Using (I)].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 13.
How many three-digits numbers are divisible by 7?
Solution:
Three digits numbers which divisible by 7 are 105, 112, 119 , 994
Here a = T1 = 105, T2 = 112, T3 = 119 and Tn = 994
T2 – T1 = 112 – 105=7
T3 – T2 = 119 – 112=7
∴ d = T2 – T1 = T3 – T2 = 7
Given that, Tn = 994
a + (n – 1) d = 994
or 105 + (n – 1) 7 = 994
or (n – 1) 7 = 994 – 105
or (n – 1) 7 = 889
or n – 1 = \(\frac{889}{7}\) = 127
or n = 127 + 1 = 128.
Hence, 128 terms of three digit number are divisible by 7.

Question 14.
How many multiples of 411e between 10 and 250?
Solution:
Multiples of 4 lie between 10 and 250 are 12, 16, 20, 24, … 248
Here a = T1 = 12, T2 = 16, T3 = 20 and Tn = 248
T2 – T1 = 16 – 12 = 4
T3 – T2 = 20 – 16 = 4
∴ d = T2 – T1 = T3 – T2 = 4
Given that, Tn = 248
a + (n – 1) d = 248
or 12 + (n – 1)4 = 248
or 4(n – 1) = 248 – 12 = 236
or n – 1 = \(\frac{236}{4}\) = 59
or n = 59 + 1 = 60
Hence, there are 60 terms which are multiples of 4 lies between 10 and 250.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 15.
For what value of n, are the n terms of two A.P.s 63, 65, 67, …………. and 3, 10, 17, …………….. equal?
Solution:
Given A.P. is 63, 65, 67, ……………..
Here a = T1 = 63, T2 = 65, T3 = 67
T2 – T1 = 65 – 63 = 2
T3 – T2 = 67 – 65 = 2
∴ d = T2 – T1 = T3 – T2 = 2
and second A.P. is 3, 10, 17, …
Here a = T1 = 3, T2 = 10, T3 = 17
T2 – T1 = 10 – 3 = 7
T3 – T2 = 17 – 10 = 7
According to question.
[nth term of first A.P.] = [nth term of second A.P.]
63 + (n – 1)2 = 3 + (n – 1) 7
or 63 + 2n – 2 = 3 + 7n – 7
or 61 + 2n = 7n – 4
or 2n – 7n = – 4 – 61
– 5n = – 65
n = \(\frac{65}{5}\) = 13.

Question 16.
Determine the AP. whose third term is 16 and 7 term exceeds the by 12.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that T3 = 16
a + (3 – 1) d = 16
a + 2d = 16
According to question
T7 – T5 = 12
[a + (7 – 1) d] – [a + (5 -1) d] = 12
a + 6 d – a – 44 = 12
2d = 12
d = \(\frac{12}{2}\) = 6
Substitute this value of d in (1), we get
a + 2(6) = 16
a = 16 – 12 = 4 .
Hence, given A.P. are 4, 10, 16, 22, 28, ………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 17.
Find the 20th term from the last term of the AP: 3, 8, 13, ………., 253.
Solution:
Given A.P. is 3, 8, 13, …………., 253
Here, a = T1 = 3, T2 = 8, T3 =13 and Tn = 253
T2 – T1 = 8 – 3 = 5
T3 – T2 = 13 – 8 = 5
∴ d = T2 – T1 = T3 – T1 = 5
Now, Tn = 253
3 + (n – 1)5 = 253
∵ Tn = a + (n – 1) d
(n – 1) 5 = 250
n-1 = \(\frac{250}{5}\) = 50
n = 50 + 1 = 51
20th term from the end of AP = (Total number of terms) – 20 + 1
= 51 – 20 + 1 = 32nd term
∴ 20th term from the end of AP
= 32nd term from the starting
= 3 + (32 – 1)5
∵ Tn = a + (n – 1)d
= 3 + 31 × 5
= 3 + 155 = 158.

Question 18.
The sum of the 4th and 8th term of an AP is 24 and the sum of the 6’ and 10th terms is 44. FInd the first three terms of the A.P.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
According to 1st condition
T4 + T8 = 24
a + (4 – 1) d + a + (8 – 1) d = 24
∵ Tn = a + (n – 1) d
or 2a + 3d + 7d = 24
2a + 10d = 24
a + 5d = 12 …………(1)
According to 2nd condition
T6 + T10 = 44
a + (6 – 1) d + a +(10 – 1) d = 44
∵ Tn = a + (n – 1) d
2a + 5d + 9d = 44
2a + 14d = 44
a + 7d = 22
Now (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 8

Substitute this value of d in (I). we get
a + 5(5) = 12
a + 25 = 12
a = 12 – 25 = -13
T1 = a = -13
T2 = a + d = 13 + 5 = -8
T2 = a + 2d = – 13 + 2(5) = – 13 + 10 = -3
Hence, given A.P. is -13, -8, -3, ……………

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 19.
Subba Rao started work in 1995 at an annual salary of ₹ 5000 and received an increment of ₹ 200 each year. In which year did his income reach ₹ 7000?
Solution:
Subba Rao’s starting salary = ₹ 5000
Annual increment = ₹ 200
Let ‘n’ denotes number of years.
∴ first term = a = ₹ 5000
Common diflerence = d = ₹ 200
and Tn = ₹ 7000
5000 + (n – 1) 200 = 7000
∵ Tn = a + (n – 1) d
(n – 1) 200 = 7000 – 5000
or (n – 1) 200 = 2000
or n – 1 = \(\frac{2000}{200}\) = 10
or n = 10 + 1 = 11
Now, in case of year the sequence are 1995. 1996, 1997, 1998, ……………
Here a = 1995, d = 1 and n = 11
Let Tn denotes the required year.
∴ Tn = 1995 + (11 – 1) 1
= 1995 + 10 = 2005
Hence, in 2005, Subba Rao’s salary becomes 7000.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 20.
Ramkali saved ₹ 5 in the first week of a year and then increased her weekly saving by ₹ 1.75. If in the nth week, her weekly saving becomes ₹ 20.75, find n.
Solution:
Amount saved in first week = ₹ 5
Increment in saving every week = ₹ 1.75
It is clear that, it form an A.P. whose terms are
T1 = 5, d = 1.75
∴ T2 = 5 + 1.75 = 6.75
T3 = 6.75 + 1.75 = 8.50
Also. Tn = 20. 75 (Given)
5 + (n – 1) 1.75 = 20.75
∵ Tn = a + (n – 1) d
or (n – 1) 1.75 = 20.75 – 5
or (n – 1) 1.75 = 15.75
or (n – 1) = \(\frac{1575}{100} \times \frac{100}{175}\)
or n – 1 = 9
or n = 9 + 1 = 10
Hence, in 10th week, Ramkali’s saving becomes ₹ 20.75.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

Question1.
A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of it.
Solution:
Radius of cone = Radius of hemisphere = 1 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 1

R = 1 cm
Height of cone (H) = 1 cm
Volume of solid = volume of cone + volume of hemisphere
= \(\frac{1}{3}\) πR2H + \(\frac{2}{3}\) πR3
= \(\frac{1}{3}\) πR22 [H + 2R]
= \(\frac{1}{3}\) π × 1 × 1 [1 + 2 × 1]
= \(\frac{1}{3}\) π × 3 = π cm3
Hence, Volume of solid = π cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 2.
Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is 3 cm and its length is 12 cm. If each cone has a height of 2 cm, find the volume of air contained in the model the Rachel made. (Assume the outer and inner dimensions of the model to be nearly the same.)
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 2

Radius of cone = Radius of cylinder (R) = \(\frac{3}{2}\) cm
∴ R = 1.5 cm
Height of eah cone (h) = 2 cm
∴ Height of cylinder = 12 – 2 – 2 = 8 cm
Volume of air in cylinder = volume of cylinder + 2 (volume of cone)

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 3

Volume of air in cylinder = \(\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3}\)
= 22 × 3 = 66 cm3

Hence, Volume of air in cylinder =66 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 3.
A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 4

Solution:
Gulab Jamun is in the shape of cylinder
Diameter of cylinder = Diameter of hemisphere = 2.8 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 11

Radius of cylinder = Radius of hemisphere (R)
= \(\frac{28.2}{2}\) = 1.4 cm
R = 1.4 cm
Height of cylindrical part = 5 – 1.4 – 1.4
= (5 – 2.8) cm = 2.2 cm.
Volume of one gulab Jamun = Volume of cylinder + 2 [Volume of hemisphere]
= πR2H + 2 \(\frac{2}{3}\) πR3

= πR2 H + \(\frac{4}{3}\) R

= \(\frac{4}{4}\) × 1.4 × 1.4 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{14}{10}\) × \(\frac{14}{10}\) 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{196}{100}\) [2.2 + 1.86]

= \(\frac{22 \times 28}{100}\) [4.06]

Volume of one gulab Jamun = 25.05 cm3
Now volume of 45 gulab Jamuns = 45 × 25.05 cm3 = 1127.25 cm3
Volume of sugar syrup = 30% volume of 45 gulab Jamuns
= \(\frac{30 \times 1127.25}{100}\) = 338.175 cm3
Hence, Approximately sugar syrup = 338 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 4.
A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are 15 cm by 10 cm by 3.5 cm. The radius of each of the depressions is 0.5 cm and the depth is 1.4 cm. Find the volume of wood in the entire stand.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 5

Solution. Length of cuboid (L) = 15 cm
Width of cuboid (B) = 10 cm
Height of cuboid (H) = 3.5 cm
Radius of conical cavity (r) = 0.5 cm
Height of conical cavity (h) = 1.4 cm
Volume of wood in Pen stand = volume of cuboid – 4 [volume of cone]
= LBH – 4 \(\frac{1}{3}\) πr2h

= 15 × 10 × 3.5 – \(\frac{4}{3}\) × \(\frac{22}{7}\) × 0.5 × 0.5 × 1.4

= \(\frac{15 \times 10 \times 35}{10}-\frac{4}{3} \times \frac{22}{7} \times \frac{5}{10} \times \frac{5}{10} \times \frac{14}{10}\)

= \(15 \times 35-\frac{22}{3 \times 5}\)
= 525 – 1.466 = 523.534 cm3
Hence, Volume of wood in Pen stand = 523.53 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 5.
A vessel is in the form of an inverted cone. Its height ¡s 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 6

Radius of cone (R) = 5 cm
Height of cone (H) = 8 cm
Radius of each spherical lead shot (r) = 0.5 cm
Let number of shot put into the cone = N
According to Question,
N [Volume of one lead shot] = \(\frac{1}{4}\) Volume of water in cone

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 7

= 10 × 10 = 100
Hence, Number of lead shots = 100.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 6.
A solid iron pole consists of a cylinder of height 220 cfi and base diameter 24 cm, which is surmounted by another cylinder of height 60 cm and radius 8 cm. Find the mass of the pole, given that 1 cm3 of Iron has approximately 8 g mass. (Use n = 3.14)
Solution:
Diameter of lower cylinder = 24 cm
Radius of lower cylinder (R) = 12 cm
Height of lower cylinder (H) = 220 cm
Radius of upper cylinder (r) = 8 cm
Height of upper cylinder (h) = 60 cm
Volume of pole = Volume of Lower cylinder + volume of upper cylinder
= πR2H + πr2h
= 3.14 × 12 × 12 × 220 + 3.14 × 8 × 8 × 60
= 99475.2 + 12057.6

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 8

Volume of pole = 111532.8 cm3
Mass of 1 cm3 = 8 gm
Mass of 111532.8 cm3 = 8 × 111532.8 = 892262.4 gm
= \(\frac{892262.4}{1000}\) kg = 892.2624 kg
Hence, Mass of Pole = 892.2624 kg.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 7.
A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm.
Solution:
Radius of cone = Radius of hemisphere = Radius of cylinder

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 9

Height of cone (h) = 120 cm
Height of cylinder (H) = 180 cm
Volume of cylindrical vessel = πR2H
= \(\frac{22}{7}\) × 60 × 60 × 180 = 2036571.4 cm3
Volume of solid inserted in cylinder = Volume of hemisphere + Volume of cone
= \(\frac{2}{3}\) πR3 + \(\frac{1}{3}\) πR2h

= \(\frac{1}{3}\) πR2 [2R + h]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 60 × 60 [2 × 60 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 [120 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 × 240 = 905142.86 cm3
Volume of water flows out = 90514186 cm3
∴ Volume of water left in cylinder = Volume of cylinder – Volume of solid inserted in th’e vessel
= (2036571.4 – 905142.86) cm3 = 1131428.5 cm3
= \(\frac{1131428.5}{100 \times 100 \times 100}\) m3 = 1.131 m3
Hence, Volume of water left in cylinder = 1.131 m3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 8.
A spherical glass vessel has a cylindrical neck 8 cm long, 2 cm in diameter; the diameter of the spherical part is 8.5 cm. By measuring the amount of water it holds, a child finds its volume to be 345 cm3. Check whether she is correct, taking the above as the inside measurements, and π = 3.14.
Solution:
Diameter of neck (cylindrical Portion) = 2 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 10

Radius of neck (r) = 1 cm
Height of cylindrical portion (H) = 8 cm
Diameter of spherical portion = 8.5 cm
Radius of spherical portion (R) = \(\frac{8.5}{2}\) cm = 4.25 cm
Volume of water in vessel = Volume of sphere + Volume of cylinder
= \(\frac{4}{3}\) πR3 + πR2h
= \(\frac{4}{3}\) × 3.14 × 4.25 × 4.25 × 4.25 × 3.14 × 1 × 1 × 8
= 321.39 + 25.12 = 346.51 cm3
Hence, Volume of water in vessel = 346.51 cm3 and She is wrong.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes Ex 13.1

Question 1.
2 cubes each of volume 64 cm3 are joined end to end. Find the surface area of the resulting cuboid.
Solution:
Let side of cube = x cm
Volume of cube = 64 cm3
[volume of cube = (side)3]
x3 = 64
x = \(\sqrt[3]{4 \times 4 \times 4}\)
x = 4 cm
∴ side of cube = 4 cm.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 1

When cubes are joined end to end and cuboid is formed
whose Length = 2x cm = 2(4) = 8 cm
Width = x cm = 4 cm
Height = x cm = 4 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 2

Surface area of cuboid = 2[LB + Bh + hL]
= 2 [8 × 4 + 4 × 4 + 4 × 8]
= 2 [32 + 16 + 32]
= 2 [80]
∴ Surface area of cuboid = 160 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 2.
A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere ¡s 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel.
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 3

Diameter of hemisphere = Diameter of cylinder
= 14 cm
2R = 14 cm
Radius of hemisphere (R) = 7 cm
Total height of vessel = 13 cm
∴ Height of cylinder = (13 – 7) = 6 cm
Inner surface area of vessel = inner surface area of cylinder + Inner surface area of hemisphere
= 2πRH + 2πR2
= 2πR [H + R]
= 2 × \(\frac{22}{7}\) × 7(16 + 7)
= 44 × 13 = 572 cm2
Hence, Inner surface area of vessel = 572 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 3.
A toy is ¡n the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.
Solution:
Radius of cone = Radius of hemisphere (R) = 3.5 cm
Total height of toy = 15.5 cm
∴ Height of cone (H) = (15.5 – 3.5) = 12 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 4

Slant height of cone = \(\sqrt{\mathrm{R}^{2}+\mathrm{H}^{2}}\)

= \(\sqrt{(3.5)^{2}+(12)^{2}}\)

= \(\sqrt{12.25+144}\) = \(\sqrt{156.25}\)
Slain height conk (l) = 12.5 cm
Total surface area of toy = Surface area of cone + Surface area of hemisphere
= πRL + 2πR2
= πR[L + 2R]
= \(\frac{22}{7}\) × 3.5 [12.5 + 2 (3.5)1 cm2
= \(\frac{22}{7}\) × 3.5 [19.5] cm2
= \(\frac{1501.5}{7}\) = 214.5 cm2
∴ Total surface area of toy = 214.5 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 4.
A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have?
Find the surface area of the solid.
Solution:
Side of cubical box = 7 cm
Diameter of hemisphere = Side of cubical box = 7 cm
2R = 7
R = \(\frac{7}{2}\) cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 5

Surface area of solid = (surface area of the cube) – (area of base of hemisphere) + curved surface area of hemisphere)
= 6l2 – πR2 + 2πR2
= 6l2 + πR2
= 6(7)2 + \(\frac{22}{7}\) \(\frac{7}{2}\)2
= [6 × 49 + 11 × \(\frac{7}{2}\)]cm2
= 294 + 38.5 = 332.5 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 5.
A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter l of (he hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.
Solution:
Let each side of cube = a
∴ Diameter of hemisphere = Side of cube
2R = a
R = \(\frac{a}{2}\)

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 6

Surface area of remaining solid = Total surface area of euboid – Area of the top of cube + Inner curved Surface area of hemisphere
= 6 (side)2 – πR2 + 2πR2
= 6(a)2 + πR2
= 6(a)2 + π \(\frac{a}{2}\)2
= 6a2 + π \(\frac{a^{2}}{4}\)
= a2 6 + \(\frac{\pi}{4}\) cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 6.
A medicine capsule is ¡n the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm. Find its surface area.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 7

Solution:
Diameter of capsule = Diameter of hemisphere = Diameter of cylinder = 5 mm
∴ 2R = 5 mm
R = \(\frac{5}{2}\) mm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 8

Length of entire capsule = 14 mm
Height of cylinderical part = (14 – \(\frac{5}{2}\) – \(\frac{5}{2}\)) mm
= (14 – 5) mm
H = 9 mm
Surface area of capsule = Surface area of cylinder + 2 Surface area of hemisphere
= 2πRH + 2 (2πR2)
= 2πRH + 4πR2
= 2πR [H + 2R]
= 2 × \(\frac{22}{7} \times \frac{5}{2}\left[9+2\left(\frac{5}{2}\right)\right]\)
= 2 × \(\frac{22}{7}\) × \(\frac{5}{2}\) [9 + 5]
= \(\frac{22}{7}\) × 5 × 14
= 220 mm2
Hence, Surface area of capsule = 220 mm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 7.
A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m, find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of 500 per (Note that the base of the tent will not be
covered with canvas.)
Solution:
Diameter of cone = Diameter of cylinder
2R = 4
R = 2 m

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 9

Radius of cone = Radius of cylinder
Height of cylinder (H) = 2.1 in
Slant height of cone (L) = 2.8 m
Curved surface area of tent = Curved surface of cylinder + Curved surface of conical part
= 2πRH + πRL
= πR [2H + L]
= \(\frac{22}{7}\) × 2[2(2.1) + 2.8]
= \(\frac{22}{7}\) × 2[4.2 + 2.8]
= \(\frac{22}{7}\) × 2 × 7
= 44 m2
∴ Curved surface area of tent = 44 m2
Cost of 1m2 canvas = ₹ 500
Cost of 44 m2 canvas = 44 × 500 = ₹ 22000
Hence, Total cost of canvas = ₹ 22000.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 8.
From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2.
Solution:
Diameter of cylinder (D) = 1.4 cm = Diameter of cone
∴ Radius of cylinder = Radius of cone (R) = 0.7 cm
Height of cylinder (H) = 2.4 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 10

As we know, L2 = R2 + H2 + (2.4)2
L = \(\sqrt{(0.7)^{2}+(2.4)^{2}}\)
= \(\sqrt{0.49+5.76}\) = \(\sqrt{6.25}\)
L = 2.5 cm
Total surface area of remaining solid = curved surface area of cylinder + Area of base of cylinder + Surface area of cone
= 2πRH + πR2 + πRL
= πR [2R +R + L]
= \(\frac{22}{7}\) × 0.7 [2(2.4) + 0.7 + 2.5]

=\(\frac{22}{7}\) × \(\frac{7}{10}\) [4.8 + 3.2]

= \(\frac{22}{10}\) [8]

= \(\frac{176}{10}\) = 17.6 cm2

Hence, Total surface area remaining solid to nearest cm2 = 18 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.1

Question 9.
A wooden article was made by scooping out a hemisphere form each end of a solid cylinder, as shown in Fig.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 11

If the height of the cylinder is 10 cm, and its base ¡s of radius 3.5 cm, find the total surface area of the article.
Solution:
Height of cylinder (H) = 10 cm
Radius of cylinder = Radius of hemisphere (R) = 3.5 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.1 12

Surface area of article = curved surface area of cylinder + 2 curved surface area of hemisphere
= 2πRH + 2 (2πR2)
= 2πR [H + 2R]
= 2 × \(\frac{22}{7}\) × 3.5 [10 + 2(3.5)]
= \(\frac{44}{7}\) × \(\frac{35}{10}\) [10 + 7]
= 44 × \(\frac{5}{10}\) × 17
= 44 × \(\frac{1}{2}\) × 17
= 22 × 17 = 374 cm2
Hence, total surface area of article = 374 cm2.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 12 Areas Related to Circles Ex 12.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 12 Areas Related to Circles Ex 12.3

Question 1.
Find the area of the shaded region in Fig., If PQ = 24 cm, PR =7 cm and O is the centre of the circle.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 1

Solution:
PQ = 24 cm
PR = 7 cm
RQ is diameter of circle
∠RPQ = 90° Angle in semi circle
In ∆PQR,
QR2 = RP2 + PQ2
QR = \(\sqrt{(7)^{2}+(24)^{2}}=\sqrt{49+576}\)
= \(\sqrt{625}\)
QR = 25 cm
∴ Diameter of circle (QR) = 25 cm
Radius of circle (R) = \(\frac{25}{2}\) cm
Area of shaded region = Area of the semicircle – Area of ∆RPQ
= \(\frac{1}{2} \pi \mathrm{R}^{2}-\frac{1}{2} \mathrm{RP} \times \mathrm{PQ}\)

= \(\left[\frac{1}{2} \times \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2}-\frac{1}{2} \times 7 \times 24\right]\) cm2

= \(\left[\frac{6875}{28}-84\right]\)
= 245.53 – 84 = 161.53 cm2
∴ Area of shaded region = 161.53 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 2.
Find the area of the shaded region in Fig., if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and ∠AOC = 40°.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 2

Solution:
Radius of smaller circle (r) = 7 cm
Radius of bigger circle (R) = 14 cm
Central angle ∠AOC (θ) = 40°
Area of shaded region = Area of bigger sector OAC – Area of smaller sector OBD
= \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}-\frac{\pi r^{2} \theta}{360^{\circ}}\)

= \(\frac{\pi \theta}{360^{\circ}}\) [R2 – r2]

= \(\frac{22}{7} \times \frac{40}{360}\) × [142 – 72]

= \(\frac{22}{63}\) [196 – 49]

= \(\frac{22}{63}\) × 147 = 51.33 cm2
∴ Shaded Region = 51.33 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 3.
Find the area of the shaded region in fig., if ABCD is a square of side 14 cm and APD and BPC are semi circles.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 3

Solution:
Side of square = 14 cm
Diameter of semicircle (AB = BC) = 14 cm
Radius of semi circle (R) = 7 cm
Area of square = (Side)2
= 14 × 14 = 196cm2
Area of a semi circles = \(\frac{1}{2}\) πR2
= \(\frac{1}{2} \times \frac{22}{7}\) × 7 × 7
= 77 cm2
Area of two semi circle = 2(77) = 154 cm2
Area of shaded region = Area of square ABCD – Area of two semi circles
= (196 – 154) = 42 cm2
Area of shaded region = 42 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 4.
Find the area of the shaded region in fig., where a circular arc of radius 6 cm has been drawn iith vertex O of an equilateral triangle OAB of side 12 cm as centre.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 4

[Each angle of equilateral triangle is 60°]
Area of major sector of circle = Area of circle – Area of sector
= πR2 – \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}\)

= \(\frac{22}{7}\) × 6 × 6 – \(\frac{22}{7}\) × 6 × 6 × \(\frac{60}{360}\)

= \(\frac{22}{7}\) × 6 × 6 1 – \(\frac{60}{360}\)

= \(\frac{22}{7}\) × 36 1 – \(\frac{1}{6}\)

= \(\frac{22}{7}\) × 36 × \(\frac{5}{6}\)
= 94.28 cm2
∴ Area of major sector of circle = 94.28 cm2
Area of equilateral triangle OAB = \(\frac{\sqrt{3}}{4}\) (side)2
= \(\frac{1.73}{4}\) × 12 × 12
= 1.73 × 36 = 62.28 cm2
Shaded Area = Area of equilateral triangle OAB + Area of major sector of circle
= 62.28 + 94.28 = 62.28 cm2
Shaded Area = Area of equilateral triangle OAR + Area of major sectoç of circle
= 62.28 + 94.28 = 156.56
Shaded Area = 156.56 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 5.
From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in fig. Find the area of the remaining portion of the square.
Solution:
Side of square = 4 cm
Radius of each semi circle cut out (r) = 1 cm

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 5

Diameter of circle (R) = 2 cm
.. Radius of circle (R) = 1 cm
Area of square = (Side)2
= (4)2 = 16 cm2
Area of 4 quadrants = 4\(\left[\frac{\pi^{2} \theta}{360^{\circ}}\right]\)

= \(\frac{4 \times 90}{360} \times \frac{22}{7} 1 \times 1\)

= 1 × \(\frac{22}{7}\) × 1 × 1 = 3.14 cm2
Area of circle = πR2
= \(\frac{22}{7}\) × 1 × 1
Area of circle = 3.14 cm2
Required area = Area of square – Area of 4 quadrants – Area of circle
= (16 – 3.14 – 3.14) cm2 = 9.72 cm2
Required Area = 9.72 cm2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 6.
In a circular table cover of radius 32 cm, a design is formed leaving an equilateral triangle ABC in the middle as
shown in fig. Find the area of the design (shaded region).

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 5

Solution:
Radius of table cover (R) = 32 cm
OA = OB = OC = 32 cm

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 7

∆ABC is equilateral triangle with AB = AC = BC
∠AOB = ∠BOC = ∠COA = 120°
Now, in ∆BOC,
From O draw, angle bisector of ∠BOC as well as perpendicular bisector 0M of BC.
∴ BM = MC = \(\frac{1}{2}\) BC
Also, OB = OC [radii of the circle]
∴ ∠B = ∠C
∴ ∠O + ∠B + ∠C = 180°
120° + 2∠B = 180°
∠B = 30°
and ∠B = ∠C = 30°
Also, ∠BOM = ∠COM = 60°
∆OMB ≅ ∆OMC [RHS Cong.]
∴ In ∠OMB,
∠OBM = 30° [∠O = 60° and ∠M = 90°]
∴ \(\frac{\mathrm{BM}}{\mathrm{OB}}\) = cos 30°

\(\frac{\mathrm{BM}}{32}=\frac{\sqrt{3}}{2}\)

BM = 16√3 cm.

∴ BC = 2 MB = 32√3 cm
Area of circle = πR2 = \(\frac{22}{7}\) × (32)2
= \(\frac{22}{7}\) × 32 × 32 = 3218.28 cm2

Area of ∆ABC = 4 (side)2
= \(\frac{1.73}{4}\) × 32√3 × 32√3 = 1328.64 cm2

∴ Required Area = Area of circle – Area of ∆ABC
= 3218.28 – 1328.64 = 1889.64 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3

Question 7.
In fig., ABCD is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 8

Solution:
Side of square ABCD = 14 cm
Radius of circle (R) = 7 cm
Sector angle (θ) = 90° [Each angle of square 90°]
Area of square = (side)2
= 14 × 14 = 196 cm2
Area of four quadrants = 4 \(\left[\frac{\pi R^{2} \theta}{360}\right]\)
= 4 × \(\frac{22}{7} \times \frac{7 \times 7 \times 90}{360}\)
= 22 × 7 = 154 cm2
∴ Required shaded area = Area of square – Area of 4 quadrants
= 196 – 154 = 42 cm2.

 

Question 8.
Fig. depicts a racing track whose left and right ends are semicircular. The distahce between the two inner parallel line segments is 60 m and they are each 106 m long. 1f the track is 10 m wide, find
(i) the distance around the track along its inner edge.
(ii) the area of the track.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 9

Solution:

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 10

(i) Here AB = DC = 106 m
AF = BE = CG = HD = 10m
Diameter of inner semicircle (APD and BRC) =60 m
∴ Radius of inner semicircle (APD (r) = 30 m
Radius of outer semicircle (R) = r + 10 = 30 + 10 = 40 m
Distance around the track along inner edge = AB + circumference of semi circle BRC + CD + circumference of semi circle DPA
= 2 AB + 2 [circumference of semi circle BRC]
= 2 (106) + 2(\(\left(\frac{2 \pi r}{2}\right)\))
= 212 + 2πr
= 212 + 2 × \(\frac{22}{7}\) × 30
= 212 + \(\frac{60 \times 22}{7}\)
= 212 + 188.57 = 400.57 m.
∴ Distance around the track along its inner edge = 400.57 m

(ii) Area of track = Area of rectangle ABEF + Area of region BEMGCRB + Area of rectangle CGHD + area of region.
= 2 Area of rectangle ABCD + 2 Area of region (II)
= 2 (AB × AF) + 2
[Area of semi circle with Radius 60 cm – Area of semi circle with radius 30 cm]
= 2 [106 × 10] + 2 [latex]\frac{\pi \mathrm{R}^{2}}{2}-\frac{\pi r^{2}}{2}[/latex]
= 2 × 1060 + \(\frac{2 \pi}{2}\) [R2 – r2]
= 2120 + \(\frac{22}{7}\) (402 – 302)
= 2120 + \(\frac{22}{7}\) [1600 – 900]
= 2120 + \(\frac{22}{7}\) [700]
= 2120 + 2200 = 4320 m2
Area of track = 4320 m2

Question 9.
In Fig., AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle. If OA = 7 cm, find the area of the shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 11

Solution:
Diameter of circle = 14 cm
Radius of circle = 7 cm
Diameter of smaller circle = 7 cm
∴ Radius of smaller circle = \(\frac{7}{2}\) cm
Since AB and CD are to perpendicular the diameters of a circle,
∴ AO ⊥ CD
Area of bigger circle = πR2 × 7 × 7 = 154 cm2
Area of bigger semicircle = \(\frac{154}{2}\) = 77 cm2
Area of smaller circle = πr2
= \(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\)
= 38.50 cm2

Area of ∆ABC = \(\frac{1}{2}\) Base × Altitude
= \(\frac{1}{2}\) × 14 × 7 = 49 cm2
∴ Shaded Area = Area of bigger semi circle + Area of smaller circle – Area of triangle
= (77 – 49 + 38.5) cm2 = 66.5 cm2

Question 10.
The area of an equilateral triangle ABC is 17320.5 cm2. With each vertex of the triangle as centre, a circle is drawn with radius equal to half of the length of the side of the triangle (see Fig.). Find the area of the shaded region.
(Use n = 3.14 and ,√3 = 1.73205)

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 12

Solution:
Area of equilateral triangle ABC = 17320.5 cm2

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 13

\(\frac{\sqrt{3}}{4}\) (side)2 = 17320.5

(side)2 = \(\frac{17320.5 \times 4}{1.73205}\)

(side)2 = \(\frac{173205}{10} \times \frac{100000 \times 4}{173205}\)

side = \(\sqrt{4 \times 100 \times 100}\)
side = 2 × 100 = 200 cm
AB = BC = AC
Radius of circle (R) = \(\frac{A B}{2}=\frac{200}{2}\) = 100 cm
Sector angle, θ = 60°
Area of sector APN = \(\frac{\pi \mathrm{R}^{2} \theta}{360}\)

= \(\frac{3.14 \times 100 \times 100 \times 60}{360}\)

= \(\frac{15700}{3}\)

Area of three sector = 3 × \(\frac{15700}{3}\) cm2
∴ Required shaded Area = Area of triangle – Area of three sectors
= 17320.5 – 15700 = 1620.5 cm2
∴ Hence, Required shaded Area = 1620.5 cm2

Question 11.
On a square handkerchief, nine circular designs each of radius 7 cm are made (see Fig). Find the area of the remaining portion of the handkerchief.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 14

Solution:
Radius of circle (R) = 7 cm
Diameter of circle = 2 × R = 2 × 7 = 14 cm
Since there are three circles along a side of square
∴ side of squrae = 3 [14] = 42 cm
Total area of handkerchief = Area of square = (side)2
= (42)2 = 1764 cm2.
Area of 9 circular designs = 9πR2
= 9 × \(\frac{22}{7}\) × (7)2
= 9 × \(\frac{22}{7}\) × 7 × 7
= 9 × 154 = 1386 cm2
∴ Required area of remaining portion = Area of square – Area of 9 circular designs
= 1764 – 1386 = 378 cm2
∴ Required area of remaining portion = 378 cm2.

Question 12.
In Fig., OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the
(i) quadrant OACB,
(ii) shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 15

Solution:

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 16

Radius of quadrant (R) = 3.5 cm
Angle of sector (θ) = 90°
OD = 2 cm.

(i) Area of quadrant OACB = \(\frac{\pi \mathrm{R}^{2} \theta}{360}\)

= \(\frac{22}{7} \times \frac{3.5 \times 3.5 \times 90}{360}\) = 9.625 cm2.

(ii) Area of ODB = \(\frac{1}{2}\) Base × Altitude
= \(\frac{1}{2}\) × 3.5 × 2 = 3.5 cm2

∴ Shaded Area = Area of quadrant OACB – Area of ∆ODB
= 9.625 – 3.5 = 6.125 cm2
∴ Hence, Shaded Area = 6.125 cm2.

Question 13.
In fig., a square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area of the shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 17

Solution:
Side of square ABCO = 20 cm
∠AOC = 90°
AB = OA

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 18

OB2 = OA2 + AB2

OB = \(\sqrt{(20)^{2}+(20)^{2}}\)

= \(\sqrt{400+400}\)

= \(\sqrt{800}=\sqrt{400 \times 2}\)
OB = 20√2 cm
Area of square OABC = (side)2 = (20)2
∴ Area of square = 400 cm2
Radius of quadrant (R) = 20√2 cm
Sector angle (θ) = 90°
∴ Area of sector = \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}\)
= \(\frac{3.14 \times 20 \sqrt{2} \times 20 \sqrt{2} \times 90}{360}\)
= 2 × 314 cm2 = 628 cm2
Required shaded Area = Area of sector – Area of square
= (628 – 400) cm2 = 228 cm2

Question 14.
AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O. If ZAOB = 30°, find the area of the shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 19

Solution:
Radius of sector OBA (R) =21 cm
Radius of sector ODC (r) 7 cm
Sector angle (θ) = 30°
Area of bigger sector (OAB) = \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}\)

= \(\frac{22}{7} \times \frac{21 \times 21 \times 30}{360}\) = 115.5 cm2

Area of smaller sector (ODC) = \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}\)

= \(\frac{22}{7} \times \frac{7 \times 7 \times 30}{360}\) = 12.83 cm2

Area of smaller sector (ODC) = 12.83 cm2
Now, Shaded Area = Area of bigger sector OAB – Area of smaller sector OCD
= 115.5 – 12.83 = 102.66
Hence, Shaded Area = 102.66 cm2.

Question 15.
In fig., ABC is a quadrant of a circle of radius 14 cm and a semi circle is drawn with BC as diameter. Find the area of the shaded region.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 20

Solution:
Radius of quadrant ACPB (r) = 14 cm
Sector angle (θ) = 90°
AB = AC = 14 cm

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 21

Area of triangle = \(\frac{1}{2}\) AB × AC
= \(\frac{1}{2}\) × 14 × 14
= 98 cm2

Area of sector ACPB = \(\frac{\pi \mathrm{R}^{2} \theta}{360^{\circ}}\)

= \(\frac{22}{7} \times \frac{14 \times 14 \times 30}{360}\) = 154 cm2

∴ Area of BOCPB = Area of sector ABPC – Area of \ABC
= 154 cm2 – 98 cm2 = 56 cm2
In ∆BAC, AB2 + AC2 = BC2
(14)2 + (14)2 = BC2
BC = \(\sqrt{196+196}=\sqrt{2(196)}\) = 14√2

∴ Radius of semi circle BOCR = \(\frac{14 \sqrt{2}}{2}\) = 7√2

Area of semi circle = \(\frac{\pi \mathrm{R}^{2}}{2}\)

= \(\frac{22}{7} \times \frac{7 \sqrt{2} \times 7 \sqrt{2}}{2}\)

= \(\frac{22}{7} \times \frac{7 \times 7 \times 2}{2}\)
= 154 cm2

Required Area = Area of semi circle – [Area of sector – Area of ∆BAC]
= 154 – [154 – 98]
= (154 – 56) cm2 = 98 cm2
Hence, Shaded Area = 98 cm2.

Question 16.
Calculate the area of the designed region in fig. common between the two quadrants of circles of radius 8 cm each.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 22

Solution:
Side of square = 8 cm
Area of square = (8)2 = 64 cm2
Line BD divides square ABCD into the equal parts
Area of ∆ABD = ar of ∆BDC
Sector angle θ = 90°
Area of sector = \(\frac{\pi \mathrm{R}^{2} \theta}{360}\)

= \(\frac{22}{7} \times \frac{8 \times 8 \times 90}{360}\)

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.3 23

Area of sector = 50.28 cm2
Area of ∆ABD = \(\frac{1}{2}\) × AB × AD
= \(\frac{1}{2}\) × 8 × 8
= 32 cm2

∴ Area of segment DMBPD = Area of sector ∆BPD – Area of ∆ABD
= 50.28 – 32 = 18.28 cm2
Hence, Shaded area = 2 area of segment DMBPD = 2 (18.28) = 36.56 cm2

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 12 Areas Related to Circles Ex 12.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 12 Areas Related to Circles Ex 12.1

Question 1.
The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
Solution:

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1 1

Radius of first circle (r1) = 19 cm
Radius of second circle (r2) = 9 cm
Let radius of third circle be R cm
According to condition
circumference of first circle + circumference of second circle = circumference of third circle
2πr1 + 2πr2 = 2πR
2π (r1 + r2] = 2πR
19 + 9 = R
∴ R = 28
∴ Radius of third circle (R) = 28 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Question 2.
The Radii of two circles are 8 cm and 6 cm respectively. Find radius of circle which is having area equal to sum of the area of two circles.
Solution:
Radius of first circle (r1) = 8 cm
Radius of second circle (r2) = 6 cm
Let radius of third circle be R cm
According to question
Area of third circle = Area of first circle + Area of second circle
πR2 = πr12 + πr22
πR2 = π[r12 + r22]
R2 = (8)2 + (6)2
R = \(\sqrt{64+36}=\sqrt{100}\)
R = 10 cm
∴ Radius of required circle (R) = 10 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Question 3.
Fig. depicts an archery target marLed with its five scoring areas from the centre ‘utwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score ¡s 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions.

PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1 2

Solution:
Diameter of Gold region = 21 cm
Radius of Gold region (R1) = 10.5 cm
∴ Area of gold region = πR12
= \(\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}=\frac{690}{2}\) cm2
= 346.5 cm2
Width of each band = 10.5 cm
∴ Radius of Red and Gold region (R2) = (10.5 + 10.5) = 21 cm
Combined radius of Blue, Red and Gold region (R3) = R2 + 10.5 cm
= 21 cm + 10.5 cm = 31.5 cm
Combined radius of Black, Blue, Red and Gold (R4) = R3 + 10.5
= 31.5 + 10.5 = 42cm
Area of circle having black radius = (Combined area of Gold, Red, Blue and Black radius) – (Combined Area of Gold, Red and Blue radius)
= πr42 – πr32
= π [(42)2 – (31.5)2]
= \(\frac{22}{7}\) [1764 – 992.25]
= \(\frac{22}{7}\) [771.75] = 2425.5 cm2

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Combined Radius of white, black, blue, red, gold region (R5) = R4 + 10.5
R5 = 42 + 10.5 = 52.5 cm
Combined radius of black, blue, red and gold = (R4) = 42 cm.
Area of circle white scoring region = (Combined area of white, bLack, red, blue, gold region) – (Combined Area of Black, blue and gold region)
= πR52 – πR42
= π[R52 – πR42]
= \(\frac{22}{7}\) × [(52.5)2 – (42)2]
= \(\frac{22}{7}\) [2756.25 – 1764]
= \(\frac{22 \times 992.25}{7}=\frac{21829.5}{7}\)
= 3118.5 cm2
∴ Area of white scoring region = 3118.5 cm2

∴ Area of red region = Area of red and gold region – Area of gold region
= πR22 – πR12
= π [(21)2 – (\(\frac{21}{2}\))2]
= \(\frac{22}{7}\) × 441 [1 – \(\frac{1}{4}\)]
= 22 × 63 \(\frac{3}{4}\)
= \(\frac{11 \times 189}{4}=\frac{2079}{4} \mathrm{~cm}^{2}\)
= 1039.5 cm2

∴ Area of Red region = 1039.5 cm2
Combined Radius of Gold, Red and Blue region R3 (10.5 + 10.5 + 10.5) = 31.5 cm

Area of blue scoring region = (Combined area of red, blue and gold region) – (Combined area of Gold and red region)
= πR32 – πR22
= π[R32 – πR22]
= \(\frac{22}{7}\) × [(31.5)2 – (21)2]
= \(\frac{22}{7}\) [992.25 – 441]
= \(\frac{22}{7}\) × 551.25 = \(\frac{121275}{7}\)
= 1732.5 cm2

Hence, area of gold ring; red ring; blue ring : black ring; white ring are 3465 cm2 ; 1039.5 cm2; 1732.5 cm2; 24255 cm2 ; 3118.5 cm2 respectively.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Question 4.
The wheels of a ca are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a spel of 66 km per hour?
Solution:
Diameter of wheel = 80 cm
Radius of wheel (R) = 40 cm
Circumference of whed = 2πr
= 2 × \(\frac{22}{7}\) × 0.04
= \(\frac{22}{7}\) × 0.08 m
Let us suppose wheel of cr complete n revolutions of the wheel in 10 minutes = n[0.08 × \(\frac{22}{7}\)]
Speed of car = 66 km/hr. = 66 × 1000 m
Distance covered in 60 minutes = \(\frac{66 \times 1000}{60} \times 10\) = 11000 m
According to question.
∴ n[\(\frac{22}{7}\) × 0.08] = 11000
n = \(\frac{11000}{0.08} \times \frac{7}{22}\)
n = 4375
Hence, number of complete revolutions made by wheel in 10 minutes = 4375.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 12 Areas Related to Circles Ex 12.1

Question 5.
Tick the correct answer in the following and justify your choice : If the perimeter and area of a clrde are numerically equal, then the radius of the circle Is
(A) 2 units
(B) π units
(C) 4 units
(D) n units
Solution:
Perimeter of circle = Area of circle
2πR = πR2
2R = R2
⇒ R = 2
∴ Correct option A is (R) = 2 unit.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 11 Constructions Ex 11.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 11 Constructions Ex 11.2

In each of the following, give also the justification of the construction.

Question 1.
Draw a circle of radius 6 cm from a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
Solution:

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 1

Steps of construction:
1. Draw a circle (1) of radius 6 cm.
2. Take a point ‘P’ at a distance of 10 m. from the centre of the circle. Join OP.
3. Draw perpendicular bisector of OP. Let ‘M’ be the mid point OP.
4. With ‘M’ as centre and radius MO, draw a circle (II) which intersects the circle (I) at T and T’.
5. Then FT and PT’ are two required tangents.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Justification of construction:
We know that tangent at a point is always perpendicular to the radius at the point. Now
we have to prove that ∠PTO = ∠PT’O = 90°.
OT is joined.
Now, PMO is the diameter of circle (II) and ∠PTO is in the semicircle.
∴ ∠PTO = 90° [Angle in semicircle is a right angle].
Similarly, ∠PT’O = 90°
∴ PT and PT’ has to be the tangents to the circle at T and T’.
(On measuring, the lengths of tangents
i.e., PT = 8.1 cm
PT’ = 8.1 cm.
Co-centric circles. Two or more circles having same centre but different radii are called CO-CENTRIC circles.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 2.
Construct a tangent to a circle of radivs 4 cm from a point on the co-centric circle of radIus 6 cm and measure its length.
Also, erify the measurement by actual calculation.
Solution: Steps of construction:
STEPS OF CONSTRUCTION:
1. Draw a circle with cente O’ and radius 4 cm. Mark it as 1
2. Draw another circle with same centre ‘O’ and radius 6 cm and mark it as II.
3. Take any point ‘P’ on circle II. Join OP.
4. Draw pependicu1ar bisector of OP. Let it intersects ‘OP’ at M.
5. With M is centre and radius MO’ or ‘MP’, draw a circie III which intersects the circle ‘1’ at T and T’.
6. Join PT.
PT is the required tangent.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 2

Justification of the construction :
Join OT.
Now OP is the diameter of the circle III.
∠OTP is in the semicircle.
∴ ∠OTP = 90° …………….(1)
[∴ Angle in a semicircle isa right angle]
Now OT ⊥ PT [using (I)]
∵ A line which makes an angle of 900 with radius at any point on the circle, the line is tangent to the circle.
∴ PT is tangent to the circle ‘I’
i.e. PT is tangent to the circle of radius 4.5 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

To calculate the length of tangent:
Consider ∆OTP,
∠OTP = 90° [using (i)]
∴ ∆OTP is a right angled triangle.
OT = 4 cm [Radius of I circle (given)]
OP = 6 cm [Radius of the II circle (given)]
PT = ? [to be calculated]
In rt. triangle ∆OTP,
By Pythagoras theorem
OP2 = OT2 + PT2
[(Hyp)2 = (Base)2 + (Perp.)2]
or PT2 = OP2 – OT2
= 62 – 42
= 36 – 16 = 20
PT = \(\sqrt{20}\) cm
= 2√5 = 2 × 2.24 = 4.48 cm.
So, length of tangent by actual calculation = 4.48 cm = 4.5 cm.
Length of tangent by measurement = 4.5 cm
Hence, the length of tangent ‘PT’ is verified.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 3.
Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points ‘P’ and ‘Q’.
Solution:
Steps of construction:
1. Draw a circle of radius 3 cm and centre ‘O’.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 3

2. Draw its diameter ‘AB’ and extend it in both directions as OX and OX’.
3. Take a point P’ on OX” direction and ‘Q’ on OX’ direction such that OP = OQ = 7 cm.
4. Draw perpendicular bisectors of OP and OQ which intersects OP and OQ at ‘M’ and ‘M” respectively.
5. With ‘M’ as centre and radius = ‘MO’ or MP, draw a circle ‘II’ which intersects the circle ‘I’ at T and T’.
6. Similarly with ‘M’’ as centre and radius = M’O or MQ, draw a circle (III) which intersects the circle ‘I’ at S’ and ‘S’’.
7. Join PT, PT’ and QS and QS’.

Justification of construction :
Join OT’ and ‘OT” and ‘OS’ and OS’.
To prove ‘PT & PT’ tangents to the circle
we will prove that ∠PTO = ∠PT’O = 90°.
Now ‘OP’ acts as the diameter of circle ‘II’ and ∠OTP is in the semicircle.
∴ ∠OTP = 90° …………….(1) [∵ Angle in semicircle is 90°]
But ‘OT’ is the radius of circle ‘I’ and line ‘PT’ touches the circle at T’.
∵ The line which touches the circle at a point and makes an angle of 90° with radius at that point, is tangent to the circle.
∴ PT is tangent to the circle I at point T through point ‘P.
Similarly PT’, QS and QS’ are tangents to the circle I.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 4.
Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°
Solution:
Steps of construction:
1. Draw the rough sketch of required figure.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 4

∵ the tangents make an angle of 60° with each other.
∠OTP = ∠OQT = 90°
[Tangent is perpendicular to the radius of circle]
1. To find inclination of radii with each other
∠TOQ + ∠OTP + ∠OQT + ∠TPQ = 360° [Angle sum property of quad.]
or ∠TOQ + 90° + 90° + 60 = 360°
or ∠TOQ = 360 – 90° – 90° – 60° = 120°
2. Draw a circle of radius 5 cm.
3. Draw two radii of circle which make an angle of 120° with each other.
4. The radii intersect the circle at ‘A’ and
5. Make an angle of 90° at each point A and B, which intersect each other at ‘P’.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 5

6. PA and PB are the required tangents.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 5.
Draw a line segment AB of length 8 cm. Taking ‘A’ as centre, draw a circle of radius 4 cm and taking ‘B’ as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.
Solution:

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 6

Steps of construction :
1. Draw a line segment AB = 8 cm.
2. With ‘A’ as centre and radius 4 cm, draw a circle (I)
3. With ‘B’ as centre and radius 3 cm, draw a circle ‘I’.
4. Draw the perpendicular bisector of line segment AB which inersects ‘AB’ at ‘M’.
5. With ‘M as centre and radius MA or MB. draw a circle (III) which intersects the circle (I) at ‘S’ and ‘T’ and circle (II) at ‘P’ and ‘Q’.
6. Join ‘AP’ and AQ’. These are required tangents to the circle with radius 3 cm. from point ‘A’.
7. Join ‘BS’ and ‘BT’. These are required tangents to the circle with radius 4 cm from point ‘B’.

Justification of Construction:
In circle (III), AB acts as diameter then ∠ASB and ∠BPA are in semicircle.
∴ ∠ASB = 90° ………………(1) [Angle in semicircle]
and ∠BPA = 90° .
But ∠ASB is angle between radius of circle (I) and line segment BS’ and ∠BPA is angle between radius of circle (II) and line segment ‘AP’.
∵ Line segment which is perpendicular to the radius of circle, is tangent to the circle through that point.
∴ BS is tangent to circle (I) at point ‘S’ and AP is tangent to circle (II) at point ‘P’.
Similarly AQ and BT are tangents to the circle (II) and (I) respectively.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 6.
Let ABC be a right triangle in which AB = 6 cm, BC = 5 cm and ∠B = 90°. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from ‘A’ to this circle.
Solution:

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 7

Steps of construction:
1. Construct rt. angled triangle. ABC according to given conditions and measurements.
2. Draw BD ⊥ AC.
3. Take mid point of side BC take it as
4. Take ‘M’ as centre and BC as diameter,
draw a circle through B. C, D using property, angle in semicircle is 90° (∠BDC 90°). Take this circle as I.
5. Now join ‘A’ and ‘M.
6. Draw perpendicular bisector of AM intersecting AM in point N. Now with ‘N’ as centre and ‘NA or ‘NM’ as radius, draw a circle (II) which intersects the circle (I) at ‘B’ and ‘P’.
7. Join AP.
8 AP and AB are the required tangents.

Justification of construction:
Line segment AM’ is diameter of circle (II)
∠APM is in semicircle
∴ ∠APM = 90° [Angle in semicircle]
i.e., MP ⊥ AP
But ‘MP’ is the radius of circle (I)
∴ AP is tangent to the circle (II)
[∵ Any line ⊥ to radius of circle at any point on the circle is tangent to the circle.]
Similarly AB is tangent to circle (I).

Question 7.
Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this poiñt
to the circle.
Solution:
To draw circle with bangle means the centre of circle is unknown. First find the centre of circle.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.2 8

Steps of construction:
1. Draw a circle. using a bangle (I).
2. Take any two chords AB and CD (non parallel) on circle.
3. Draw the perpendicular bisectors of chords AB and CD. The perpendicular bisectors intersect each other
[∵ any point lying on perpendicular bisector of line segment is equidistant from its end points
[∵ ‘O’ lies on ⊥ bisector of AH and CD]
∴ OA = OB and OC = OD
∴ OA = OB = OC = OD (Radii of circle)
∴ ‘O’ is the centre of circle.
4. Take any point ‘P’ out side the circle.
5. Join OP.
6. Draw the perpcndicular bisector of OP let ‘M’ the mid point of OP.
7. With ‘M’ as centre and radius ‘MP’ or ‘MO’, draw a circle II which intersects the circle (I) at T and T’.
8. Join PT and PT’, which is required pair of tangents.

Justification of construction:
Tangent at a point is always perpendicular to the radius at the point. Now, we have to prove
that ∠PTO = PT’O = 90°
Join OT.
Now ∠PTO is in the semicircle I.
∵ ∠PTO = 90° [Angle in semicircle is a right angle]
Similarly ∠PT’O = 90°
∴ PT and PT’ has to be the tangents to the circle at T and T’.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 11 Constructions Ex 11.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 11 Constructions Ex 11.1

In each of the questions, give the justification of the construction also.

Question 1.
Draw a line segment of length 7.6 cm and divide ¡tin the ratio 5 : 8. Measure the two parts.
Solution:
Given: A line segment of length of 7.6 cm.
Steps of construction:
1. Take a line segment AB = 7.6 cm.
2. Draw any ray AX, making an acute angle ∠BAX.
3. Locate 5 + 8 = 13 (given ratio 5: 8) points A1, A2, A3, A4, A5, ………….., A10, A11, A12, A13 on ray AX such that A1A2 = A2A3 = A3A4 = …………. = A11A12 = A12 A13.
4. Join BA13.
5. Through point A5, draw a line A5C || A13B (by making an angle equal to ∠A13B) at A5 intersecting AB at ‘C’. Then AC : CB = 5 : 8;

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 1

Justification:
Let us see how this method gives us the required division.
In ∆AA13B,
Since A5C || A13B
∴ By Basic Proportionality Theorem
\(\frac{\mathrm{AA}_{5}}{\mathrm{~A}_{5} \mathrm{~A}_{13}}=\frac{\mathrm{AC}}{\mathrm{CB}}\)

By construction, \(\frac{\mathrm{AA}_{5}}{\mathrm{~A}_{5} \mathrm{~A}_{13}}=\frac{5}{8}\)

∴ \(\frac{\mathrm{AC}}{\mathrm{CB}}=\frac{5}{8}\)
This shows that ‘C’ divides AB in the ratio 5 : 8.
On measuring the two parts, AC = 2.9 cm and CB = 4.7 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Alternative Method:
Steps of construction:
1. Take a line segment AB = 7.6 cm
2. Draw any acute angle ∠BAX
3. Draw angle ∠ABY such that ∠ABY = ∠BAX.
4. Locate the points A1, A2, A3, A4, A5 on ray AX such that A1A2 = A2A3 = A3A4 = A4A5.
5. Locate the points B1, B2, B3, B4, B5, B6, B7, B8 on ray BY such that B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 = B7B8
6. Join A5B8 let it intersects AB at point Then AC : CB = 5 : 8.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 2

justification:
In ∆ACA5 and ∆BCB8,
∠ACA5 = ∠BCB8 [vertically opp. ∠s]
∠BAA5 = ∠ABB8 [construction]
∴ AACA5 ~ ABCB8 [AA-similarity cond.]
∴ Their corresponding sides must be in the same ratio. ,
\(\frac{A C}{B C}=\frac{C A_{5}}{C B_{8}}=\frac{A_{5} A}{B_{8} B}\)
(I)(II) (III)
From I and III, \(\frac{A C}{B C}=\frac{A_{5} A}{B_{8} B}\)

But, \(\frac{A_{5} A}{B_{8} B}=\frac{5}{8}\) [construction]

\(\frac{A C}{C B}=\frac{5}{8}\).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 2.
Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are \(\frac{2}{3}\) of corresponding sides of the first triangle.
Solution:
Steps of construction:
1. Construct a triangle ABC with given measurements. AB = 5 cm, AC = 4 cm and BC = 6 cm.
2. Make any acute angle ∠CBX below the side BC.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 3

3. Locate three points (greater of 2 and 3 in \(\frac{2}{3}\))B1, B2, B3 on BX such that BB1 = B1B2 = B2B3.
4. Join B3C.
5. Through B2 (smaller of 2 and 3 in \(\frac{2}{3}\) draw a line parallel to B3C, which intersect BC in C’.
6. Through C’, draw a line parallel to CA meeting BA is A’.
Thus ∆A’BC’ is the required triangle whose sides are of corresponding sides of ∆ABC.

Justification of construction :
First we will show that first triangle and constructed triangle are similar.
i.e. ∆A’BC’ ~ ∆ABC.
Consider ∆A’BC’ and ∆ABC.
∠B = ∠B [Common]
∠A’C’B= ∠ACB [By construction]
∆A’C’B ~ ∆ACB [AA – similarity]
∴ Their corresponding sides must be in the same ratio.
\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}\) …………….(1)
Now, consider ∆B2BC’ and ∆B3BC,
∠B = ∠B [common]
∠B2C’B = ∠B2CB [construction]
∴ ∆B2BC’ ~ ∆B3BC [AA -similarity]
∴ Their corresponding sides must be in the same ratio.

\(\frac{\mathrm{B}_{2} \mathrm{~B}}{\mathrm{~B}_{3} \mathrm{~B}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{B}_{2}}{\mathrm{CB}_{3}}\)

I II III

Taking (I) and (II).
\(\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{B}_{2} \mathrm{~B}}{\mathrm{~B}_{3} \mathrm{~B}}\)

But, \(\frac{\mathrm{B}_{2} \mathrm{~B}}{\mathrm{~B}_{3} \mathrm{~B}}=\frac{2}{3}\) [construction]

\(\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{2}{3}\) ……………(2)

From (1) & (2),
\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}=\frac{2}{3}\)

⇒ A’B = \(\frac{2}{3}\) AB and BC’ = \(\frac{2}{3}\) BC; C’A’ = \(\frac{2}{3}\) CA.
Hence, the construction is Justified.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 3.
Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are of the corresponding sides of the first triangle.
Solution:

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 4

Steps of construction :
1. Construct a triangle ABC in which AB = 7 cm, BC 6 cm and AC =5 cm.
2. Make any acute angle ∠BAX below the base AB.
3. Locate seven points A1, A2, A3, A4, A5, A6, A7 on the ray AX such that
AA1 = A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A7.
4. Join BA5.
5. Through A7, draw a line parallel A5B. Let it meets AB at B’ on being produced such that AB’= \(\frac{7}{5}\) AB.
6. Through B’, draw a line parallel to BC which meets AC at C’ on being produced.
∆AB’C’ is the required triangle.

Justification of the construction.
In ∆ABC and ∆AB’C’,
∠A = ∠A [common]
∠ABC = ∠AB’C’ [corresponding ∠s]
∴ ∠ABC – ∠AB’C’ [AA-similarity]
∴ Their corresponding sides must be in the same ratio.
\(\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{BC}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{\mathrm{CA}}{\mathrm{C}^{\prime} \mathrm{A}}\) ……………..(1)

Again, in ∆AA5B and AA7B’
∠A = ∠A [common]
∠AA5B = ∠AA7 B’ [corresponding ∠s]
∴ ∆AA5B ~ ∆AA7B’ [AA – similarity]
∴ Their corresponding sides must be in the same ratio.
\(\frac{\mathrm{AA}_{5}}{\mathrm{AA}_{7}}=\frac{\mathrm{A}_{5} \mathrm{~B}}{\mathrm{~A}_{7} \mathrm{~B}^{\prime}}=\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}\)

⇒ \(\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{AA}_{5}}{\mathrm{AA}_{7}}\) [construction]

But, \(\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{5}{7}\) …………….(2)

From (1) and (2),

\(\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{BC}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{\mathrm{CA}}{\mathrm{C}^{\prime} \mathrm{A}}=\frac{5}{7}\)

or \(\frac{A B^{\prime}}{A B}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{C^{\prime} A}{C A}=\frac{7}{5}\)

⇒ AB’ = \(\frac{7}{5}\) AB; B’C’ = \(\frac{7}{5}\) BC and C’A’ = \(\frac{7}{5}\) CA

Hence, the sides of ∆AB’C’ are \(\frac{4}{4}\) of ∆ABC.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 4.
Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 12 times
the corresponding sides of the isosceles triangle.
Solution:
Given: Base of isosceles triangle is 8 cm and Altitude = 4 cm
To construct: A triangle whose sides are times the sides of isosceles triangle.
Steps of construction:
1. Take base AB = 8 cm.
2. Draw perpendicular bisector of AB. Let it intersect AB at ‘M’.
3. With M as centre and radius = 4 cm, draw an arc which intersects the perpendicular bisector at ‘C’
4. Join CA and CB.
5. ∆ABC is an isosceles with CA = CB.
6. Make any acute angle ∠BAX below the side BC.
7. Locate three (greater of ‘2’ & ‘3’ in 1\(\frac{1}{2}\) or \(\frac{3}{2}\))
A1, A2, A3 on ‘AX’ such that A A1 = A1 A2 = A2 A3.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 5

8. Join A2 (2nd point smaller of ‘2 and ‘3’ in ) and B.
9. Through A3, draw a line parallel to A2B meet AB is B’ cm being produced.
10. Through B’, draw a line parallel to BC which meets AC in C’ on being produced. ∆AB’C’ is the required triangle whose sides are 1\(\frac{1}{2}\) times the corresponding sides of ∆ABC.

Justification of construction :
First we will prove ∆AB’C’ are ∆ABC and similar.
Consider ∆ AB’C’ and ∆ ABC
∠A = ∠A [Common]
∠AB’C’ = ∠ABC [By construction]
∠AB’C’ ~ ∠ABC [By AA – similarityj
∴ Their corresponding sides must be in the same ratio
\(\frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}}{\mathrm{CA}}\) ……………(1)

Now consider ∆ A3AB’ and ∆ A,AB
∠A = ∠A [common]
∠B’A3A = ∠BA2A [By construction]
∴∆ A3A B’ – ∆A2AB [AA – similarity]
∴ Their corresponding sides must be in the same ratio
\(\frac{A_{3} A}{A_{2} A}=\frac{A B^{\prime}}{A B}=\frac{B^{\prime} A_{3}}{B A_{2}}\)
I II III
Taking (I) & (II),
\(\frac{A B^{\prime}}{A B}=\frac{A_{3} A}{A_{2} A}\)

But, \(\frac{A_{3} A}{A_{2} A}=\frac{3}{2}\) [construction]
⇒ \(\frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{3}{2}\) ……………..(2)
From (1) & (2)m
\(\frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}}{\mathrm{CA}}=\frac{3}{2}\left(1 \frac{1}{2}\right)\)

⇒ AB’ = 1\(\frac{1}{2}\) (AB); B’C’ = 1\(\frac{1}{2}\) BC and C’A’ = 1\(\frac{1}{2}\) (CA)
Hence, given result is justified.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 5.
Draw a triangle ABC with side BC = 6 cm, AB =5 cm and ¿ABC = 60°. Then construct a triangle whose sides are of the corresponding sides of the triangle ABC.
Solution:
Steps of construction :
1. Take a line segment BC = 6 cm
2. Construct an angle of measure 60° at point B. i.e., ∠CBX = 60°.
3. With B as centre and radius 5 cm draw an arc intersecting BX at ‘A’

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 6

4. Join A and C.
5. At B, make any acute angle ∠CBY below the side BC.
6. Locate four points (greater of 3 and 4 in \(\frac{3}{4}\)) B1, B2, B3, B4 on BY such that BB1 = B1B2 = B2B3 = B3B4. .
7. Join B4 and C.
8. Draw a line through B3 (smaller of 3 and 4 in ) parallel to B4C making corresponding angles. Let the line through B3 intersects BC in C’.
9. Through C’, draw a line parallel to CA which intersects BA at A’.
The ∆A’BC’ is the required triangle whose sides are \(\frac{3}{4}\) of sides of ∆ABC.

Justification of the construction:
Consider ∆A’BC’ and ∆ABC
∠B = ∠B [commoni
∠A’C’B = ∠ACB [corresponding ∠s]
∴ ∆A’BC’ ~ ∆ABC [AA – similarity]
∴ Their corresponding sides must be in the same ratio.

∴ \(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}\) ……………..(1)

Now consider ∆B3B C’ and ∆B4BC.
∠B = ∠B [common]
∠ C’ B3B = ∠CB4B [corresponding ∠s]
∆B3BC’ ~ ∆B4BC [AA – similarity con.]
Their corresponding sides must be in the same ratio.
\(\frac{B_{3} B}{B_{4} B}=\frac{B C^{\prime}}{B C}=\frac{C^{\prime} B_{3}}{C B_{4}}\)
(I) (II) (III)

From (I) and (II),
\(\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{B}_{3} \mathrm{~B}}{\mathrm{~B}_{4} \mathrm{~B}}\)

But, = \(\frac{\mathrm{B}_{3} \mathrm{~B}}{\mathrm{~B}_{4} \mathrm{~B}}=\frac{3}{4}\) [construction]

\(\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{3}{4}\) ………..(3)

From (1) and (3)
\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}=\frac{3}{4}\)

and C’A’= \(\frac{3}{4}\) CA.
∆A’BC’ is the required triangle whose sides are \(\frac{3}{4}\) sides of ∆ABC.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 6.
Draw a triangle ABC with side BC = 7 cm, ∠B = 45°. ∠A = 105°. Then construct a triangle whose sides are j- times
the corresponding sides of ∆ABC.
Solution:
Steps of construction:
1. Construct the triangle ABC with the given measurements.
BC = 7 cm; ∠B = 45, ∠A = 105°
By angle sum property of triangle
∠A + ∠B + ∠C= 180°
105° + 45° + ∠C = 180°
∠C = 180 – 150° = 30°
2. Make any acute angle ∠CBX at point B, below the sides BC.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 7

3. Locate four points (greater of 3 and 4 in \(\frac{4}{3}\)) B1, B2, B3, B4 on ‘BX’ such that BB1 = B1B2 = B2B3 = B3B4.
4. Join B3C (smaller of 3 and 4 in \(\frac{4}{3}\)).
5. Through B4, draw a line parallel to B3C meeting BC in C’ on being produced.
6. Through C’, draw another line parallel to CA meeting BA in A’ on being produced.
7. ∆A’BC’ is the required triangle whose sides are times the triangle ABC.

Justification of construction:
Consider the ∆ A’BC’ and ∆ ABC,
∠B = ∠B [common]
∠A’C’B = ∠ACB [construction]
∴ ∆A’BC’ ~ ∆ABC [AA – similarity]
∴ Their corresponding sides must be in the same ratio

\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}\) ………….(1)

Again, consider ∆B4B C’ and ∆B3BC,
∠B = ∠B [common]
∠C’B4B = ∠CB3B [By consiruction]
∴ BB C’ AB3BC [AA-si niilarity]
∴ Their corresponding sides must be in the same ratio
\(\frac{\mathrm{B}_{4} \mathrm{~B}}{\mathrm{~B}_{3} \mathrm{~B}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{B}_{4}}{\mathrm{CB}_{3}}\)
I II III

Taking I and II members.

\(\frac{B C^{\prime}}{B C}=\frac{B_{4} B}{B_{3} B}\)

But, \(\frac{B_{4} B}{B_{3} B}=\frac{4}{3}\) (construction)

or \(\frac{B C^{\prime}}{B C}=\frac{4}{3}\) ………….(2)

From (1) and (2),

\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}=\frac{4}{3}\)

⇒ A’B = \(\frac{4}{3}\) AB; BC’ = \(\frac{4}{3}\) BC and C’A’ = \(\frac{4}{3}\) CA
Hence the construction is justified.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 7.
Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are \(\frac{5}{3}\) times the corresponding sides of the given triangle.
Solution:
Steps of construction:
1. Draw a right triangle using given conditions. Consider the triangle as ABC in which BC = 4 cm; AB = 3 cm and
∠B = 90°.
2. Make any acute angle ∠CBX below the line BC.
3. Locate five points (greater of 5 and 3 in \(\frac{5}{3}\)) B1, B2, B3, B4. B5 on BX such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.
4. Join B3 (smaller of ‘5’ and ‘3’ in \(\frac{5}{3}\)) and ‘C’.

PSEB 10th Class Maths Solutions Chapter 11 Constructions Ex 11.1 8

5. Through B5. draw a line parallel to BC meeting BC is C’ on being produced.
6. Again draw a line through C’ parallel to CA meeting BA in A’ on being produced.
∆A’BC’ is the required triangle whose sides are \(\frac{5}{3}\) times the sides of ∆ABC.

Justification of construction :
Consider ∆A’BC’ and ∆ABC
∠B = ∠B [common]
∠A’C’B = ∠ACB [By construction]
∴ ∆A’BC’ ~ ∆ABC [AA-similarity condition]
∴ Their corresponding sides must be in the same ratio
\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}\) ……………..(1)

Again, in ∆B5C’B and ∆XB3CB,
∠B = ∠B [common]
∠C’B5B = ∠CB3B [By construction]
∴ ∆B5C’B ~ ∆B3CB [AA-similarityj
∴ Their corresponding sidcs must be in the same ratio.

\(\frac{\mathrm{B}_{5} \mathrm{C}^{\prime}}{\mathrm{B}_{3} \mathrm{C}}=\frac{\mathrm{C}^{\prime} \mathrm{B}}{\mathrm{CB}}=\frac{\mathrm{BB}_{5}}{\mathrm{BB}_{3}}\)

I II III

Taking II and III members.
\(\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{B}_{5} \mathrm{~B}}{\mathrm{~B}_{3} \mathrm{~B}}\)

But, \(\frac{B_{5} B}{B_{3} B}=\frac{5}{3}\) [construction]

\(\frac{B C^{\prime}}{B C}=\frac{5}{3}\) ……………(2)
From (1) and (2),

\(\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{C}^{\prime} \mathrm{A}^{\prime}}{\mathrm{CA}}=\frac{5}{3}\)

⇒ A’B = \(\frac{5}{3}\) AB; BC’ = \(\frac{5}{3}\) BC and C’A’ = \(\frac{5}{3}\) CA
Hence the construction is justified.