PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise Questions and Answers.

PSEB Solutions for Class 12 Maths Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 1.
Using differentials, find the approximate value of each of the following:
Solution.
(a) \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\)
Solution.
Consider y = \(x^{\frac{1}{4}}\).

Let x = \(\frac{16}{81}\) and ∆x = \(\frac{1}{81}\).

Then, ∆y = (x + ∆x)\(\frac{1}{4}\) – x\(\frac{1}{4}\)

= \(\left(\frac{17}{81}\right)^{\frac{1}{4}}-\left(\frac{16}{81}\right)^{\frac{1}{4}}\)

= \(\left(\frac{17}{81}\right)^{\frac{1}{4}}-\frac{2}{3}\)

∴ \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\) = \(\frac{2}{3}\) + ∆y

Now, dy is approximately equal to ∆y and is given by

dy = \(\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x)\)

= \(\frac{1}{4\left(\frac{16}{81}\right)^{\frac{3}{4}}}\left(\frac{1}{81}\right)=\frac{27}{4 \times 8} \times \frac{1}{81}=\frac{1}{32 \times 3}=\frac{1}{96}\) = 0.010

Hence, the approximate value of \(\left(\frac{17}{81}\right)^{\frac{1}{4}}\) is \(\frac{2}{3}\) + 0.010
= 0.667 + 0.010 = 0.677.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

(b) Consider y = \(x^{-\frac{1}{5}}\).
Let x = 32 and ∆x = 1.
Then, ∆y = (x + ∆x)\(-\frac{1}{5}\) – x\(-\frac{1}{5}\)

= (33)\(-\frac{1}{5}\) – (32)\(-\frac{1}{5}\)

= (33)\(-\frac{1}{5}\) – \(\frac{1}{2}\)
∴ (33)\(-\frac{1}{5}\) = \(\frac{1}{2}\) + ∆y

Now, dy is approximately equal to ∆y and is given by
dy = \(\left(\frac{d y}{d x}\right) \Delta x=\frac{-1}{5(x)^{\frac{6}{5}}}(\Delta x)\) (As y = x\(-\frac{1}{5}\))

= \(\frac{-1}{5(2)^{6}}(1)=-\frac{1}{320}\) = – 0.003.

Hence, the approximate value of (33)\(-\frac{1}{5}\)
= \(\frac{1}{2}\) + (- 0.003) = 0.5 – 0.003 = 0.497.

Question 2.
Show that the function given by f(x) = \(\frac{\log x}{x}\) maximum at x = e.
Solution.
The given function is f(x) = \(\frac{\log x}{x}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 1

Therefore, by second derivative test, f is the maximum at x = e.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 3.
The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast s the area decreasing when two equal sides are equal to the base?
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 2

Let ∆ ABC be isosceles, where BC is the base of fixed length b.
Let the length of the two equal sides of ∆ABC be a.
Draw AD ⊥ BC

Now, in ∆ADC, by applying the Pythagoras theorem, we have

AD = \(\sqrt{a^{2}-\frac{b^{2}}{4}}\)

:. Area of triangle (A) = \(\frac{1}{2} b \sqrt{a^{2}-\frac{b^{2}}{4}}\)

The rate of change of the area with respect to time (t) is given by

\(\frac{d A}{d t}=\frac{1}{2} b \cdot \frac{2 a}{2 \sqrt{a^{2}-\frac{b^{2}}{4}}} \cdot \frac{d a}{d t}=\frac{a b}{\sqrt{4 a^{2}-b^{2}}} \cdot \frac{d a}{d t}\)

It is given that the two equal sides of the triangle are decreasing at the rate of 3 cm per second.

∴ \(\frac{d a}{d t}\) = – 3 cm/s (Negative sign shows for decreasing)

∴\(\frac{d A}{d t}=\frac{-3 b}{\sqrt{4 a^{2}-b^{2}}} \mathrm{~cm}^{2} / \mathrm{s}\) cm2 / s

When a = b, we have \(\frac{d A}{d t}=\frac{-3 b^{2}}{\sqrt{4 b^{2}-b^{2}}}=\frac{-3 b^{2}}{\sqrt{3 b^{2}}}\) = √3b cm2 / s
Hence, if the two equal sides are equal to the base, then the area of the triangle ¡s decreasing at the rate of √3 db cm2/s.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 4.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Solution.
The equation of the given curve is y2 = 4x.
On differentiating w.r.t. x, we get
2y \(\frac{d y}{d x}\) = 4

⇒ \(\frac{d y}{d x}\) = \(\frac{4}{2 y}=\frac{2}{y}\)

Slope of the tangent at (1, 2) is \(\left(\frac{d y}{d x}\right)_{(1,2)}=\frac{2}{2}\) = 1
and slope of the normal at the point (1, 2) is = \(\frac{-1}{1}\) = – 1.
∴ Equation of the normal at (1, 2) is
y – 2 = – 1(x – 1)
⇒ y – 2 = – x + 1
⇒ x + y – 3 = 0.

Question 5.
Show that the normal at any point 0 to the curve x = a cos0 + a0 sin0, y = a sin0 – a0 cos0 is at a constant distance from the origin.
Solution.
The given curve is x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ
On differentiating w.r.t. θ, we get dx
\(\frac{d x}{d \theta}\) = – a sin θ + a sin θ + a θ cos θ
= a θ cos θ

and \(\frac{d y}{d \theta}\) = a cos θ – a cos θ + a θ sin θ
= a θ sin θ

Slope of the tangent at θ,

\(\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}\) = tan θ

∴ Slope of the normal at θ is \(\frac{1}{\tan \theta}\) = – cot θ.

The equation of the normal at a given point (x, y) is given by
y – a sin θ + a θ cos θ = – \(\frac{1}{\tan \theta}\) (x – a cos θ – a θ sin θ)

⇒ y sin θ – a sin2 θ + a θ sin θ cos θ = – x cos θ + a cos2 θ + a θ sin θ cos θ
⇒ x cos θ + y sin θ – a (sin2 θ + cos2 θ) = 0
⇒ x cos θ + y sin θ – a = 0
Now, the perpendicular distance of the normal from the origin is \(\frac{|-a|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=\frac{|-a|}{\sqrt{1}}=|-a|\), which is independent of θ.
Hence, the perpendicular distance of the normal from the origin is constant.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 6.
Find the intervals in which the function f given by f(x) = \(\frac{4 \sin x-2 x-x \cos x}{2+\cos x}\) is
(i) strictly increasing
(ii) strictly decreasing
Solution.
Given, f(x) = \(\frac{4 \sin x-2 x-x \cos x}{2+\cos x}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 3

Now, f'(x) = 0
⇒ cos x = 0 or cos x = 4
But, cos x ≠ 4
∴ cos x = 0
⇒ x = \(\frac{\pi}{2}, \frac{3 \pi}{2}\)
Now, x = \(\frac{\pi}{2}\) and x = \(\frac{3 \pi}{2}\) divides (0, 2π) into three disjoint intervals i.e.,
(0, \(\frac{\pi}{2}\)), (\(\frac{\pi}{2}, \frac{3 \pi}{2}\)), and (\(\frac{3 \pi}{2}\), 2π)

In intervals (0, \(\frac{\pi}{2}\)) and (\(\frac{3 \pi}{2}\), 2π), f'(x) > 0.

Thus, f(x) is increasing for 0 < x < \(\frac{x}{2}\) and \(\frac{3 \pi}{2}\) < x < 2π.
In the interval \(\frac{\pi}{2}, \frac{3 \pi}{2}\), f'(x) < 0.
Thus, f(x) is decreasing for \(\frac{\pi}{2}\) < x < \(\frac{3 \pi}{2}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 7.
Find the intervals in which the function f given by f(x) = x3 + \(\frac{1}{x^{3}}\), x ≠ 0 is
(i) increasing
(ii) decreasing
Solution.
f(x) = x3 + \(\frac{1}{x^{3}}\)

∴ f'(x) = 3x2 – \(\frac{3}{x^{4}}=\frac{3 x^{6}-3}{x^{4}}\)

Then, f’(x) = 0 = 3x6 – 3 = 0
⇒ x6 = 1
⇒ x = ± 1
Now, the points x = 1 and x = – 1 divide the real line into three disornt intervals i.e., (- ∞, – 1), (- 1, 1), and (1, ∞).
In intervals (- ∞, – 1) and (1, ∞) i.e., when x < – 1 and x > 1, f’(x) > 0.
Thus, when x < – 1 and x > 1, f is increasing.
In interval (- 1, 1) i.e., when – 1 < x < 1, f’(x) < 0.
Thus, when – 1 < x < 1, f is decreasing.

Question 8.
Find the maximum area of an isosceles triangle inscribed in the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\) = 1 with Its vertex at one end of the major
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 4

A = area of isosceles ∆ APP’
= \(\frac{1}{2}\) . PP’ . AM

= \(\frac{1}{2}\) ab (2b sin θ) (a – a cos θ)

= ab (sin θ – \(\frac{1}{2}\) sin 2θ)

Differentiating w.r.t. θ, we get
\(\frac{d A}{d \theta}\) = ab (cos θ – cos 2θ)

For maxima and minima,
\(\frac{d A}{d \theta}\) = 0

∴ ab(cos θ – cos 2θ) = 0
⇒ cos 2θ = cos θ
⇒ 2θ = 2π – θ
⇒ θ = \(\frac{2 \pi}{3}\)

Now, \(\frac{d^{2} A}{d \theta^{2}}\) = ab(- sin θ + 2 sin 2θ)

At θ = \(\frac{2 \pi}{3}\),

\(\frac{d^{2} A}{d \theta^{2}}\) = ab \(\left(-\sin \frac{2 \pi}{3}+2 \sin \frac{4 \pi}{3}\right)\)

= ab \(\left[-\left(\frac{\sqrt{3}}{2}\right)+2\left(-\frac{\sqrt{3}}{2}\right)\right]\)

= ab \(\left(-\frac{\sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}\right)=\frac{-3 \sqrt{3}}{2}\) ab < 0

⇒ A is maximum, when θ = \(\frac{2 \pi}{3}\) = 120°

Maximum value of A = ab(sin 120° – \(\frac{1}{2}\) sin 240°)
= ab \(\left[\frac{\sqrt{3}}{2}-\frac{1}{2}\left(-\frac{\sqrt{3}}{2}\right)\right]=\frac{3 \sqrt{3}}{4} a b\)

Thus, rnaximum area o the isosceles triangle is \(\frac{3 \sqrt{3}}{4} a b\) ab sq. unit.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 9.
A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth in 2 m and volume is 8 m3. If building of tank costs ₹ 70 per sq m for the base and ₹ 45 per sq metre for sides. What is the cost of least expensive tank?
Solution.
Let l, b and h represent the length, breadth and height of the tank, respectively.
Then, we have height (ft) = 2 m
∴ Volume of the tank = 8 m3
⇒ Volume of the tank = l × b × h
⇒ 8 = l × b × 2
⇒ lb = 4
⇒ b = \(\frac{4}{l}\)
Now, area of the base = lb = 4
Area of the 4 walls (A) = 2h (l + b)
∴ A = 4 (l + \(\frac{4}{l}\))
⇒ \(\frac{d A}{d l}=4\left(1-\frac{4}{l^{2}}\right)\)
However, the length cannot be negative.
Therefore, we have l = 4
∴ b = \(\frac{4}{l}=\frac{4}{2}\) = 2

Now, \(\frac{d^{2} A}{d l^{2}}=\frac{32}{l^{3}}\)

when l = 2, then \(\frac{d^{2} A}{d l^{2}}=\frac{32}{8}\) = 4 > 0

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 5

Thus, by second derivative test, the area is the minimum when l = 2.
We have l = b = h = 2
∴ Cost of building the base = ₹ 70 × (lb)
= ₹ 70 (4) = ₹ 280
Cost of building the walls = ₹ 2h (l + b) × 45
= ₹ 90 (2) (2 + 2)
= ₹ 8 (90) = ₹ 720
Required total cost = ₹ 280 + 720 = ₹ 1000
Hence, the total cost of the tank will be ₹ 1000.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 10.
The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.
Solution.
Let x be the radius of the circle and y be the side of the square
Circumference of the circle = 2πx
Perimeter of square = 4y
Sum of perimeters of circle and square = 2πx + 4y = k ……………(i)
Area of circle = πx2
Area of square = y2
Sum of areas of circle and square = πx2 + y2 …………..(ii)
From Eq. (i),
y = \(\frac{k-2 \pi x}{4}\) ……………..(iii)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 6

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 11.
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 7

Let x and y be the length and breadth of the rectangular window.
Then, radius of the semicircular opening = \(\frac{x}{2}\)
It is given that the perimeter of the window is 10 m.
∴ x + 2y + \(\frac{\pi x}{2}\) = 10

⇒ (x + \(\frac{\pi}{2}\)) + 2y = 10

⇒ 2y = 10 – x (1 + \(\frac{\pi}{2}\))

⇒ y = 5 – x (\(\frac{1}{2}+\frac{\pi}{4}\))

∴ Area of the window (A) is given by

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 8

Therefore, by second derivative test, the area is the maximum when length x = \(\frac{20}{\pi+4}\) m.

y = \(5-\frac{20}{\pi+4}\left(\frac{2+\pi}{4}\right)=5-\frac{5(2+\pi)}{\pi+4}=\frac{10}{\pi+4} \mathrm{~m}\)

Hence, the required dimensions of the window to admit maximum light is given by length = \(\frac{20}{\pi+4}\) m and breadth = \(\frac{10}{\pi+4}\) m.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 12.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the maximum length of the hypotenuse is \(\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\).
Solution.
Let ∆ ABC be right angled at B.
Let AB = x and BC = y.
Let P be a point on the hypotenuse of the triangle such that P is at a distance of a and b from the sides AB and BC respectively.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 9

Let ∠C = θ.
We have, AC = \(\sqrt{x^{2}+y^{2}}\)
Now, PC = b cosec θ and, AP = a sec θ
∴ AC = AP + PC
⇒ AC = b cosec θ + a sec θ ……………. (i)

∴ \(\frac{d(A C)}{d \theta}\) = – cosec θ cot θ + a sec θ tan θ

∴ \(\frac{d(A C)}{d \theta}\) = 0

⇒ a sec θ tan θ = cosec θ cot θ

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 10

It can be clearly shown that \(\frac{d^{2}(A C)}{d \theta^{2}}\) < 0 when tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\).

Therefore, by second derivative test, the length of the hypotenuse is the tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\).

Now, when tan θ = \(\left(\frac{b}{a}\right)^{\frac{1}{3}}\), then we have

AC = \(\frac{b \sqrt{a^{\frac{2}{3}}}+b^{\frac{2}{3}}}{b^{\frac{1}{3}}}+\frac{a \sqrt{a^{\frac{2}{3}}}+b^{\frac{2}{3}}}{a^{\frac{1}{3}}}\) [Using Eqs. (i) and (ii)]

= \(\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}\left(b^{\frac{2}{3}}+a^{\frac{2}{3}}\right)=\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\)

Hence, the maximum length of the hypotenuse is \(\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 13.
Find the points at which the function f given by f(x) = (x – 2)4 (x + 1)3 has –
(i) local maxima
(ii) local minima
(iii) point of inflexion
Solution.
The given function is f(x) = (x – 2)4 (x + 1)3
∴ f'(x) = 4 (x – 2)3 (x + 1)3 + 3(x + 1)2 (x – 2)4
= (x – 2)3 (x +1)2 [4(x + 1) + 3(x – 2)]
= (x – 2)3 (x + 1)2 (7x – 2)
f'(x) = 0
⇒ x = – 1 and x = \(\frac{2}{7}\) or x = 2
Now, for values of x close to \(\frac{2}{7}\) and to the left of \(\frac{2}{7}\), f'(x) > 0.

Also, for values of x close to \(\frac{2}{7}\) and to the right of \(\frac{2}{7}\), f'(x) < 0.

Thus, x = \(\frac{2}{7}\) is the point of local maxima.
Now, for values of x close to 2 and to the left of 2, f'(x) < 0. Also, for values of x close to 2 and to the right of 2, f'(x) > 0.
Thus, x = 2 is the point of local minima.
Now, as the value of x varies through – 1, f (x) does not change its sign.
Thus, x = – 1 is the point of inflexion.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 14.
Find the absolute maximum and minimum values of the function f’given by f(x) = cos2 x + sin x, x ∈ [0, π].
Solution.
Given, f(x) = cos2 x + sin x
∴ f'(x) = 2 cos x (- sin x) + cos x = – 2 sin x cos x + cos x
Now, f’ (x) = 0
⇒ 2 sin x cos x = cos x
⇒ 2 sin x cos x – cos x = 0
⇒ cos x (2 sin x – 1) = 0
⇒ sin x = – or cos x = 0
⇒ x = \(\frac{\pi}{6}\) or \(\frac{\pi}{2}\) as x ∈ [0, π]
Now, evaluating the value of f at critical points x = \(\frac{\pi}{2}\) and x = \(\frac{\pi}{6}\) and at
the end points of the interval [0, π] (i.e., at x = 0 and x = π), we have

f(\(\frac{\pi}{6}\)) = cos2 \(\frac{\pi}{6}\) + sin \(\frac{\pi}{6}\)
= \(\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{5}{4}\)

f(0) = cos2 0 + sin 0
= 1 + 0 = 1

f(π) = cos2 π + sin π
= (- 1)2 + 0 = 1

f(\(\frac{\pi}{2}\)) = cos2 \(\frac{\pi}{2}\) + sin \(\frac{\pi}{2}\)
= 0 + 1 = 1

Hence, the absolute maximum value of f is \(\frac{5}{4}\) occurring at x = \(\frac{\pi}{6}\) and the absolute minimum value of f is 1 occurring at x = 0, \(\frac{\pi}{2}\) and π.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 15.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r, is -.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 11

Let R be the radius and h be the height of cone.
∴OA = h – r
In ∆OAB, r2 = R2 + (h – r)2
⇒ r2 = R2 + h2 + r2 – 2rh
⇒ R2 = 2rh – h2
The volume V of the cone is given by V = \(\frac{1}{3}\) πR2h
= \(\frac{1}{3}\) πh (2rh – h2)

= \(\frac{1}{3}\) π (2rh2 – h3)

On differentiating w.r.t. h, we get
\(\frac{d V}{d h}\) = \(\frac{1}{3}\) π (4rh – 3h2)

For maximum or minimum put \(\frac{d V}{d h}\) = 0
⇒ 4rh = 3h2
⇒ 4r = 3h
∴ h = \(\frac{4 r}{3}\) (h ≠ 0)

Now, \(\frac{d^{2} V}{d h^{2}}\) = \(\frac{1}{3}\) π (4r – 6h)

At h = \(\frac{4 r}{3}\),

\(\left(\frac{d^{2} V}{d h^{2}}\right)_{h=\frac{4 r}{3}}\) = \(\frac{1}{3}\) π (4r – 6 × \(\frac{4 r}{3}\))

= \(\frac{pi}{3}\) (4r – 8r) = \(\frac{-4 r \pi}{3}\) < 0 ⇒ V is maximum when h = \(\frac{4 r}{3}\) Hence, volume of the cone is maximum when h = \(\frac{4 r}{3}\), which is the altitude of cone. Question 16. Let f be a function defined on [a, b] such that f'(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Solution.
Given, f'(x) > 0 on (a, b)
f is a differentiable function on (a, b).
Also, every differentiable function is continuous, therefore, f is continuous on (a, b).
Let x1, x2 ∈ [a, b] and x2 > x1; then by LMV theorem, there exist c ∈ [a, b] such that

f'(c) = \(\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\)
⇒ f(x2) – f(x1) = (x2 – x1) f'(c)
⇒ f(x2) – f(x1) > 0 as x2 > x1 and f'(x) > 0
⇒ f(x2) > f(x1)
For x1 < x2
⇒ f(x1) < f(x2)
Hence, f is an increasing function on (a, b).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 17.
Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R, is . Also, find the maximum volume.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 12

Radius of the sphere = R
Let h be the height and x be the diameter of the base of the inscribed cylinder Then.
h2 + x2 = (2R)2
⇒ h2 + x2 = 4R2 …………(i)
Volume of the cylinder = π (radius)2 × height

⇒ V = π (\(\frac{x}{2}\))2 . h
= \(\frac{1}{4}\) πx2h
⇒ V = \(\frac{1}{4}\) πh(4R2 – h2) …………(ii)
[From Eq. (i), x2 = 4R2 – h2]

⇒ V = πR2h – \(\frac{1}{4}\) πh3
On differentiating w.r.t h, we get
\(\frac{d V}{d h}\) = πR2h – \(\frac{3}{4}\) πh2
= π (R2 – \(\frac{3}{4}\) h2)

Put \(\frac{d V}{d h}\) = 0
⇒ R2 = \(\frac{3}{4}\) h2
⇒ h = \(\frac{2 R}{\sqrt{3}}\)

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 14

Thus, volume of the cylinder is maximum when h = \(\frac{2 R}{\sqrt{3}}\).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 18.
Show that height of the cylinder of greatest volume which can be inscribed in a circular cone of height h and having
semi-vertical angle a is one-third that of one cone and the
greatest volume of cylinder Is ida3 tan2 a.
Solution.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise 15

Let VAR be the cone of height h, semi-vertical angle a and let x be the radius of the base of the cylinder A’ B’ DC which is inscribed in the cone VAB.
Then, OO’ is the height of the cylinder = VO – VO’ = h – x cot α
Volume of the cylinder,
V = πx2 (h – x cot α) ………………(i)
On differentiating w.r.t. x, we get
\(\frac{d V}{d x}\) = 2πrh – 3πx2 cot α
For maxima or minima put \(\frac{d V}{d x}=\)= 0
⇒ 2πxh – 3πx2 cot α = 0

⇒ x = \(\frac{2 h}{3}\) tan α (∵ x ≠ 0)

Now, \(\frac{d^{2} V}{d x^{2}}\) = 2πh – 6π x cot α

At x= \(\frac{2 h}{3}\) tan α,

\(\frac{d^{2} V}{d x^{2}}\) = π (2h – 4h) = – 2πh < 0

Now, OO’ = h – x cot α = h – \(\frac{2 h}{3}\) = \(\frac{h}{3}\)

∴ The maximum volume of the cylinder is V = π (\(\frac{2 h}{3}\) tan α)2 (h – \(\frac{2 h}{3}\))

= \(\frac{4}{27}\) πh3 tan2 α.

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Direction (19 – 24):
Choose the correct answer.

Question 19.
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic meter per hour. Then the depth of the wheat is increasing at the rate of
(A) 1 m/h
(B) 0.1 m/h
(C) 1.1 m/h
(D) 0.5 m/h
Solution.
Let r be the radius of the cylinder.
Then, volume (V) of the cylinder is given by,
V = π (radius)2 × height
= π (10)2 h (radius = 10 m)
= 100 πh
On differentiating w.r.t. t, we get
\(\frac{d V}{d t}\) = 100 π \(\frac{d h}{d t}\)
The tank is being filled with wheat at the rate of 314 cubic metres per hour.
\(\frac{d V}{d t}\) = 314 m3/h

Thus, we have
314 = 100π \(\frac{d h}{d t}\)

⇒ \(\frac{d h}{d t}\) = \(\frac{314}{100(3.14)}=\frac{314}{314}\) = 1

Hence, the depth of wheat is increasing at the rate of 1 m / h.
The correct answer is (A).

Question 20.
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, – 1) is
(A) \(\frac{22}{7}\)

(B) \(\frac{6}{7}\)

(C) \(\frac{7}{6}\)

(D) \(\frac{-6}{7}\)
Solution.
The given curve is x = t2 + 3t – 8 and y = 2t2 – 2t – 5
∴ \(\frac{d x}{d t}\) = 2t + 3 and

\(\frac{d y}{d t}\) =4t – 2

∴ \(\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{4 t-2}{2 t+3}\)

The given point is (2, – 1)
At x = 2, we have r2+3r-8=2
⇒ t2 + 3t – 10 = 0
⇒ (t – 2) (t + 5) = 0
⇒ t = 2 or t = – 5
At y = – 1, we have
⇒ 2t2 – 2t – 4 = 0
⇒ 2 (t2 – t – 2) = 0
⇒ t = 2 or t = – 1
The common value oft is 2.
Hence, the slope of the tangent to the given curve at point (2, – 1) is

\(\left[\frac{d y}{d x}\right]_{t=2}=\frac{4(2)-2}{2(2)+3}=\frac{8-2}{4+3}=\frac{6}{7}\)
The correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 21.
The line y = mx + 1 is a tangent to the curve y2 = 4# if the value of m is
(A) 1
(B) 2
(C) 3
(D) \(\frac{1}{2}\)
Solution.
The equation of the tangent to the given curve is y = mx + 1.
Now, substituting y = mx + 1 in y2 = 4x, we get
⇒ (mx + 1)2 = 4x
⇒ m2x2 +1 + 2mx – 4x = 0
⇒ m2x2 + x (2m – 4) + 1 = 0 …………….(i)
Since a tangent touches the curve at one point, the roots of equation (i) must be equal.
Therefore, we have
Discriminant = 0
⇒ (2m – 4)2 – 4(m2) (1) = 0
⇒ 4m2 + 16 – 16m – 4m2 = 0
⇒ 16 – 16m = 0
⇒ m = 1
Hence, the required value of m is 1.
The correct answer is A.

Question 22.
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x – y = 0
(C) x + y + 1 = 0
(D) x – y = 0
Solution.
The equation of the given curve is 2y + x2 = 3

\(\frac{2 d y}{d x}\) + 2x = 0

\(\frac{d y}{d x}\) = – x

Slope of the normal to the given curve at point (1, 1) is \(\frac{-1}{\left[\frac{d y}{d x}\right]_{(1,1)}}=\frac{-1}{-1}\) = 1
Hence, the equation of the normal to the given curve at (1, 1) is given as
⇒ y – 1 = 1 (x – 1)
⇒ y – 1 = x – 1
⇒ x – y = 0
The correct answer is (B).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 23.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x – y = 3
(C) x + y = 1
(D) x – y = 1
Solution.
The equation of the given curve is x = 4y
Differentiating w.r.t x, we get
2x = 4 \(\frac{d y}{d x}\)

∴ \(\frac{d y}{d x}=\frac{2 x}{4}=\frac{x}{2}\) = slope of the tangent
∴Slope of the normal = (- 1) / slope of tangent
∴ Equation of normal at (x1, y1) is
y – y1 = (x – x1) ……………..(i)
It passes through (1, 2), therefore
2 – y1 = – \(\frac{2}{x_{1}}\) (1 – x1)
⇒ 2x1 – x1y1 = – 2 + 2x1
x1y1 = 2
or y1 = \(\frac{2}{x_{1}}\) …………(ii)
The point (x1, y1) lies on x2 = 4y
x12 = 4y1 ……………(iii)
From Eqs. (i) and (iii), we get
x12 = 4 . \(\frac{2}{x_{1}}\)
∴ x13 = 8
x1 = 2
From Eq. (iii), 4 = 4y1
∴ y1 = 1
Putting these values in Eq. (i), we get
y – 1 = – \(\frac{2}{24}\) (x – 2)
y – 1 = – x + 2
⇒ x + y = 3
The correct answer is (A).

PSEB 12th Class Maths Solutions Chapter 6 Application of Derivatives Miscellaneous Exercise

Question 24.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A) (4, ± \(\frac{8}{3}\))

(B) (4, – \(\frac{8}{3}\))

(C) (4, ± \(\frac{3}{8}\))

(D)(± 4, \(\frac{3}{8}\))
Solution.
The equation of the given curve is 9y2 = x3
Differentiating w.r.t. x, we get
18 y \(\text { dy }\) = 3x2

⇒ \(\frac{d y}{d x}=\frac{x^{2}}{6 y}\)

Let P(x1, y1) be the point where normal is drawn
Slope of tangent = \(\frac{x_{1}^{2}}{6 y_{1}}\)

∴ Slope of normal = \(\frac{6 y_{1}}{x_{1}^{2}}\)

Normal make equal intercepts on the curve
∴ Its slope = ± 1
– \(\frac{6 y_{1}}{x_{1}^{2}}\) = ± 1
⇒ 6y1 = ± x12 ……………..(i)
(x1, y1)lies on the curve 9y2 = x3
⇒ 9y12 = x13 …………..(ii)
Taking +ve sign, eliminating y1 from Eq. (1) and Eq. (ii),
9 \(\left(\frac{x_{1}^{2}}{6}\right)^{2}\) = x13
⇒ \(\frac{9 x_{1}^{4}}{36}\) = x13
⇒ x1 = 4
From Eq. (i),
y1 = ± \(\frac{x_{1}^{2}}{6}=\pm \frac{16}{6}\)[Putting x = 4]
= ± \(\frac{8}{3}\)
∴ The point P is (4, ± \(\frac{8}{3}\))
The correct answer is (A).

PSEB 7th Class Home Science Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

Punjab State Board PSEB 7th Class Home Science Book Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Home Science Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

Home Science Guide for Class 7 PSEB ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ Textbook Questions and Answers

ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ
ਵਸਤੂਨਿਸ਼ਠ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤਬਦੀਲੀਆਂ ਕਦੋਂ ਹੁੰਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤਬਦੀਲੀਆਂ 11 ਤੋਂ 15 ਸਾਲਾਂ ਵਿਚ ਹੁੰਦੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 2.
ਜਵਾਨੀ ਜਾਂ ਮੁਟਿਆਰਪਨ ਕਿਸ ਨੂੰ ਕਹਿੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤਬਦੀਲੀਆਂ 11 ਤੋਂ 15 ਸਾਲ ਵਿਚਕਾਰ ਹੁੰਦੀਆਂ ਹਨ । ਉਹ ਜ਼ਿਆਦਾ ਮਹੱਤਵਪੂਰਨ ਅਤੇ ਡੂੰਘੀਆਂ ਹੁੰਦੀਆਂ ਹਨ । ਇਸ ਅਵਸਥਾ ਨੂੰ ਜਵਾਨੀ ਜਾਂ ਮੁਟਿਆਰਪਨ ਕਹਿੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਕਿਸ ਉਮਰ ਵਿੱਚ ਮੁੰਡੇ ਕੁੜੀਆਂ ਜਵਾਨ ਹੋ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
12-15 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਕੁੜੀਆਂ ਅਤੇ ਮੁੰਡੇ ਜਵਾਨ ਹੋ ਜਾਂਦੇ ਹਨ ।

PSEB 7th Class Home Science Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ 

ਪ੍ਰਸ਼ਨ 4.
ਮੁਟਿਆਰਪਨ ਅਤੇ ਜਵਾਨੀ ਦੇ ਸਮੇਂ ਮੁੰਡੇ ਕੁੜੀਆਂ ਦਾ ਵਤੀਰਾ ਕਿਉਂ ਬਦਲ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਮੁਟਿਆਰਪਨ ਵਿਚ ਕੁੜੀਆਂ ਵਿਚ ਸਭ ਤੋਂ ਵੱਡੀ ਤਬਦੀਲੀ ਮਾਸਿਕ ਧਰਮ ਦਾ ਸ਼ੁਰੂ ਹੋਣਾ ਹੈ । ਇਸ ਦੇ ਨਾਲ ਹੀ ਸਰੀਰ ਵਿਚ ਹੋਰ ਵੀ ਤਬਦੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ । ਉਹਨਾਂ ਦਾ ਕੱਦ ਛੇਤੀ ਨਾਲ ਵਧਦਾ ਹੈ ਅਤੇ ਸਰੀਰ ਦੀਆਂ ਗੋਲਾਈਆਂ ਭਰ ਜਾਂਦੀਆਂ ਹਨ । ਛਾਤੀਆਂ ਉਭਰਨ ਲਗਦੀਆਂ ਹਨ ਅਤੇ ਹੌਲੀ-ਹੌਲੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਪ੍ਰਫੁਲਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ । ਪੇਂਡੂ (Pelvis) ਚੌੜੀ ਹੋ ਜਾਂਦੀ ਹੈ | ਸਰੀਰ ਦੀ ਬਨਾਵਟ ਕਾਰਨ ਮੁਟਿਆਰ ਹੁਣ ਹੋਰ ਭਰਵੀਂ ਅਤੇ ਨੌਜਵਾਨ ਔਰਤ ਵਰਗੀ ਹੋ ਜਾਂਦੀ ਹੈ । ਹੌਲੀ-ਹੌਲੀ ਅਵਾਜ਼ ਵੀ ਬਦਲ ਜਾਂਦੀ ਹੈ ।

ਮੁੰਡਿਆਂ ਵਿਚ ਜਵਾਨੀ ਦਾ ਇਹ ਸਮਾਂ ਲੰਮਾ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਚਲਦਾ ਹੈ। ਉਹਨਾਂ ਦੇ ਲਿੰਗ ਵਿਕਾਸ ਸ਼ੁਰੂ ਹੋਣ ਤੋਂ ਬਾਅਦ ਉਹਨਾਂ ਦਾ ਸਰੀਰ ਲੰਮਾ ਅਤੇ ਕੁਝ ਬੇਢੰਗਾ ਹੋ ਜਾਂਦਾ ਹੈ । ਠੋਡੀ ਤੇ ਵਾਲ ਆਉਣੇ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੇ ਹਨ । ਅਵਾਜ਼ ਫਟਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ । ਹੌਲੀ-ਹੌਲੀ ਇਹ ਆਵਾਜ਼ ਭਰ ਜਾਂਦੀ ਹੈ ਅਤੇ ਮਰਦਾਂ ਵਰਗੀ ਹੋ ਜਾਂਦੀ ਹੈ । ਉਹਨਾਂ ਦੇ ਮੋਢੇ ਅਤੇ ਛਾਤੀ ਚੌੜੀ ਹੋ ਜਾਂਦੀ ਹੈ ।

ਇਹਨਾਂ ਤਬਦੀਲੀਆਂ ਨਾਲ ਸਰੀਰ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਤੇ ਕਈ ਪ੍ਰਕਾਰ ਦਾ ਅਸਰ ਪੈਂਦਾ ਹੈ । ਹੁਣ ਬੱਚਿਆਂ ਨੂੰ ਬੱਚਾ ਨਹੀਂ ਸਮਝਿਆ ਜਾਂਦਾ । ਜ਼ਿੰਮੇਵਾਰੀ ਦਾ ਕੰਮ ਉਹਨਾਂ ਨੂੰ ਵਧੇਰੇ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਨਾਲ ਉਹਨਾਂ ਵਿਚ ਥਕਾਵਟ ਅਤੇ ਸੁਸਤੀ ਵੀ ਆ ਸਕਦੀ ਹੈ । ਸੌਣ ਅਤੇ ਹਾਜ਼ਮੇ ਵਿਚ ਫ਼ਰਕ ਪੈ ਜਾਂਦਾ ਹੈ । ਸਭ ਤੋਂ ਵੱਧ ਅਸਰ ਉਹਨਾਂ ਦੇ ਵਤੀਰੇ ਤੇ ਪੈਂਦਾ ਹੈ । ਲਿੰਗ ਚੇਤਨਾ ਜਾਗਣ ਨਾਲ ਉਹਨਾਂ ਦਾ ਮਨ ਅਸਥਿਰ ਹੋ ਜਾਂਦਾ ਹੈ । ਕੰਮ ਕਰਨ ਨੂੰ ਜੀਅ ਨਹੀਂ ਕਰਦਾ । ਇਕੱਲੇ ਰਹਿਣ ਦੀ ਇੱਛਾ ਰਹਿੰਦੀ ਹੈ । ਉਹ ਜਲਦੀ ਉਕਤਾ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਇਹ ਵਿਚਾਰ ਰਹਿੰਦਾ ਹੈ ਕਿ ਕੋਈ ਉਹਨਾਂ ਨੂੰ ਪਿਆਰ ਨਹੀਂ ਕਰਦਾ । ਜਿਹੜੀਆਂ ਗੱਲਾਂ ਵਿਚ ਪਹਿਲਾਂ ਮਨ ਲਗਦਾ ਸੀ, ਹੁਣ ਦਿਲ ਨੂੰ ਨਹੀਂ ਮੋਂਹਦੀਆਂ | ਵੱਡਿਆਂ ਵੱਲ ਵਿਰੋਧ ਦੀ ਭਾਵਨਾ ਜਾਗਦੀ ਹੈ । ਕਹਿਣਾ ਮੰਨਣ ਨੂੰ ਜੀਅ ਨਹੀਂ ਕਰਦਾ। ਕੁਝ ਦੇਰ ਲਈ ਮੁੰਡਿਆਂ ਕੁੜੀਆਂ ਦਾ ਆਪਸੀ ਵਿਰੋਧ ਜਾਗਦਾ ਹੈ, ਪਰ ਫਿਰ ਇਹ ਖਿੱਚ ਵਿਚ ਬਦਲ ਜਾਂਦੀ ਹੈ । ਇਸ ਉਮਰ ਵਿਚ ਵਿਅਕਤੀ ਸੁਪਨਿਆਂ ਦੇ ਸੰਸਾਰ ਵਿਚ ਹੀ ਡੁੱਬਿਆ ਰਹਿੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਚੜ੍ਹਦੀ ਜਵਾਨੀ (Puberty) ਸਮੇਂ ਮਾਤਾ-ਪਿਤਾ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦਾ ਕੀ ਫ਼ਰਜ਼ ਬਣਦਾ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਸਮਾਂ ਬਹੁਤ ਹੀ ਨਾਜ਼ੁਕ ਹੁੰਦਾ ਹੈ । ਮਾਤਾ-ਪਿਤਾ ਅਤੇ ਸਕੂਲ ਦੇ ਅਧਿਆਪਕਾਂ ਦਾ ਵਿਸ਼ੇਸ਼ ਫ਼ਰਜ਼ ਬਣਦਾ ਹੈ ਕਿ ਉਹ ਇਸ ਉਮਰ ਦੇ ਬੱਚਿਆਂ ਵੱਲ ਵਧੇਰੇ ਪਿਆਰ, ਧਿਆਨ ਅਤੇ ਦਿਲਚਸਪੀ ਵਿਖਾਉਣ । ਜੇਕਰ ਬੱਚਿਆਂ ਨਾਲ ਠੀਕ ਵਤੀਰਾ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਸਮਾਂ ਆਦਰਸ਼ਵਾਦ ਅਤੇ ਠੀਕ ਮੁੱਲਾਂ ਨਾਲ ਬਤੀਤ ਹੋ ਸਕਦਾ ਹੈ ।

ਨਿਬੰਧਾਤਮਕ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 6.
8 ਤੋਂ 11 ਸਾਲ ਦੀ ਉਮਰ ਦੇ ਲੜਕਿਆਂ ਵਿਚ ਕੀ-ਕੀ ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਇਨ੍ਹਾਂ ਸਾਲਾਂ ਵਿਚ ਬੱਚਾ ਮਹਿਸੂਸ ਕਰਦਾ ਹੈ ਕਿ ਉਸ ਨੂੰ ਬਹੁਤ ਗਿਆਨ ਹੋ ਗਿਆ ਹੈ । ਇਸ ਭਾਵਨਾ ਨਾਲ ਬੱਚੇ ਵਿਚ ਇਕ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਾਰ ਦਾ ਘੁਮੰਡ ਹੋ ਜਾਂਦਾ ਹੈ । ਬੱਚਿਆਂ ਦੀ ਇੱਛਾ ਆਪਣੇ ਸਾਥੀਆਂ ਨਾਲ ਰਹਿਣ ਅਤੇ ਉਹਨਾਂ ਵਿਚਕਾਰ ਆਪਣੇ ਆਪ ਨੂੰ ਮਹੱਤਵਪੂਰਨ ਸਿੱਧ ਕਰਨ ਦੀ ਰਹਿੰਦੀ ਹੈ । ਇਹਨਾਂ ਸਾਲਾਂ ਵਿਚ ਬੱਚਿਆਂ ਦਾ ਵਿਕਾਸ ਜ਼ਿਆਦਾ ਤੇਜ਼ੀ ਨਾਲ ਨਹੀਂ ਹੁੰਦਾ । ਉਸ ਦਾ ਭਾਰ ਅਤੇ ਲੰਬਾਈ ਲਗਪਗ ਸਮਾਨ ਰੂਪ ਨਾਲ ਵਧਦੇ ਹਨ । ਉਸ ਦਾ ਮੱਥਾ ਚੌੜਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਬੁੱਲ਼ ਭਰ ਜਾਂਦੇ ਹਨ, ਨੱਕ ਵੱਡਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਉੱਪਰਲੇ ਅਤੇ ਹੇਠਲੇ ਜਬਾੜੇ ਦੇ ਆਪਸੀ ਮੇਲ ਵਿਚ ਤਬਦੀਲੀ ਆਉਂਦੀ ਹੈ । ਇਸ ਨਾਲ ਉਸ ਦੀ ਸ਼ਕਲ ਵਿਚ ਬਚਪਨਾ ਨਹੀਂ ਰਹਿੰਦਾ ਅਤੇ ਉਹ ਛੋਟਾ ਆਦਮੀ ਜਾਂ ਛੋਟੀ ਇਸਤਰੀ ਦੀ ਤਰ੍ਹਾਂ ਲੱਗਣ ਲਗਦਾ ਹੈ । ਹੱਥ, ਪੈਰ, ਲੱਤਾਂ ਅਤੇ ਬਾਹਵਾਂ ਵੀ ਵਧਦੀਆਂ ਹਨ । ਵਾਲਾਂ ਦੀ ਚਮਕ ਘੱਟ ਹੋਣ ਲਗਦੀ ਹੈ ਅਤੇ ਉਹ ਪਹਿਲਾਂ ਨਾਲੋਂ ਰੁੱਖੇ ਹੋ ਜਾਂਦੇ ਹਨ । ਇਸ ਉਮਰ ਵਿਚ ਬੱਚਾ ਭਾਵੁਕ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਸ ਨੂੰ ਇਕੱਲੇਪਨ ਦਾ ਅਨੁਭਵ ਹੋਣ ਲਗਦਾ ਹੈ । ਸਕੂਲ ਵਿਚ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੀ ਅਸਫਲਤਾ ਦਾ ਅਸਰ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ ।

PSEB 7th Class Home Science Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

ਪ੍ਰਸ਼ਨ 7.
8 ਤੋਂ 11 ਸਾਲ ਦੀ ਉਮਰ ਦੀਆਂ ਲੜਕੀਆਂ ਵਿਚ ਕੀ-ਕੀ ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਦੇਖੋ ਉਪਰੋਕਤ ਪ੍ਰਸ਼ਨਾਂ ਵਿੱਚ ।

ਪ੍ਰਸ਼ਨ 8.
11 ਤੋਂ 15 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਜੋ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਤਬਦੀਲੀਆਂ 11 ਤੋਂ 15 ਸਾਲ ਵਿਚਕਾਰ ਹੁੰਦੀਆਂ ਹਨ ਉਹ ਜ਼ਿਆਦਾ ਮਹੱਤਵਪੂਰਨ ਅਤੇ ਡੂੰਘੀਆਂ ਹੁੰਦੀਆਂ ਹਨ । ਇਸ ਅਵਸਥਾ ਨੂੰ (Puberty) ਆਖਦੇ ਹਨ । ਇਸ ਸਮੇਂ ਸਰੀਰ ਵਿਚ ਜ਼ਿਆਦਾਤਰ ਤਬਦੀਲੀਆਂ ਉਸ ਦੇ ਅੰਦਰ ਗ੍ਰੰਥੀਆਂ ਦੀ ਕਿਰਿਆ ਦਾ ਸਿੱਟਾ ਹੁੰਦੀਆਂ ਹਨ । ਇਹਨਾਂ ਗ੍ਰੰਥੀਆਂ ਦੇ ਰਸਾਂ ਕਾਰਨ ਲਿੰਗ ਅੰਗਾਂ ਵਿਚ ਵਿਕਾਸ ਹੁੰਦਾ ਹੈ । ਕੁਦਰਤ ਵਲੋਂ ਇਸ ਸਮੇਂ ਬੱਚੇ ਦੇ ਸਰੀਰ ਵਿਚ ਅਜਿਹੀਆਂ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ਜਿਸ ਨਾਲ ਉਹ ਬੱਚਾ ਨਹੀਂ ਰਹਿੰਦਾ ਅਤੇ ਹੌਲੀ-ਹੌਲੀ ਉਸ ਵਿਚ ਸੰਤਾਨ ਉਤਪੱਤੀ ਦੀ ਸ਼ਕਤੀ ਆ ਜਾਂਦੀ ਹੈ । ਇਹ ਤਬਦੀਲੀਆਂ ਦੋ ਪ੍ਰਕਾਰ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨਅੰਦਰਲੀਆਂ ਜਾਂ ਮੁੱਖ ਅਤੇ ਬਾਹਰਲੀਆਂ । ਅੰਦਰੂਨੀ ਪਰਿਵਰਤਨ ਲਿੰਗ ਨਾਲ ਸੰਬੰਧ ਰੱਖਦੇ ਹਨ, ਪਰ ਸਰੀਰ ਦੇ ਬਾਹਰਲੇ ਹਿੱਸਿਆਂ ਵਿਚ ਜੋ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ਉਹਨਾਂ ਦੁਆਰਾ ਹੀ ਕੁੜੀਆਂ ਅਤੇ ਮੁੰਡਿਆਂ ਵਿਚ ਅੰਤਰ ਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦੀ ਚੇਤਨਾ ਵਿਚ ਵੀ ਅੰਤਰ ਆ ਜਾਂਦਾ ਹੈ ।

PSEB 7th Class Home Science Guide ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ Important Questions and Answers

ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਸ਼ਨ
ਵਸਤੁਨਿਸ਼ਠ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਬੱਚਿਆਂ ਵਿਚ ਪਹਿਲੀ ਵਾਰ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਭਾਵਨਾਤਮਕ ਪਰਿਵਰਤਨ ਕਦੋਂ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
5-6 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ।

ਪ੍ਰਸ਼ਨ 2.
ਜਵਾਨੀ ਵਿਚ ਵਿਅਕਤੀ ਕਿਹੜੀ ਦੁਨੀਆਂ ਵਿਚ ਗੁਆਚਿਆ ਰਹਿੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਸੁਫ਼ਨਿਆਂ ਦੀ ਦੁਨੀਆ ਵਿਚ ।

ਪ੍ਰਸ਼ਨ 3.
11 ਤੋਂ 15 ਸਾਲ ਦੇ ਵਿਚ ਸਰੀਰਕ ਅਤੇ ਮਾਨਸਿਕ ਪਰਿਵਰਤਨ ਹੁੰਦੇ ਹਨ, ਇਸ ਦੌਰ ਨੂੰ ਕੀ ਕਹਿੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਚੜ੍ਹਦੀ ਜਵਾਨੀ ਦੀ ਅਵਸਥਾ ।

ਪ੍ਰਸ਼ਨ 4.
ਮੁੰਡਿਆਂ ਵਿਚ ………………………… ਸਮਾਂ ਲੰਬਾ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਚੱਲਦਾ ਹੈ ?
ਉੱਤਰ-
ਜਵਾਨੀ ਦਾ ।

PSEB 7th Class Home Science Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

ਪ੍ਰਸ਼ਨ 5.
ਜਵਾਨੀ ਦਾ ਸਮਾਂ ਕਿਹੋ ਜਿਹਾ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਬਹੁਤ ਨਾਜ਼ੁਕ ।

ਪ੍ਰਸ਼ਨ 6.
ਜਵਾਨੀ ਦਾ ਸਮਾਂ ਨਾਜ਼ੁਕ ਹੁੰਦਾ ਹੈ । (ਠੀਕ/ਗਲਤ)
ਉੱਤਰ-
ਠੀਕ ।

ਪ੍ਰਸ਼ਨ 7.
ਬਚਪਨ ਦਾ ਅੰਤਿਮ ਭਾਗ ਕਿਹੜਾ ਹੈ ?
(ਉ) 5-6 ਸਾਲ
(ਅ) 8-11 ਸਾਲ
(ੲ) 15-20 ਸਾਲ
(ਸ) 2-10 ਸਾਲ ।
ਉੱਤਰ-
(ਅ) 8-11 ਸਾਲ ।

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
5-6 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਸਰੀਰ ਵਿਚ ਕਿਹੋ ਜਿਹੀ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
5-6 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਸਰੀਰ ਵਿਚ ਬੜੀ ਤੇਜ਼ੀ ਨਾਲ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਕਿਸ ਉਮਰ ਵਿਚ ਵਿਅਕਤੀ ਸੁਪਨਿਆਂ ਦੀ ਦੁਨੀਆ ਵਿਚ ਹੀ ਗੁਆਚਾ ਰਹਿੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਮੁਟਿਆਰਪਨ ਜਾਂ ਜਵਾਨੀ ਵਿਚ ਵਿਅਕਤੀ ਸੁਪਨਿਆਂ ਦੀ ਦੁਨੀਆ ਵਿਚ ਗੁਆਚਾ ਰਹਿੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਕਿਸ ਉਮਰ ਵਿਚ ਕੁੜੀਆਂ ਅਤੇ ਮੁੰਡੇ ਜਵਾਨ ਹੋ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
12 ਤੋਂ 15 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਕੁੜੀਆਂ ਅਤੇ ਮੁੰਡੇ ਜਵਾਨ ਹੋ ਜਾਂਦੇ ਹਨ ।

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
5 ਤੋਂ 6 ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਬੱਚਿਆਂ ਵਿਚ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਲਗਪਗ ਪੰਜ-ਛੇ ਸਾਲ ਦੀ ਉਮਰ ਵਿਚ ਸਰੀਰ ਵਿਚ ਬੜੀ ਤੇਜ਼ੀ ਨਾਲ ਤਬਦੀਲੀਆਂ ਆਉਂਦੀਆਂ ਹਨ । ਬੱਚੇ ਇਸ ਉਮਰ ਵਿਚ ਕਾਫ਼ੀ ਭਾਵਾਤਮਕ ਹੋ ਜਾਂਦੇ ਹਨ । ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਉਹ ਆਪਣੀ ਭਾਵਨਾ ਉਸ ਸਮੇਂ ਪ੍ਰਗਟ ਕਰਨ ਪਰ ਉਹਨਾਂ ਦੇ ਵਤੀਰੇ ਤੋਂ ਉਹਨਾਂ ਦੀਆਂ ਭਾਵਨਾਵਾਂ ਦਾ ਪਤਾ ਲਗ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਡਰ ਦੀ ਭਾਵਨਾ ਦੇ ਕਾਰਨ ਬੱਚੇ ਰਾਤ ਨੂੰ ਸੁੱਤਿਆਂ ਹੀ ਬਿਸਤਰੇ ਤੇ ਪਿਸ਼ਾਬ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਕਈ ਬੱਚੇ ਅੰਗੂਠਾ ਚੂਸਦੇ, ਤੁਤਲਾਂਦੇ ਜਾਂ ਬੇਚੈਨ ਰਹਿੰਦੇ ਹਨ ।
ਉਹਨਾਂ ਨੂੰ ਲਿੰਗ ਦਾ ਪਤਾ ਲੱਗ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕੁੜੀਆਂ ਮੁੰਡਿਆਂ ਤੋਂ ਅਤੇ ਮੁੰਡੇ ਕੁੜੀਆਂ ਤੋਂ ਆਪਣੇ ਨੂੰ ਅੱਡ ਮਹਿਸੂਸ ਕਰਨ ਲੱਗ ਜਾਂਦੇ ਹਨ ।

PSEB 7th Class Home Science Solutions Chapter 2 ਸਰੀਰਕ ਤਬਦੀਲੀਆਂ ਦੀ ਚੇਤਨਾ

ਪ੍ਰਸ਼ਨ 2.
11-12 ਸਾਲ ਦੀ ਉਮਰ ਦੀਆਂ ਕੁੜੀਆਂ ਦੀਆਂ ਮਾਂਵਾਂ ਅਤੇ ਅਧਿਆਪਕਾਵਾਂ ਨੂੰ ਕੀ ਸਮਝਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
11-12 ਸਾਲ ਦੀ ਉਮਰ ਦੀਆਂ ਕੁੜੀਆਂ ਦੀਆਂ ਮਾਂਵਾਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਨੂੰ ਚਾਹੀਦਾ ਹੈ ਕਿ ਉਹ ਕੁੜੀਆਂ ਨੂੰ ਆਪਣੇ ਵਿਸ਼ਵਾਸ ਵਿਚ ਲੈ ਕੇ ਉਹਨਾਂ ਨੂੰ ਸਰੀਰ ਅੰਦਰ ਵਾਪਰਨ ਵਾਲੀਆਂ ਤਬਦੀਲੀਆਂ ਤੋਂ ਪਹਿਲਾਂ ਹੀ ਜਾਣੂ ਕਰਵਾ ਦੇਣ ਤਾਂ ਕਿ ਜਦੋਂ ਇਹ ਤਬਦੀਲੀਆਂ ਆਉਣ ਤਾਂ ਕੁੜੀਆਂ ਘਬਰਾਉਣ ਨਾ ਸਗੋਂ ਆਪਣੇ ਆਪ ਨੂੰ ਸੰਭਾਲ ਸਕਣ । ਖ਼ਾਸ ਤੌਰ ਤੇ ਮਾਸਿਕ ਧਰਮ ਤੋਂ ਪਹਿਲਾਂ ਮਾਂਵਾਂ ਨੂੰ ਚਾਹੀਦਾ ਹੈ ਕਿ ਉਹ ਲੜਕੀਆਂ ਨੂੰ ਇਸ ਕੁਦਰਤੀ ਪਰਿਵਰਤਨ ਬਾਰੇ ਜਾਣੂ ਕਰਾ ਦੇਣ, ਤਾਂ ਜੋ ਲੜਕੀਆਂ ਅਜਿਹੀਆਂ ਹਾਲਤਾਂ ਵਿਚ ਕਿਸੇ ਗ਼ਲਤ ਧਾਰਨਾ ਕਰਕੇ ਆਪਣੇ ਆਪ ਨੂੰ ਨੀਵਾਂ ਨਾ ਸਮਝਣ ਜਾਂ ਗ਼ਲਤ ਸੁਝਾਵਾਂ ਵਿਚ ਨਾ ਫਸਣ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

Punjab State Board PSEB 7th Class Home Science Book Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Home Science Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

Home Science Guide for Class 7 PSEB ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ Textbook Questions and Answers

ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ
ਵਸਤੂਨਿਸ਼ਠ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਤੰਦਰੁਸਤ ਚਮੜੀ ਦੀ ਕੀ ਪਛਾਣ ਹੈ ?
ਉੱਤਰ-
ਚੀਕਣੀ, ਠੋਸ ਅਤੇ ਥਾਂ ਤੇ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਸਵਸਥ ਵਾਲ ਕਿਹੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਚਮਕੀਲੇ ਅਤੇ ਸਾਫ਼ ।

ਪ੍ਰਸ਼ਨ 3.
ਅੱਖਾਂ ਨਿਰੋਗ ਰੱਖਣ ਲਈ ਕੀ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਅੱਖਾਂ ਨੂੰ ਧੂਏਂ, ਧੂੜ, ਧੁੱਪ ਅਤੇ ਤੇਜ਼ ਰੋਸ਼ਨੀ ਤੋਂ ਬਚਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 4.
ਖ਼ੁਸ਼ਕ ਅਤੇ ਬਿਧੀ ਚਮੜੀ ਵਾਲਿਆਂ ਨੂੰ ਆਪਣੀ ਚਮੜੀ ਠੀਕ ਰੱਖਣ ਲਈ ਕਿਹੜੇ ਢੰਗ ਅਪਣਾਉਣੇ ਚਾਹੀਦੇ ਹਨ ?
ਉੱਤਰ-
ਖ਼ੁਸ਼ਕ ਅਤੇ ਬਿਧੀ ਚਮੜੀ ਵਾਲਿਆਂ ਨੂੰ ਖ਼ਾਸ ਕਰਕੇ ਸਰਦੀਆਂ ਵਿਚ ਰਾਤ ਨੂੰ ਸੌਣ ਤੋਂ ਪਹਿਲਾਂ ਮੁੰਹ ਧੋ ਕੇ ਗਲਿਸਰੀਨ ਵਿਚ ਨਿੰਬੂ ਦਾ ਰਸ ਪਾ ਕੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਸਾਬਣ ਦੀ ਥਾਂ ਵੇਸਣ ਨਾਲ ਮੂੰਹ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਜੇਕਰ ਕਿਸੇ ਦੀਆਂ ਅੱਖਾਂ ਦੁਖਦੀਆਂ ਹੋਣ ਜਾਂ ਜ਼ੁਕਾਮ ਲੱਗਿਆ ਹੋਵੇ ਤਾਂ ਉਸ ਦਾ ਰੁਮਾਲ ਕਿਉਂ ਨਹੀਂ ਵਰਤਣਾ ਚਾਹੀਦਾ ?
ਉੱਤਰ-
ਅੱਖਾਂ ਦਾ ਦਰਦ ਜਾਂ ਜ਼ੁਕਾਮ ਇਕ ਛੂਤ ਦੀ ਬਿਮਾਰੀ ਹੈ । ਜੇਕਰ ਅੱਖਾਂ ਦੁਖਦੀਆਂ ਹੋਣ ਜਾਂ ਜ਼ੁਕਾਮ ਲੱਗਾ ਹੋਵੇ ਤਾਂ ਰੋਗੀ ਨੂੰ ਆਪਣਾ ਰੁਮਾਲ ਵੱਖਰਾ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ, ਨਹੀਂ ਤਾਂ ਇਹ ਰੋਗ ਦੂਸਰਿਆਂ ਵਿਚ ਵੀ ਫੈਲ ਜਾਵੇਗਾ ।

ਪ੍ਰਸ਼ਨ 6.
ਕੰਨ ਵਿਚ ਕੋਈ ਤਿੱਖੀ ਚੀਜ਼ ਕਿਉਂ ਨਹੀਂ ਫੇਰਨੀ ਚਾਹੀਦੀ ? (From Board M.Q.P.)
ਉੱਤਰ-
ਕੰਨ ਵਿਚ ਕੋਈ ਤਿੱਖੀ ਚੀਜ਼ ਚਲਾਉਣ ਨਾਲ ਬਾਹਰਲੇ ਕੰਨ ਵਿਚ ਜ਼ਖ਼ਮ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਪਰਦਾ ਵੀ ਪਾਟ ਜਾਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ । ਇਸ ਲਈ ਕੰਨ ਵਿਚ ਕੋਈ ਤਿੱਖੀ ਚੀਜ਼ ਨਹੀਂ ਫੇਰਨੀ ਚਾਹੀਦੀ ।

ਨਿਬੰਧਾਤਮਕ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 7.
ਨਿਜੀ ਸਫ਼ਾਈ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਨੱਕ, ਗਲੇ ਅਤੇ ਚਿਹਰੇ ਨੂੰ ਕਿਵੇਂ ਸਾਫ਼ ਰੱਖ ਸਕਦੇ ਹਾਂ ?
ਉੱਤਰ-
ਨਿਜੀ ਸਫ਼ਾਈ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਆਪਣੇ ਸਰੀਰ ਦੀ ਸਫ਼ਾਈ ਅਤੇ ਹੋਰ ਗੱਲਾਂ ਜਿਵੇਂ ਖ਼ੁਰਾਕ, ਕਸਰਤ, ਸੌਣਾ ਜਾਂ ਆਰਾਮ ਕਰਨਾ ਆਦਿ ਤੇ ਵੀ ਧਿਆਨ ਦੇਣਾ, ਜਿਸ ਨਾਲ ਸਰੀਰ ਸਵਸਥ ਅਤੇ ਠੀਕ ਹਾਲਤ ਵਿਚ ਰਹਿ ਸਕੇ ।

ਨੱਕ ਦੀ ਸਫ਼ਾਈ – ਨੱਕ ਸਾਹ ਲੈਣ ਅਤੇ ਕੱਢਣ ਦਾ ਰਸਤਾ ਹੈ । ਨੱਕ ਦੇ ਅੰਦਰ ਵੀ ਚਿਪਚਿਪਾ ਜਾਂ ਲੇਸਦਾਰ ਪਦਾਰਥ ਨਿਕਲਦਾ ਹੈ । ਨੱਕ ਨੂੰ ਹਰ ਰੋਜ਼ ਅੰਦਰੋਂ-ਬਾਹਰੋਂ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਨੱਕ ਦੀ ਸਫ਼ਾਈ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ । ਜੇਕਰ ਨੱਕ ਵਿਚ ਗੰਦਗੀ ਹੋਵੇਗੀ ਤਾਂ ਸਰੀਰ ਦੇ ਅੰਦਰ ਨੱਕ ਰਾਹੀਂ ਸਾਹ ਨਹੀਂ ਜਾਵੇਗਾ ਅਤੇ ਸਾਹ ਨਾਲੀ ਵਿਚ ਰੋਗ ਹੋ ਸਕਦਾ ਹੈ । ਮੂੰਹ ਰਾਹੀਂ ਸਾਹ ਲੈਣਾ ਰੋਗਾਂ ਦਾ ਘਰ ਹੈ । ਨੱਕ ਨੂੰ ਜ਼ਿਆਦਾ ਜ਼ੋਰ ਨਾਲ ਨਹੀਂ ਸੁਣਨਾ ਚਾਹੀਦਾ ਨਹੀਂ ਤਾਂ ਨੱਕ ਅਤੇ ਗਲੇ ਦੇ ਕਿਰਮ ਸਾਹ ਨਲੀ ਦੁਆਰਾ ਕੰਨ ਦੇ ਵਿਚਕਾਰਲੇ ਭਾਗ ਵਿਚ ਪਹੁੰਚ ਕੇ ਸੁਣਨ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ ।

ਗਲੇ ਦੀ ਸਫ਼ਾਈ – ਗਲੇ ਨੂੰ ਸਾਫ਼ ਕਰਨ ਲਈ ਬੱਚੇ ਨੂੰ ਗਰਾਰੇ ਕਰਨਾ ਸਿਖਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਰਾਤ ਨੂੰ ਸੌਣ ਤੋਂ ਪਹਿਲਾਂ ਬੱਚੇ ਦਾ ਮੂੰਹ ਅਤੇ ਗਲਾ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਜੇਕਰ ਬੱਚੇ ਦਾ ਗਲਾ ਖ਼ਰਾਬ ਹੋਵੇ ਤਾਂ ਪਾਣੀ ਉਬਾਲ ਕੇ ਕੋਸਾ ਕਰਕੇ ਉਸ ਵਿਚ ਨਮਕ ਪਾ । ਕੇ ਗਰਾਰੇ ਕਰਵਾਉਣੇ ਚਾਹੀਦੇ ਹਨ | ਲਾਪਰਵਾਹੀ ਕਰਨ ਨਾਲ ਬੱਚਾ ਬਿਮਾਰ ਰਹਿੰਦਾ ਹੈ। ਅਤੇ ਉਸ ਦਾ ਸਰੀਰਕ ਵਿਕਾਸ ਠੀਕ ਨਹੀਂ ਹੁੰਦਾ ।

ਚੇਹਰੇ ਦੀ ਸਫ਼ਾਈ – ਹਰ ਰੋਜ਼ ਚੇਹਰੇ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਵਧੀਆ ਸਾਬਣ ਅਤੇ ਕੋਸੇ ਪਾਣੀ ਨਾਲ ਦੋ-ਤਿੰਨ ਵਾਰ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਸਾਬਣ ਹਮੇਸ਼ਾ ਹੱਥਾਂ ਨੂੰ ਮਲ ਕੇ ਮੁੰਹ ਤੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਤੋਂ ਬਾਅਦ ਕਈ ਵਾਰ ਕੋਸੇ ਪਾਣੀ ਨਾਲ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਸਾਫ਼ ਹੋ ਜਾਵੇ । ਇਸ ਤੋਂ ਬਾਅਦ ਸਾਫ਼ ਤੌਲੀਏ ਨਾਲ ਮੂੰਹ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪੂੰਝਣਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਮੁਸਾਮ ਖੁੱਲ੍ਹ ਜਾਣ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 8.
(ੳ) ਸੁਹਣੇ ਲੱਗਣ ਲਈ ਚਿਹਰੇ ਦੀ ਸਫ਼ਾਈ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ?
ਉੱਤਰ-
ਸੁਹਣੇ ਲੱਗਣ ਲਈ ਹਰ ਰੋਜ਼ ਦੋ-ਤਿੰਨ ਵਾਰ ਇਕ ਵਧੀਆ ਸਾਬਣ ਨਾਲ ਚੇਹਰੇ ਨੂੰ ਧੋ ਕੇ ਸਾਫ਼ ਤੌਲੀਏ ਨਾਲ ਪੂੰਝਣਾ ਚਾਹੀਦਾ ਹੈ । ਚੇਹਰੇ ਨੂੰ ਸਾਫ਼ ਕਰਦੇ ਸਮੇਂ ਅੱਖਾਂ, ਨੱਕ, ਕੰਨ, ਗਲਾ, ਮੂੰਹ ਅਤੇ ਦੰਦਾਂ ਦਾ ਵੀ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਹਨਾਂ ਅੰਗਾਂ ਨੂੰ ਸਾਫ ਕਰਦੇ ਸਮੇਂ ਜੋ ਰੁਮਾਲ, ਤੌਲੀਆ ਜਾਂ ਹੋਰ ਕੋਈ ਵਸਤੂ ਇਸਤੇਮਾਲ ਕੀਤੀ ਜਾਵੇ ਤਾਂ ਉਹ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਫ਼-ਸੁਥਰੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
(ਅ) ਚਮੜੀ ਕਿਉਂ ਗੰਦੀ ਹੋ ਜਾਂਦੀ ਹੈ ? ਉਸ ਨੂੰ ਕਿਵੇਂ ਸਾਫ਼ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਭਾਰਤ ਵਰਗੇ ਗਰਮ ਦੇਸ਼ ਵਿਚ ਰਹਿਣ ਵਾਲੇ ਲੋਕਾਂ ਦੀ ਚਮੜੀ ਜ਼ਿਆਦਾ ਗੰਦੀ ਹੁੰਦੀ ਹੈ । ਕਿਉਂਕਿ ਇੱਥੇ ਜ਼ਿਆਦਾ ਪਸੀਨਾ ਆਉਂਦਾ ਹੈ । ਪਸੀਨਾ ਇਕ ਦੂਸ਼ਿਤ ਪਦਾਰਥ ਹੈ ਅਤੇ ਇਸ ਵਿਚ ਅਨੇਕਾਂ ਪਦਾਰਥ ਜਿਵੇਂ ਟੁੱਟੀਆਂ ਹੋਈਆਂ ਕੋਸ਼ਿਕਾਵਾਂ, ਧੂੜ ਦੇ ਕਣ ਆਦਿ ਤੋਂ ਇਲਾਵਾ ਅਨੇਕਾਂ ਜੀਵਾਣੂ ਵੀ ਫਸ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਨੂੰ ਸੜਾਉਂਦੇ ਹਨ । ਇਸ ਨਾਲ ਬਦਬੂ ਆਉਣ ਲਗਦੀ ਹੈ । ਅਨੇਕਾਂ ਪ੍ਰਕਾਰ ਦੇ ਚਮੜੀ ਦੇ ਰੋਗ ਪੈਦਾ ਹੋ ਜਾਂਦੇ ਹਨ ।

ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਲਈ ਹਰ ਰੋਜ਼ ਤਾਜ਼ੇ ਜਾਂ ਹਲਕੇ ਕੋਸੇ ਪਾਣੀ ਨਾਲ ਨਹਾਉਣਾ ਜ਼ਰੂਰੀ ਹੈ । ਇਸ ਨਾਲ ਚਮੜੀ ਦੇ ਮੁਸਾਮ ਖੁੱਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਪਸੀਨਾ ਨਿਕਲਦਾ ਰਹਿੰਦਾ ਹੈ । ਚਮੜੀ ਤੋਂ ਗੰਦਗੀ ਹਟ ਜਾਣ ਨਾਲ ਬਿਮਾਰੀਆਂ ਦਾ ਡਰ ਨਹੀਂ ਰਹਿੰਦਾ । ਇਸ਼ਨਾਨ ਕਰਦੇ ਸਮੇਂ ਸਾਬਣ ਆਦਿ ਨਾਲ ਸਰੀਰ ਦੀ ਸਫ਼ਾਈ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ | ਸਰੀਰ ਨੂੰ ਰਗੜਨਾ ਵੀ ਜ਼ਰੂਰੀ ਹੈ ਤਾਂ ਜੋ ਇਸ ਦੀ ਮਾਲਿਸ਼ ਹੋ ਸਕੇ ।

ਪ੍ਰਸ਼ਨ 9.
ਤੁਸੀਂ ਆਪਣੇ ਵਾਲਾਂ ਦੀ ਕਿਵੇਂ ਸੰਭਾਲ ਕਰੋਗੇ ?
ਉੱਤਰ-
ਵਾਲਾਂ ਦੀ ਸੰਭਾਲ :

  1. ਹਫ਼ਤੇ ਵਿਚ ਇਕ ਵਾਰੀ ਵਾਲਾਂ ਵਿਚ ਤੇਲ ਲਾ ਕੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮਾਲਿਸ਼ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ।
  2. ਵਾਲਾਂ ਨੂੰ ਧੋਣ ਤੋਂ ਬਾਅਦ ਚੰਗੀ ਤਰ੍ਹਾਂ ਤੌਲੀਏ ਨਾਲ ਪੂੰਝ ਕੇ, ਫਿਰ ਖੁੱਲ੍ਹਾ ਛੱਡ ਕੇ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।
  3. ਜਦੋਂ ਤਕ ਵਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਨਾ ਸੁੱਕ ਜਾਣ ਜੁੜਾ ਜਾਂ ਗੁੱਤ ਨਹੀਂ ਕਰਨੀ ਚਾਹੀਦੀ ।
  4. ਹਰ ਰੋਜ਼ ਦੋ ਵਾਰ ਵਾਲਾਂ ਵਿਚ ਕੰਘੀ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ।
  5. ਕੰਘੀ ਜਾਂ ਬੁਰਸ਼ ਨੂੰ ਹਰ ਹਫ਼ਤੇ ਧੋ ਕੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਧੁੱਪ ਵਿਚ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 7th Class Home Science Guide ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ Important Questions and Answers

ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਸ਼ਨ
ਵਸਤੂਨਿਸ਼ਠ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਕੰਨ ਨੂੰ …………… ਵਸਤੂ ਨਾਲ ਸਾਫ਼ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ।
ਉੱਤਰ-
ਨੁਕੀਲੀ ।

ਪ੍ਰਸ਼ਨ 2.
ਤਵਚਾ ਵਿਚੋਂ ਪਸੀਨਾ ਅਤੇ ………………………. ਪਦਾਰਥ ਬਾਹਰ ਨਿਕਲਦੇ ਹਨ ।
ਉੱਤਰ-
ਫਾਲਤੂ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 3.
ਅੱਖਾਂ ਦੀ ਇਕ ਬਿਮਾਰੀ ਦਾ ਨਾਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਰੋਹੇ ।

ਪ੍ਰਸ਼ਨ 4.
ਅੱਖਾਂ ਨਿਰੋਗ ਰੱਖਣ ਲਈ ………. ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਸਫ਼ਾਈ ।

ਪ੍ਰਸ਼ਨ 5.
ਨਿਯਮਿਤ ਸ਼ਨਾਨ ਨਾਲ ਕਿਸਦੇ ਮੂੰਹ ਖੁੱਲ੍ਹ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਮੁਸਾਮਾਂ ਦੇ ।

ਪ੍ਰਸ਼ਨ 6.
…………………. ਨਾਲ ਅੱਖਾਂ ਨਹੀਂ ਪੂੰਝਣੀਆਂ ਚਾਹੀਦੀਆਂ ।
ਉੱਤਰ-
ਗੰਦੇ ਰੁਮਾਲ ।

ਪ੍ਰਸ਼ਨ 7.
………………….. ਵਾਲ ਚਮਕੀਲੇ ਤੇ ਸਾਫ਼ ਹੁੰਦੇ ਹਨ ।
ਉੱਤਰ-
ਸਵਸਥ ।

ਪ੍ਰਸ਼ਨ 8.
ਨਿਯਮਿਤ ਇਸ਼ਨਾਨ ਦਾ ਇਕ ਲਾਭ ਦੱਸੋ ।
ਉੱਤਰ-
ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਹੁੰਦੀ ਹੈ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 9.
ਸਿਰ ਧੋਣ ਲਈ ਕਿਹੜਾ ਪਾਉਡਰ ਵਰਤਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਆਂਵਲੇ ਦਾ ਪਾਊਡਰ ।

ਪ੍ਰਸ਼ਨ 10.
ਨਿਯਮਿਤ ਇਸ਼ਨਾਨ ਨਾਲ ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਹੁੰਦੀ ਹੈ ? (ਠੀਕ/ਗਲਤ)
ਉੱਤਰ-
ਠੀਕ ।

ਪ੍ਰਸ਼ਨ 11.
ਪਾਇਓਰਿਆ ਰੋਗ ਕਿਸ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ
(ਉ) ਦੰਦ
(ਅ) ਕੰਨ
(ੲ) ਅੱਖ
(ਸ) ਗਲਾ ।
ਉੱਤਰ-
(ਉ) ਦੰਦ ।

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
WHO ਦੇ ਵਿਚਾਰ ਵਿਚ ਸਿਹਤ ਕੀ ਹੈ ?
ਉੱਤਰ-
WHO (ਵਿਸ਼ਵ ਸਿਹਤ ਸੰਗਠਨ ਦੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਸਿਹਤ ਵਿਚ ਮਨੁੱਖ ਦਾ ਸੰਪੁਰਨ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਸੰਵੇਗਾਤਮਕ ਕਲਿਆਣ ਨਿਹਿਤ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਜੀਵਨ ਵਿਚ ਸੁਖੀ ਰਹਿਣ ਦੇ ਲਈ ਕੀ ਜ਼ਰੂਰੀ ਹੈ ?
ਉੱਤਰ-
ਸਰੀਰ ਦਾ ਸਵਸਥ ਅਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੋਣਾ ।

ਪ੍ਰਸ਼ਨ 3.
ਚਮੜੀ ਨੂੰ ਨਿਯਮਿਤ ਰੂਪ ਨਾਲ ਸਾਫ਼ ਕਰਨਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ?
ਉੱਤਰ-
ਚਮੜੀ ਵਿਚੋਂ ਪਸੀਨਾ ਅਤੇ ਵਿਅਰਥ ਪਦਾਰਥ ਬਾਹਰ ਨਿਕਲਦੇ ਹਨ । ਜੇਕਰ ਚਮੜੀ ਨੂੰ ਸਾਫ਼ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਤਾਂ ਮੈਲ ਜੰਮ ਜਾਂਦਾ ਹੈ ਜਿਸ ਕਾਰਨ ਚਮੜੀ ਦੇ ਛੇਕ ਬੰਦ ਹੋ ਜਾਂਦੇ ਹਨ । ਇਸ ਲਈ ਚਮੜੀ ਨੂੰ ਨਿਯਮਿਤ ਰੂਪ ਨਾਲ ਸਾਫ਼ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 4.
ਦੰਦਾਂ ਨੂੰ ਸਾਫ਼ ਕਰਨਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ?
ਉੱਤਰ-
ਦੰਦਾਂ ਨੂੰ ਖੋਖਲੇ ਹੋਣ ਤੋਂ, ਡਿਗਣ ਤੋਂ, ਦਰਦ ਹੋਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਦੰਦਾਂ ਨੂੰ ਸਾਫ਼ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਕੰਨ ਦਾ ਰੋਗ ਹੋਣ ਤੇ ਇਸ ਦਾ ਇਲਾਜ ਤੁਰੰਤ ਕਿਉਂ ਕਰਵਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਕੰਨ ਦਾ ਰੋਗ ਹੋਣ ਤੇ ਜੇਕਰ ਇਸਦਾ ਇਲਾਜ ਨਾ ਕਰਵਾਇਆ ਜਾਵੇ ਤਾਂ ਇਹ ਦਿਮਾਗ਼ ਤਕ ਨੁਕਸਾਨ ਪਹੁੰਚਾ ਸਕਦਾ ਹੈ । ਇਸ ਲਈ ਇਸ ਦਾ ਇਲਾਜ ਤੁਰੰਤ ਕਰਵਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਨਿਯਮਿਤ ਕਸਰਤ ਤੇ ਉੱਤਮ ਆਸਣ ਸਰੀਰ ਦੇ ਲਈ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹਨ ?
ਉੱਤਰ-
ਸਰੀਰ ਨੂੰ ਸੁੰਦਰ, ਸੁਗਠਿਤ ਅਤੇ ਸਿਹਤਮੰਦ ਰੱਖਣ ਲਈ ।

ਪ੍ਰਸ਼ਨ 7.
ਦੰਦਾਂ ਨੂੰ ਕਰੀਜ ਤੋਂ ਬਚਾਉਣ ਲਈ ਕੀ ਉਪਾਅ ਕੀਤੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ ?
ਉੱਤਰ-

  1. ਭੋਜਨ ਦੇ ਬਾਅਦ ਕੁੱਲਾ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ,
  2. ਦੰਦਾਂ ਨੂੰ ਉਂਗਲੀ ਨਾਲ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 8.
ਦੰਦਾਂ ਦਾ ਕੇਰੀਜ ਰੋਗ ਕੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੰਦਾਂ ਵਿਚ ਕਾਰਬੋਹਾਈਡਰੇਟ ਵਾਲੇ ਅਤੇ ਮਿੱਠੇ ਪਦਾਰਥਾਂ ਦੇ ਸੜਨ ਨਾਲ ਜੀਵਾਣੂਆਂ ਦੀ ਕਿਰਿਆ ਨਾਲ ਐਸਿਡ ਬਣਦਾ ਹੈ ਜੋ ਦੰਦਾਂ ਦੇ ਇਨੈਮਲ ਨੂੰ ਖ਼ਰਾਬ ਕਰ ਦਿੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 9.
ਪਾਇਓਰੀਆ ਰੋਗ ਦੇ ਕੀ ਲੱਛਣ ਹਨ ?
ਉੱਤਰ-

  1. ਮਸੂੜੇ ਸੁੱਜ ਜਾਂਦੇ ਹਨ,
  2. ਮਸੂੜਿਆਂ ਵਿਚ ਪੀੜ ਹੁੰਦੀ ਹੈ,
  3. ਮਸੂੜਿਆਂ ਤੋਂ ਦੰਦ ਵੱਖ ਹੋਣ ਲਗਦੇ ਹਨ,
  4. ਮੂੰਹ ਵਿਚੋਂ ਬਦਬੂ ਆਉਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਤੰਦਰੁਸਤ ਅੱਖਾਂ ਕਿਹੋ ਜਿਹੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਚੁਕੰਨੀਆਂ, ਸਾਫ਼ ਅਤੇ ਗੰਦਗੀ ਵਿਹੀਨ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 11.
ਤੰਦਰੁਸਤ ਨੱਕ ਦੀ ਕੀ ਪਹਿਚਾਣ ਹੈ ?
ਉੱਤਰ-
ਸਾਫ਼ ਅਤੇ ਸਾਹ ਲੈਂਦੀ ਹੋਈ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 12.
ਤੰਦਰੁਸਤ ਮੂੰਹ ਅਤੇ ਬੁੱਲ੍ਹ ਕਿਹੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਤੰਦਰੁਸਤ ਮੂੰਹ ਸੰਨ ਅਤੇ ਆਨੰਦ ਦੇਣ ਵਾਲਾ ਤੇ ਤੰਦਰੁਸਤ ਬੁੱਲ਼ ਲਾਲ ਅਤੇ ਗਿੱਲੇ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 13.
ਤੰਦਰੁਸਤ ਗਲਾ ਕਿਸ ਨੂੰ ਕਹਿੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਸਾਫ਼, ਗਿੱਲੇ ਅਤੇ ਬਿਨਾਂ ਰੁਕਾਵਟ ਵਾਲੇ ਗਲੇ ਨੂੰ ।

ਪ੍ਰਸ਼ਨ 14.
ਤੰਦਰੁਸਤ ਦੰਦ ਕਿਹੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਸਾਫ਼, ਸਹੀ ਅਤੇ ਬਿਨਾਂ ਕਸ਼ਟ ਵਾਲੇ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 15.
ਤੰਦਰੁਸਤ ਮਸੂੜੇ ਕਿਹੋ ਜਿਹੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ?
ਉੱਤਰ-
ਠੋਸ ਅਤੇ ਲਾਲ ।

ਪ੍ਰਸ਼ਨ 16.
ਤੰਦਰੁਸਤ ਅਤੇ ਬਿਮਾਰ ਹੱਥਾਂ ਵਿਚ ਕੀ ਅੰਤਰ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਹੱਥਾਂ ਦੀਆਂ ਤਲੀਆਂ ਲਾਲ ਹੋਣ ਤੇ ਤੰਦਰੁਸਤ ਅਤੇ ਪੀਲੀਆਂ ਹੋਣ ਤੇ ਬਿਮਾਰ ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 17.
ਵਾਲਾਂ ਦੀ ਸਫ਼ਾਈ ਬਾਰੇ ਦੱਸੋ ।
ਉੱਤਰ-
ਵਾਲਾਂ ਨੂੰ ਹਫ਼ਤੇ ਵਿਚ ਇੱਕ ਜਾਂ ਦੋ ਵਾਰ ਵਧੀਆ ਸਾਬਣ ਜਾਂ ਸ਼ੈਪੂ ਨਾਲ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਵਾਲਾਂ ਵਿਚ ਤੇਲ ਵੀ ਝੱਸਣਾ ਚਾਹੀਦਾ ਹੈ | ਵਾਲਾਂ ਵਿਚ ਜੂੰਆਂ ਆਦਿ ਨਹੀਂ ਪੈਣੀਆਂ ਚਾਹੀਦੀਆਂ ।

ਛੋਟੋ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਕਸਰਤ ਸਰੀਰ ਲਈ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ?
ਉੱਤਰ-
ਕਸਰਤ ਸਾਡੀ ਸਿਹਤ ਲਈ ਅਤੇ ਸਰੀਰ ਨੂੰ ਨਿਰੋਗ ਰੱਖਣ ਲਈ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ । ਇਸ ਦੇ ਵਿਭਿੰਨ ਕਾਰਨ ਹਨ-

  1. ਕਸਰਤ ਕਰਨ ਨਾਲ ਭੋਜਨ ਛੇਤੀ ਪਚ ਜਾਂਦਾ ਹੈ ਅਤੇ ਭੁੱਖ ਖੁੱਲ੍ਹ ਕੇ ਲਗਦੀ ਹੈ ।
  2. ਕਸਰਤ ਕਰਨ ਨਾਲ ਸਰੀਰ ਦੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਜਿਸ ਨਾਲ ਸਰੀਰ ਮਜ਼ਬੂਤ ਹੁੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਨਿਯਮਿਤ ਇਸ਼ਨਾਨ ਦੇ ਕੀ ਲਾਭ ਹਨ ?
ਉੱਤਰ-
ਨਿਯਮਿਤ ਇਸ਼ਨਾਨ ਨਾਲ ਸਰੀਰ ਨੂੰ ਹੇਠ ਲਿਖੇ ਲਾਭ ਹੁੰਦੇ ਹਨ-

  1. ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਹੁੰਦੀ ਹੈ ।
  2. ਮੁਸਾਮਾਂ ਦੇ ਮੂੰਹ ਖੁੱਲ੍ਹ ਜਾਂਦੇ ਹਨ ।
  3. ਨਹਾਉਣ ਤੋਂ ਬਾਅਦ ਤੌਲੀਏ ਨਾਲ ਸਰੀਰ ਰਗੜਨ ਨਾਲ ਖੂਨ ਦਾ ਸੰਚਾਰ ਠੀਕ ਰਹਿੰਦਾ ਹੈ ।
  4. ਨਹਾਉਣ ਨਾਲ ਹਾਨੀਕਾਰਕ ਪਦਾਰਥਾਂ ਤੇ ਰੋਗਾਣੂਆਂ ਤੋਂ ਮੁਕਤੀ ਮਿਲਦੀ ਹੈ ।
  5. ਧੋ ਕੇ ਵਹਿ ਜਾਣ ਨਾਲ ਪਸੀਨੇ ਦੀ ਬਦਬੂ ਜਾਂਦੀ ਰਹਿੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਨਹੁੰਆਂ ਦੀ ਸਫ਼ਾਈ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ? ਨਹੁੰਆਂ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਸਾਫ਼ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਨਹੁੰਆਂ ਦੇ ਅੰਦਰ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੀ ਗੰਦਗੀ ਨਹੀਂ ਰਹਿਣੀ ਚਾਹੀਦੀ ਕਿਉਂਕਿ , ਭੋਜਨ ਦੇ ਨਾਲ ਇਨ੍ਹਾਂ ਵਿਚ ਮੌਜੂਦ ਰੋਗਾਂ ਦੇ ਕੀਟਾਣੂ, ਜੀਵਾਣੂ ਆਦਿ ਆਹਾਰ ਨਲੀ ਵਿਚ ਪਹੁੰਚ ਕੇ ਖ਼ਰਾਬੀ ਪੈਦਾ ਕਰਨਗੇ । ਨਹੁੰਆਂ ਨੂੰ ਕੱਟਦੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ ਜਾਂ ਬੁਰਸ਼ ਆਦਿ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

ਵੱਡੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਨਿਜੀ ਸਫ਼ਾਈ ਦਾ ਸਿਹਤ ਵਿਚ ਕੀ ਮਹੱਤਵ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਮੰਨੀ ਹੋਈ ਗੱਲ ਹੈ ਕਿ ਤੰਦਰੁਸਤ ਸਰੀਰ ਜੀਵਨ ਦੇ ਯੋਗ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਸਰੀਰ ਤੰਦਰੁਸਤ ਨਹੀਂ ਉਹ ਜੀਵਨ ਧਾਰਨ ਕਰਨ ਦੇ ਬਾਅਦ ਵੀ ਸੰਸਾਰਿਕ ਸੁੱਖਾਂ ਦਾ ਉਪਭੋਗ ਨਹੀਂ ਕਰ ਸਕਦਾ । ਬਿਮਾਰ ਮਨੁੱਖ ਦਾ ਜੀਵਨ ਦੂਸਰਿਆਂ ਲਈ ਭਾਰ ਹੋ ਜਾਂਦਾ ਹੈ । ਇਸ ਲਈ ਮਨੁੱਖ ਨੂੰ ਤੰਦਰੁਸਤ ਰਹਿਣ ਲਈ ਕੁਦਰਤ ਦੇ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਕਰਨਾ ਉਸ ਦੇ ਅਨੁਸਾਰ ਚਲਣਾ ਅਤੇ ਬੱਚਿਆਂ ਨੂੰ ਵੀ ਉਸੇ ਅਨੁਸਾਰ ਚਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । ਨਿਜੀ ਸਿਹਤ ਦੇ ਅੰਤਰਗਤ ਸਿਹਤ ਦੇ ਨਿਯਮਾਂ ਦੇ ਇਲਾਵਾ ਸਰੀਰਕ ਜਾਂ ਸਰੀਰ ਦੇ ਹਰ ਇਕ ਅੰਗ ਦੀ ਸਫ਼ਾਈ ਦਾ ਬਹੁਤ ਜ਼ਿਆਦਾ ਮਹੱਤਵ ਹੈ ।

ਨਿਜੀ ਸਫ਼ਾਈ ਦੇ ਅੰਤਰਗਤ ਹੇਠ ਲਿਖੀ ਸਫ਼ਾਈ ਆਉਂਦੀ ਹੈ-

  • ਮੂੰਹ ਅਤੇ ਦੰਦਾਂ ਦੀ ਸਫ਼ਾਈ – ਇਸ ਨਾਲ ਦੰਦ ਖੋਖਲੇ ਹੋਣ, ਡਿਗਣ ਅਤੇ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੇ ਰੋਗ ਤੋਂ ਬਚੇ ਰਹਿੰਦੇ ਹਨ ।
  • ਅੱਖਾਂ ਦੀ ਸਫ਼ਾਈ – ਇਸ ਨਾਲ ਅੱਖਾਂ ਚੁਕੰਨੀਆਂ, ਸਾਫ਼, ਬਿਨਾਂ ਮੈਲ ਤੋਂ ਰਹਿੰਦੀਆਂ ਹਨ | ਅੱਖਾਂ ਦੀ ਸਫ਼ਾਈ ਰਹਿਣ ਨਾਲ ਅੱਖਾਂ ਦੇ ਰੋਗ ਨਹੀਂ ਹੁੰਦੇ ।
  • ਕੰਨਾਂ ਦੀ ਸਫ਼ਾਈ – ਇਸ ਨਾਲ ਕੰਨਾਂ ਵਿਚ ਦਰਦ ਜਾਂ ਖਾਰਸ਼ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਜੀਵਾਣੂਆਂ ਦਾ ਹਮਲਾ ਵੀ ਨਹੀਂ ਹੁੰਦਾ ।
  • ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ – ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਨਾਲ ਚਮੜੀ ਦੇ ਰੋਗ ਨਹੀਂ ਹੁੰਦੇ ਅਤੇ ਸਰੀਰ ਵਿਚ ਫੁਰਤੀ ਬਣੀ ਰਹਿੰਦੀ ਹੈ ।
  • ਹੱਥਾਂ ਅਤੇ ਨਹੁੰਆਂ ਦੀ ਸਫ਼ਾਈ – ਨਹੁੰਆਂ ਵਿਚ ਮੈਲ ਜਮਾਂ ਹੋਣ ਨਾਲ ਕਈ ਰੋਗਾਂ ਦੇ ਕੀਟਾਣੂ ਪੈਦਾ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਹੱਥਾਂ ਰਾਹੀਂ ਮੁੰਹ ਵਿਚ ਚਲੇ ਜਾਂਦੇ ਹਨ ।
  • ਕੱਪੜਿਆਂ ਦੀ ਸਫ਼ਾਈ – ਸਾਫ਼-ਸੁਥਰੇ ਕੱਪੜੇ ਪਾਉਣ ਨਾਲ ਸਰੀਰ ਤੰਦਰੁਸਤ ਤੇ ਮਨ ਪ੍ਰਸੰਨ ਰਹਿੰਦਾ ਹੈ । ਗੰਦੇ ਕੱਪੜਿਆਂ ਵਿਚ ਰੋਗ ਦੇ ਕੀਟਾਣੂ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਜੋ ਸਰੀਰ ਨੂੰ ਰੋਗੀ ਬਣਾਉਣ ਵਿਚ ਸਹਾਇਕ ਹੁੰਦੇ ਹਨ ।

PSEB 7th Class Home Science Solutions Chapter 1 ਨਿਜੀ ਸਿਹਤ ਵਿਗਿਆਨ

ਪ੍ਰਸ਼ਨ 2.
ਅੱਖਾਂ ਅਤੇ ਨੱਕ ਨੂੰ ਕਿਵੇਂ ਸਾਫ਼ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਅੱਖਾਂ ਦੀ ਸਫ਼ਾਈ ਅਤੇ ਸੁਰੱਖਿਆ-ਅੱਖਾਂ ਸਾਡੇ ਸਰੀਰ ਵਿਚ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਅੰਗ ਹਨ । ਇਨ੍ਹਾਂ ਨਾਲ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਵਸਤਾਂ ਵੇਖ ਸਕਦੇ ਹਾਂ । ਇਸ ਲਈ ਇਹ ਅਖਾਉਤ ‘ਅੱਖਾਂ ਹਨ ਤਾਂ ਜਹਾਨ ਹੈ’ ਆਖੀ ਜਾਂਦੀ ਹੈ । ਇਨ੍ਹਾਂ ਦੀ ਸਫ਼ਾਈ ਅਤੇ ਸੁਰੱਖਿਆ ਲਈ ਹੇਠ ਲਿਖੇ ਉਪਾਅ ਕਰਨੇ ਚਾਹੀਦੇ ਹਨ-

  • ਅੱਖਾਂ ਨੂੰ ਬਾਹਰ ਦੀ ਗੰਦਗੀ ਜਿਵੇਂ ਧੂੜ-ਮਿੱਟੀ, ਕੂੜਾ-ਕਰਕਟ, ਕੀੜੇ-ਮਕੌੜੇ ਆਦਿ ਤੋਂ ਬਚਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । ਕੁਝ ਧੂੜ ਅਤੇ ਜੀਵਾਣੂ ਤਾਂ ਅੱਖਾਂ ਦੁਆਰਾ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੇ ਹਨ । ਜੇ ਕਿਸੇ ਕਾਰਨ ਨਾਲ ਅੱਖਾਂ ਵਿਚ ਕੁਝ ਪੈ ਜਾਵੇ ਤਾਂ ਉਸ ਨੂੰ ਨਾਰਮਲ ਸੈਲਾਈਨ ਜਾਂ ਸਾਫ਼ ਪਾਣੀ ਨਾਲ ਧੋ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਮੂੰਹ ਅਤੇ ਅੱਖਾਂ ਨੂੰ ਕਈ ਵਾਰ ਧੋਣ ਅਤੇ ਪੁੰਝਣ ਨਾਲ ਸਫ਼ਾਈ ਹੁੰਦੀ ਹੈ ।
  • ਗੰਦੇ ਹੱਥਾਂ ਜਾਂ ਗੰਦੇ ਰੁਮਾਲ ਨਾਲ ਅੱਖਾਂ ਨਹੀਂ ਪੰਝਣੀਆਂ ਚਾਹੀਦੀਆਂ, ਨਾ ਹੀ ਇਹਨਾਂ ਨੂੰ ਰਗੜਨਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਤੌਲੀਏ, ਸਾਬਣ, ਬਾਲਟੀ, ਮੱਗ ਅਤੇ ਮੂੰਹ ਪੂੰਝਣ ਦਾ ਕੱਪੜਾ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਦੂਸਰੇ ਵਿਅਕਤੀ ਕਰਦੇ ਹੋਣ, ਪ੍ਰਯੋਗ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ਖ਼ਾਸ ਕਰਕੇ ਦੁਖਦੀਆਂ ਅੱਖਾਂ ਵਾਲੇ ਵਿਅਕਤੀ ਦਾ ।
  • ਅੱਖਾਂ ਨੂੰ ਤੇਜ਼ ਧੁੱਪ, ਤੇਜ਼ ਰੋਸ਼ਨੀ ਤੋਂ ਬਚਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਦੇ ਲਈ ਧੁੱਪ ਦੀ ਐਨਕ ਆਦਿ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ।
  • ਘੱਟ ਰੋਸ਼ਨੀ ਵਿਚ ਲਿਖਣਾ, ਪੜ੍ਹਨਾ ਜਾਂ ਕੋਈ ਮਹੀਨ ਕੰਮ ਕਰਨਾ ਅੱਖਾਂ ਲਈ ਮਾਰੂ ਸਿੱਧ ਹੋ ਸਕਦਾ ਹੈ ।
  • ਅੱਖਾਂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਬਿਮਾਰੀਆਂ ਜਿਵੇਂ-ਰੋਹੇ ਆਦਿ ਤੋਂ ਅੱਖਾਂ ਨੂੰ ਬਚਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਜੇਕਰ ਇਨ੍ਹਾਂ ਵਿਚ ਕੋਈ ਰੋਗ ਹੋਵੇ ਛੇਤੀ ਹੀ ਕਿਸੇ ਅੱਖਾਂ ਦੇ ਮਾਹਿਰ ਦੀ ਸਲਾਹ ਲੈਣੀ ਚਾਹੀਦੀ ਹੈ !

ਨੱਕ ਦੀ ਸਫ਼ਾਈ – ਨੱਕ ਸਾਹ ਲੈਣ ਅਤੇ ਕੱਢਣ ਦਾ ਰਸਤਾ ਹੈ । ਨੱਕ ਦੇ ਅੰਦਰ ਵੀ ਚਿਪਚਿਪਾ ਜਾਂ ਲੇਸਦਾਰ ਪਦਾਰਥ ਨਿਕਲਦਾ ਰਹਿੰਦਾ ਹੈ । ਨੱਕ ਹਰ ਰੋਜ਼ ਅੰਦਰੋਂ-ਬਾਹਰੋਂ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਨੱਕ ਦੀ ਸਫ਼ਾਈ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ । ਜੇਕਰ ਨੱਕ ਵਿਚ ਗੰਦਗੀ ਹੋਵੇਗੀ ਤਾਂ ਸਰੀਰ ਦੇ ਅੰਦਰ ਨੱਕ ਰਾਹੀਂ ਸਾਹ ਨਹੀਂ ਜਾਵੇਗਾ ਅਤੇ ਸਾਹ ਨਲੀ ਵਿਚ ਰੋਗ ਹੋ ਸਕਦਾ ਹੈ । ਮੂੰਹ ਰਾਹੀਂ ਸਾਹ ਲੈਣਾ ਰੋਗਾਂ ਦਾ ਘਰ ਹੈ । ਨੱਕ ਨੂੰ ਜ਼ਿਆਦਾ ਜ਼ੋਰ ਨਾਲ ਸੁਣਕਣਾ ਨਹੀਂ ਚਾਹੀਦਾ ਹੈ ਨਹੀਂ ਤਾਂ ਨੱਕ ਅਤੇ ਗਲੇ ਦੇ ਕਿਰਮ ਸੁਣਨ ਵਾਲੀ ਨਲੀ ਦੁਆਰਾ ਕੰਨ ਦੇ ਵਿਚਕਾਰਲੇ ਭਾਗ ਵਿਚ ਪਹੁੰਚ ਕੇ ਸੁਣਨ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਚਮੜੀ ਦੀ ਸਫ਼ਾਈ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ? ਲਿਖੋ ।
ਉੱਤਰ-
ਖੁਦ ਕਰੋ ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

Punjab State Board PSEB 7th Class Home Science Book Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Home Science Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

Home Science Guide for Class 7 PSEB ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ Textbook Questions and Answers

ਪ੍ਰਸ਼ਨ 1.
ਰੇਆਨ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਰੇਸ਼ਾ ਹੈ ?
ਉੱਤਰ-
ਸੈਲੂਲੋਜ਼ ਤੋਂ ਉਤਪਾਦਤ ਕੁਦਰਤੀ ਰੇਸ਼ਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਤੇ ਤੇਜ਼ਾਬ ਦਾ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਸ਼ਕਤੀਸ਼ਾਲੀ ਤੇਜ਼ਾਬ ਨਾਲ ਕੱਪੜਿਆਂ ਨੂੰ ਹਾਨੀ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਨਾਈਲੋਨ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਤੰਤੂ ਹੈ ?
ਉੱਤਰ-
ਤੰਤੂ ਵਿਹੀਨ ਰਸਾਇਣਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਣ ਵਾਲਾ ।

ਪ੍ਰਸ਼ਨ 4.
ਥਰਮੋਪਲਾਸਟਿਕ ਅਤੇ ਨਾਨ-ਥਰਮੋਪਲਾਸਟਿਕ ਧਾਗਿਆਂ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ?
ਉੱਤਰ-
ਥਰਮੋਪਲਾਸਟਿਕ ਅਤੇ ਨਾਨ-ਬਰਮੋਪਲਾਸਟਿਕ ਵਿਚ ਅੰਤਰ –

ਥਰਮੋਪਲਾਸਟਿਕ ਨਾਨ-ਥਰਮੋਪਲਾਸਟਿਕ
1. ਇਹ ਜ਼ਿਆਦਾ ਗਰਮੀ ਨਾਲ ਸੜ ਜਾਂਦੇ ਹਨ | 1. ਇਹ ਜ਼ਿਆਦਾ ਗਰਮੀ ਨਾਲ ਸੜਦੇ ਤਾਂ ਨਹੀਂ ਪਰ ਖ਼ਰਾਬ ਹੋ ਜਾਂਦੇ ਹਨ।
2.ਇਹ ਪਾਣੀ ਨਹੀਂ ਚੁਸਦੇ, ਇਸ ਲਈ ਸੁੰਗੜਦੇ ਨਹੀਂ ਅਤੇ ਛੇਤੀ ਸੁੱਕ ਜਾਂਦੇ ਹਨ। 2.ਇਹ ਵੇਖਣ ਵਿਚ ਸਿਲਕ ਦੀ ਤਰ੍ਹਾਂ ਲਗਦੇ ਹਨ ।
3. ਇਹ ਆਸਾਨੀ ਨਾਲ ਧੋਤੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਪ੍ਰੈੱਸ ਕਰਨ ਦੀ ਵੀ ਜ਼ਿਆਦਾ ਲੋੜ ਨਹੀਂ ਪੈਂਦੀ । 3. ਇਹ ਪਾਣੀ ਨਾਲ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੇ ਹਨ । ਇਸ ਲਈ ਧੋਣ ਸਮੇਂ ਮਲਣ ਤੇ ਫਟਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਗਰਮੀ ਦਾ ਨਾਈਲੋਨ ਅਤੇ ਕਰੇਪ ਤੇ ਕੀ ਅਸਰ ਪੈਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਗਰਮੀ ਦਾ ਨਾਈਲੋਨ ਅਤੇ ਕਰੇਪ ਤੇ ਬੜੀ ਜਲਦੀ ਅਸਰ ਪੈਂਦਾ ਹੈ । ਇਹ ਨਰਮ ਹੋ ਜਾਂਦੇ ਹਨ । ਇਸ ਦੇ ਇਸੇ ਗੁਣ ਕਾਰਨ ਨਾਈਲੋਨ ਦੀਆਂ ਜ਼ੁਰਾਬਾਂ ਦੀ ਸ਼ਕਲ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ | ਪਰ ਜ਼ਿਆਦਾ ਗਰਮੀ ਨਾਲ ਇਹ ਖ਼ਰਾਬ ਹੋ ਜਾਂਦੀ ਹੈ । ਇਹ ਪਾਣੀ ਨਹੀਂ ਚੁਸਦੀ । ਇਸ ਲਈ ਗਰਮੀਆਂ ਵਿਚ ਜੇਕਰ ਇਨ੍ਹਾਂ ਨੂੰ ਪਹਿਨਿਆ ਜਾਵੇ ਤਾਂ ਬੇਚੈਨੀ ਹੁੰਦੀ ਹੈ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

ਪ੍ਰਸ਼ਨ 6.
ਨਾਈਲੋਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਧੋਵੋਗੇ ?
ਉੱਤਰ-
ਜੇਕਰ ਨਾਈਲੋਨ ਦੇ ਕੱਪੜੇ ਜ਼ਿਆਦਾ ਮੈਲੇ ਹੋਣ ਤਾਂ 10-15 ਮਿੰਟ ਲਈ ਕੋਸੇ ਪਾਣੀ ਵਿਚ ਭਿਉਂ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ । ਕੋਸੇ ਪਾਣੀ ਵਿਚ ਸਾਬਣ ਦੀ ਝੱਗ ਬਣਾ ਕੇ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜ਼ਿਆਦਾ ਮੈਲੇ ਹਿੱਸਿਆਂ ਨੂੰ ਹੱਥ ਨਾਲ ਮਲ ਕੇ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ।

ਨਿਬੰਧਾਤਮਕ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 7.
ਤੇਜ਼ਾਬ, ਖਾਰ, ਰੰਗਕਾਟ ਅਤੇ ਅਲਕੋਹਲ ਦਾ ਰੇਆਨ ਅਤੇ ਨਾਈਲੋਨ ਤੇ ਕੀ ਅਸਰ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਾਬਣ, ਖਾਰ, ਅਲਕੋਹਲ ਦਾ ਇਸ ਤੇ ਕੋਈ ਅਸਰ ਹੁੰਦਾ, ਪਰ ਤੇਜ਼ਾਬ ਨਾਲ ਇਹ ਖ਼ਰਾਬ ਹੋ ਜਾਂਦਾ ਹੈ, ਰੰਗਕਾਟ ਦਾ ਵੀ ਇਸ ਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਹੁੰਦਾ |ਇਸ ਲਈ ਰੰਗ ਖ਼ਰਾਬ ਹੋਏ ਨਾਈਲੋਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਸਫ਼ੈਦ ਕਰਨ ਲਈ ਰੰਗਕਾਟ ਦੀ ਵਰਤੋਂ ਨਹੀਂ | ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਸ ਤੇ ਆਸਾਨੀ ਨਾਲ ਪੱਕੇ ਰੰਗ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 8.
ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਧੋਣ ਲਈ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਸਾਵਧਾਨੀਆਂ ਵਰਤੋਗੇ ?
ਉੱਤਰ-
ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਧੋਣ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਸਾਵਧਾਨੀਆਂ ਵਰਤਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ-

  • ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਭਿਉਂਣਾ, ਉਬਾਲਣਾ ਜਾਂ ਬਲੀਚ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ।
  • ਸਾਬਣ ਨਰਮ ਪ੍ਰਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਕੋਸਾ ਪਾਣੀ ਹੀ ਪ੍ਰਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ, ਜ਼ਿਆਦਾ ਗਰਮ ਨਹੀਂ ।
  • ਸਾਬਣ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਝੱਗ ਬਣਾਉਣੀ ਚਾਹੀਦੀ ਹੈ ਜਿਸ ਨਾਲ ਸਾਬਣ ਪੂਰੀ ਤਰ੍ਹਾਂ ਘੁਲ ਜਾਵੇ ।
  • ਗਿੱਲੀ ਅਵਸਥਾ ਵਿਚ ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਆਪਣੀ ਸ਼ਕਤੀ 50% ਤਕ ਗੁਆ ਦਿੰਦੇ ਹਨ, ਇਸ ਲਈ ਕੱਪੜਿਆਂ ਵਿਚੋਂ ਸਾਬਣ ਦੀ ਝੱਗ ਕੱਢਣ ਲਈ ਉਹਨਾਂ ਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਨਿਚੋੜਨਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਸਾਬਣ ਦੀ ਝੱਗ ਨਿਚੋੜਨ ਤੋਂ ਬਾਅਦ ਕੱਪੜੇ ਨੂੰ ਦੋ ਵਾਰੀ ਕੋਸੇ ਪਾਣੀ ਵਿਚ ਹੰਗਾਲਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਕੱਪੜਿਆਂ ਵਿਚੋਂ ਪਾਣੀ ਨੂੰ ਕੋਮਲਤਾ ਨਾਲ ਨਿਚੋੜ ਕੇ ਕੱਢਣਾ ਚਾਹੀਦਾ ਹੈ । ਕੱਪੜੇ ਨੂੰ ਮਰੋੜ ਕੇ ਨਹੀਂ ਨਿਚੋੜਨਾ ਚਾਹੀਦਾ ।
  • ਕੱਪੜੇ ਨੂੰ ਕਿਸੇ ਭਾਰੇ ਤੌਲੀਏ ਵਿਚ ਰੱਖ ਕੇ ਲਪੇਟ ਕੇ ਹਲਕਾ-ਹਲਕਾ ਦਬਾ ਕੇ ਨਮੀ ਨੂੰ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਕੱਪੜੇ ਨੂੰ ਧੁੱਪ ਵਿਚ ਨਹੀਂ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ।
  • ਕੱਪੜੇ ਨੂੰ ਲਟਕਾ ਕੇ ਨਹੀਂ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ।
  • ਕੱਪੜੇ ਨੂੰ ਹਲਕੀ ਨਮੀ ਦੀ ਅਵਸਥਾ ਵਿਚ ਕੱਪੜੇ ਦੇ ਉਲਟੇ ਪਾਸੇ ਪ੍ਰੈੱਸ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਕੱਪੜਿਆਂ ਨੂੰ ਅਲਮਾਰੀ ਵਿਚ ਰੱਖਣ ਅਰਥਾਤ ਤਹਿ ਕਰਕੇ ਰੱਖਣ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਵੇਖ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਉਹਨਾਂ ਵਿਚੋਂ ਨਮੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਦੂਰ ਹੋ ਚੁੱਕੀ ਹੈ ਜਾਂ ਨਹੀਂ ।

Home Science Guide for Class 7 PSEB ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ Important Questions and Answers

ਪ੍ਰਸ਼ਨ 1.
ਬਨਾਵਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਧਾਗਿਆਂ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ ਭਾਗਾਂ ਵਿਚ |

ਪ੍ਰਸ਼ਨ 2.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਵਿਚ …………… ਨਹੀਂ ਹੁੰਦੀ ।
ਉੱਤਰ-
ਵਧੇਰੇ ਲਚਕ ।

ਪ੍ਰਸ਼ਨ 3.
…………… ਨੂੰ ਟਿੱਡੀਆਂ ਬੜੀ ਜਲਦੀ ਖਾ ਜਾਂਦੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਰੇਆਨ ।

ਪ੍ਰਸ਼ਨ 4.
ਫੇਰੀਲੀਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ……….. ਵਿਚ ਲਟਕਾ ਕੇ ਸੁਖਾਣਾ ਚਾਹੀਦਾ ਹੈ ।
ਉੱਤਰ-
ਹੈਂਗਰ ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

ਪ੍ਰਸ਼ਨ 5.
……… ਦੇ ਕੱਪੜੇ ਨੂੰ ਧੋਣ ਤੋਂ ਬਾਅਦ ਪ੍ਰੈੱਸ ਕਰਨ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ ।
ਉੱਤਰ-
ਆਲੋਨ ।

ਪ੍ਰਸ਼ਨ 6.
…….. ਨਾਲ ਰੇਆਨ ਦੀ ਸ਼ਕਤੀ ਘੱਟਦੀ ਹੈ ?
ਉੱਤਰ-
ਧੁੱਪ ।

ਪ੍ਰਸ਼ਨ 7.
ਰੇਆਨ …………… ਰੇਸ਼ਾ ਹੈ ।
ਉੱਤਰ-
ਨਾਨ-ਥਰਮੋਪਲਾਸਟਿਕ।

ਪ੍ਰਸ਼ਨ 8.
ਕਿਹੜੇ ਕੱਪੜੇ ਗਰਮੀ ਨਾਲ ਪਿਘਲ ਕੇ ਸੜ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਥਰਮੋਪਲਾਸਟਿਕ ਕੱਪੜੇ ।

ਪ੍ਰਸ਼ਨ 9.
ਰੇਆਨ ਨੂੰ ਟਿੱਡੀਆਂ ਜਲਦੀ ਖਾ ਜਾਂਦੀਆਂ ਹਨ । (ਠੀਕ/ਗਲਤ)
ਉੱਤਰ-
ਠੀਕ ।

ਪ੍ਰਸ਼ਨ 10.
ਥਰਮੋਪਲਾਸਟਿਕ ਰੇਸ਼ੇ –
(ੳ) ਗਰਮੀ ਵਿੱਚ ਸੜ ਜਾਂਦੇ ਹਨ ।
(ਅ) ਪਾਣੀ ਨਹੀਂ ਚੂਸਦੇ (ਈ , ਸੁੰਗੜਦੇ ਨਹੀਂ
(ਸ) ਸਾਰੇ ਠੀਕ ।
ਉੱਤਰ-
(ਸ) ਸਾਰੇ ਠੀਕ ।

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਕਠਿਨ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਕਿਉਂਕਿ ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਪਾਣੀ ਦੇ ਸੰਪਰਕ ਨਾਲ ਕਮਜ਼ੋਰ ਪੈ ਜਾਂਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 2.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਲਈ ਕਿਸ ਪ੍ਰਕਾਰ ਦੀ ਧੁਆਈ ਚੰਗੀ ਰਹਿੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਖ਼ੁਸ਼ਕ ਧੁਆਈ (ਡਰਾਈਕਲੀਨਿੰਗ)|

ਪ੍ਰਸ਼ਨ 3.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਂਦੇ ਸਮੇਂ ਕਿਹੜੀਆਂ ਗੱਲਾਂ ਦੀ ਮਨਾਹੀ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ਨੂੰ ਪਾਣੀ ਵਿਚ ਫੁਲਾਉਣਾ, ਤਾਪ, ਸ਼ਕਤੀਸ਼ਾਲੀ ਰਸਾਇਣਾਂ ਅਤੇ ਅਲਕੋਹਲ ਦੀ ਵਰਤੋਂ ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

ਪ੍ਰਸ਼ਨ 4.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਲਈ ਕਿਹੜੀ ਵਿਧੀ ਠੀਕ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਗੁਣਾ ਅਤੇ ਨਪੀੜਨ ਦੀ ਵਿਧੀ ।

ਪ੍ਰਸ਼ਨ 5.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਕਿੱਥੇ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਛਾਂ ਵਾਲੇ ਸਥਾਨ ਤੇ ਬਿਨਾਂ ਲਟਕਾਏ ਹੋਏ ਚੌਰਸ ਥਾਂ ਤੇ ।

ਪ੍ਰਸ਼ਨ 6.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਪ੍ਰੈੱਸ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਘੱਟ ਗਰਮ ਪ੍ਰੈੱਸ ਕੱਪੜੇ ਦੇ ਉਲਟੇ ਪਾਸੇ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ । ਪ੍ਰੈੱਸ ਕਰਦੇ ਸਮੇਂ ਕੱਪੜੇ ਵਿਚ ਥੋੜ੍ਹੀ ਜਿਹੀ ਨਮੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਮਾਨਵ ਨਿਰਮਿਤ ਅਤੇ ਮਾਨਵ ਕ੍ਰਿਤ ਤੰਤੂਆਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਨਾਂ ਦਿਓ ।
ਉੱਤਰ-
ਨਾਈਲੋਨ, ਪਾਲੀਸਟਰ, ਟੈਰਾਲੀਨ, ਡੈਕਰਾਨ, ਆਰਲਾਨ, ਐਕੂਲਿਕ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 8.
ਰੇਆਨ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਤੰਤੂ ਹੈ-ਪ੍ਰਾਕਿਰਤਕ ਜਾਂ ਮਾਨਵ-ਨਿਰਮਿਤ ?
ਉੱਤਰ-
ਆਨ ਮਾਨਵ ਨਿਰਮਿਤ ਅਤੇ ਕੁਦਰਤੀ ਦੋਹਾਂ ਹੀ ਤਰ੍ਹਾਂ ਦਾ ਤੰਤੂ ਹੈ ।

ਪ੍ਰਸ਼ਨ 9.
ਸਭ ਤੋਂ ਪੁਰਾਣਾ ਮਾਨਵ ਕ੍ਰਿਤ ਤੰਤੂ ਕਿਹੜਾ ਹੈ ?
ਉੱਤਰ-
ਰੇਆਨ ।

ਪ੍ਰਸ਼ਨ 10.
ਸੈਲੂਲੋਜ਼ ਤੋਂ ਕਿਹੜਾ ਤੰਤੁ ਮਾਨਵ-ਨਿਰਮਿਤ ਹੈ ?
ਉੱਤਰ-
ਰੇਆਨ ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

ਪ੍ਰਸ਼ਨ 11.
ਜਾਨਵਰਾਂ ਦੇ ਵਾਲਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲਾ ਪ੍ਰਮੁੱਖ ਕੱਪੜਾ ਤੰਤੂ ਕਿਹੜਾ ਹੈ ?
ਉੱਤਰ-
ਉੱਨ ।

ਪ੍ਰਸ਼ਨ 12.
ਪ੍ਰਾਕਿਰਤਕ ਤੰਤੂ ਵਾਲੇ ਪਦਾਰਥਾਂ ਤੋਂ ਰਸਾਇਣਿਕ ਵਿਧੀਆਂ ਨਾਲ ਨਵੇਂ ਪ੍ਰਕਾਰ ਦਾ ਕਿਹੜਾ ਮੁੱਖ ਤੰਤੂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਰੇਆਨ ।

ਪ੍ਰਸ਼ਨ 13.
ਤੁ ਸਰੋਤ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ ਭਾਗਾਂ ਵਿਚ-

  1. ਕੁਦਰਤੀ ਅਤੇ
  2. ਮਾਨਵ-ਨਿਰਮਿਤ ।

ਪ੍ਰਸ਼ਨ 14.
ਕੱਪੜਿਆਂ ਨੂੰ ਤਾਪ ਦੇ ਅਸਰ ਅਨੁਸਾਰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ, ਨਾਨ-ਬਰਮੋਪਲਾਸਟਿਕ ਅਤੇ ਥਰਮੋਪਲਾਸਟਿਕ ।

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਰੇਆਨ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਭੌਤਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਰੇਆਨ ਦਾ ਤੰਤੂ ਭਾਰਾ, ਸਖ਼ਤ ਅਤੇ ਘੱਟ ਲਚਕਦਾਰ ਹੁੰਦਾ ਹੈ । ਜਦੋਂ ਰੇਆਨ ਦੇ ਧਾਗੇ ਨੂੰ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸੌਖ ਨਾਲ ਜਲ ਜਾਂਦਾ ਹੈ । ਸੂਖਮ ਦਰਸ਼ੀ ਯੰਤਰ ਨਾਲ ਵੇਖਣ ਤੇ ਇਸ ਦੇ ਤੰਤੂ ਲੰਬਾਕਾਰ, ਚਿਕਨੇ ਅਤੇ ਗੋਲਾਕਾਰ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਰੇਆਨ ਵਿਚ ਕੁਦਰਤੀ ਸਖ਼ਤੀ ਨਹੀਂ ਹੁੰਦੀ ਹੈ । ਇਹ ਕੱਪੜਾ ਰਗੜਨ ਨਾਲ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਜੇਕਰ ਧੋਂਦੇ ਸਮੇਂ ਕੱਪੜੇ ਨੂੰ ਰਗੜਿਆ ਜਾਵੇ ਤਾਂ ਛੇਕ ਹੋਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ। ਪਾਣੀ ਨਾਲ ਰੇਆਨ ਦੀ ਸ਼ਕਤੀ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਜਦੋਂ ਰੇਆਨ ਸੁੱਕ ਜਾਂਦੀ ਹੈ ਤਾਂ ਮੁੜ ਆਪਣੀ ਸ਼ਕਤੀ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੀ ਹੈ । ਰੇਆਨ ਤਾਪ ਦਾ ਚੰਗਾ ਸੁਚਾਲਕ ਹੈ । ਇਹ ਗਰਮੀ ਨੂੰ ਛੇਤੀ ਨਿਕਲਣ ਦਿੰਦਾ ਹੈ ਇਸ ਲਈ ਇਹ ਠੰਢਾ ਰਹਿੰਦਾ ਹੈ ।
PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ 1
ਤਾਪ ਦੇ ਪ੍ਰਭਾਵ ਨਾਲ ਰੇਆਨ ਦੇ ਤੰਤੁ ਪਿਘਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਧੁੱਪ ਨਾਲ ਰੇਆਨ ਦੀ ਸ਼ਕਤੀ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਰੇਆਨ ਦੀਆਂ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਕੁੱਝ-ਕੁੱਝ ਨੂੰ ਦੇ ਸਮਾਨ ਹੀ ਹਨ। ਖਾਰ ਦੇ ਪ੍ਰਯੋਗ ਨਾਲ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ | ਤੇਜ਼ਾਬ ਅਤੇ ਤੇਜ਼ਾਬੀ ਖਾਰ ਦਾ ਰੇਆਨ ਤੇ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਰੇਆਨ ਨੂੰ ਕੋਈ ਹਾਨੀ ਨਹੀਂ ਪਹੁੰਚਾਉਂਦਾ ।

ਪ੍ਰਸ਼ਨ 2.
ਟੈਰਾਲੀਨ ਦੀਆਂ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਭੌਤਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਟੈਰਾਲੀਨ ਦੇ ਤੰਤੂ ਭਾਰੇ ਅਤੇ ਮਜ਼ਬੂਤ ਹੁੰਦੇ ਹਨ । ਸੂਖਮ ਦਰਸ਼ੀ ਯੰਤਰ ਦੁਆਰਾ ਵੇਖਿਆ ਜਾਵੇ ਤਾਂ ਇਹ ਰੇਆਨ ਤੇ ਨਾਈਲੋਨ ਦੇ ਤੰਤੂਆਂ ਵਰਗੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਇਹ ਤੰਤੁ ਸਿੱਧੇ, ਚੀਕਣੇ ਅਤੇ ਚਮਕਦਾਰ ਹੁੰਦੇ ਹਨ । ਟੈਰਾਲੀਨ ਵਿਚ ਨਮੀ ਨੂੰ ਸੋਖਣ ਦੀ ਸ਼ਕਤੀ ਨਹੀਂ ਹੁੰਦੀ ਇਸ ਲਈ ਪਾਣੀ ਨਾਲ ਇਸ ਦੇ ਰੂਪ ਵਿਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਆਉਂਦਾ । ਟੈਰਾਲੀਨ ਦਾ ਤੰਤੂ ਜਲਾਉਣ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਬਲਦਾ ਹੈ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਪਿਘਲਦਾ ਵੀ ਹੈ । ਇਹ ਪ੍ਰਕਾਸ਼-ਅਵਰੋਧਕ ਹੁੰਦੇ ਹਨ । ਟੈਰਾਲੀਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਧੋਣ ਤੇ ਉਹ ਸੁੰਗੜਦੇ ਨਹੀਂ । ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਟੈਰਾਲੀਨ ਤੇ ਤੇਜ਼ਾਬ ਦਾ ਪ੍ਰਭਾਵ ਹਾਨੀਕਾਰਕ ਨਹੀਂ ਹੁੰਦਾ ਪਰ ਜ਼ਿਆਦਾ ਤੇਜ਼ ਤੇਜ਼ਾਬੀ ਕਿਰਿਆ ਕੱਪੜੇ ਨੂੰ ਨਸ਼ਟ ਕਰ ਦਿੰਦੀ ਹੈ । ਖਾਰ ਦਾ ਇਸ ਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪੈਂਦਾ । ਕਿਸੇ ਵੀ ਪ੍ਰਕਾਰ ਦੇ ਰੰਗ ਵਿਚ ਇਨ੍ਹਾਂ ਨੂੰ ਰੰਗਿਆ ਜਾ ਸਕਦਾ ਹੈ । ਟੈਰਾਲੀਨ ਦੇ ਕੱਪੜੇ ਜ਼ਿਆਦਾ ਮਜ਼ਬੂਤ ਅਤੇ ਟਿਕਾਊ ਹੁੰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਆਰਲੋਨ ਤੰਤੂਆਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ।
ਉੱਤਰ-
ਸੂਖਮਦਰਸ਼ੀ ਯੰਤਰ ਨਾਲ ਵੇਖਣ ਤੇ ਇਹ ਹੱਡੀ ਵਰਗੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਆਰਲੋਨ ਵਿਚ ਉੱਨ ਅਤੇ ਰੂੰ ਨਾਲੋਂ ਘੱਟ ਅਪਘਰਸ਼ਣ ਪ੍ਰਤੀਰੋਧਕ ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ । ਆਰਲੋਨ ਵਿਚ ਉੱਚ ਸ਼੍ਰੇਣੀ ਦੀ ਸਥਾਈ ਬਿਜਲਈ-ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ । ਜਲਾਉਣ ਨਾਲ ਇਹ ਬਲਦਾ ਹੈ ਤੇ ਨਾਲ-ਨਾਲ ਪਿਘਲਦਾ ਵੀ ਹੈ । ਆਰਸੋਨ ਦਾ ਤੰਤੂ ਅਸਾਨੀ ਨਾਲ ਨਹੀਂ ਰੰਗਿਆ ਜਾ ਸਕਦਾ । ਰੰਗ ਦਾ ਪੱਕਾਪਨ ਰੰਗਾਈ ਦੀ ਵਿਧੀ ਉੱਤੇ ਅਤੇ ਵਸਤੂ ਦੀ ਬਨਾਵਟ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ । ਇਸ ਤੰਤੁ ਨੂੰ ਰੰਗਣ ਲਈ ਤਾਂਬਾ ਲੋਹਾ ਵਿਧੀ ਬਹੁਤ ਸਫਲ ਹੋਈ ਹੈ । ਕੱਪੜੇ ਦਾ ਸੁੰਗੜਨਾ ਉਸ ਦੀ ਬਨਾਵਟ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ । ਆਰਲੋਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਧੋਣ ਤੋਂ ਬਾਅਦ ਪ੍ਰੈੱਸ ਕਰਨ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ ਹੈ । ਇਹ ਛੇਤੀ ਸੁੱਕ ਜਾਂਦੇ ਹਨ । ਇਹਨਾਂ ਕੱਪੜਿਆਂ ਵਿਚ ਟਿਕਾਊਪਨ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ ।

PSEB 7th Class Home Science Solutions Chapter 8 ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ

ਪ੍ਰਸ਼ਨ 4.
ਰੇਆਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਪ੍ਰੈੱਸ ਕਰਨ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ?
ਉੱਤਰ-
ਹਰੇਕ ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰੈੱਸ ਕੀਤਾ ਜਾਂਦਾ –

  • ਕਰੇਪ ਅਤੇ ਜਾਰਜਟ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸੁੱਕਾ ਕੇ ਪ੍ਰੈੱਸ ਕਰੋ ।
  • ਫਟੇ ਅਤੇ ਸਾਟਨ ਨੂੰ ਗਿੱਲੇ ਹੋਣ ਤੇ ਪ੍ਰੈੱਸ ਕਰੋ ।
  • ਪੈਂਸ ਨੂੰ ਵਧੇਰੇ ਗਰਮ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ, ਜੇ ਹੋ ਸਕੇ ਤਾਂ ਆਟੋਮੈਟਿਕ ਪੈਂਸ ਦੀ ਵਰਤੋਂ ਕਰੋ |
  • ਚਮਕੀਲੇ ਸਾਟਨ ਨੂੰ ਸਿੱਧੇ ਪਾਸਿਓਂ ਅਤੇ ਕਰੇਪ ਨੂੰ ਪੁੱਠੇ ਪਾਸਿਓਂ ਪ੍ਰੈੱਸ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਬਟਨਾਂ ਤੇ ਐੱਸ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ।

ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਕੱਪੜਿਆਂ ਦੀ ਦੇਖਭਾਲ PSEB 7th Class Home Science Notes

ਸੰਖੇਪ ਜਾਣਕਾਰੀ

  • ਬਨਾਉਟੀ ਢੰਗ ਨਾਲ ਬਣਾਏ ਧਾਗਿਆਂ ਨੂੰ ਦੋ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ |
    1. ਨਾਨ-ਥਰਮੋਪਲਾਸਟਿਕ ਰੇਸ਼ੇ
    2. ਥਰਮੋਪਲਾਸਟਿਕ ਰੇਸ਼ੇ ।
  • ਰੇਆਨ ਪਾਣੀ ਵਿਚ ਬਹੁਤ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੀ ਹੈ । ਇਸ ਲਈ ਨਮੀ ਵਾਲੇ ਕੱਪੜੇ ! ਨੂੰ ਜ਼ਿਆਦਾ ਰਗੜਨਾ ਨਹੀਂ ਚਾਹੀਦਾ ।
  • ਰੇਆਨ ਜ਼ਿਆਦਾ ਲਚਕਦਾਰ ਨਹੀਂ ਹੁੰਦੀ ।
  • ਵਧੀਆ ਕਿਸਮ ਦੀ ਰੇਆਨ ਜਿਸ ਦਾ ਰੰਗ ਨਿਕਲਦਾ ਹੋਵੇ ਜਾਂ ਬਹੁਤ ਭਾਰੇ ਕੱਪੜੇ ਜਿਵੇਂ ਗਰਾਰਾ ਸੂਟ ਆਦਿ ਨੂੰ ਡਰਾਈਕਲੀਨ ਹੀ ਕਰਵਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਮਰੋੜ ਕੇ ਨਹੀਂ ਨਿਚੋੜਨਾ ਚਾਹੀਦਾ ।
  • ਰੇਆਨ ਨੂੰ ਧੁੱਪ ਵਿਚ ਲਟਕਾ ਕੇ ਨਹੀਂ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ।
  • ਰੇਆਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਬਟਨਾਂ ਤੇ ਪੈਂਸ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ । ਇਸ ਨਾਲ ਕੱਪੜਿਆਂ ਦੇ ਫਟਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ ।
  • ਜੇਕਰ ਕੱਪੜੇ ਜ਼ਿਆਦਾ ਮੈਲੇ ਹੋਣ ਤਾਂ ਉਹਨਾਂ ਨੂੰ 10-15 ਮਿੰਟ ਲਈ ਕੋਸੇ ਪਾਣੀ ਨੂੰ ਵਿਚ ਭਿਉਂ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਸਫ਼ੈਦ ਕੱਪੜਿਆਂ ਨੂੰ ਰੰਗਦਾਰ ਕੱਪੜਿਆਂ ਨਾਲੋਂ ਵੱਖ ਹੀ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਨਾਈਲੋਨ ਅਤੇ ਟੈਰਾਲੀਨ ਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਬਹੁਤ ਹਲਕੀ ਗਰਮ ਪ੍ਰੈੱਸ ਨਾਲ ਹਲਕਾ-ਹਲਕਾ ਪ੍ਰੈੱਸ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ Notes.

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਟੱਬ, ਬਾਲਟੀਆਂ ਅਤੇ ਚਿਰਮਚੀ ਦੀ ਲੋੜ ਕਿਉਂ ਪੈਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਪਾਣੀ ਭਰਨ, ਸਾਬਣ ਨੂੰ ਝਗ ਬਣਾਉਣ, ਕੱਪੜਿਆਂ ਨੂੰ ਫੁਲਾਉਣ, ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ, ਹੰਗਾਲਣ, ਨੀਲ, ਮਾਇਆ ਲਾਉਣ ਅਤੇ ਰੰਗਣ ਲਈ ਇਸ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 2.
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਕਟੋਰਿਆਂ ਦਾ ਕੀ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਟਾਰਚ ਦਾ ਪੇਸਟ ਬਣਾਉਣ, ਦਾਗ-ਧੱਬੇ ਛੁਡਾਉਣ ਲਈ ਪੇਸਟ ਬਣਾਉਣ, ਨੀਲ ਬਣਾਉਣ ਅਤੇ ਧੱਬਿਆਂ ਨੂੰ ਡੁਬੋ ਕੇ ਰੱਖਣ ਲਈ।

ਪ੍ਰਸ਼ਨ 3.
ਸਬਿੰਗ ਬੋਰਡ ਕੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਇਕ ਪ੍ਰਕਾਰ ਦਾ ਤਖਤਾ ਹੁੰਦਾ ਹੈ ਜਿਸਦੀ ਲੋੜ ਜ਼ਿਆਦਾ ਗੰਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਉਸ ਉੱਤੇ ਰੱਖ ਕੇ ਰਗੜਨ ਲਈ ਪੈਂਦੀ ਹੈ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 4.
ਸਕ੍ਰਬਿੰਗ ਬੋਰਡ· ਕਿਸ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਲੱਕੜੀ ਜ਼ਿੰਕ, ਸਟੀਲ ਜਾਂ ਸ਼ੀਸ਼ੇ ਦੇ।

ਪ੍ਰਸ਼ਨ 5.
ਸਭ ਤੋਂ ਚੰਗਾ ਸਬਿੰਗ ਬੋਰਡ ਕਿਸ ਦਾ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਲੱਕੜੀ ਦਾ।

ਪ੍ਰਸ਼ਨ 6.
ਸਕਸ਼ਨ ਵਾਸ਼ਰ ਕੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਇਕ ਉਪਕਰਨ ਹੈ ਜਿਸ ਵਿਚ ਇਕ ਹੈਂਡਲ ਅਤੇ ਥੱਲੇ ਵਲ ਇਕ ਕਟੋਰੇ ਦੀ ਤਰ੍ਹਾਂ ਗੋਲਾਕਾਰ ਛੇਕ ਵਾਲਾ ਉਨਤੋਦਰ ਤਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿਚ ਧੁਆਈ ਕੀਤੇ ਜਾ ਰਹੇ ਕੱਪੜਿਆਂ ਤੇ ਦਬਾਅ ਪਾ ਕੇ ਉਨ੍ਹਾਂ ਵਿਚੋਂ ਵਾਰ-ਵਾਰ ਸਾਬਣ ਦੇ ਪਾਣੀ ਨੂੰ ਕੱਢਣਾ ਅਤੇ ਮੁੜ ਪਾਉਣਾ ਪੈਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ 7.
ਧੁਆਈ ਦੇ ਸਾਬਣਾਂ ਦੇ ਸਰੂਪ ਦੱਸੋ।
ਉੱਤਰ-

  1. ਟਿੱਕੀ ਜਾਂ ਬਾਰ ਸਾਬਣ
  2. ਸਾਬਣ ਦਾ ਘੋਲ
  3. ਸਾਬਣ ਦੀ ਦਿੱਤੀ ਜਾਂ ਫਲੇਕ
  4. ਸਾਬਣ ਦੀ ਜੈਲੀ
  5. ਸਾਬਣ ਦਾ ਚੂਰਾ
  6. ਵਣ ਚੂਰਾ।

ਪ੍ਰਸ਼ਨ 8.
ਰੀਠੇ ਦਾ ਪ੍ਰਯੋਗ ਕਿਨ੍ਹਾਂ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਲਈ ਠੀਕ ਰਹਿੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਜਿਨ੍ਹਾਂ ਕੱਪੜਿਆਂ ਦੇ ਰੰਗ ਲਹਿ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਰੇਸ਼ਮੀ ਤੇ ਊਨੀ ਕੱਪੜਿਆਂ ਦੇ ਲਈ।

ਪ੍ਰਸ਼ਨ 9.
ਸ਼ਿਕਾਕਾਈ ਨਾਲ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਦਾ ਕੀ ਲਾਭ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ਨਾਲ ਲੱਗੀ ਚਿਕਨਾਈ ਵਾਲੀ ਅਸ਼ੁੱਧੀ ਦੀ ਸਫ਼ਾਈ ਇਸ ਦੁਆਰਾ ਸੌਖ ਨਾਲ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨਾਲ ਕੱਪੜਿਆਂ ਦੇ ਰੰਗਾਂ ਦੀ ਸੁਰੱਖਿਆ ਵੀ ਹੁੰਦੀ ਹੈ। ਉਹ ਸੁਤੀ, ਰੇਸ਼ਮੀ ਅਤੇ ਉਨੀ ਸਭ ਪ੍ਰਕਾਰ ਦੇ ਕੱਪੜਿਆਂ ਲਈ ਉਪਯੋਗੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 10.
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਬੁਰਸ਼ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
ਉੱਤਰ-
ਰਗੜ ਕੇ ਗੰਦੇ ਕੱਪੜਿਆਂ ਤੋਂ ਮੈਲ ਛੁਡਾਉਣ ਲਈ।

ਪ੍ਰਸ਼ਨ 11.
ਸਕਸ਼ਨ ਵਾਸ਼ਰ ਦੀ ਕੀ ਉਪਯੋਗਤਾ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਗੰਦੇ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 12.
ਸਕਸ਼ਨ ਵਾਸ਼ਰ ਦੀ ਵਰਤੋਂ ਕਿਸ ਪ੍ਰਕਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਟੱਬ ਵਿਚ ਸਾਬਣ ਦਾ ਪਾਣੀ ਤਿਆਰ ਕਰਕੇ ਸਕਸ਼ਨ ਵਾਸ਼ਰ ਉੱਪਰ ਹੇਠਾਂ ਚਲਾ ਕੇ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 13.
ਕੱਪੜੇ ਸੁਕਾਉਣ ਦੀ ਰੈਕ ਕਿਨ੍ਹਾਂ ਘਰਾਂ ਲਈ ਉਪਯੋਗੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਜਿਨ੍ਹਾਂ ਘਰਾਂ ਵਿਚ ਬਾਹਰ ਕੱਪੜੇ ਸੁਕਾਉਣ ਲਈ ਉਚਿਤ ਥਾਂ ਨਹੀਂ ਹੁੰਦੀ।

ਪ੍ਰਸ਼ਨ 14.
ਬਿਜਲੀ ਪ੍ਰੈਸ ਕੋਇਲੇ ਵਾਲੀ ਪ੍ਰੈਸ ਨਾਲੋਂ ਕਿਉਂ ਚੰਗੀ ਮੰਨੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਕਿਉਂਕਿ ਬਿਜਲੀ ਦੇ ਪ੍ਰੈਸ ਵਿਚ ਸੂਤੀ, ਊਨੀ, ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਤੇ ਪ੍ਰੈਸ ਕਰਨ ਲਈ ਤਾਪ ਦਾ ਕੰਟਰੋਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ 15.
ਕਲਫ਼ ਬਣਾਉਣ ਲਈ ਆਮ ਤੌਰ ‘ਤੇ ਕਿਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਚਾਵਲ, ਮੈਦਾ, ਅਰਾਰੋਟ, ਸਾਬੂਦਾਨਾ।

ਪ੍ਰਸ਼ਨ 16.
ਕੱਪੜਿਆਂ ਨੂੰ ਨੀਲ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ਤੇ ਸਫ਼ੈਦੀ ਲਿਆਉਣ ਲਈ।

ਪ੍ਰਸ਼ਨ 17.
ਟੀਨੋਪਾਲ ਦਾ ਪ੍ਰਯੋਗ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ‘ਤੇ ਸਫੈਦੀ ਲਿਆਉਣ ਲਈ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 18.
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਧੁਲਾਈ ਦੇ ਵੱਖ-ਵੱਖ ਉਪਕਰਨਾਂ ਦੇ ਪ੍ਰਯੋਗ ਦਾ ਕੀ ਲਾਭ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਧੁਆਈ ਦਾ ਕੰਮ ਸੌਖ ਨਾਲ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਮਿਹਨਤ ਤੇ ਸਮੇਂ ਦੀ ਬਚਤ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 19.
ਕੱਪੜਿਆਂ ਦੀ ਰੰਗਾਈ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ ?
ਉੱਤਰ-
ਫਿੱਕੇ ਪਏ ਹੋਏ ਕੱਪੜਿਆਂ ਨੂੰ ਫਿਰ ਤੋਂ ਸੁੰਦਰ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਮੈਚਿੰਗ ਲਈ ਕੱਪੜੇ ਨੂੰ ਰੰਗ ਦੇ ਕੇ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 20.
ਮਾਨਵ-ਨਿਰਮਿਤ ਜਾਂ ਮਾਨਵ-ਕ੍ਰਿਤ ਤੰਤੂਆਂ ਦੇ ਕੁਝ ਉਦਾਹਰਨ ਦਿਓ ।
ਉੱਤਰ-
ਨਾਈਲੋਨ, ਪਾਲੀਐਸਟਰ, ਟੈਰੀਲੀਨ, ਡੈਕਾਨ, ਆਰਲਾਨ, ਐਕ੍ਰਿਲਿਕ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 21.
ਰੇਆਨ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਤੰਤੂ ਹੈ-ਪ੍ਰਾਕਿਰਤਕ ਜਾ ਮਾਨਵ-ਨਿਰਮਿਤ ?
ਉੱਤਰ-
ਰੇਆਨ ਪ੍ਰਾਕਿਰਤਕ ਅਤੇ ਮਾਨਵ-ਨਿਰਮਿਤ ਦੋਹਾਂ ਤਰ੍ਹਾਂ ਦਾ ਤੰਤੂ ਹੈ।

ਪ੍ਰਸ਼ਨ 22.
ਸਭ ਤੋਂ ਪੁਰਾਣਾ ਮਾਨਵ-ਨਿਰਮਿਤ ਤੰਤੂ ਕਿਹੜਾ ਹੈ ?
ਉੱਤਰ-
ਆਨ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 23.
ਸੈਲੂਲੋਜ਼ ਤੋਂ ਕਿਹੜਾ ਤੰਤੂ ਮਾਨਵ-ਨਿਰਮਿਤ ਹੈ ?
ਉੱਤਰ-
ਰੇਆਨ।

ਪ੍ਰਸ਼ਨ 24.
ਜਾਨਵਰਾਂ ਦੇ ਵਾਲਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲਾ ਪ੍ਰਮੁੱਖ ਕੱਪੜਾ ਤੰਤੂ ਕਿਹੜਾ ਹੈ ?
ਉੱਤਰ-
ਉੱਨ ।

ਪ੍ਰਸ਼ਨ 25.
ਪ੍ਰਾਕਿਰਤਕ ਤੰਤੂ ਵਾਲੇ ਪਦਾਰਥਾਂ ਤੋਂ ਰਸਾਇਣਕ ਵਿਧੀਆਂ ਨਾਲ ਨਵੀਂ ਤਰ੍ਹਾਂ ਦਾ ਕਿਹੜਾ ਮੁੱਖ ਤੰਤੂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਰੇਆਨ ।

ਪ੍ਰਸ਼ਨ 26.
ਨਾਈਲੋਨ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਤੰਤੂ ਹੈ ?
ਉੱਤਰ-
ਬਿਨਾਂ ਰੇਸ਼ਿਆਂ ਤੋਂ ਰਸਾਇਣਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਣ ਵਾਲਾ।

ਪ੍ਰਸ਼ਨ 27.
ਤੰਤੂ ਸਰੋਤ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ?
ਉੱਤਰ-
ਦੋ ਭਾਗਾਂ ਵਿਚ-

  1. ਕੁਦਰਤੀ ਅਤੇ
  2. ਮਾਨਵ-ਨਿਰਮਿਤ ।

ਪ੍ਰਸ਼ਨ 28.
ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਤੇ ਕੜਾਪਨ ਲਿਆਉਣ ਲਈ ਅਖ਼ੀਰਲੇ ਖੰਗਾਲ ਦੇ ਪਾਣੀ ਵਿਚ ਕੀ ਮਿਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਿਰਕੇ ਜਾਂ ਨਿੰਬੂ ਦਾ ਰਸ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 29.
ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ‘ਤੇ ਕੜਾਪਨ ਲਿਆਉਣ ਲਈ ਕਿਸ ਘੋਲ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਗੂੰਦ ਦੇ ਪਾਣੀ ਦਾ ਗਮ ਵਾਟਰ) ।

ਪ੍ਰਸ਼ਨ 30.
ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੁੱਪ ਵਿਚ ਕਿਉਂ ਨਹੀਂ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ?
ਉੱਤਰ-
ਧੁੱਪ ਵਿਚ ਸੁਕਾਉਣ ਨਾਲ ਰੇਸ਼ਮੀ ਕੱਪੜੇ ਪੀਲੇ ਪੈ ਜਾਂਦੇ ਹਨ ਅਤੇ ਰੰਗਦਾਰ ਕੱਪੜਿਆਂ ਦਾ ਰੰਗ ਫਿੱਕਾ ਪੈ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 31.
ਥੋੜੀ ਨਮੀ ਦੀ ਸਥਿਤੀ ਵਿਚ ਹੀ ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਤੇ ਪ੍ਰੈਸ ਕਿਉਂ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ?
ਉੱਤਰ-
ਪੂਰੀ ਤਰ੍ਹਾਂ ਸੁੱਕੇ ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਤੇ ਪ੍ਰੈਸ ਕਰਨ ਨਾਲ ਰੇਸ਼ੇ ਢਿੱਲੇ ਪੈ ਜਾਂਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 32.
ਉੱਨ ਦਾ ਤੰਤੂ ਆਪਸ ਵਿਚ ਕਿਨ੍ਹਾਂ ਕਾਰਨਾਂ ਨਾਲ ਜੁੜ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਨਮੀ, ਖਾਰ, ਦਬਾਅ ਅਤੇ ਗਰਮੀ ਕਾਰਨ ।

ਪ੍ਰਸ਼ਨ 33.
ਉੱਨ ਦੇ ਤੰਤੂਆਂ ਦੀ ਸਤ੍ਹਾ ਕਿਹੋ ਜਿਹੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਖੁਰਦਰੀ ।

ਪ੍ਰਸ਼ਨ 34.
ਉੱਨ ਦੇ ਰੇਸ਼ਿਆਂ ਦੀ ਸੜਾ ਖੁਰਦਰੀ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਕਿਉਂਕਿ ਉੱਨ ਦੀ ਸੜਾ ‘ਤੇ ਪਰਸਪਰ ਵਿਆਪੀ ਸ਼ਲਕ ਹੁੰਦੇ ਹਨ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 35.
ਉੱਨ ਦੇ ਰੇਸ਼ਿਆਂ ਦੀ ਸੜਾ ਦੇ ਸ਼ਲਕਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਕਿਹੋ ਜਿਹੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਲਿਸਸੀ, ਜਿਸ ਨਾਲ ਸ਼ਲਕ ਜਦੋਂ ਪਾਣੀ ਦੇ ਸੰਪਰਕ ਵਿਚ ਆਉਂਦੇ ਹਨ ਤਾਂ ਫੁੱਲ ਕੇ ਨਰਮ ਹੋ ਜਾਂਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 36.
ਉੱਨ ਦੇ ਰੇਸ਼ਿਆਂ ਦੇ ਦੁਸ਼ਮਣ ਕੀ ਹਨ ?
ਉੱਤਰ-
ਨਮੀ, ਤਾਪ ਅਤੇ ਖਾਰ।

ਪ੍ਰਸ਼ਨ 37.
ਤਾਪ ਦੇ ਅਨਿਸਚਿਤ ਪਰਿਵਰਤਨ ਨਾਲ ਰੇਸ਼ਿਆਂ ‘ ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਰੇਸ਼ਿਆਂ ਵਿਚ ਜਮਾਓ ਜਾਂ ਸੁੰਗੜਨ ਹੋ ਜਾਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 38.
ਉੱਨੀ ਕੱਪੜਿਆਂ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਦੇ ਸਾਬਣ ਨਾਲ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ?
ਉੱਤਰ-
ਕੋਮਲ ਪ੍ਰਕਿਰਤੀ ਦੇ ਸ਼ੁੱਧ ਖਾਰ ਰਹਿਤ ਸਾਬਣ ਨਾਲ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਸਟਾਰਚ ਜਾਂ ਕਲਫ਼ ਕੀ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਟਾਰਚ ਜਾਂ ਕਲਫ਼ ਦਾ ਪ੍ਰਯੋਗ ਧੋਤੇ ਹੋਏ ਕੱਪੜਿਆਂ ਤੇ ਕੜਾਪਨ ਲਿਆਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਸਟਾਰਚ ਦਾ ਪ੍ਰਯੋਗ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਨਾਲ ਸੂਤੀ ਕੱਪੜਿਆਂ ਦੇ ਲਈ ਹੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ | ਸੂਤੀ ਕੱਪੜੇ ਧੋਣ ਨਾਲ ਲੁਸਲੁਸੇ ਹੋ ਜਾਂਦੇ ਹਨ | ਕਲਫ਼ ਲਾਉਣ ਨਾਲ ਉਨ੍ਹਾਂ ਵਿਚ ਕੜਾਪਨ ਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪ੍ਰੈਸ ਦੇ ਬਾਅਦ ਉਨ੍ਹਾਂ ਵਿਚ ਸੁੰਦਰਤਾ ਤੇ ਤਾਜ਼ਗੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 2.
ਧੁਲਾਈ ਵਿਚ ਨੀਲ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
ਉੱਤਰ-
ਸੂਤੀ ਕੱਪੜਿਆਂ ਦੀ ਸਫੈਦੀ ਵਧਾਉਣ ਲਈ ਨੀਲ ਲਾਇਆ ਜਾਂਦਾ ਹੈ । ਸਫੈਦ ਕੱਪੜੇ ਪਹਿਣਨ ਜਾਂ ਧੋਣ ਪਿੱਛੋਂ ਪੀਲੇ ਪੈ ਜਾਂਦੇ ਹਨ ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੀ ਸਫੈਦੀ ਜਾਂਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਪੀਲੇ ਰੰਗ ਨੂੰ ਦੂਰ ਕਰਨ ਲਈ ਨੀਲ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਨਾਲ ਕੱਪੜੇ ਵਿਚ ਸਫੈਦੀ ਤੇ ਨਵੀਨਤਾ ਮੁੜ ਆ ਜਾਂਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਕੱਪੜਿਆਂ ਤੇ ਪ੍ਰੈਸ ਕਰਨ ਦੀ ਲੋੜ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਪਿੱਛੋਂ ਸਾਰੇ ਕੱਪੜਿਆਂ ਤੇ ਸਿਲਵਟਾਂ ਪੈ ਜਾਂਦੀਆਂ ਹਨ । ਕੁਝ ਕੱਪੜੇ ਅਜਿਹੇ ਵੀ ਹੁੰਦੇ ਹਨ ਜੋ ਮੈਲੇ ਨਾ ਹੁੰਦੇ ਹੋਏ ਵੀ ਸਿਲਵਟਾਂ ਦੇ ਕਾਰਨ ਪਹਿਣਨ ਯੋਗ ਨਹੀਂ ਹੁੰਦੇ । ਅਜਿਹੇ ਕੱਪੜਿਆਂ ਨੂੰ ਮੂਲ ਰੂਪ ਵਿਚ ਆਕਰਸ਼ਣ ਦੇਣ ਲਈ ਇਹਨਾਂ ਤੇ ਪ੍ਰੈਸ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 4.
ਕੱਪੜਿਆਂ ਦੀ ਰੰਗਾਈ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
ਉੱਤਰ-
ਰੰਗਾਈ ਦੁਆਰਾ ਫਿੱਕੇ ਪਏ ਹੋਏ ਕੱਪੜਿਆਂ ਨੂੰ ਫਿਰ ਤੋਂ ਆਕਰਸ਼ਕ ਤੇ ਸੁੰਦਰ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ । ਕਿਸੇ ਵੀ ਕੱਪੜੇ ਨੂੰ ਇੱਛਿਤ ਰੰਗ ਵਿਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ
ਹੈ ।

ਪ੍ਰਸ਼ਨ 5.
ਰੇਆਨ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਭੌਤਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਰੇਆਨ ਦਾ ਤੰਤੂ ਭਾਗ, ਸਖ਼ਤ ਅਤੇ ਘੱਟ ਲਚਕਦਾਰ ਹੁੰਦਾ ਹੈ । ਜਦੋਂ ਰੇਆਨ ਦੇ ਧਾਗੇ ਨੂੰ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸਰਲਤਾ ਨਾਲ ਜਲ ਜਾਂਦਾ ਹੈ । ਸੁਖਮਦਰਸ਼ੀ ਯੰਤਰ ਨਾਲ ਵੇਖਣ ਤੇ ਇਸ ਦੇ ਤੰਤੁ ਲੰਬਕਾਰ, ਚਿਕਨੇ ਅਤੇ ਗੋਲਾਕਾਰ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਰੇਆਨ ਵਿਚ ਪਾਕਿਰਤਕ ਸਖਤਾਈ ਨਹੀਂ ਹੁੰਦੀ ਹੈ । ਇਹ ਕੱਪੜੇ ਰਗੜਨ ਨਾਲ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਸ ਦੀ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਜੇਕਰ ਧੋਣ ਸਮੇਂ ਕੱਪੜੇ ਨੂੰ ਰਗੜਿਆ ਜਾਵੇ ਤਾਂ ਛੇਕ ਹੋਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ | ਪਾਣੀ ਨਾਲ ਰੇਆਨ ਦੀ ਸ਼ਕਤੀ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਜਦੋਂ ਰੇਆਨ ਸੁੱਕ ਜਾਂਦਾ ਹੈ ਤਾਂ ਮੁੜ ਆਪਣੀ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦਾ ਹੈ ।

ਰੇਆਨ ਤਾਪ ਦਾ ਚੰਗਾ ਸੁਚਾਲਕ ਹੈ । ਇਹ ਗਰਮੀ ਨੂੰ ਛੇਤੀ ਨਿਕਲਣ ਦਿੰਦਾ ਹੈ ਇਸ ਲਈ ਇਹ ਠੰਢਾ ਹੁੰਦਾ ਹੈ ।
PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ 1
ਤਾਪ ਦੇ ਪ੍ਰਭਾਵ ਨਾਲ ਰੇਆਨ ਦੇ ਤੰਤੂ ਪਿਘਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਧੁੱਪ ਰੇਆਨ ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਨਸ਼ਟ ਕਰਦੀ ਹੈ ।

ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ – ਰੇਆਨ ਦੀਆਂ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਕੁਝ-ਕੁਝ ਰੂੰ ਵਰਗੀਆਂ ਹਨ । ਖਾਰ ਦੇ ਪ੍ਰਯੋਗ ਨਾਲ ਰੇਆਨ ਦੀ ਚਮਕ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ । ਵ ਤੇਜ਼ਾਬ ਜਾਂ ਅਮਲੀ ਖਾਰ ਦਾ ਰੇਆਨ ਤੇ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਰੇਆਨ ਨੂੰ ਕੋਈ ਹਾਨੀ ਨਹੀਂ ਪਹੁੰਚਾਉਂਦਾ ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 6.
ਟੈਰਾਲੀਨ ਦੀਆਂ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ ?
ਉੱਤਰ-
ਭੌਤਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ – ਟੈਰਾਲੀਨ ਦੇ ਤੰਤੂ ਭਾਰੇ ਅਤੇ ਮਜ਼ਬੂਤ ਹੁੰਦੇ ਹਨ ।
ਸੁਖਮਦਰਸ਼ੀ ਯੰਤਰ ਦੁਆਰਾ ਵੇਖਿਆ ਜਾਵੇ ਤਾਂ ਇਹ ਰੇਆਨ ਅਤੇ ਨਾਈਲੋਨ ਦੇ ਤੰਤੂਆਂ ਦੀ ਤਰ੍ਹਾਂ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਇਹ ਤੰਤੂ ਸਿੱਧੇ, ਚੀਕਣੇ ਅਤੇ ਚਮਕਦਾਰ ਹੁੰਦੇ ਹਨ । ਟੈਰਾਲੀਨ ਵਿਚ ਨਮੀ ਨੂੰ ਸੋਖਣ ਦੀ ਸ਼ਕਤੀ ਨਹੀਂ ਹੁੰਦੀ, ਇਸ ਲਈ ਪਾਣੀ ਨਾਲ ਇਸ ਦੇ ਰੂਪ ਵਿਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਆਉਂਦਾ ।

ਟੈਰਾਲੀਨ ਰੇਸ਼ਾ ਜਲਾਉਣ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਬਲਦੇ ਹਨ ਤੇ ਹੌਲੀ-ਹੌਲੀ ਪਿਘਲਦੇ ਵੀ ਹਨ । ਇਹ ਪ੍ਰਕਾਸ਼-ਅਵਰੋਧਕ ਹੁੰਦੇ ਹਨ ।
ਟੈਰਾਲੀਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਧੋਣ ਤੇ ਉਸ ਵਿਚ ਸੁੰਗੜਨ ਨਹੀਂ ਆਉਂਦੀ ਹੈ।
ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ-ਟੈਰਾਲੀਨ ਤੇ ਤੇਜ਼ਾਬ ਦਾ ਪ੍ਰਭਾਵ ਹਾਨੀਕਾਰਕ ਨਹੀਂ ਹੁੰਦਾ । ਪਰ ਜ਼ਿਆਦਾ ਅਮਲੀ ਕਿਰਿਆ ਕੱਪੜੇ ਨੂੰ ਨਸ਼ਟ ਕਰ ਦਿੰਦੀ ਹੈ । ਖਾਰ ਦਾ ਇਸ ਉੱਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪੈਂਦਾ । ਕਿਸੇ ਵੀ ਪ੍ਰਕਾਰ ਦੇ ਰੰਗ ਵਿਚ ਇਨ੍ਹਾਂ ਨੂੰ ਰੰਗਿਆ ਜਾ ਸਕਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 7.
ਆਰਲਾਨ ਤੰਤੂਆਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਸੁਖਮਦਰਸ਼ੀ ਯੰਤਰ ਨਾਲ ਵੇਖਣ ਤੇ ਇਹ ਹੱਡੀ ਦੇ ਸਮਾਨ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ । ਆਲਾਨ ਵਿਚ ਉੱਨ ਅਤੇ ਤੋਂ ਘੱਟ ਅਪਘਰਸ਼ਣ ਪ੍ਰਤੀਰੋਧ ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ । ਆਰਲਾਨ ਵਿਚ ਉੱਚ ਸ਼੍ਰੇਣੀ ਦੀ ਸਥਾਈ ਬਿਜਲਈ ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ । ਜਲਾਉਣ ‘ਤੇ ਇਹ ਬਲਦਾ ਹੈ। ਤੇ ਨਾਲ-ਨਾਲ ਪਿਘਲਦਾ ਵੀ ਹੈ।

ਆਰਲਾਨ ਦਾ ਰੇਸ਼ਾ ਆਸਾਨੀ ਨਾਲ ਨਹੀਂ ਰੰਗਿਆ ਜਾ ਸਕਦਾ । ਰੰਗ ਦੀ ਪਕਿਆਈ ਰੰਗਾਈ ਦੀ ਵਿਧੀ ‘ਤੇ ਅਤੇ ਵਸਤੂ ਦੀ ਬਣਾਵਟ ‘ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ । ਇਸ ਤੰਤੁ ਨੂੰ ਰੰਗਣ ਲਈ ਤਾਂਬਾ-ਲੋਹਾ ਵਿਧੀ ਬਹੁਤ ਸਫਲ ਹੋਈ ਹੈ । ਕੱਪੜੇ ਸੁੰਗੜਨਾ ਉਸ ਦੀ ਬਣਾਵਟ ‘ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ।
ਆਰਲਾਨ ਦੇ ਕੱਪੜੇ ਨੂੰ ਧੋਣ ਪਿੱਛੋਂ ਪੈਸ ਕਰਨ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ ਹੈ । ਇਹ ਛੇਤੀ ਨਾਲ ਸੁੱਕ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਕੱਪੜਿਆਂ ਵਿਚ ਟਿਕਾਊਪਣ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ 8.
ਉੱਨੀ ਬੁਣੇ ਹੋਏ ਸਵੈਟਰ ਦੀ ਧੁਆਈ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰੋਗੇ ?
ਉੱਤਰ-
ਉੱਨੀ ਬੁਣੇ ਹੋਏ ਸਵੈਟਰ ਤੇ ਅਕਸਰ ਬਟਨ ਲੱਗੇ ਹੁੰਦੇ ਹਨ | ਜੇਕਰ ਕੁਝ ਫੈਂਸੀ ਬਟਨ ਹੋਣ ਜਿਨ੍ਹਾਂ ਨੂੰ ਧੋਣ ਨਾਲ ਖ਼ਰਾਬ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਹੋਵੇ ਤਾਂ ਉਤਾਰ ਲੈਂਦੇ ਹਾਂ । ਜੇ ਸਵੈਟਰ ਕਿਸੇ ਥਾਂ ਤੋਂ ਫਟਿਆ ਹੋਵੇ ਤਾਂ ਸੀ ਲੈਂਦੇ ਹਾਂ । ਹੁਣ ਸਵੈਟਰ ਦਾ ਖਾਕਾ ਤਿਆਰ ਕਰ ਲੈਂਦੇ ਹਾਂ। ਇਸ ਤੋਂ ਬਾਅਦ ਕੋਸੇ ਪਾਣੀ ਵਿਚ ਲੋੜ ਅਨੁਸਾਰ ਲੋਕਸ ਦਾ ਚੂਰਾ ਜਾਂ ਰੀਠੇ ਦਾ ਘੋਲ ਮਿਲਾ ਕੇ ਹਲਕੇ ਦਬਾਓ ਵਿਧੀ ਨਾਲ ਧੋ ਲੈਂਦੇ ਹਾਂ । ਇਸ ਤੋਂ ਬਾਅਦ ਗੁਣਗੁਣੇ ਸਾਫ਼ ਪਾਣੀ ਨਾਲ ਤਦ ਤਕ ਧੋਦੇ ਹਾਂ ਜਦ ਤਕ ਸਾਰਾ ਸਾਬਣ ਨਾ ਨਿਕਲ ਜਾਵੇ ਉੱਨੀ ਕੱਪੜਿਆਂ ਲਈ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਇਕੋ ਜਿਹਾ ਰੱਖਦੇ ਹਾਂ ਅਤੇ ਉੱਨੀ ਕੱਪੜਿਆਂ ਨੂੰ ਪਾਣੀ ਵਿਚ ਜ਼ਿਆਦਾ ਦੇਰ ਤਕ ਨਹੀਂ ਕਿਉਂਣਾ ਚਾਹੀਦਾ, ਨਹੀਂ ਤਾਂ ਇਨ੍ਹਾਂ ਦੇ ਸੁੰਗੜਨ ਦਾ ਡਰ ਹੋ ਸਕਦਾ ਹੈ । ਇਸ ਤੋਂ ਬਾਅਦ ਇਕ ਬੁਰਦਾਰ (ਟਰਕਿਸ਼ ਤੌਲੀਏ ਵਿਚ ਰੱਖ ਕੇ ਉਸ ਨੂੰ ਹਲਕੇ ਹੱਥਾਂ ਨਾਲ ਦਬਾ ਕੇ ਪਾਣੀ ਕੱਢ ਦਿੰਦੇ ਹਨ । ਫਿਰ ਖਾਕੇ ਵਿਚ ਰੱਖ ਕੇ ਕਿਸੇ ਸਮਤਲ ਥਾਂ ਤੇ ਛਾਂ ਵਿਚ ਸੁਕਾ ਲੈਂਦੇ ਹਾਂ ।
PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ 2

ਪ੍ਰਸ਼ਨ 9.
ਰੇਸ਼ਮੀ ਤੇ ਉੱਨੀ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਕਰਨ ਵਿਚ ਕੀ ਅੰਤਰ ਹੈ ? ਕਾਰਨ ਸਹਿਤ ਦੱਸੋ।
ਉੱਤਰ-
ਰੇਸ਼ਮੀ ਤੇ ਉੱਨੀ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਹੇਠ ਲਿਖੇ ਅੰਤਰ ਹਨ :-

ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਉੱਨੀ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ
1. ਪਾਣੀ ਗੁਣਗੁਣਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਪੌਂਦੇ ਸਮੇਂ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਬਦਲਣ ਨਾਲ ਕੋਈ ਹਾਨੀ ਨਹੀਂ ਹੁੰਦੀ । ਆਖਰੀ ਵਾਰੀ ਇਸ ਨੂੰ ਜ਼ਰੂਰ ਹੀ ਠੰਢੇ ਪਾਣੀ ਵਿਚੋਂ ਕੱਢਣਾ ਚਾਹੀਦਾ ਹੈ । ਜੇ ਅਜਿਹਾ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜਿਹੜੀ ਗੂੰਦ ਰੇਸ਼ਮ ਵਿਚ ਹੁੰਦੀ ਹੈ ਉਹ ਉੱਪਰਲੀ ਸੜਾ ਤੇ ਆ ਜਾਂਦੀ ਹੈ । 1. ਪਾਣੀ ਤਾਂ ਗੁਣਗੁਣਾ ਹੋਣਾ ਹੀ ਚਾਹੀਦਾ ਹੈ ਪਰ ਧੋਣ ਸਮੇਂ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਇਕੋ ਜਿਹਾ ਹੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ । ਜੇ ਅਜਿਹਾ ਨਾ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਉੱਨ ਦੇ ਤੰਤੂ ਸੁੰਗੜ ਜਾਂਦੇ ਹਨ।
2. ਧੋਣ ਤੋਂ ਪਹਿਲਾਂ ਖਾਕਾ ਬਣਾਉਣ ਦੀ ਕੋਈ ਲੋੜ ਨਹੀਂ ਹੁੰਦੀ। 2. ਧੋਣ ਤੋਂ ਪਹਿਲਾਂ ਕੱਪੜੇ ਦਾ ਖਾਕਾ  ਤਿਆਰ ਕਰ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਨਾਲ ਕੱਪੜੇ ਦਾ ਆਕਾਰ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ ।
3. ਹਲਕੇ ਦਬਾਅ ਵਿਧੀ ਨਾਲ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ । 3. ਹਲਕੇ ਦਬਾਅ ਵਿਧੀ ਨਾਲ ਛੇਤੀ ਤੋਂ ਛੇਤੀ ਧੋਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿਸ ਨਾਲ ਕੱਪੜਾ ਸੁੰਗੜੇ ਨਾ ।
4. ਕਲਫ਼ ਲਾਉਣ ਲਈ ਗੂੰਦ ਦਾ ਘੋਲ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । 4. ਕਲਫ਼ ਲਾਉਣ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ ।
5. ਹਲਕੇ ਦਬਾਅ ਨਾਲ ਨਿਚੋੜਨਾ ਚਾਹੀਦਾ ਹੈ । 5. ਸੁੱਕੇ ਬੁਰਦਾਰ ਤੌਲੀਏ ਵਿਚ ਲਪੇਟ ਕੇ ਹਲਕੇ ਹੱਥਾਂ ਨਾਲ ਦਬਾਉਣਾ ਚਾਹੀਦਾ ਹੈ।
6. ਕੱਪੜੇ ਨੂੰ ਉਲਟਾ ਕਰਕੇ ਛਾਂ ਵਿਚ ਸੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । 6. ਰੇਖਾਂਕਿਤ ਥਾਵਾਂ ‘ਤੇ ਕੱਪੜੇ ਦੇ ਸਿਰੇ ਰੱਖ ਕੇ ਛਾਂ ਵਿਚ ਉਲਟਾ ਕਰਕੇ ਸਮਤਲ ਸਥਾਨ ਤੇ ਮੁਕਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿੱਥੇ ਚਾਰੇ ਪਾਸਿਆਂ ਤੋਂ ਕੱਪੜੇ ਤੇ ਹਵਾ ਲੱਗੇ ।
7. ਜਦੋਂ ਕੱਪੜੇ ਵਿਚ ਥੋੜ੍ਹੀ ਨਮੀ ਰਹਿ ਜਾਵੇ। ਤਾਂ ਉਸ ਤੇ ਹਲਕੀ ਪ੍ਰੈਸ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। 7. ਜੇਕਰ ਰੇਖਾਂਕਿਤ ਸਥਾਨਾਂ ਤੇ ਕੱਪੜੇ ਨੂੰ ਠੀਕ ਤਰ੍ਹਾਂ ਨਾਲ ਸੁਕਾਇਆ ਜਾਵੇ ਤਾਂ ਪੇਸ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਵੱਡੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਦੇ ਲਈ ਕਿਸ-ਕਿਸ ਸਮਾਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਲਈ ਹੇਠ ਲਿਖੇ ਸਾਮਾਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ :-
1. ਚਿਰਮਚੀ, ਟੱਬ, ਬਾਲਟੀਆਂ – ਇਹ ਕੱਪੜੇ ਧੋਣ ਦੀ ਵਰਤੋਂ ਵਿਚ ਆਉਂਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਦਾ ਆਕਾਰ ਇੰਨਾ ਵੱਡਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਪੰਜ ਛੇ ਕੱਪੜੇ ਆਸਾਨੀ ਨਾ ਧੁਲ ਸਕਣ । ਇਸ ਦਾ ਪ੍ਰਯੋਗ ਪਾਣੀ ਭਰਨ, ਸਾਬਣ ਦਾ ਝੱਗ ਬਣਾਉਣ, ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ, ਖੰਗਾਲਣ, ਨੀਲ ਤੇ ਮਾਇਆ ਲਾਉਣ ਵਿਚ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਬਰਤਨ ਪਲਾਸਟਿਕ ਜਾਂ ਚੀਨੀ ਦੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਤਾਂ ਜੋ ਬਰਤਨ ਦੀ ਧਾਤੁ ਦਾ ਕੱਪੜੇ ਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਾ ਪਵੇ । ਬਾਲਟੀ ਅਤੇ ਟੱਬ ਪਲਾਸਟਿਕ ਦੇ ਹੀ ਚੰਗੇ ਹੁੰਦੇ ਹਨ ।

2. ਸਿੰਕ – ਕੱਪੜੇ ਧੋਣ ਲਈ ਸਿੰਕ ਚੰਗਾ ਰਹਿੰਦਾ ਹੈ । ਧੋਣ ਦਾ ਕੰਮ ਸਿੰਕ ਵਿਚ ਬੜੀ ਸੌਖ ਨਾਲ ਹੁੰਦਾ ਹੈ, ਮਿਹਨਤ ਘੱਟ ਲਗਦੀ ਹੈ । ਸਿੰਕ ਦੀ ਆਕਿਰਤੀ, ਆਕਾਰ, ਉਚਾਈ, ਸਮਾਈ ਅਤੇ ਸਥਿਤੀ ਸਾਰੇ ਧੁਆਈ ਨੂੰ ਸੁਵਿਧਾਜਨਕ ਅਤੇ ਘੱਟ ਸਮੇਂ ਤੇ ਮਿਹਨਤ ਵਿਚ ਕਰਨ ਵਿਚ ਯੋਗਦਾਨ ਦਿੰਦੇ ਹਨ । 36 ਇੰਚ ਉੱਚੇ, 20 ਇੰਚ ਲੰਮੇ, 20 ਇੰਚ ਚੌੜੇ ਤੇ 12 ਇੰਚ ਗਹਿਰੇ ਸਿੰਕ ਚੰਗੇ ਹੁੰਦੇ ਹਨ ।

3. ਤਾਮ ਚੀਨੀ ਦੇ ਕੱਪ – ਇਸ ਦਾ ਪ੍ਰਯੋਗ ਨਾਲ ਜਾਂ ਸਟਾਰਚ ਘੋਲਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਧੱਬੇ ਛੁਡਾਉਂਦੇ ਸਮੇਂ ਵੀ ਅਜਿਹੇ ਕੱਪਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ।

4. ਲੱਕੜੀ ਜਾਂ ਧਾਤੂ ਦੇ ਚਮਚ – ਨੀਲ ਘੋਲਣ ਲਈ ਜਾਂ ਸਟਾਰਚ ਬਣਾਉਣ ਲਈ ਵਰਤੋਂ ਵਿਚ ਆਉਂਦੇ ਹਨ ।

5. ਬੁਰਸ਼ – ਕੱਪੜੇ ‘ਤੇ ਜਿੱਥੇ ਜ਼ਿਆਦਾ ਗੰਦਗੀ ਲੱਗੀ ਹੋਵੇ, ਬੁਰਸ਼ ਨਾਲ ਸਾਫ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।

6. ਸਬਿੰਗ ਬੋਰਡ ਜਾਂ ਰਗੜਨ ਦਾ ਪਟੜਾ – ਪੱਥਰ ‘ਤੇ ਕੱਪੜੇ ਰਗੜਨ ਦੀ ਬਜਾਇ ਕੱਪੜੇ ਨੂੰ ਰਗੜਨ ਲਈ ਲੱਕੜੀ ਦਾ ਪਟੜਾ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ! ਇਸ ਤਖਤੇ ‘ਤੇ ਕੱਪੜਾ ਹਨ ਨਾਲ ਮੈਲ ਛੇਤੀ ਨਾਲ ਨਿਕਲ ਜਾਂਦੀ ਹੈ । ਸਬਿੰਗ ਬੋਰਡ ਲੱਕੜੀ ਤੋਂ ਇਲਾਵਾ ਜ਼ਿੰਕ, ਸ਼ੀਸ਼ੇ ਅਤੇ ਸਟੀਲ ਦੇ ਵੀ ਬਣਦੇ ਹਨ ਪਰ ਲੱਕੜੀ ਦੇ ਹੀ ਸਭ ਤੋਂ ਚੰਗੇ ਰਹਿੰਦੇ ਹਨ ।

7. ਸਕਸ਼ਨ ਵਾਸ਼ਰ – ਇਸ ਦਾ ਹੇਠਲਾ ਭਾਗ ਧਾਤੂ ਦਾ ਤੇ ਹੈਂਡਲ ਲੱਕੜੀ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ । ਇਸ ਨਾਲ ਭਾਰੇ ਕੱਪੜੇ ਜਿਵੇਂ-ਦਰੀ, ਸੂਟ ਆਦਿ ਧੋਣ ਵਿਚ ਆਸਾਨੀ ਹੁੰਦੀ ਹੈ ।

8. ਸਾਈਫਨ ਨਰ – ਇਹ ਵਾਸ਼ਿੰਗ ਮਸ਼ੀਨ ਵਿਚ ਪਾਣੀ ਭਰਨ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ । ਇਸ ਦੁਆਰਾ ਮਸ਼ੀਨ ਵਿਚੋਂ ਪਾਣੀ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ।

9. ਕੱਪੜੇ ਸੁਕਾਉਣ ਦਾ ਰੈਕ – ਬਹੁਤ ਸਾਰੇ ਅਜਿਹੇ ਮਕਾਨ ਜਿੱਥੇ ਕੱਪੜੇ ਸੁਕਾਉਣ ਦੀ ਸਹੂਲਤ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਲੱਕੜੀ ਦੇ ਰੈਕ ਵਰਤੋਂ ਵਿਚ ਲਿਆਏ ਜਾਂਦੇ ਹਨ । ਇਹ ਕਮਰੇ ਜਾਂ ਬਰਾਂਡੇ ਵਿਚ ਰੱਖੇ ਜਾ ਸਕਦੇ ਹਨ । ਛੋਟੇ ਮਕਾਨਾਂ ਵਿਚ ਰੈਕ ਘਰਾਂ ਦੀ ਛੱਤ ਤੇ ਲਟਕਾ ਦਿੱਤੇ ਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਰੱਸੀ ਦੁਆਰਾ ਉੱਪਰ ਥੱਲੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

10. ਸਾਬਣਦਾਨੀ – ਇਹ ਚਿਰਮਚੀ ਦੇ ਉੱਪਰ ਇਕ ਪਾਸੇ ਰੱਖੀ ਜਾਂਦੀ ਹੈ ।

11. ਕੱਪੜੇ ਧੋਣ ਦੀ ਮਸ਼ੀਨ (ਵਾਸ਼ਿੰਗ ਮਸ਼ੀਨ) – ਇਹ ਮਸ਼ੀਨ ਕਈ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ । ਸਾਰੀਆਂ ਇਕ ਹੀ ਸਿਧਾਂਤ ਤੇ ਬਣੀਆਂ ਹਨ । ਇਸ ਵਿਚ ਸਾਬਣ ਦੇ ਘੋਲ ਵਿਚ ਬਿਜਲੀ ਦੁਆਰਾ ਕੰਪਨ ਪੈਦਾ ਕਰਕੇ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਮਸ਼ੀਨ ਦੇ ਨਾਲ ਨਿਚੋੜਨ ਵੀ ਲੱਗਾ ਹੁੰਦਾ ਹੈ । ਮਸ਼ੀਨ ਵਿਚ ਪਾਣੀ ਅਤੇ ਸਾਬਣ ਦਾ ਘੋਲ ਤਿਆਰ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਪੰਜ ਤੋਂ ਦਸ ਮਿੰਟ ਤਕ ਚਲਾਉਂਦੇ ਹਨ । ਜਦੋਂ ਕੱਪੜਿਆਂ ਦੀ ਮੈਲ ਨਿਕਲ ਜਾਂਦੀ ਹੈ ਤਾਂ ਕੱਪੜਿਆਂ ਨੂੰ ਨਿਚੋੜਕ ਵਿਚੋਂ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤੋਂ ਬਾਅਦ ਕੱਪੜਿਆਂ ਨੂੰ ਸਾਫ਼ ਪਾਣੀ ਨਾਲ ਖੰਗਾਲਣਾ ਚਾਹੀਦਾ ਹੈ । ਉਪਯੋਗ ਤੋਂ ਬਾਅਦ ਮਸ਼ੀਨ ਨੂੰ ਸੁੱਕਾ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ।

12. ਪ੍ਰੈਸ (ਇਸਤਰੀ) – ਬਿਜਲੀ ਜਾਂ ਕੋਇਲੇ ਦੀ ਪ੍ਰੈਸ ਕੱਪੜੇ ਪ੍ਰੈਸ ਕਰਨ ਲਈ ਪ੍ਰਯੋਗ ਵਿਚ ਲਿਆਂਦੀ ਜਾਂਦੀ ਹੈ । ਬਿਜਲੀ ਦੀ ਪ੍ਰੈਸ ਦੀ ਵਰਤੋਂ ਕੋਇਲੇ ਦੀ ਪ੍ਰੈਸ ਨਾਲੋਂ ਸੁਵਿਧਾਜਨਕ ਹੈ । ਇਸ ਵਿਚ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਤੰਤੂਆਂ ਤੋਂ ਬਣੇ ਕੱਪੜਿਆਂ ਨੂੰ ਪੇਸ਼ ਕਰਦੇ ਸਮੇਂ ਲੋੜ ਅਨੁਸਾਰ ਤਾਪ ਦਾ ਕੰਟਰੋਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ । ਬਿਜਲੀ ਦੀ ਪੈਸ ਨਾਲ ਗੰਦਗੀ ਵੀ ਨਹੀਂ ਫੈਲਦੀ ।

13. ਪ੍ਰੈਸ ਕਰਨ ਦੀ ਮੇਜ਼ – ਇਸ ਮੇਜ਼ ਦੀ ਬਨਾਵਟ ਪੇਸ਼ ਕਰਨ ਦੀ ਸਹੂਲਤ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦੀ ਹੈ। ਜਿਸ ਵਿਚ ਗੱਦੇਦਾਰ ਕਰਨ ਲਈ ਫਲਾਲੈਣ ਜਾਂ ਕੰਬਲ ਲੱਗਾ ਹੁੰਦਾ ਹੈ । ਇਸ ਉੱਪਰ ਇਕ ਚਾਦਰ ਫੈਲਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ।

14. ਬਾਂਹ ਪ੍ਰੈਸ ਕਰਨ ਦਾ ਤਖਤਾ – ਇਹ ਅੱਗਿਉਂ ਘੱਟ ਚੌੜਾ ਅਤੇ ਪਿੱਛੇ ਜ਼ਿਆਦਾ ਚੌੜਾ ਹੁੰਦਾ ਹੈ । ਇਹ ਕੋਟ ਦੀ ਬਾਂਹ ਅਤੇ ਗੋਲ ਚੀਜ਼ਾਂ ‘ਤੇ ਪੈਸ ਕਰਨ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ।

PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ

ਪ੍ਰਸ਼ਨ 2.
ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਵਿਚ ਲੋੜੀਂਦੇ ਸਾਬਣ ਅਤੇ ਹੋਰ ਸਹਾਇਕ ਪਦਾਰਥਾਂ ਦਾ ਵਰਣਨ ਕਰੋ ।
ਉੱਤਰ-
1. ਸਾਬਣ – ਧੂੜ ਦੇ ਕਣ ਜੋ ਚਿਕਨਾਈ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਕੱਪੜਿਆਂ ਤੇ ਚਿੰਬੜੇ ਹੁੰਦੇ ਹਨ, ਸਾਬਣ ਲਾਉਣ ਨਾਲ ਹੀ ਦੂਰ ਹੁੰਦੇ ਹਨ | ਸਾਬਣ ਪਾਉਡਰ, ਤਰਲ ਅਤੇ ਠੋਸ ਰੂਪਾਂ ਵਿਚ ਮਿਲਦਾ ਹੈ । ਚੰਗਾ ਸਾਬਣ ਨਰਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਬਹੁਤ ਝੱਗ ਦਿੰਦਾ ਹੈ । ਵਧੀਆ ਸਾਬਣ ਹਲਕੇ ਰੰਗ ਦਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕੱਪੜਿਆਂ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਫ਼ ਕਰ ਦਿੰਦਾ ਹੈ । ਡਿਟਰਜੈਂਟ ਸਾਬਣ ਕੱਪੜਿਆਂ ਦੀ ਧੁਆਈ ਲਈ ਜ਼ਿਆਦਾ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੁੰਦਾ ਹੈ ।
PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ 3
PSEB 6th Class Home Science Practical ਨਿਜੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣਾ 4
2. ਰੀਠੇ – ਰੀਠਿਆਂ ਦਾ ਘੋਲ ਬਣਾਉਣ ਲਈ ਰੀਠਿਆਂ ਨੂੰ ਤੋੜ ਕੇ ਉਨ੍ਹਾਂ ਦੀ ਗੁਠਲੀ ਕੱਢ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ । ਉਸ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਨੂੰ ਪੀਸ ਕੇ ਪਾਊਡਰ ਬਣਾ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਪਾਊਡਰ ਨੂੰ ਪਾਣੀ ਦੇ ਨਾਲ ਉਬਾਲ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਫਿਰ ਇਹ ਘੋਲ ਕੱਪੜੇ ਧੋਣ ਦੇ ਪ੍ਰਯੋਗ ਵਿਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ ਇਹ ਰੇਸ਼ਮੀ ਤੇ ਉੱਨੀ ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ । ਇਕ ਪਿੰਟ ਪਾਣੀ ਵਿਚ ਅੱਠ ਔਸ ਰੀਠਾ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ।

3. ਸ਼ਿਕਾਕਾਈ – ਇਹ ਵੀ ਰੀਠੇ ਵਰਗਾ ਹੁੰਦਾ ਹੈ । ਇਸ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸੂਤੀ, ਉੱਨੀ ਤੇ ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਤੇ ਜੋ ਚਿਕਨਾਈ ਲੱਗੀ ਹੁੰਦੀ ਹੈ, ਸੌਖਿਆਈ ਨਾਲ ਹਟਾਈ ਜਾ ਸਕਦੀ ਹੈ । ਸ਼ਿਕਾਕਾਈ ਦਾ ਵੀ ਰੀਠੇ ਦੀ ਤਰ੍ਹਾਂ ਮਹੀਨ ਪਾਊਡਰ ਬਣਾ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਇਕ ਚਮਚ ਸ਼ਿਕਾਕਾਈ ਨੂੰ ਪਿੰਟ ਪਾਣੀ ਵਿਚ ਘੋਲ ਕੇ ਉਬਾਲਿਆ ਜਾਂਦਾ ਹੈ । ਇਸੇ ਘੋਲ ਨੂੰ ਕੱਪੜਿਆਂ ਦੀ ਧੁਲਾਈ ਵਿਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

4. ਸਟਾਰਚ (ਕਲਫ਼) – ਕਲਫ਼ ਬਣਾਉਣ ਲਈ ਆਮਤੌਰ ਤੇ ਚੌਲ, ਮੈਦਾ, ਅਰਾਰੋਟ ਅਤੇ ਸਾਬੂਦਾਨੇ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ | ਵਸਤੂ ਦੇ ਅਨੁਪਾਤ ਵਿਚ ਪਾਣੀ ਪਾ ਕੇ ਉਬਾਲਦੇ ਹਨ । ਜਦੋਂ ਪੱਕ ਜਾਂਦਾ ਹੈ ਤਾਂ ਛਾਣਨੀ ਵਿਚ ਛਾਣ ਕੇ ਵਰਤੋਂ ਵਿਚ ਲਿਆਉਂਦੇ ਹਨ ।

ਕਲਫ਼ ਨਾਲ ਕੱਪੜੇ ਵਿਚ ਸਖ਼ਤ ਜਾਂ ਕੜਾਪਨ ਆ ਜਾਂਦਾ ਹੈ । ਇਹ ਧਾਗਿਆਂ ਦੇ ਵਿਚਲੇ ਖਾਲੀ ਸਥਾਨਾਂ ਦੀ ਪੂਰਤੀ ਕਰਦਾ ਹੈ । ਕੱਪੜੇ ਵਿਚ ਧੂੜ ਜਾਂ ਗੰਦਗੀ ਨਹੀਂ ਲੱਗਣ ਦਿੰਦਾ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਨਾਲ ਕੱਪੜੇ ਵਿਚ ਚਮਕ ਅਤੇ ਨਵੀਨਤਾ ਆ ਜਾਂਦੀ ਹੈ।

5. ਨੀਲ – ਬਾਰ-ਬਾਰ ਧੁਆਈ ਨਾਲ ਸਫੈਦ ਕੱਪੜੇ ਪੀਲੇ ਪੈ ਜਾਂਦੇ ਹਨ | ਅਜਿਹੇ ਕੱਪੜਿਆਂ ਵਿਚ ਸਫੈਦੀ ਲਿਆਉਣ ਲਈ ਨੀਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ । ਨੀਲ ਬਜ਼ਾਰ ਵਿਚ ਬਣਿਆ ਬਣਾਇਆ ਮਿਲਦਾ ਹੈ ।

6. ਟੀਨੋਪਾਲ – ਸਫੈਦ ਕੱਪੜਿਆਂ ਵਿਚ ਜ਼ਿਆਦਾ ਚਮਕ ਲਿਆਉਣ ਲਈ ਟੀਨੋਪਾਲ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।

7. ਧੱਬੇ ਛੁਡਾਉਣ ਦੇ ਰਸਾਇਣ-ਬੈਨਜ਼ੀਨ, ਪੈਟਰੋਲ, ਪੈਰਾਫੀਨ, ਜੇਵਲੀ ਦਾ ਘੋਲ ਅਤੇ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਰਸਾਇਣ ਕੱਪੜਿਆਂ ਤੇ ਪਏ ਦਾਗ-ਧੱਬੇ ਛੁਡਾਉਣ ਦੇ ਕੰਮ ਆਉਂਦੇ ਹਨ ।

PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ Notes.

PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਸਾਦੇ ਟਾਂਕੇ ਦਾ ਪ੍ਰਯੋਗ ਕਦੋਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਾਦੇ ਟਾਂਕੇ ਦਾ ਪ੍ਰਯੋਗ ਆਮ ਤੌਰ ਤੇ ਦੋ ਕੱਪੜਿਆਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਸਾਦੇ ਟਾਂਕੇ ਕਰਨ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
ਉੱਤਰ-
ਸਾਦੇ ਟਾਂਕੇ ਲਾਉਣ ਨਾਲ ਸਥਾਈ ਅੰਤਿਮ ਸਲਾਈ ਸੌਖਿਆਈ ਨਾਲ ਅਤੇ ਉੱਤਮ ਹੁੰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਬਰਾਬਰ ਦੇ ਸਾਦੇ ਟਾਂਕੇ ਕਿਸ ਕੰਮ ਵਿਚ ਲਾਏ ਜਾਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਇਕ ਲਾਈਨ ਵਿਚ ਕੋਟ ਆਦਿ ਦਾ ਕਿਨਾਰਾ ਜਮਾਉਣ ਅਤੇ ਕਈ ਲਾਈਨ ਵਿਚ ਫਰਾਕ, ਝਬਲੇ ਆਦਿ ਵਿਚ ਸਮੋਕਿੰਗ ਦਾ ਆਧਾਰ ਬਣਾਉਣ ਲਈ ।

PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ

ਪ੍ਰਸ਼ਨ 4.
ਤਿਰਛਾ ਸਾਦਾ ਟਾਂਕਾ ਕਿਸ ਕੰਮ ਵਿਚ ਲਾਇਆ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-ਅਸਤਰ ਆਦਿ ਜੋੜਨ ਲਈ ।

ਪ੍ਰਸ਼ਨ 5.
ਬਖੀਆ ਕਿਨ੍ਹਾਂ ਕੰਮਾਂ ਵਿਚ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਪਾਟੇ ਕੱਪੜਿਆਂ ਦੀ ਮੁਰੰਮਤ ਵਿਚ, ਆਟਰੇਸ਼ਨ ਦੇ ਸਮੇਂ ਅਤੇ ਜੋ ਹਿੱਸੇ ਮਸ਼ੀਨ ਦੇ ਪੈਰ ਦੇ ਥੱਲੇ ਨਹੀਂ ਦਬਾਏ ਜਾ ਸਕਦੇ ਉੱਥੇ ।

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਸਿਲਾਈ ਦਾ ਸਾਦਾ ਟਾਂਕਾ ਕੀ ਹੁੰਦਾ ਹੈ ? ਇਸ ਨੂੰ ਚਿਤਰ ਦੁਆਰਾ ਸਮਝਾਓ ।
ਉੱਤਰ-
ਇਹ ਅਸਥਾਈ ਟਾਂਕਾ ਹੈ । ਇਸ ਟਾਂਕੇ ਦੀ ਵਰਤੋਂ ਜ਼ਿਆਦਾਤਰ ਤਹਿ ਅਤੇ ਅਸਤਰ ਜਮਾਉਣ ਲਈ ਅਤੇ ਵਾਇਲ ਦੇ ਲਈ ਸਾਦਾ ਸਿਲਾਈ ਦੇ ਉਦੇਸ਼ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਸਾਦੇ ਟਾਂਕੇ ਲਾਉਣ ਨਾਲ ਸਥਾਈ ਅੰਤਿਮ ਸਿਲਾਈ ਸਰਲਤਾ ਨਾਲ ਅਤੇ ਵਧੀਆ ਹੁੰਦੀ ਹੈ। ਇਸ ਵਿਚ ਦੂਰ-ਦੂਰ ਸੂਈ ਵਿਚ ਥੋੜ੍ਹਾ ਕੱਪੜਾ ਲੈ ਕੇ ਬਾਕੀ ਧਾਗਾ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ । ਧਾਗੇ ਨੂੰ ਗੰਢ ਦੇ ਕੇ ਕੱਪੜੇ ਨੂੰ ਸੱਜੇ ਪਾਸਿਉਂ ਖੱਬੇ ਪਾਸੇ ਅਤੇ ਸੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਹ ਟਾਂਕਾ 1/2 ਸੈਂ: ਮੀ: ਤੋਂ 1 ਸੈਂ:ਮੀ ਲੰਮਾ ਹੋ ਸਕਦਾ ਹੈ ।
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 1

ਪ੍ਰਸ਼ਨ 2.
ਟਾਂਕੇ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਟਾਂਕੇ ਤਾਂ ਬਹੁਤ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ, ਪਰ ਬਹੁਤ ਹੀ ਜ਼ਰੂਰੀ ਅਤੇ ਸਧਾਰਨ ਪ੍ਰਕਾਰ ਦੇ ਟਾਂਕੇ ਹੇਠ ਲਿਖੇ ਹਨ :

  • ਸਾਦਾ ਟਾਂਕਾ
  • ਬਖੀਆ ਜਾਂ ਬੈਕ ਟਾਂਕਾ
  • ਉਲ਼ੇੜੀ ।

ਪ੍ਰਸ਼ਨ 3.
ਕੱਪੜੇ ‘ਤੇ ਸਾਦਾ ਟਾਂਕਾ ਨਾ ਲਾਉਣ ਦੇ ਕੀ ਬੁਰੇ ਨਤੀਜੇ ਹੋ ਸਕਦੇ ਹਨ ?
ਉੱਤਰ-
ਕੱਪੜੇ ਤੇ ਸਾਦਾ ਟਾਂਕਾ ਨਾ ਲਾਉਣ ਨਾਲ ਸਿਲਾਈ ਟੇਢੀ-ਮੇਢੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਖ਼ਾਸ ਕਰਕੇ ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਦਾ ਢਿੱਲਾਪਨ ਹੁੰਦਾ ਹੈ । ਜਿਸ ਨਾਲ ਸਿਲਾਈ ਠੀਕ ਤਰ੍ਹਾਂ ਨਾਲ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ।

PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ

ਵੱਡੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਸਾਦਾ ਟਾਂਕਾ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ ? ਇਸ ਦਾ ਪ੍ਰਯੋਗ ਕਿੱਥੇ-ਕਿੱਥੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਸਾਦਾ ਟਾਂਕਾ ਕਈ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ ।
1. ਬਰਾਬਰ ਦਾ ਸਾਦਾ ਟਾਂਕਾ ਟਾਂਕਾ ਅਤੇ ਜਗ੍ਹਾ ਬਰਾਬਰ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 2
2. ਟਾਂਕਾ ਜਗਾ ਤੋਂ ਦੁਗਣਾ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 3
3. ਜਗਾ ਟਾਂਕੇ ਤੋਂ ਦੁਗਣੀ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 4

4. ਅਸਮਾਨ ਸਾਦਾ ਟਾਂਕਾ (ਛੋਟਾ ਵੱਡਾ ਸਾਦਾ)
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 5

5. ਛੋਟਾ ਸਾਦਾ ਟਾਂਕਾ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 6

6. ਤਿਰਛਾ ਸਾਦਾ ਟਾਂਕਾ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 7

ਸਾਦੇ ਟਾਂਕਿਆਂ ਦਾ ਪ੍ਰਯੋਗ ਹੇਠ ਲਿਖੇ ਕੰਮਾਂ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ :

  • ਆਮ ਤੌਰ ਤੇ ਦੋ ਕੱਪੜਿਆਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਨ ਲਈ ।
  • ਤਹਿ ਅਤੇ ਅਸਤਰ ਜਮਾਉਣ ਲਈ ਅਤੇ ਵਾਇਲ ਦੇ ਲਈ ਕੱਚੀ ਸਿਲਾਈ ਦੇ ਰੂਪ ਵਿਚ ।
  • ਕੋਟ ਆਦਿ ਦਾ ਕਿਨਾਰਾ ਜਮਾਉਣ ਲਈ ।
  • ਫਰਾਕ, ਝਬਲੇ ਆਦਿ ਵਿਚ ਸਮੋਕਿੰਗ ਦਾ ਆਧਾਰ ਬਣਾਉਣ ਲਈ ।

PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ

ਪ੍ਰਸ਼ਨ 2.
ਬਖੀਆ ਤੇ ਉਲੇੜੀ ਕਿਸ ਪ੍ਰਕਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?
ਉੱਤਰ-
ਦੁਖੀਆ (ਬੈਕ ਸਟਿਚ) – ਇਹ ਸਥਾਈ ਟਾਂਕਾ ਹੈ । ਇਹ ਬਹੁਤ ਮਹੀਨ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਇਸ ਵਿਚ ਕਾਫ਼ੀ ਸਮਾਂ ਲਗਦਾ ਹੈ । ਇਹ ਦੋ ਭਾਗਾਂ ਨੂੰ ਸਥਾਈ ਰੂਪ ਨਾਲ ਜੋੜਨ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ, ਜਿਵੇਂ ਮੋਢੇ ਦੀ ਸਿਲਾਈ, ਪੇਟੀਕੋਟ ਜਾਂ ਸਲਵਾਰ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਨ ਲਈ। ਇਹ ਟਾਂਕਾ ਸੱਜੇ ਪਾਸਿਉਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ । ਇਨ੍ਹਾਂ ਟਾਂਕਿਆਂ ਵਿਚਕਾਰ ਜਗਾ ਬਿਲਕੁਲ ਨਹੀਂ ਛੱਡੀ ਜਾਂਦੀ। ਇਸ ਵਿਚ ਸੂਈ ਤੇ ਇਕ ਵਾਰੀ ਵਿਚ ਇਕ ਟਾਂਕਾ ਅਤੇ ਟਾਂਕੇ ਬਰਾਬਰ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ । ਸੂਈ ਜਿੱਥੋਂ ਕੱਢੀ ਗਈ ਹੋਵੇ ਉੱਥੋਂ ਹੀ ਇਕ ਵਾਰ ਫਿਰ ਪਿੱਛੇ ਵਲ ਡੋਰਾ ਕੱਢ ਕੇ ਅੱਗੇ ਵਧਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਹ ਟਾਂਕਾ ਮਸ਼ੀਨ ਨਾਲ ਵੀ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ।
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 8

ਉਲੇੜੀ (ਹੈਮਿੰਗ ਸਟਿੱਚ)-ਕਿਸੇ ਵੀ ਕੱਪੜੇ ਦੇ ਘੇਰੇ ਤੇ, ਮੋਹਰੀ ਦੇ ਹੇਠਲੇ ਬਾਡਰ ਮੋੜਨ ਲਈ ਅਤੇ ਔਰਤਾਂ, ਬੱਚਿਆਂ ਦੇ ਕੱਪੜਿਆਂ ਵਿਚ ਪੱਟੀਆਂ ਆਦਿ ਦੀ ਸਫਾਈ ਸੁੰਦਰਤਾ ਲਈ ਇਸ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ । ਇਸ ਦਾ ਪ੍ਰਯੋਗ ਤਦ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕੱਪੜੇ ਦੇ ਧਾਗੇ ਨਿਕਲਣ ਵਾਲੇ ਕਿਨਾਰਿਆਂ ਨੂੰ ਬੰਦ ਕਰਨਾ ਹੋਵੇ । ਇਹ ਕੱਪੜੇ ਦੇ ਉਲਟੇ ਪਾਸੇ ਲਾਇਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਟਾਂਕੇ ਵਿਚ ਇਹ ਧਿਆਨ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ ਕਿ ਦੂਜੇ ਪਾਸੇ ਅਰਥਾਤ ਕੱਪੜੇ ਦੇ ਸਿੱਧੇ ਪਾਸੇ ਵੀ ਟਾਂਕੇ ਇਕੋ ਜਿਹੀ ਦੂਰੀ ਤੇ ਛੋਟੇ ਅਤੇ ਸੁੰਦਰ ਹੋਣ ਉਲੇੜੀ ਦੇ ਟਾਂਕੇ ਤਿੰਨ ਤਰ੍ਹਾਂ ਨਾਲ ਲਾਏ ਜਾਂਦੇ ਹਨ ।

ਸਿੱਧੇ, ਘੱਟ ਤਿਰਛੇ ਅਤੇ ਜ਼ਿਆਦਾ ਤਿਰਛੇ। ਜ਼ਿਆਦਾਤਰ ਸੁਤੀ ਅਤੇ ਰੇਸ਼ਮੀ ਕੱਪੜਿਆਂ ਵਿਚ ਘੱਟ ਤਿਰਛੇ ਟੇਢੇ ਟਾਂਕੇ ਹੀ ਚਲਦੇ ਹਨ । ਸਿੱਧੇ ਟਾਂਕੇ ਕੋਟਿੰਗ ਆਦਿ ਵਿਚ ਮਜ਼ਬੂਤੀ ਦੇ ਲਈ ਲਾਏ ਜਾਂਦੇ ਹਨ । ਜ਼ਿਆਦਾ ਤਿਰਛੇ ਟਾਂਕੇ ਮਸਤੇ ਵਪਾਰਕ ਕੰਮਾਂ ਵਿਚ ਉਪਯੋਗ ਕੀਤੇ ਜਾਂਦੇ ਹਨ | ਖੂਬਸਰਤ ਉਲੇੜੀ ਦੇ ਲਈ ਸੂਈ ਵਿਚ ਬਹੁਤ ਘੱਟ ਕੱਪੜਾ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਪਿਛਲੇ ਪਾਸੇ ਤੋਂ ਵੀ ਵੱਡੇ ਵਿਖਾਈ ਨਾ ਦੇਣ
PSEB 6th Class Home Science Practical ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ 9

ਉਲ਼ੇੜੀ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਲਈ ਸੂਈ ਨੂੰ ਕੱਪੜੇ ਵਿਚੋਂ ਇਸ ਪ੍ਰਕਾਰ ਕੱਢਦੇ ਹਨ ਕਿ ਥੋੜਾ ਜਿਹਾ ਧਾਗਾ ਪਿੱਛੇ ਬਚਿਆ ਰਹੇ । ਇਸੇ ਧਾਗੇ ਨੂੰ ਮੋੜ ਕੇ ਅੰਦਰ ਦਬਾ ਕੇ ਸੱਜੇ ਪਾਸੇ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਵਲ ਨੂੰ ਉਲੇੜੀ ਕਰਦੇ ਹਨ | ਮੋੜੇ ਹੋਏ ਹਿੱਸੇ ਨੂੰ ਹਮੇਸ਼ਾਂ ਉੱਪਰ ਵਲ ਰੱਖਦੇ ਹਨ ਕੇ ਸਾਦੇ ਦੀ ਤਰ੍ਹਾਂ ਸਿੱਧੇ ਹੋ ਕੇ ਅੱਗੇ-ਪਿੱਛੇ ਦੋਹੀਂ ਪਾਸੀਂ ਤਿਰਛੇ, ਛੋਟੇ ਤੇ ਬਰਾਬਰ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ । ਉਲ਼ੇੜੀ ਨੂੰ ਬੰਦ ਕਰਦੇ ਸਮੇਂ ਆਖਰੀ ਟਾਂਕੇ ਨੂੰ ਦੁਹਰਾਉਂਦੇ ਹਨ । ਇਸ ਪ੍ਰਕਾਰ ਇਹ ਵਾਂਕਾ ਅੰਗਰੇਜ਼ੀ ਅੱਖਰ ‘V` ਦੇ ਸਮਾਨ ਬਣ ਜਾਂਦਾ ਹੈ । ਫਿਰ ਸੂਈ ਨੂੰ 1 ਜਾਂ 2 ਸੈਂਟੀਮੀਟਰ ਉੱਪਰ ਕੱਢ ਕੇ ਧਾਗੇ ਨੂੰ ਕੈਂਚੀ ਨਾਲ ਕੱਟ ਦਿੰਦੇ ਹਨ।

ਸਿਲਾਈ ਦੇ ਸਾਦਾ ਟਾਂਕੇ PSEB 6th Class Home Science Notes

ਸੰਖੇਪ ਜਾਣਕਾਰੀ

  • ਕੱਪੜਿਆਂ ਦੀ ਸਿਲਾਈ ਲਈ ਜਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸੁੰਦਰਤਾ ਵਧਾਉਣ ਲਈ ਟਾਂਕਿਆਂ ਦਾ ਇਸਤੇਮਾਲ ਕਰਦੇ ਹਨ ।
  • ਸਿਲਾਈ ਕੱਪੜੇ ਦੇ ਦੋ ਟੁੱਕੜਿਆਂ ਨੂੰ ਜੋੜਨ ਲਈ ਜਾਂ ਕੱਪੜੇ ਦੇ ਕਿਨਾਰਿਆਂ ਤੋਂ । ਧਾਗਿਆਂ ਨੂੰ ਬਾਹਰ ਕੱਢਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।
  • ਕਈ ਟਾਂਕੇ ਸਜਾਵਟ ਲਈ ਇਸਤੇਮਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਜਿਵੇਂ-ਚੇਨ ਸਟਿੱਚ, । ਦਸਤੀ ਆਦਿ।
  • ਸਾਦਾ ਟਾਂਕਾ ਉਲੇੜੀ, ਬਖੀਆ ਆਦਿ ਸਾਰੇ ਟਾਂਕਿਆਂ ਨਾਲੋਂ ਆਸਾਨ ਹੁੰਦਾ ਹੈ ।
  • ਬਖੀਆ ਟਾਂਕਾ ਸਾਦੇ ਅਤੇ ਉਲੇੜੀ ਵਾਲੇ ਟਾਂਕੇ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਮਜ਼ਬੂਤ ਹੁੰਦਾ ਹੈ ।
  • ਉਲੇੜੀ ਟਾਂਕਾ ਕਿਨਾਰਿਆਂ ਤੋਂ ਧਾਗਿਆਂ ਨੂੰ ਬਾਹਰ ਨਿਕਲਣ ਤੋਂ ਰੋਕਣ ਲਈ । ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
  • ਚੇਨ ਜਾਂ ਸੰਗਲੀ ਟਾਂਕਾ-ਚੇਨ ਜਾਂ ਸੰਗਲੀ ਟਾਂਕਾ ਸਜਾਵਟ ਜਾਂ ਨਮੂਨੇ ਦੇ ਕਿਨਾਰੇ । ਬਣਾਉਣ ਲਈ ਇਸਤੇਮਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ।

PSEB 6th Class Home Science Practical ਅੰਡਾ ਉਬਾਲਣਾ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਅੰਡਾ ਉਬਾਲਣਾ Notes.

PSEB 6th Class Home Science Practical ਅੰਡਾ ਉਬਾਲਣਾ

1. ਪੂਰਾ ਉਬਲਿਆ ਅੰਡਾ

ਸਾਮਾਨ :-
ਪਾਣੀ – 2 ਕੱਪ
ਅੰਡਾ – ਇੱਕ
ਵਿਧੀ – ਪਾਣੀ ਨੂੰ ਸਾਫ਼ ਬਰਤਨ ਵਿਚ ਪਾ ਕੇ ਉਬਾਲੋ । ਥੋੜੇ ਗਰਮ ਪਾਣੀ ਵਿੱਚ ਅੰਡਾ ਰੱਖ ਦਿਓ । ਜਦੋਂ ਪਾਣੀ ਉਬਲਣ ਲੱਗ ਜਾਵੇ ਤਾਂ ਤਿੰਨ ਤੋਂ ਚਾਰ ਮਿੰਟ ਤਕ ਉਬਾਲੋ ।
ਉਬਲੇ ਅੰਡੇ ਨੂੰ ਪੰਦਰਾਂ ਸਕਿੰਟ ਲਈ ਠੰਢੇ ਪਾਣੀ ਵਿੱਚ ਰੱਖ ਦਿਉ । ਠੰਢੇ ਪਾਣੀ ਵਿਚੋਂ ਕੱਢੋ ਅਤੇ ਛਿੱਲ ਲਉ । ਲੰਬਾਈ ਦੇ ਤਰੀਕੇ ਕੱਟ ਕੇ ਲੂਣ, ਕਾਲੀ ਮਿਰਚ ਲਾ ਕੇ ਪਰੋਸੋ।

PSEB 6th Class Home Science Practical ਅੰਡਾ ਉਬਾਲਣਾ

2. ਅੱਧਾ ਉਬਲਿਆ ਅੰਡਾ – ਉਪਰੋਕਤ ਵਿਧੀ ਵਿੱਚ ਸਿਰਫ਼ ਉਬਲਣ ਦਾ ਸਮਾਂ ਇੱਕ ਤੋਂ ਡੇਢ ਮਿੰਟ ਤੱਕ ਦਾ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ । ਉਬਲੇ ਅੰਡੇ ਨੂੰ ਪੂਰਾ ਨਾ ਛਿੱਲ ਕੇ ਥੋੜ੍ਹਾ ਛਿੱਲ ਕੇ ਇਸ ਵਿਚ ਲੂਣ, ਕਾਲੀ ਮਿਰਚ ਪਾ ਕੇ ਚਮਚ ਨਾਲ ਖਾਇਆ ਜਾਂਦਾ ਹੈ । ਨੋਟ : –

  1. ਮਾਮੂਲੀ ਉਬਾਲਣ ਲਈ ਇੱਕ ਮਿੰਟ ਉਬਾਲਣਾ ਠੀਕ ਰਹਿੰਦਾ ਹੈ ।
  2. ਬਰਤਨ ਵਿਚ ਇੰਨਾ ਪਾਣੀ ਲਵੋ ਕਿ ਅੰਡਾ ਪੂਰਾ ਡੁੱਬ ਸਕੇ ।

PSEB 6th Class Home Science Practical ਚਾਹ ਬਣਾਉਣਾ ਅਤੇ ਪਰੋਸਣਾ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਚਾਹ ਬਣਾਉਣਾ ਅਤੇ ਪਰੋਸਣਾ Notes.

PSEB 6th Class Home Science Practical ਚਾਹ ਬਣਾਉਣਾ ਅਤੇ ਪਰੋਸਣਾ

ਚਾਹ ਦੀ ਪੱਤੀ = 3/4 ਛੋਟੇ ਚਮਚ
ਖੰਡ = 1 ਛੋਟਾ ਚਮਚ ਦੁੱਧ
ਦੁੱਧ = 2-3 ਵੱਡੇ ਚਮਚ
ਪਾਣੀ = 1 ਕੱਪ

PSEB 6th Class Home Science Practical ਚਾਹ ਬਣਾਉਣਾ ਅਤੇ ਪਰੋਸਣਾ

ਵਿਧੀ – ਪਹਿਲਾਂ ਕੇਤਲੀ ਵਿਚ ਉਬਲਦਾ ਹੋਇਆ ਥੋੜ੍ਹਾ ਜਿਹਾ ਪਾਣੀ ਪਾ ਕੇ, ਕੇਤਲੀ ਵਿਚ ਚਾਰੇ ਪਾਸੇ ਹਿਲਾ ਕੇ ਕੱਢ ਦਿਓ ਤਾਂ ਜੋ ਉਹ ਗਰਮ ਹੋ ਜਾਵੇ। ਹੁਣ ਇਸ ਵਿਚ ਚਾਹ ਦੀ ਪੱਤੀ ਪਾਓ। ਉੱਪਰੋਂ ਉਬਲਦਾ ਹੋਇਆ ਪਾਣੀ ਪਾ ਕੇ ਇਸ ਨੂੰ ਪੰਜ ਮਿੰਟ ਢੱਕ ਕੇ ਰੱਖੋ। ਇਸ ਨੂੰ ਗਰਮ ਦੁੱਧ ਅਤੇ ਖੰਡ ਨਾਲ ਪਰੋਸੋ। | ਨੋਟ :-

  1. ਜਿੰਨੇ ਕੱਪ ਚਾਹ ਬਣਾਉਣੀ ਹੋਵੇ ਉਸ ਹਿਸਾਬ ਨਾਲ ਸਮੱਗਰੀ ਦੀ ਮਾਤਰਾ ਲਓ।
  2. ਦੁੱਧ, ਚਾਹ ਅਤੇ ਖੰਡ ਦੀ ਮਾਤਰਾ ਸੁਆਦ ਅਨੁਸਾਰ ਘਟਾਈ-ਵਧਾਈ ਜਾ ਸਕਦੀ ਹੈ।
  3. ਚਾਹ ਬਣਾ ਕੇ ਦੇਣ ਲਈ ਪਿਆਲੇ ਵਿਚ ਖੰਡ ਅਤੇ ਕੇਤਲੀ ਨਾਲ ਚਾਹ ( ਗਰਮ ਪਾਣੀ ਵਿਚ ਪੱਤੀ ਮਿਲੀ ਹੋਈ ) ਪਾਓ। ਪਿਆਲਾ ਥੋੜ੍ਹਾ ਖ਼ਾਲੀ ਰੱਖੋ ਅਤੇ ਉਸ ਵਿਚ ਦੁੱਧ ਮਿਲਾਓ ਚਾਹ ਤਿਆਰ ਹੋ ਜਾਵੇਗੀ। ਇਸ ਨੂੰ ਬਰਤਨ ਵਿਚ ਪਾ ਕੇ ਗਰਮ ਗਰਮ ਪਰੋਸ ਦਿਓ ।

ਕੁੱਲ ਮਾਤਰਾ – ਇੱਕ ਵਿਅਕਤੀ ਲਈ ।

PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ Notes.

PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਚੁੱਲ਼ਾ ਕਿਸ ਨੂੰ ਕਹਿੰਦੇ ਹਨ ?
ਉੱਤਰ-
ਕੋਈ ਵੀ ਅਜਿਹੀ ਚੀਜ਼ ਜਿਸ ਵਿਚ ਅੱਗ ਬਾਲ ਕੇ ਭੋਜਨ ਪਕਾਇਆ ਜਾਵੇ, ਉਸ ਨੂੰ ਚੁੱਲ੍ਹਾ ਕਹਿੰਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ 2.
ਅੰਗੀਠੀ ਕਿੰਨੀ ਤਰਾਂ ਦੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਅੰਗੀਠੀ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ।

PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ

ਪ੍ਰਸ਼ਨ 3.
ਹੈਦਰਾਬਾਦੀ ਜਾਂ ਧੂੰਆਂ ਰਹਿਤ ਚੁੱਲ੍ਹੇ ਦੀ ਖੋਜ ਕਿਸ ਨੇ ਕੀਤੀ ?
ਉੱਤਰ-
ਡਾਕਟਰ ਰਾਜੂ ਨੇ।

ਪ੍ਰਸ਼ਨ 4.
ਠੋਸ ਬਾਲਣ ਦੇ ਅੰਤਰਗਤ ਕਿਹੜੇ-ਕਿਹੜੇ ਬਾਲਣ ਆਉਂਦੇ ਹਨ ?
ਉੱਤਰ-
ਲੱਕੜੀ, ਪਾਥੀਆਂ, ਲੱਕੜ ਦਾ ਕੋਇਲਾ, ਪੱਥਰ ਦਾ ਕੋਇਲਾ (ਕੋਕ) ।

ਪ੍ਰਸ਼ਨ 5.
ਪਿੰਡਾਂ ਵਿਚ ਜ਼ਿਆਦਾਤਰ ਕਿਸ ਪ੍ਰਕਾਰ ਦੇ ਬਾਲਣ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਲੱਕੜੀ ਅਤੇ ਪਾਥੀਆਂ ਦਾ ।

ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਹੈਦਰਾਬਾਦੀ ਜਾਂ ਧੂੰਆਂ ਰਹਿਤ ਚੁੱਲ੍ਹੇ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ? ਚਿਤਰ ਸਹਿਤ ਵਰਣਨ ਕਰੋ।
ਉੱਤਰ-
ਹੈਦਰਾਬਾਦੀ ਚੁੱਲ੍ਹੇ ਵਿਚ ਲੱਕੜੀ ਜਾਂ ਪੱਥਰ ਦਾ ਕੋਇਲਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਨ। ਇਸ ਵਿਚ ਬਾਲਣ ਘੱਟ ਖ਼ਰਚ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਥੋੜ੍ਹਾ ਜਿਹਾ ਸੇਕ ਵੀ ਫਜ਼ੂਲ ਨਹੀਂ ਜਾਂਦਾ ਹੈ। ਇਹ ਚੁੱਲ੍ਹਾ ਹੈਦਰਾਬਾਦ ਦੇ ਡਾਕਟਰ ਰਾਜੂ ਦੀ ਖੋਜ ਹੈ। ਇਸੇ ਲਈ ਇਸ ਨੂੰ ਹੈਦਰਾਬਾਦੀ ਜਾਂ ਡਾਕਟਰ ਰਾਜੂ ਦਾ
PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ 1
ਧੂੰਆਂ ਰਹਿਤ ਚੁਲ੍ਹਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਧੂੰਆਂ ਚਿਮਨੀ ਦੇ ਰਸਤੇ ਬਾਹਰ ਨਿਕਲਦਾ ਹੈ। ਇਸ ਦੀ ਸ਼ਕਲ ਅੰਗਰੇਜ਼ੀ ਦੇ ਅੱਖਰ L ਦੀ ਤਰ੍ਹਾਂ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 2.
ਦੇਸੀ ਚੁੱਲ੍ਹਾ ਕੀ ਹੈ ? ਇਸ ਨੂੰ ਬਾਲਣ ਦੀ ਵਿਧੀ ਅਤੇ ਸਾਵਧਾਨੀ ਲਿਖੋ।
ਉੱਤਰ-
ਪਿੰਡ ਦੇ ਹਰ ਘਰ ਵਿਚ ਇੱਟਾਂ ਅਤੇ ਮਿੱਟੀ ਦਾ ਬਣਿਆ ਚੁੱਲ੍ਹਾ ਖਾਣਾ ਬਣਾਉਣ ‘ ਲਈ ਇਸਤੇਮਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਦੇਸੀ ਚੁੱਲਾ ਕਹਿੰਦੇ ਹਨ।

ਬਾਲਣ ਦੀ ਵਿਧੀ – ਕਿਸੇ ਪੁਰਾਣੇ ਪਾਟੇ ਕੱਪੜੇ, ਫੁਸ ਜਾਂ ਕਾਗਜ਼ ਨੂੰ ਅੱਗ ਲਾ ਕੇ ਚੱਲੇ ਵਿਚ ਰੱਖ ਕੇ ਛਟੀਆਂ ਜਾਂ ਪਤਲੀਆਂ ਲੱਕੜੀਆਂ ਰੱਖ ਕੇ ਅੱਗ ਬਾਲੀ ਜਾਂਦੀ ਹੈ।
ਸਾਵਧਾਨੀ –

  1. ਕੱਪੜਾ ਜਾਂ ਕਾਗਜ਼ ਹੱਥ ਵਿਚ ਫੜ ਕੇ ਅੱਗ ਲਾਉਂਦੇ ਹੋਏ ਇਹ ਧਿਆਨ ਰੱਖੋ ਕਿ ਹੱਥ ਨਾ ਸੜ ਜਾਵੇ।
  2. ਲੱਕੜਾਂ ਉੱਤੇ ਮਿੱਟੀ ਦਾ ਤੇਲ ਜ਼ਿਆਦਾ ਨਹੀਂ ਪਾਉਣਾ ਚਾਹੀਦਾ।

ਪ੍ਰਸ਼ਨ 3.
ਪੰਪ ਵਾਲੇ ਸਟੋਵ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ ? ਸਾਵਧਾਨੀਆਂ ਲਿਖੋ ।
ਉੱਤਰ-
ਪੰਪ ਵਾਲਾ ਸਟੋਵ ਵੀ ਤੇਲ ਨਾਲ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਿਚ ਤੇਲ ਪਾਉਣ ਲਈ ਇਕ ਟੈਂਕੀ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿਚ ਤੇਲ ਭਰਿਆ ਜਾਂਦਾ ਹੈ। ਟੈਂਕੀ ਦੇ ਵਿਚਕਾਰ ਉੱਪਰ ਇਕ ਬਰਨਰ ਲੱਗਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਪੰਪ ਰਾਹੀਂ ਹਵਾ ਭਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਹਵਾ ਭਰਨ ਨਾਲ ਤੇਲ ਦੀ ਗੈਸ ਬਣ ਕੇ ਛੋਟੇ ਜਿਹੇ ਛੇਕ ਰਾਹੀਂ ਬਾਹਰ ਨਿਕਲਦੀ ਹੈ। ਤਾਪ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਲਈ ਬਰਨਰ ਦੇ ਉੱਪਰ ਇਕ . ਕਟੋਰੀ ਲੱਗੀ ਹੁੰਦੀ ਹੈ। ਸਟੋਵ ਵਿਚ ਤਿੰਨ ਸਟੈਂਡ ਹੁੰਦੇ ਹਨ ਜਿਸ ਉੱਪਰ ਇਕ ਜਾਲੀ ਵਰਗਾ ਤਵਾ
ਹੁੰਦਾ ਹੈ।
PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ 2
ਸਾਵਧਾਨੀਆਂ-

  1. ਹਵਾ ਭਰਦੇ ਸਮੇਂ ਪੰਪ ਸਾਵਧਾਨੀ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।
  2. ਸਟੋਵ ਬਾਲਦੇ ਸਮੇਂ ਲਾਈਟਰ ਦੇ ਨਾਲ ਬਰਨਰ ਨੂੰ ਗਰਮ ਕਰਨ ਤੋਂ ਬਾਅਦ ਹੀ ਪੰਪ ਨਾਲ ਹਵਾ ਭਰਨੀ ਚਾਹੀਦੀ ਹੈ।
  3. ਜੇਕਰ ਪੰਪ ਕਰਦੇ ਸਮੇਂ ਛੇਕ ਬੰਦ ਹੋਵੇ ਤਾਂ ਪਿਨ ਮਾਰ ਛੇਕ ਨੂੰ ਖੋਲ੍ਹ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ।
  4. ਸਟੋਵ ਹਰ ਰੋਜ਼ ਸਾਫ਼ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। 5. ਹਮੇਸ਼ਾਂ ਮਿੱਟੀ ਦੇ ਸਾਫ਼ ਤੇਲ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ

ਪ੍ਰਸ਼ਨ 4.
ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਚ ਪਾਥੀਆਂ ਜਲਾਉਣ ਨਾਲ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਦਾ ਵਰਣਨ ਕਰੋ।
ਉੱਤਰ-
ਪਾਥੀਆਂ ਤੋਂ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਹ ਹੋਰ ਬਾਲਣਾਂ ਤੋਂ ਸਸਤੀਆਂ ਪੈਂਦੀਆਂ ਹਨ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਬਣਾਉਣ ਲਈ ਜ਼ਿਆਦਾ ਮਿਹਨਤ ਵੀ ਨਹੀਂ ਕਰਨੀ ਪੈਂਦੀ।

ਪਾਥੀਆਂ ਤੋਂ ਹਾਨੀ ਇਹ ਹੈ ਕਿ ਇਹ ਲੱਕੜੀ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਧੂੰਆਂ ਦਿੰਦੀਆਂ ਹਨ ਜੋ ਰਸੋਈ ਵਿਚ ਫੈਲ ਜਾਂਦਾ ਹੈ। ਭਾਂਡੇ ਅਤੇ ਰਸੋਈ ਇਸ ਦੇ ਕਾਰਨ ਕਾਲੇ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰਕੇ ਰੱਖਣਾ ਸਿਹਤ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਹਾਨੀਕਾਰਕ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਬਰਸਾਤ ਦੇ ਦਿਨਾਂ ਵਿਚ ਇਨ੍ਹਾਂ ਤੋਂ ਮੱਛਰ ਪੈਦਾ ਹੋ ਜਾਂਦੇ ਹਨ ਜੋ ਮਲੇਰੀਆ ਰੋਗ ਫੈਲਾਉਂਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ 5.
ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਚ ਲੱਕੜੀ ਜਲਾਉਣ ਦੇ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਦੱਸੋ।
ਉੱਤਰ-
ਲੱਕੜੀ ਜਲਾਉਣ ਦੇ ਲਾਭ-ਲੱਕੜੀ ਜਲਾਉਣ ਤੋਂ ਇਕ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਹ ਹੋਰ ਬਾਲਣਾਂ ਨਾਲੋਂ ਸਸਤੀ ਮਿਲਦੀ ਹੈ ਅਤੇ ਇਸ ਲਈ ਜ਼ਿਆਦਾਤਰ ਘਰਾਂ ਵਿਚ ਜਲਾਈ ਜਾਂਦੀ ਹੈ। ਇਹ ਤਾਪ ਪੈਦਾ ਕਰਨ ਦਾ ਉਪਯੋਗੀ ਅਤੇ ਸੁਵਿਧਾਜਨਕ ਸਾਧਨ ਹੈ।

ਲੱਕੜੀ ਜਲਾਉਣ ਦੀਆਂ ਹਾਨੀਆਂ – ਲੱਕੜੀ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਰਸੋਈ ਵਿਚ ਧੁੰਆਂ ਫੈਲਦਾ ਹੈ। ਭਾਂਡੇ ਧੂੰਏਂ ਦੇ ਕਾਰਨ ਕਾਲੇ ਹੋ ਜਾਂਦੇ ਹਨ। ਧੂੰਏਂ ਕਾਰਨ ਦਮ ਘੁਟਣ ਲੱਗਦਾ ਹੈ। ਅੱਖਾਂ ਵਿੱਚੋਂ ਪਾਣੀ ਵਗਣ ਲੱਗਦਾ ਹੈ। ਧੁਆਂ ਹੋਣ ਕਾਰਨ ਰਸੋਈ ਦੀਆਂ ਦੀਵਾਰਾਂ ਆਦਿ ਖ਼ਰਾਬ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਧੁੰਏਂ ਤੋਂ ਬਚਣ ਲਈ ਚੁੱਲ੍ਹੇ ਉੱਪਰ ਚਿਮਨੀ ਦੀ ਵਿਵਸਥਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 6.
ਲੱਕੜੀ ਦੇ ਕੋਲਿਆਂ ਨੂੰ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਚ ਪ੍ਰਯੋਗ ਨਾਲ ਕੀ ਲਾਭ ਤੇ ਹਾਨੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਲੱਕੜੀ ਦੇ ਕੋਲੇ ਤੇ ਖਾਣਾ ਪਕਾਉਣ ਨਾਲ ਧੂੰਏਂ ਦੀਆਂ ਹਾਨੀਆਂ ਤੋਂ ਬਚਿਆ ਜਾ ਸਕਦਾ ਹੈ ਤੇ ਭਾਂਡੇ ਵੀ ਜ਼ਿਆਦਾ ਕਾਲੇ ਨਹੀਂ ਹੁੰਦੇ।
ਲੱਕੜੀ ਦੇ ਕੋਇਲੇ ਤੋਂ ਹਾਨੀ ਇਹ ਹੈ ਕਿ ਜਲਦੀ ਹੀ ਇਹ ਰਾਖ ਬਣ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ ਦੀ ਵਰਤੋਂ ਲੱਕੜੀ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਮਹਿੰਗੀ ਹੈ।

ਪ੍ਰਸ਼ਨ 7.
ਪੱਥਰ ਦੇ ਕੋਲੇ ਨੂੰ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਚ ਪ੍ਰਯੋਗ ਕਰਨ ਦੇ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਦੱਸੋ ।
ਉੱਤਰ-
ਪੱਥਰ ਦੇ ਕੋਲੇ ਤੋਂ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਹ ਦੇਰ ਤਕ ਬਲਦੇ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਬਲ ਜਾਣ ਤੋਂ ਬਾਅਦ ਧੂੰਆਂ ਵੀ ਨਹੀਂ ਦਿੰਦੇ ਅਤੇ ਇਸ ਦੇ ਤਾਪ ਨਾਲ ਭਾਂਡੇ ਵੀ ਕਾਲੇ ਨਹੀਂ
ਹੁੰਦੇ।

ਇਸ ਤੋਂ ਹਾਨੀ ਇਹ ਹੈ ਇਹ ਕੋਇਲਾ ਬਲ ਕੇ ਕਾਰਬਨ-ਮੋਨੋਆਕਸਾਈਡ (Carbonmonoxide) ਗੈਸ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਦਰਵਾਜ਼ੇ, ਬਾਰੀਆਂ ਜੇਕਰ ਬੰਦ ਹੋਣ ਤਾਂ ਇਸ ਗੈਸ ਦਾ ਜ਼ਹਿਰੀਲਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ਅਤੇ ਗੈਸ ਨਾਲ ਦਮ ਘੁੱਟਣ ਲਗਦਾ ਹੈ। ਇੱਥੋਂ ਤਕ ਕਿ ਕਦੀ-ਕਦੀ ਵਿਅਕਤੀ ਦੀ ਮੌਤ ਹੋ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ ਵੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਬਾਲ ਕੇ ਖਿੜਕੀਆਂ ਤੇ ਦਰਵਾਜ਼ਿਆਂ ਨੂੰ ਖੋਲ੍ਹ ਕੇ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿਸ ਨਾਲ ਗੈਸ ਦਾ ਨਿਕਾਸ ਹੋ ਸਕੇ ।

PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ

ਪ੍ਰਸ਼ਨ 8.
ਸਟੋਵ ਦੇ ਪ੍ਰਯੋਗ ਤੋਂ ਕੀ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਹਨ ?
ਉੱਤਰ-
ਬਿਨਾਂ ਬੱਤੀ ਵਾਲੇ ਅਰਥਾਤ ਗੈਸ ਦੇ ਸਟੋਵ ਤੋਂ ਲਾਭ ਇਹ ਹੈ ਕਿ ਜ਼ਿਆਦਾ ਤਾਪ ਦਿੰਦਾ ਹੈ ਅਤੇ ਭੋਜਨ ਛੇਤੀ ਪੱਕ ਜਾਂਦਾ ਹੈ। ਇਹ ਤੇਲ ਦੀ ਬਦਬੂ ਅਤੇ . ਧੂੰਆਂ ਨਹੀਂ ਦਿੰਦਾ। ਇਸ ਵਿਚ ਤੇਲ ਘੱਟ ਖ਼ਰਚ ਹੁੰਦਾ । ਹੈ ਅਤੇ ਮਿਹਨਤ ਦੀ ਬਚਤ ਹੁੰਦੀ ਹੈ।
PSEB 6th Class Home Science Practical ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਚੁੱਲ੍ਹੇ 3
ਇਸ ਤੋਂ ਹਾਨੀ ਇਹ ਕਿ ਗੈਸ ਦਾ ਦਬਾਅ ਵਧਣ ਨਾਲ ਕਦੀ-ਕਦੀ ਇਸ ਦੇ ਫਟਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ।
ਬੱਤੀ ਵਾਲੇ ਸਟੋਵ ਤੋਂ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਸ ਨੂੰ ਜਲਾਉਣ ਵਿਚ ਅਸਾਨੀ ਹੁੰਦੀ ਹੈ ਪਰ ਇਹ ਸਟੋਵ ਤੇਲ ਦੀ ਬਦਬੂ ਅਤੇ ਧੂੰਆਂ ਦਿੰਦਾ ਹੈ। ਜੇ ਇਸ ਨੂੰ ਅਸਾਵਧਾਨੀ ਨਾਲ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਇਸ ਦੇ ਖ਼ਰਾਬ ਹੋਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸਦੀਆਂ ਬੱਤੀਆਂ ਨੂੰ ਸਮੇਂ-ਸਮੇਂ ਤੇ ਕੱਟਦੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਤੇਲ ਨੂੰ ਟੈਂਕੀ ਵਿਚ ਛਾਣ ਕੇ ਪਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਟੈਂਕੀ ਵਿਚ ਤੇਲ ਭਰਿਆ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਜੇਕਰ ਬੱਤੀਆਂ ਛੋਟੀਆਂ ਹੋ ਗਈਆਂ ਹੋਣ ਜਾਂ ਬਰਨਰ ਖ਼ਰਾਬ ਹੋ ਗਿਆ ਹੋਵੇ ਤਾਂ ਬਦਲਦੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਸਟੋਵ ਵਿਚ ਤੇਲ ਭਰ ਕੇ ਉਸ ਨੂੰ ਬਾਹਰੋਂ ਪੂੰਝ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਸਮੇਂਸਮੇਂ ਤੇ ਸਫ਼ਾਈ ਕਰਵਾਉਂਦੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ 9.
ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਚ ਗੈਸ ਦਾ ਪ੍ਰਯੋਗ ਕਿਸ ਪ੍ਰਕਾਰ ਲਾਭਦਾਇਕ ਹੈ ? ਇਸ ਤੋਂ ਕੀ ਹਾਨੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ-
ਗੈਸ ਤੋਂ ਲਾਭ ਇਹ ਹਨ ਕਿ ਬਾਲਣ ਦਾ ਇਹ ਇਕ ਸੁਵਿਧਾਜਨਕ ਸਾਧਨ ਹੈ। ਇਸ ਨਾਲ ਧੂੰਆਂ ਨਹੀਂ ਫੈਲਦਾ, ਮਿਹਨਤ ਅਤੇ ਸਮੇਂ ਦੀ ਬਚਤ ਹੁੰਦੀ ਹੈ, ਰਸੋਈ ਗੰਦੀ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਇਸ ਨੂੰ ਜਲਾਉਣ ਅਤੇ ਇਸ ਵਿਚ ਖਾਣਾ ਬਣਾਉਣ ਵਿਚ ਜ਼ਿਆਦਾ ਸਮਾਂ ਖ਼ਰਚ ਨਹੀਂ ਹੁੰਦਾ।

ਇਸ ਤੋਂ ਹਾਨੀ ਇਹ ਹੈ ਕਿ ਥੋੜੀ ਜਿਹੀ ਅਣਗਹਿਲੀ ਨਾਲ ਗੈਸ ਦਾ ਸਿਲੰਡਰ ਫਟਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਹੈ। ਪਰ ਹੁਣ ਅਜਿਹੇ ਪ੍ਰਬੰਧ ਕੀਤੇ ਗਏ ਹਨ ਕਿ ਗੈਸ ਸਿਲੰਡਰ ਜ਼ਿਆਦਾ ਸੁਰੱਖਿਅਤ ਹਨ।

PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ

Punjab State Board PSEB 6th Class Home Science Book Solutions Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ Notes.

PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ

ਬਹੁਤ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਟਿੱਚ ਬਟਨ ਕਿੱਥੇ ਲਾਇਆ ਜਾਂਦਾ ਹੈ !
ਉੱਤਰ-
ਇਹ ਬਟਨ ਹਮੇਸ਼ਾ ਉੱਥੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿੱਥੇ ਪੱਟੀਆਂ ਉੱਪਰ ਥੱਲੇ ਬਣੀਆਂ ਹੋਣ।

ਪ੍ਰਸ਼ਨ 2.
ਹੱਕ ਅਤੇ ਆਈ ਕਿੱਥੇ ਮਿਲਦੇ ਹਨ ?
ਉੱਤਰ-
ਹੁੱਕ ਅਤੇ ਆਈ ਬਜ਼ਾਰ ਵਿਚ ਮਿਲਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਕੋਟ ਬਟਨ ਕਿੱਥੇ ਲਾਇਆ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ-
ਇਹ ਬਟਨ ਕੋਟ ਅਤੇ ਪੈਂਟਾਂ ‘ਤੇ ਲਾਇਆ ਜਾਂਦਾ ਹੈ ।

ਮਨ ਛੋਟੇ ਉੱਤਰਾਂ ਵਾਲੇ ਪ੍ਰਸ਼ਨ

ਪ੍ਰਸ਼ਨ 1.
ਹੱਕ ਲਾਉਣ ਦੀ ਵਿਧੀ ਲਿਖੋ ।
ਉੱਤਰ-

  • ਉੱਪਰ ਵਾਲੀ ਪੱਟੀ ਦੇ ਅੰਦਰ ਵਾਲੇ ਹਿੱਸੇ ਤੇ ਹੱਕ ਰੱਖ ਕੇ ਦੂਹਰੇ ਧਾਗੇ ਦੇ ਨਾਲ ਹੁੱਕ ਦੇ ਹੇਠਾਂ ਬਣੇ ਗੋਲ ਕੁੰਡਿਆਂ ਨੂੰ ਵਾਰੀ-ਵਾਰੀ ਨੱਥੀ ਕਰੋ ।
  • ਹਰ ਇਕ ਟਾਂਕਾ ਭਰਨ ਦੇ ਸਮੇਂ ਕੱਪੜੇ ਦੇ ਦੋ-ਤਿੰਨ ਧਾਗੇ ਲੈਂਦੇ ਹਨ ।
  • ਸੂਈ ਨੂੰ ਕੱਪੜੇ ਤੋਂ ਕੁੰਡੇ ਦੇ ਕੋਲ ਕੱਢ ਕੇ ਉਸ ਦੇ ਉੱਪਰ ਕੱਪੜਿਆਂ ਦੇ ਨਾਲ ਸੂਈ ਧਾਗੇ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਨੱਥੀ ਕਰਦੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ
2. ਆਈ ਬਣਾਉਣ ਦੀ ਵਿਧੀ ਲਿਖੋ ।
ਉੱਤਰ-
ਸੂਈ ਵਿਚ ਦੁਹਰਾ ਧਾਗਾ ਪਾਉਂਦੇ ਹਨ । ਇਸ ਤੋਂ ਬਾਅਦ ਸੁਈ ਨੂੰ ਹੇਠਲੀ ਪੱਟੀ ਦੇ ਥੱਲਿਉਂ ਉੱਪਰ ਕੱਢਦੇ ਹਨ । ਹੁਣ ਦੋ ਸੈਂਟੀਮੀਟਰ ਥਾਂ ਛੱਡ ਕੇ ਸੂਈ ਨੂੰ ਕੱਪੜੇ ਦੇ ਹੇਠਾਂ ਕੱਢ ਕੇ ਧਾਗੇ ਦੇ ਕੋਲ ਕੱਢਦੇ ਹਨ । ਇਸ ਤਰ੍ਹਾਂ ਦੋ ਤਿੰਨ ਵਾਰ ਕੱਢਦੇ ਹਨ । ਟਾਂਕੇ ਇਕ ਧਾਗੇ ਦੇ ਅੰਤਰ ਨਾਲ ਹੀ ਸਮਾਨਾਂਤਰ ਕੱਢਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਸ ਤੋਂ ਬਾਅਦ ਧਾਗਾ ਅੱਗੇ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਸੂਈ ਨੂੰ ਇਕ ਪਾਸੇ ਤੋਂ ਇਨ੍ਹਾਂ ਧਾਗਿਆਂ ਦੇ ਥੱਲੇ ਤੋਂ ਕੱਪੜੇ ਦੇ ਵਿਚਕਾਰੋਂ ਕੱਢ ਕੇ ਦੂਜੇ ਪਾਸੇ ਕੱਢਦੇ ਹਨ । ਧਾਗਾ ਅੱਗੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਸੂਈ ਉਸ ਦੇ ਵਿਚਕਾਰੋਂ ਕੱਢਣੀ ਚਾਹੀਦੀ ਹੈ । ਇਸ ਪ੍ਰਕਾਰ ਇਕ ਜਾਂ ਦੋ ਸੈਂਟੀਮੀਟਰ ਦੇ ਧਾਗੇ ਨੂੰ ਸੱਜੇ ਤੋਂ ਖੱਬੇ ਨੱਥੀ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ । ਜਦੋਂ ਪੂਰਾ ਹੋ ਜਾਵੇ ਤਾਂ ਹੱਕ ਦੀ ਆਈ ਤਿਆਰ ਹੋ ਜਾਂਦੀ ਹੈ ।

PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ

ਪ੍ਰਸ਼ਨ 3.
ਕੋਟ ਬਟਨ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਜਾਣਦੇ ਹੋ, ਲਿਖੋ ।
ਉੱਤਰ-
ਇਸ ਬਟਨ ਨੂੰ ਕੋਟ ਅਤੇ ਪੈਂਟਾਂ ‘ਤੇ ਲਾਇਆ । ਜਾਂਦਾ ਹੈ। ਉਸ ਨੂੰ ਬੜੀ ਮਜ਼ਬੂਤੀ ਨਾਲ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ । ਇਹ ਬਟਨ ਦੂਸਰੇ ਬਟਨ ਦੀ ਅਪੇਖਿਆ ਮਹਿੰਗਾ ਵੀ ਹੁੰਦਾ ਹੈ ਅਤੇ ਰੋਜ਼-ਰੋਜ਼ ਲਾਇਆ ਵੀ ਨਹੀਂ ਜਾ ਸਕਦਾ। ਇਸ ਲਈ ਕੰਮ ਪੱਕਾ ਅਤੇ ਸਾਫ਼ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।
PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ 1

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਲਿਖਿਆਂ ‘ਤੇ ਟਿੱਪਣੀ ਲਿਖੋ !
(ਉ) ਟਿੱਚ ਬਟਨ
(ਅ) ਹੁੱਕ ਆਈਂ ।
ਉੱਤਰ-
(ਉ), ਟਿੱਚ ਬਟਨ-ਇਹ ਬਟਨ ਹਮੇਸ਼ਾਂ ਉੱਥੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿੱਥੇ ਦੋ ਪੱਟੀਆਂ ਉੱਪਰ ਹੇਠਾਂ ਬਣੀਆਂ ਹੋਣ। ਇਹ ਕਮੀਜ਼, ਫਰਾਕ, ਝਬਲੇ ਆਦਿ ਤੇ ਲਾਏ ਜਾਂਦੇ ਹਨ । ਕਈ ਲੋਕ ਬੱਚਿਆਂ ਦੇ ਪੱਟੀ ਵਾਲੇ ਸਵੈਟਰ ਬਣਾ ਕੇ ਉੱਥੇ ਵੀ ਲਾ ਦਿੰਦੇ ਹਨ । ਜਦੋਂ ਛੋਟੇ ਪੌਦਿਆਂ ਦੀਆਂ ਸਲਵਾਰਾਂ ਦਾ ਰਿਵਾਜ ਸੀ ਤਾਂ ਉੱਥੇ ਵੀ ਟਿੱਚ ਬਟਨ ਜਾਂ ਹੱਕ ਲਾਏ ਜਾਂਦੇ ਸਨ ।
PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ 2
(ਅ) ਹੱਕ ‘ਆਈਂ –ਹੁੱਕ ਅਤੇ ਇਸ ਦੀ ਆਈ ਬਜ਼ਾਰੋਂ ਅਸਾਨੀ ਨਾਲ ਮਿਲ ਜਾਂਦੇ ਹਨ। ਇਹ ਵੀ ਟਿੱਚ ਬਟਨਾਂ ਦੀ ਤਰ੍ਹਾਂ ਕਮੀਜ਼ ਦੀ ਵੱਖੀ (ਸਾਈਡ ਅਤੇ ਸਲਵਾਰ ਦੇ ਤੰਗ ਪੌਦਿਆਂ ਅਤੇ ਫਰਾਕ ਆਦਿ ‘ਤੇ ਲਾਏ ਜਾਂਦੇ ਹਨ । ਇਸ ਨੂੰ ਲਾਉਣ ਲਈ ਵੀ ਦੂਹਰਾ ਧਾਗਾ ਇਸਤੇਮਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ।
PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ 3

PSEB 6th Class Home Science Practical ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ

ਪੱਟੀ ਬੰਦ ਕਰਨ ਦੇ ਸਾਧਨ PSEB 6th Class Home Science Notes

ਸੰਖੇਪ ਜਾਣਕਾਰੀ

  • ਟਿੱਚ ਬਟਨ ਹਮੇਸ਼ਾਂ ਉੱਥੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਜਿੱਥੇ ਪੱਟੀਆਂ ਉੱਪਰ-ਥੱਲੇ ਬਣੀਆਂ ਹੋਣ। |
  • ਸੂਈ ਵਿਚ ਕੱਪੜੇ ਦੇ ਰੰਗ ਦਾ ਦੁਹਰਾ ਧਾ ਪਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।
  • ਬਟਨ ਨੂੰ ਕੋਟ ਅਤੇ ਪੈਂਟਾਂ ਤੇ ਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ।