PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Very Short Answer Type Questions

Question 1.
Is it correct to call heat as the energy in transit?
Answer:
Yes, it is perfect correct to call heat as the energy in transit because it is continuously flowing on account of temperature differences between bodies or parts of a system.

Question 2.
Why should a thermometer bulb have a small heat capacity?
Answer:
The thermometer bulb having small heat capacity will absorb less heat from the body whose temperature is to be measured. Hence, the temperature of that body will practically remain unchanged.

Question 3.
Why is a gap left between the ends of two railway lines in a railway track?
Answer:
It is done to accommodate the linear expansion of railway line during summer. If the gap is not left in summer, the lines will bend causing a threat of derailment.

Question 4.
Why water is used as an coolant in the radiator of cars?
Answer:
Because specific heat of water is very high due to this it absorbs a large amount of heat. This helps in maintaining the temperature of the engine low.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 5.
Black body radiation is white. Comment.
Answer:
The statement is true. A black body absorbs radiations of all wavelengths. When heated to a suitable temperature, it emits radiations of all wavelengths. Hence, a black body radiation is white.

Question 6.
White clothes are more comfortable in summer while colourful clothes are more comfortable in winter. Why?
Answer:
White clothes absorb very little heat radiation and hence they are comfortable in summer. Coloured clothes absorb almost whole of the incident radiation and keep the body warm in winter.

Question 7.
Can we boil water inside in the earth satellite?
Answer:
No, the process of transfer of heat by convection is based on the fact that a liquid becomes lighter on becoming hot and rise up. In condition of weightlessness, this is not possible. So, transfer of heat by convection is not possible in the earth satellite.

Question 8.
What is the difference between the specific heat and the molar specific heat?
Answer:
The specific heat is the heat capacity per unit mass whereas the molar specific heat is the heat capacity per mole.

Question 9.
Calorimeters are made of metals not glass. Why?
Answer:
This is because metals are good conductors of heat and have low specific heat capacity.

Question 10.
Calculate the temperature which has numeral value of Celsius and Fahrenheit scale. (NCERT Exemplar)
Answer:
Let Q be the value of temperature having same value an Celsius and Fahrenheit scale.
\(\frac{{ }^{\circ} F-32}{180}=\frac{{ }^{\circ} C}{100}\)
⇒ Let F = C = Q
⇒ \(\frac{Q-32}{180}=\frac{Q}{100}\) = Q= 40°C or -40°F

Short Answer Type Questions

Question 1.
In what ways are the gas thermometers superior to mercury thermometers?
Answer:
A gas thermometer is more superior to a mercury thermometer, as its working is independent of the nature of gas (working substance) used. As the variation of pressure (or volume) with temperature is uniform, the range, in which temperature can be measured with a gas thermometer is quite large. Further, a gas thermometer is more sensitive than mercury thermometer.

Question 2.
The difference between length of a certain brass rod and that of a steel rod is claimed to be constant at all temperatures. Is this possible?
Solution:
Yes, it is possible to describe the difference of length to remain constant. So, the change in length of each rod must be equal at all temperature. Let αb and αs be the length of the brass and the steel rod and a band as be the coefficients of linear expansion of the two metals. Let there is change in temperature be ΔT.
Then, αbLbΔT = αsLsΔT
or αbLbsLs => Lb/Lssb
Hence, the lengths of the rods must be in the inverse ratio of the coefficient of linear expansion of their materials.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 3.
Two identical rectangular strips-one of copper and the other of steel are riveted to form a bimetallic strip. What will happen on heating?
Solution:
The coefficient of linear expansion of copper is more than steel. On heating, the expansion in copper strip is more than the steel strip. The bimetallic strip will bend with steel strip on inner (concave) side.

Question 4.
What kind of thermal conductivity and specific heat requirements would you specify for cooking utensils?
Solution:
A cooking utensil should have (i) high conductivity, so that it can conduct heat through itself and transfer it to the contents quickly, (ii) low specific heat, so that it immediately attains the temperature of the source.

Question 5.
Woollen clothes are warm in winter. Why?
Solution:
Woollen fibres enclose a large amount of air in them. Both wool and air are bad conductors of heat. The small coefficient of thermal conductivity prevents the loss of heat from our body due to conduction. So, we feel warm in woollen clothes.

Question 6.
Why rooms are provided with the ventilators near the roof?
Solution:
It is done so to remove the harmful impure air and to replace it by the cool fresh air. The air we breathe out is warm and so it is lighter. It rises upwards and can go out through the ventilator provided near the roof. The cold fresh air from outside enters the room through the doors and windows. Thus, the convection current is set up in the air.

Question 7.
Why it is much hotter above a fire than by its side?
Solution:
Heat carried away from a fire sideways mainly by radiation. Above the fire, heat is carried by both radiation and convection of air but convection carries much more heat than radiation. So, it is much hotter above a fire than by its sides.

Question 8.
How does tea in a Thermo flask remain hot for a long time?
Solution:
The air between the two walls of the Thermo flask is evacuated. This prevents heat loss due to conduction and convection. The loss of heat due to radiation is minimised by silvering the inside surface of the double wall. As the loss of heat due to the three prócesses is minimised and the tea remains hot for a long time.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 9.
100 g of water is supercooled to -10°C. At this point, due to some disturbance mechanised or otherwise, some of it suddenly freezes to ice. What will be the temperature of the resultant mixture and how much mass would freeze? [Sw = 1 cal/g/°C and Lwfusion =80 cal/g/°C] (NCERT Exemplar)
Answer:
Gwen, mass of water (m) = 100
Change in temperature, ΔT =0 – (-10) = 10°C
Specific heat of water (Sw) =1 cal/g/°C
Latent heat of fusion of water Lwfusion = 80 cal/g
Heat required to bring water in supercooling from —10° C to 0°C.
Q = mswΔT
=100 x 1 x 10 = 1000cal
Let m gram of ice be melted.
∴ Q = mL
or m= \(\frac{Q}{L}\) = \(\frac{1000}{80}\) =12.5g
As small mass of ice is melted, therefore the temperature of the mixture will remain 0°C.

Long Answer Type Questions

Question 1.
Show that the coefficient of volume expansion for a solid substance is three times its coefficient of linear expansion.
Solution:
Consider a solid in the form of a rectangular parallelopiped of sides a, b and c respectively so that its volume V = abc.
If the solid is heated so that its temperature rises by ΔT, then increase in its sides will be
Δa=a.αΔT, Δb=b.α.ΔT and Δc=c. α . ΔT
or a’ =a+Δa =a(1 +α ΔT)
b’=b+Δb = b(l +α ΔT)
and c’ =c + Δc=c (1 +a.ΔT)
∵ New volume, V’ = V + ΔV = a’ b’ c’ = abc (1+ α . Δ T)3
∴ Increase in volume,
ΔV=V’ -V=[abc(1+α ΔT)3 -abc]
∴ Coefficient of volume expansion,
PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter 1
However, as a has an extremely small value for solids, hence terms containing higher powers of a may be neglected. Therefore, we obtain the relation γ =3 α i. e., coefficient of volume expansion of a solid is three times of its coefficient of linear expansion.

PSEB 11th Class Physics Important Questions Chapter 11 Thermal Properties of Matter

Question 2.
Distinguish between conduction, convection and radiation.
Solution:

Conduction Convection Radiation
1. It is the transfer of heat by direct physical contact. 1. It is the transfer of heat by the motion of a fluid. 1. It is the transfer of heat by electromagnetic waves.
2. It is due to temperature differences. Heat flows from high-temperature region to low temperature region. 2. It is due to difference in density. Heat flows from low-density region to high-density region. 2. It occurs from all bodies at temperatures above 0 K.
3. It occurs in solids through molecular collisions, without actual flow of matter. 3. It occurs in fluids by actual flow of matter. 3. It can take place at large distances and does not heat the intervening medium.
4. It is a slow process. 4. It is also a slow process. 4. It propagates at the speed of light.
5. It does not obey the laws of reflection and refraction. 5. It does not obey the laws of reflection and refraction. 5. It obeys the laws of reflection and
refraction.

PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination

Punjab State Board PSEB 11th Class Biology Book Solutions Chapter 21 Neural Control and Coordination Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Biology Chapter 21 Neural Control and Coordination

PSEB 11th Class Biology Guide Neural Control and Coordination Textbook Questions and Answers

Question 1.
Briefly describe the structure of the following:
(a) Brain
(b) Eye
(c) Ear
Answer:
(a) Brain
The human brain has the following parts :
(i) Cerebrum
A deep cleft called longitudinal fissure divides the brain/cerebrum into two halves-cerebral hemispheres.
The two cerebral hemispheres are joined together by bundles of densely packed nerve fibers, called corpus callosum.
The outer surface of cerebrum, the cerebral cortex, is called grey matter, due to its greyish appearance; the cell bodies of the neurons are concentrated in this region; it contains motor areas, sensory areas and association areas.
Inner to the cortex is the white matter, that consists of myelinated nerve fibers in the form of nerve fibre tracts.

(ii) Thalamus
Thalamus is the major coordinating centre for sensory and motor signals.

(iii) Hypothalamus
It has centers to control body temperature, hunger, thirst, etc.
It contains several groups of neurosecretory cells, which secrete hormones.

(iv) Limbic System
The inner parts of the cerebral hemispheres and a group of deep structures called amygdala, hippocampus, etc. form a complex structure, called limbic system. Along with the hypothalamus, it is involved in the regulation of sexual behavior, expression of emotions, motivation, etc.

(v) Midbrain
Midbrain is located between the hypothalamus of the forebrain and the pons of the hindbrain. The dorsal portion of the midbrain consists of four small lobes, called corpora quadrigemina. A canal, called cerebral aqueduct passes through the midbrain.

(vi) Hindbrain
It consists of pons, cerebellum and medulla oblongata. The medulla contains centres which control vital functions like respiration, cardiovascular reflexes and gastric secretions. The medulla continues down as the spinal cord.

(b) Eye

  • Each eye ball consists of three concentric layers, the outermost sclera, middle choroid and innermost retina.
  • The sclera in the front (l/6th) forms the transparent cornea.
  • The middle choroid is highly vascular and pigmented, that prevents internally reflected light within the eye; just behind the junction between cornea and sclera, the choroid becomes thicker forming the ciliary body.
  • The iris extends from the ciliary body in front of the lens; it controls the dilation or constriction of pupil.
  • The lens is suspended from the ciliary body, by suspensory ligaments.
  • The anterior chamber of eye is filled with an aqueous clear fluid, aqueous humor and the posterior chamber has a gelatinous material, vitreous humor.
  • The retina is composed of three layers of cells; the photoreceptor layer contains rods and cones, the intermediate layer has bipolar neurons, which synapse with retinal ganglion cells and their axons bundle to form optic nerve.
  • The photoreceptor cells (rods and cones) contain the light sensitive proteins, called photopigments.
  • The point in the retina where the optic nerve leaves the eye and the retinal blood vessels enter the eye is called a blind spot; there are no photoreceptor cells in this region.
  • Lateral to blindspot, there is a yellowish pigmented spot, called macula lutea with a central pit called fovea.
  • The fovea is the region where only cones are densely packed and it is the point where acuity (resolution) vision is the greatest.

(c) Ear
The ear performs two sensory functions, namely
(a) hearing and

(b) maintenance of body balance.

  • Ear consists of three parts: external ear, middle ear and internal ear.
  • The external ear consists of the pinna, and external auditory meatus.
  • The tympanic membrane separates the middle ear from the external ear.
  • The middle ear (tympanic cavity) is an air- filled chamber, which is connected to pharynx by Eustachian tube.
  • The middle ear lodges three small bones, the ear ossicles namely, the malleus, incus and stapes.
  • The middle ear communicates with the internal ear through the oval window and round window.
  • The inner ear is a fluid-filled chamber and called labyrinth; it has two parts, an outer bony labyrinth, inside
  • which a membranous labyrinth is floating in the perilymph; the membranous labyrinth is filled with a fluid, called endolymph.
  • The labyrinth is divided into two parts, the cochlea and vestibular apparatus.
  • Cochlea is the coiled portion of the labyrinth and its membranes, Reissner’s membrane and basilar membrane divide the perilymph-filled bony labyrinth into an upper scala vestibule, middle scala media and a lower scala tympani; scala media is filled with endolymph.
  • At the base of the cochlea, scala vestibuli ends at the oval window, while the scala tympani terminates at the round window, that opens to the middle ear.
  • Organ of Corti is the structural unit of hearing; it consists of hair cells which are the auditory receptors and is located on the basilar membrane.
  • A thin elastic tectorial membrane lies over the row of hair cells.
  • The vestibular apparatus is composed of three semicircular canals and an otolith organ or vestibule.
  • The otolith organ has two parts namely the utricle and saccule.
  • The utricle and saccule also contain a projecting ridge, called macula.
  • The crista ampullar and macula are the specific receptors of the vestibular apparatus, for maintaining body balance.

PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination

Question 2.
Compare the following:
(a) Central Neural System (CNS) and Peripheral Neural System (PNS)
(b) Resting potential and action potential
(c) Choroid and retina
Answer:
(a) Comparison between Central Neural System (CNS) and Peripheral Neural System (PNS): The CNS includes the brain and the spinal cord and is the site of information processing and control. The PNS comprises of all the nerves of the body associated with the CNS (brain and spinal cord). The nerve fibers of the PNS are of two types :
(i) Afferent fibers, (ii) Efferent fibers

(b) Comparison between Resting Potential and Action Potential:
The electrical potential difference across the resting plasma membrane A is called the resting potential. The electrical potential difference across the plasma membrane at the site A is called the action potential, which is in fact termed as a nerve impulse.

(c) Comparison between Choroid and Retina: The middle layer of eyeball which contains many blood vessels and looks bluish in colour is known as choroid. The choroid layer is thin over the posterior two-thirds of the eyeball, but it becomes thick in the anterior part to form the ciliary body. The ciliary body itself continues forward to form a pigmented and opaque structure called the iris.

Retina is the inner layer of eye ball and it contains three layers of cells from inside to outside, i. e., ganglion cells, bipolar cells and photoreceptor cells. There are two types of photoreceptor cells, namely, rods and cones. These cells contain the light-sensitive proteins called the photopigments.

Question 3.
Explain the following processes:
(a) Polarisation of the membrane of a nerve fibre
(b) Depolarisation of the membrane of a nerve fibre
(c) Conduction of a nerve impulse along a nerve fibre
(d) Transmission \of a nerve impulse across a chemical synapse
Answer:
(a) Polarisation of the Membrane of a Nerve Fibre: During resting condition, the concentration of K+ ions is more inside the axoplasm while the concentration of Na+ ions is more outside the axoplasm. As a result, the potassium ions move faster from inside to outside as compared to sodium ions. Therefore, the membrane becomes positively charged outside and negatively charged inside. This is known as polarisation of membrane or polarised nerve.

(b) Depolarisation of the Membrane of a Nerve Fibre: When an electrical stimulus is given to a nerve fibre, an action potential is generated. The membrane becomes permeable to sodium ions than to potassium ions. This results into positive charge inside and negative charge outside the nerve fibre. Hence, the membrane is said to be depolarised.

(c) Conduction of a Nerve Impulse Along a Nerve Fibre: There are two types of nerve fibers-myelinated and non-myelinated. In myelinated nerve fibre, the action potential is conducted from node to node in jumping manner. This is because the myelinated nerve fibre is coated with myelin sheath.

The myelin sheath is impermeable to ions. As a result, the ionic exchange and depolarization of nerve fiber is not possible along the whole length of nerve fiber. It takes place only at some point, known as nodes of Ranvier, whereas in non-myelinated nerve fiber, the ionic exchange and depolarization of nerve fiber takes place along the whole length of the nerve fiber. Because of this ionic exchange, the depolarised area becomes repolarised and the next polarised area becomes depolarised.

(d) Transmission of a Nerve Impulse Across a Chemical Synapse:
Synapse is a small gap that occurs between the last portion of the axon of one neuron and the dendrite of next neuron. When an impulse reaches at the endplate of axon, vesicles consisting of chemical substances or neurotransmitters, such as acetylcholine, fuse with the plasma membrane.

This chemical moves across the cleft and attaches to chemo-receptors present on the membrane of the dendrite of next neuron. This binding of chemical with chemo-receptors leads to the depolarization of membrane and generates a nerve impulse across nerve fibre. The chemical, acetylcholine, is inactivated by enzyme acetylcholinesterase. The enzyme is present in the postsynaptic membrane of the dendrite. It hydrolyses acetylcholine and this allows the membrane to repolarise.

Question 4.
Draw labeled diagrams of the following:
(a) Neuron
(b) Brain
(c) Eye
(d) Ear
Answer:
(a) Neuron
PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination 1
(b) Brain
PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination 2
(c) Eye
PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination 3
(d) Ear
PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination 4

Question 5.
Write short notes on the following:
(a) Neural coordination
(b) Forebrain
(c) Midbrain
(d) Hindbrain
(e) Retina
(f) Ear ossicles
(g) Cochlea
(h) Organ of Corti
(i) Synapse
Answer:
(a) Neural Coordination: The organized network of point-to-point connections for quick coordination provided by neural system is called neural coordination. The mechanism of neural coordination involves transmission of nerve impulses, impulse conduction across a synapse, and the physiology of reflex action.

(b) Forebrain: The forebrain consists of :
1. Olfactory lobes: The anterior part of the brain is formed by a pair of short club-shaped structures, the olfactory lobes. These are concerned with the sense of smell.

2. Cerebrum: It is the largest and most complex of all the parts of the human brain. A deep cleft divides the cerebrum longitudinally into two halves, which are termed as the left and right cerebral hemispheres connected by a large bundle of myelinated fibres the corpus callosum. The outer cover of cerebral hemisphere is called cerebral cortex. The cerebral cortex is referred to as the grey matter due to its greyish appearance (as neuron cell bodies are concentrated here).

The cerebral cortex is greatly folded. The upward folds, gyri, alternate with the downward grooves or sulci. Beneath the grey matter, there are millions of medullated nerve fibers, which constitute the inner part of the cerebral hemisphere. The large concentration of medullated nerve fibers gives this tissue an opaque white appearance. Hence, it is called the white matter.

3. Lobes: A very deep and a longitudinal fissure, separates the two cerebral hemispheres. Each cerebral hemisphere of the cerebrum is divided into four lobes, i.e., frontal, parietal, temporal, and occipital lobes.

In each cerebral hemisphere, there are three types of functional areas:
(i) Sensory areas receive impulses from the receptors and motor areas transmit impulses to the effectors.
(ii) Association areas are large regions that are neither clearly sensory nor motor injunction. They interpret the input, store the input and initiate a response in light of similar past experiences. Thus, these areas are responsible for complex functions like memory, learning, reasoning, and other intersensory associations.

(iii) Diencephalon is the posteroventral part of forebrain. Its main parts are as follows :
Epithalamus is a thin membrane of non-neural tissue. It is the posterior segment of the diencephalon. The cerebrum wraps around a structure called thalamus, which is a major coordinating center for sensory and motor signaling. The hypothalamus, that lies at the base of thalamus contains a number of centers, which control body temperature, urge for eating and drinking. It also contains several groups of neurosecretory cells, which secrete hormones called hypothalamic hormones.

(c) Midbrain: The midbrain is located between the thalamus and hypothalamus of the forebrain and pons of the hindbrain. A canal called the cerebral aqueduct passes through, the midbrain.
The dorsal portion of the midbrain mainly consists of two pairs (i.e., four) of rounded swellings (lobes) called corpora qua trigeminal.

(d) Hindbrain: The hindbrain consists of :

(i) Pons: It consists of fiber tracts that interconnect different regions of the brain.

(ii) Cerebellum: It is the second-largest part of the human brain (means little cerebrum). It has very convoluted surface in order to provide the additional space for many more neurons.

(iii) Medulla: It (oblongata) is connected to the spinal cord and contains centers, which control respiration, cardiovascular reflexes, and gastric secretions.

(e) Retina: The inner layer of eyeball is the retina and it contains three layers of cells from inside to outside—ganglion cells, bipolar cells and photoreceptor cells. There are two types of photoreceptor cells namely, rods and cones. These cells contain the light-sensitive proteins called the photopigments.

(f) Ear Ossicles: The middle ear contains three ossicles called malleus, incus and stapes which are attached to one another in a chain-like fashion. The malleus is attached to the tympanic membrane and the stapes is attached to the oval window or the cochlea. The ear ossicles increase the efficiency of transmission of sound waves to the inner ear.

(g) Cochlear: The membranous labyrinth of inner ear is filled with a fluid called endolymph. The coiled portion of the labyrinth is called cochlea. The membranes constituting cochlea, the Meissner’s and basilar, divide the surrounding perilymph-filled bony labyrinth into an upper scale vestibule and a lower scala tympani. The space within cochlea called scala media is filled with endolymph. At the base of the cochlea, the scala vestibule ends at the oval window, while the scala tympani terminates at the round window which opens to the middle ear.

(h) Organ of Corti: The organ of Corti is a structure located on the basilar membrane of inner ear, which contains hair cells that act as auditory receptors. The hair cells are present in rows on the internal side of the organ of Corti. The basal end of the hair cell is in close contact with the afferent nerve fibers. A large number of processes called stereocilia are projected from the apical part of each hair cell. Above the rows of the hair cells is a thin elastic membrane called tectorial membrane.

(i) Synapse: It is a junction between two neurons, where one neuron expands and comes in near contact with another neuron. A synapse is formed by the membranes of a pre-synaptic neuron, and a post-synaptic neuron, which may or may not be separated by a gap called synaptic cleft.

There are two types of synapses-an electrical synapse and a chemical synapse. In electrical synapse, membranes of pre and post-synaptic neurons are is very close proximity field. In chemical synapse, these membranes are separated by a fluid-filled space called synaptic cleft.

PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination

Question 6.
Give a brief account of:
(a) Mechanism of synaptic transmission
(b) Mechanism of vision
(c) Mechanism of hearing
Answer:
(a) Mechanism of Synaptic Transmission: Synapse is a junction between two neurons. It is present between the axon terminal of one neuron and the dendrite of next neuron separated by a cleft.

There are two ways of synaptic transmission :
1. Chemical transmission: When a nerve impulse reaches the end plate of axon, it releases a neurotransmitter (acetylcholine) across the synaptic cleft. This chemical is synthesized in cell body of the neuron and is transported to the axon terminal. The acetylcholine diffuses across the cleft and binds to the receptors present on the membrane of next neuron. This causes depolarization of membrane and initiates an action potential.

2. Electrical transmission: In this type of transmission, an electric current is formed in the neuron. This electric current generates an action potential and leads to transmission of nerve impulses across the nerve fiber. This represents a faster method of nerve conduction than the chemical method of transmission.

(b) Mechanism of Vision: Retina is the innermost layer of eye. It contains three layers of cells-inner ganglion cells, middle bipolar cells and outermost photoreceptor cells. A photoreceptor cell is composed of a protein called opsin and an aldehyde of vitamin A called retinal. When light rays are focused on the retina through cornea, it leads to the dissociation of retinal from opsin protein.

This changes the structure of opsin. As the structure of opsin changes, the permeability of membrane changes, generating a potential difference in the cells. This generates an action potential in the ganglionic cells and is transmitted to the visual cortex of the brain via optic nerves. In the cortex region of brain, the impulses are analyzed and image is formed on the retina.

(c) Mechanism of Hearing: The pinna of the external region collects the sound waves and directs it towards ear drum or external auditory canal. These waves strike the tympanic membrane and vibrations are created. Then, these vibrations are transmitted to the oval window, fenestra ovalis, through three ear ossicles, named as malleus, incus, and stapes. These ear ossicles act as lever and transmit the sound waves to internal ear.

These vibrations from fenestra ovalis are transmitted into cochlear fluid. This generates sound waves in the lymph. The formation of waves generates a ripple in the basilar membrane. This movement bends the sensory hair cells present on the organ of corti against tectorial membrane. As a result of this, sound waves are converted into nerve impulses. These impulses are then carried to auditory cortex of brain via auditory nerves. In cerebral cortex of brain, the impulses are analysed and sound is recognised.

Question 7.
Answer briefly:
(a) How do you perceive the colour of an object?
(b) Which part of our body helps us in maintaining the body balance?
(c) How does the eye regulate the amount of light that falls on the retina?
Answer:
(a) The daylight (photopic) vision and colour vision are functions of cones. In the human eye, there are three types of cones which possess their own characteristic photopigments that respond to red, green and blue lights. The sensations of different colours are produced by various combinations of these cones and their photopigments. When these cones are stimulated equally a sensation of white light is produced.

(b) The crista and macula are the specific receptors of the vestibular apparatus of inner ear which are responsible for the maintenance of balance of the body and posture.

(c) The diameter of the pupil is regulated by the muscle fiber of iris. Photoreceptors, rods, and cones regulate the amount of light that falls on the retina.

Question 8.
Explain the following:
(a) Role of Na+ in the generation of action potential.
(b) Mechanism of generation of light-induced impulse in the retina.
(c) Mechanism through which a sound produces a nerve impulse in the inner ear.
Answer:
(a) Role of Na+ in the Generation of Action Potential: When a stimulus is applied to a nerve, the membrane of the nerve becomes freely permeable to Na + . This leads to a rapid influx of Na+ followed by the reversal of the polarity at that site, i. e., the outer surface of the membrane becomes negatively charged and the inner side becomes positively charged. The electrical potential difference across plasma membrane at the membrane is called the action potential, which is in fact termed as a nerve impulse. Thus, this shows that Na+ ions play an important role in the conduction of nerve impulses.

(b) Mechanism of Generation of Light-induced Impulse in the Retina: Light induces dissociation of the retina from opsin resulting in changes in the structure of the opsin. This causes membrane permeability changes. As a result, potential differences are generated in the photoreceptor cells. This produces a signal that generates action potentials in the ganglion cells through the bipolar cells.

These action potentials (impulses) are transmitted by the optic nerves to the visual corted area of the brain, where the nerve impulses are analysed and the image formed on the retina is recognised.

(c) Mechanism through which a Sound Produces a Nerve Impulse in the Inner Ear: In the inner ear, the vibrations are passed through the oval window on to the fluid of the cochlea, where they generate waves in the lymph.
The waves in the lymphs induce a ripple in the basilar membrane.

These movements of the basilar membrane bend \ the hair cells, pressing them against the tectorial membrane. As a result, nerve impulses are generated in the associated afferent neurons. These impulses are transmitted by the afferent fibres via auditory nerves to the auditory cortex of the brain, where the impulses are analyzed and the sound is recognized.

Question 9.
Differentiate between:
(a) Myelinated and non-myelinated axons
(b) Dendrites and axons
(c) Rods and cones
(d) Thalamus and hypothalamus
(e) Cerebrum and cerebellum
Answer:
(a) Differences between Myelinated and Non-myelinated Axons

Myelinated Axon Non-myelinated Axon
1. The myelinated nerve fibers are enveloped with Schwann cells, which form a myelin sheath
around the axon.
1. Unmyelinatcd nerve fibers are enclosed by a Schwann cell that does not form a myelin sheath around the axon.
2. Myelinated nerve fibres are found in spinal and cranial nerves. 2. They are commonly found in autonomous and the somatic neural systems.

(b) Differences between Dendrite and Axon

Dendrite Axon
1. These are short fibres which branch repeatedly and project out of the cell body also contain Nissl’s granules The axon is a long branched fibre, which terminates as a bulb-like structure called. synaptic knob. It possess synaptic vesicles containing chemicals called neurotransmitters.
2. These fibres transmit impulses towards the cell body. The axons transmit nerve impulses away from the cell body to a synapse.

(c) Differences between Rods and Cones

Rod Cone
1. The twilight vision is the function of rods. The daylight vision and colour vision are functions of cones.
2. The rods contain a purplish-red protein called the rhodopsin or visual purple, which contains a derivative of Vitamin-A In the human eye, there are three types of cones which possess their own characteristic photopigments that respond to red, green and blue lights.

(d) Differences between Thalamus and Hypothalamus

Thalamus Hypothalamus
1. The cerebrum wraps around a structure called thalamus. It lies at the base of the thalamus.
2. All types of sensory input passes synapses in the thalamus It contains neurosecretory cells that secrete hypothalamus hormones.
3. It controls emotional and memory functions. It regulates, sexual behavior, expression of emotional reactions and motivation.

.(e) Differences between Cerebrum and Cerebellum

Cerebrum Cerebellum
1. It is the most developed part in brain. It is the second developed part of brain also called as little cerebrum
2. A deep cleft divides cerebrum into two cerebral hemispheres. Externally the whole surface contains gyri and sulci.
3. Its functions are intelligence, learning, memory, speech, etc. It contains centres for coordination and error checking during motor and cognition.

PSEB 11th Class Biology Solutions Chapter 21 Neural Control and Coordination

Question 10.
Answer the following:
(a) Which part of the ear determines the pitch of a sound?
(b) Which part of the human brain is the most developed?
(c) Which part of our central neural, system acts as a master clock?
Answer:
(a) Inner ear
(b) Cerebrum
(c) Brain

Question 11.
The region of the vertebrate eye, where the optic nerve passes out of the retina, is called the
(a) fovea
(b) iris
(c) blind spot
(d) optic chiasma
Answer:
(d) Optic Charisma

Question 12.
Distinguish between:
(a) Afferent neurons and efferent neurons.
(b) Impulse conduction in a myelinated nerve fibre and unmyelinated nerve fibre.
(c) Aqueous humour and vitreous humour.
(d) Blind spot and yellow spot.
(e) Cranial nerves and spinal nerves.
Answer:
(a) Differences between Afferent neurons and Efferent neurons

Afferent Neurons Efferent Neurons
The afferent nerve fibres transmit impulses from tissues/organs to the CNS. The efferent fibres transmit regulatory impulses from the CNS to the concerned peripheral
tissues/organs.

(b) Differences between Myelinated and Non-myelinated Axons

Myelinated Axon Non-myelinated Axon
1. The myelinated nerve fibers are enveloped with Schwann cells, which form a myelin sheath
around the axon.
1. Unmyelinatcd nerve fibers are enclosed by a Schwann cell that does not form a myelin sheath around the axon.
2. Myelinated nerve fibres are found in spinal and cranial nerves. 2. They are commonly found in autonomous and the somatic neural systems.

(c) Differences between Aqueous humour and Vitreous humour

Aqueous Humour Vitreous Humour
1. It is the space between the cornea and the lens. The space between the lens and the retina is called the vitreous chamber.
2. It contains a thin watery fluid. It is filled with a transparent gel.

(d) Differences between Blindspot and Yellow spot

Blind Spot Yellow Spot
1. Photoreceptor cells are not present in this region. Yellow spot or macula lutea is located at the posterior pole of the eye lateral to the blind spot. It has a central pit called fovea.
2. The light focuses on that part of the retina is not detected. The fovea of yellow spot is a thinned-out portion of retina where only the cones are densely packed is the point where visual cavity is greatest.

(e) Differences between Cranial nerves and spinal nerves

Cranial Nerves Spinal Nerves
1. The cranial nerves originate in the brain and terminate mostly in organs head and upper body. The spinal nerves originate in the spinal cord and extend to parts of the body below the head.
2. There are 12 pairs of cranial nerves. There are 31 pairs of spinal nerves.
3. Most of the cranial nerves contain axons and both sensory and motor neurons. All of the spinal nerves contain axons of both sensory and motor neurons.

PSEB 11th Class Biology Important Questions Chapter 21 Neural Control and Coordination

Punjab State Board PSEB 11th Class Biology Important Questions Chapter 21 Neural Control and Coordination Important Questions and Answers.

PSEB 11th Class Biology Important Questions Chapter 21 Neural Control and Coordination

Very Short Answer Type Questions

Question 1.
Which part of the neuron is considered as afferent process?
Answer:
Dendrites conduct nerve impulses towards the cell body and are called afferent processes (receiving processes).

Question 2.
Give the name of the chemicals, which are released at the synaptic junction. [NCERT Exemplar]
Answer:
Neurotransmitters.

Question 3.
Name the small protein tubular structures between the two neurons.
Answer:
Gap junctions.

Question 4.
Which is the largest and most complex of all, the parts of the human brain?
Answer:
Cerebrum.

Question 5.
What is the role of afferent nerve fibers in the neural system?
Answer:
It transmits impulse (sensory) from tissues/organs to the CNS and form, the sensory or afferent pathway.

PSEB 11th Class Biology Important Questions Chapter 21 Neural Control and Coordination

Question 6.
How does the efferent fibers work?
Answer:
The efferent nerve fibers transmit motor impulses from CNS to the concerned tissues/organs and form the motor or efferent pathway.

Question 7.
The autonomic neural system is considered as involuntary neural system. Why?
Answer:
This system transmits impulses from the CNS to the involuntary organs and smooth muscles of the body. So, it is also called involuntary neural system.

Question 8.
How does the somatic neural system works?
Answer:
The somatic neural system controls the movements of the body by acting on the skeletal muscles (i.e., relays voluntary impulses from the CNS to skeletal muscles).

Question 9.
Give the name of the covering that maintains the shape of the eyeball.
Answer:
Sclera (outermost layer).

Question 10.
Which is the bluish (pigmented) layer present beneath the sclera?
Answer:
Choroid.

Question 11.
Which part of our body helps us in maintaining the body balance?
Answer:
Ears.

Question 12.
Which of the photoreceptors is responsible for twilight vision?
Answer:
Rods.

Short Answer Type Questions

Question 1.
Give a brief description of the neural system.
Answer:
The neural system is composed of specialized cells called neurons. It detects stimuli and transmits neural signals. The neural system of complex animals is composed of two parts, viz. central neural system and peripheral neural system. The brain and nerve cord comprise the central neural system and other nerves comprise the peripheral neural system.

Question 2.
Explain parasympathetic neural system.
Answer:
The parasympathetic neural system is part of autonomic neural system. This system has some sort of inhibitory effect. The inhibitory effect minimises the over-functioning of certain functions. Functions, like salivating, digestion, are under control of parasympathetic neural system.

Question 3.
Give a description of the structure of neuron.
Answer:
A neuron is a microscopic structure composed of three major parts, namely, cell body, dendrites and axon.
Cell Body: The cell body contains cytoplasm with typical cell organelles and certain granular bodies called Nissl’s granules.

Dendrites: Short fibers which branch repeatedly, and project out of the cell body also contain Nissl’s granules and are called dendrites. These fibers transmit impulses towards the cell body.

Axon: The axon is a long fibre, the distal end of which is branched. Each branch terminates as a bulb-like structure called synaptic knob which possess synaptic vesicles containing chemicals called neurotransmitters. The axons transmit nerve impulses away from the cell body to a synapse or to a neuromuscular junction.

PSEB 11th Class Biology Important Questions Chapter 21 Neural Control and Coordination

Question 4.
Describe reflex action.
Answer:
The entire process of response to a peripheral neural stimulation, that occurs involuntarily, i.e., without conscious effort or thought and requires the involvement of a part of the central neural system is called a reflex action.
The reflex pathway comprises at least one afferent neuron (receptor) and one efferent (effector or excitor) neuron appropriately arranged in a series.

The afferent neuron receives signals from a sensory organ and transmits the impulse via a dorsal nerve root into the CNS (at the level of spinal cord). The efferent neuron then carries signals from CNS to the effector. The stimulus and response thus forms a reflex arc.

Question 5.
What do you understand by olfactory receptors?
Answer:
The nose contains mucus-coated receptors which are specialized for receiving the sense of smell and are called olfactory receptors. These are made up of olfactory epithelium which consists of three kinds of cells. The neurons of the olfactory epithelium extend from the outside environment directly into a pair of broad bean-sized organs called olfactory bulb. Olfactory bulbs are extensions of the brain’s limbic system.

Long Answer Type Questions

Question 1.
(a) Give an account of spinal nerves in man.
(b) What biological functions are served by the skeletal system?
Answer:
(a) There are 31 pairs of spinal nerve in man. From each segment of the spinal cord, there arises two spinal nerves. Each spinal nerve is a mixed nerve, containing both sensory’ and motor nerve fibres. It runs between the spinal cord and peripheral tissue. The two roots, i. e., motor or ventral and sensory or dorsal connect the spinal nerve to the spinal cord.

The DORSAL ROOT carries sensory or afferent fibre and has dorsal root ganglion at its middle. The VENTRAL, ROOT contains motor or efferent nerve fibers. The dorsal root fibres bring impulses from the peripheral tissue and give rise to sensations like touch, temperature, and pain. The ventral nerve root fibres pass impulses to muscles and glands in the peripheral tissues. The spinal nerve has been named according to their relation with the vertebral column.

These are

  • Eight pairs of cervical,
  • 12 pairs of thoracic,
  • 5 pairs of lumbar,
  • 5 pairs of sacral and
  • a pair of coccygeal or caudal.

(b)

  • The skeletal system forms the rigid structural framework of the body and supports the weight of the body along with its limbs.
  • It affords protection to the internal organs against mechanical injury by forming cage-like compartments, e.g., skull.
  • It serves as a storage depot for calcium and phosphate, which are released for a number of functions of the body.
  • It participates in movement and locomotion.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 11 Thermal Properties of Matter Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 11 Thermal Properties of Matter

PSEB 11th Class Physics Guide Thermal Properties of Matter Textbook Questions and Answers

Question 1.
The triple points of neon and carbon dioxide are 24.57 K and 216.55K respectively. Express these temperatures on the Celsius and Fahrenheit scales.
Solution:
Kelvin and Celsius’s scales are related as
TC =TK -273.15
Celsius and Fahrenheit’s scales are related as …(i)
TF = \(\frac{9}{5}\) TC +32 ………………………….. (ii)
For neon:
TK = 24.57K
∴ TG = 24.57 – 273.15 = -284.58°C
TF =\(\frac{9}{5}\) TC +32
= \(\frac{9}{5}\) (-248.58) + 32
=-415.44° F

For carbon dioxide:
TK = 216.55K
∴ TC =216.55-273.15 = -56.60°C
TF =\(\frac{9}{5}\) TC +32
= \(\frac{9}{5}\) (-56.60) + 32 = -69.88°C

Question 2.
Two absolute scales A and B have triple points of water defined to be 200A and 350B.
What is the relation between TAand TB?
Solution:
Triple point of water on absolute scale A, T1 = 200 A
Triple point of water on absolute scale B, T2 = 350 B
Triple point of water on Kelvin scale, TK = 273.15K
The temperature 273.15K on Kelvein scale is equivalent to 200 A on absolute scale A.
T1 =TK
200 A = 273.15 K .
∴ A= \(\frac{273.15}{200}\)

The temperature 273.15 K on Kelvin scale is equivalent to 350 B on absolute scale B.
T2=TK
350 B = 273.15
∴ B = \(\frac{273.15}{350}\)
TA is triple point of water on scale A.
TB is triple point of water on scale B.
∴ \(\frac{273.15}{200} \times T_{A}=\frac{273.15}{350} \times T_{B}\)
TA = \(\frac{200}{350} T_{B}\)
TA = \(\frac{4}{7} T_{B}\)
Therefore, the ratioTA:TB is given as 4 : 7.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 3.
The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:
R = R0[l + α (T-T0)]
The resistance is 101.6Ω at the triple-point of water 273.16 K, and 165.50 at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4Ω?
Solution:
It is given that:
R = R0[l + α (T-T0)] ………………………….(i)
where R0 and T0 are the initial resistance and temperature respectively R and T are the final resistance and temperature respectively α is a constant At the triple point of water, T0 = 273.16 K
Resistance of lead, R0 =101.6 Ω

At normal melting point of lead, T = 600.5 K
Resistance of lead, R = 165.5 Ω
Substituting these values in equation (i), we get:
R=R0[l + α (T-T0)]
165.5 = 101.6[1 + α (600.5-273.16)]
1.629 = 1+α (327.34)
∴ α = \(\frac{0.629}{327.34} \) = 1.92 x10-3K-1
For resistance, R1 = 123.4Ω
R1 =R0[l + α (T-T0)]

where, T is the temperature when the resistance of lead is 123.4Ω
123.4 =101.6[1 +1.92 x 10-3(T-273.16)]
1.214 =1+1.92 x 10-3(T- 273.16)
\(\frac{0.214}{1.92 \times 10^{-3}}\) = T -273.16
111.46 = T-273.16
⇒ T =111.46 +273.16
∴ T = 384.62 K

Question 4.
Answer the following:
(a) The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?

(b) There were two fixed points in the original Celsius scale as mentioned above which were assigned the numbers 0°C and 100°C respectively. On the absolute scale, one of the fixed points is the triple-point of water, which on the Kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (Kelvin) scale?

(c) The absolute temperature (Kelvin scale) T is related to the temperature tc on the Celsius scale by
tc = T – 273.15
Why do we have 273.15 in this relation, and not 273.16?

(d) What is the temperature of the triple-point of water on an absolute scale whose unit interval size is equal to that of the Fahrenheit scale?
Solution:
(a) The triple point of water has a unique value of 273.16 K. At particular values of volume and pressure, the triple point of water is always 273.16 K. The melting point of ice and boiling point of water do not have particular values because these points depend on pressure and temperature.

(b) The absolute zero or 0 K is the other fixed point on the Kelvin absolute scale.

(c) The temperature 273.16 K is the triple point of water. It is not the melting point of ice. The temperature 0°C on Celsius scale is the melting point of ice. Its corresponding value on Kelvin scale is 273.15 K. Hence, absolute temperature (Kelvin scafe) T, is related to temperature tc, on Celsius scale as:
tc =T -273.15

(d) Let TF be the temperature on Fahrenheit scale and TK be the temperature on absolute scale. Both the temperatures can be related as
\(\frac{T_{F}-32}{180}=\frac{T_{K}-273.15}{100}\) ………………………….. (i)
Let TF1 be the temperature on Fahrenheit scale and TK1 be the temperature on absolute scale. Both the temperatures can be relates as
\(\frac{T_{F 1}-32}{180}=\frac{T_{K 1}-273.15}{100}\) ……………………….. (ii)
It is given that:
TK1-TK= 1K

Subtracting equation (i) from equation (ii), we get
\(\frac{T_{F 1}-T_{F}}{180}=\frac{T_{K 1}-T_{K}}{100}\)
\(T_{F 1}-T_{F}=\frac{1 \times 180}{100}=\frac{9}{5}\)
Triple point of water = 273.16 K
∴ Triple point of water on absolute scale = 273.16 x \( \frac{9}{5}\) = 491.69

Question 5.
Two ideal gas thermometers A and B use oxygen and hydrogen respectively. The following observations are made:

Temperature Pressure thermometer A Pressure thermometer B
Triple-point of water 1.250 x 105 Pa 0.200 x 105 Pa
Normal melting point of sulphur 1.797 x 105 Pa 0.287 x 105 Pa

(a) What is the absolute temperature of normal melting point of sulphur as read by thermometers A and B?
(b) What do you think is the reason behind the slight difference in answers of thermometers A and B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?
Solution:
Triple point of water, T = 273.16 K.
At this temperature, pressure in thermometer A, PA = 1.250 x 105 Pa
Let T1 be the normal melting point of sulphur.
At this temperature, pressure in thermometer A,P1 = 1.797 x 105 Pa
According to Charles’ law, we have the relation
\(\frac{P_{A}}{T}=\frac{P_{1}}{T_{1}}\)
∴ T1 = \(\frac{P_{1} T}{P_{A}}=\frac{1.797 \times 10^{5} \times 273.16}{1.250 \times 10^{5}}\)
= 392.69 K

Therefore, the absolute temperature of the normal melting point of sulphur as read by thermometer A is 392.69 K.
At triple point 237.16 K, the pressure in thermometer B,
PB =0.200 x 105 Pa
At temperature T2, the pressure in thermometer B, P2 = 0.287 x 105 Pa
According to Charles’ law, we can write the relation
\(\frac{P_{B}}{T}=\frac{P_{2}}{T_{2}}\)
\(\frac{0.200 \times 10^{5}}{273.16}=\frac{0.287 \times 10^{5}}{T_{2}}\)
∴ T2 = \(\frac{0.287 \times 10^{5}}{0.200 \times 10^{5}} \times 273.16\) = 391.98 K
Therefore, the absolute temperature of the normal melting point of sulphur as read by thermometer B is 391.98 K

(b) The oxygen and hydrogen gas present in thermometers A and B respectively are not perfect ideal gases. Hence, there is a slight difference between the readings of thermometers A and B. To reduce the discrepancy between the two readings, the experiment should be carried under low-pressure conditions. At low pressure, these gases behave as perfect ideal gases.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 6.
A steel tape lm long is correctly calibrated for a temperature of 27.0°C. The length of a steel rod measured by this tape is found to be 63.0 cmon a hot day when the temperature is 45°C. What is the actual length of the steel rod on that day? What is the length of the same steel rod on a day when the temperature is 27.0°C? Coefficient of linear expansion of steel = 1.20 x 10-5 K-1.
Solution:
Length of the steel tape at temperature T = 27°C, l = 1 m = 100 cm
At temperature T1 = 45°C,
the length of the steel rod, l1 = 63 cm
Coefficient of linear expansion of steel, α = 1.20 x 10-5K-1

Let l2 be the actual length of the steel rod and l’ be the length of the steel tape at 45°C.
l’ =l+αl(T1 -T)
∴ l’ = 100 +1.20 x 10-5x 100(45 -27)
= 100,0216 cm

Hence, the actual length of the steel rod measured by the steel tape at 45° C can be calculated as
l2 = \(\frac{100.0216}{100} \times 63\) = 63.0136cm
Therefore, the actual length of the rod at 45°C is 63.0136 cm. Its length at 27.0 °C is 63.0 cm

Question 7.
A large steel wheel is to be fitted onto a shaft of the same material. At 27°C, the outer diameter of the shaft is 8.70 cm, and the diameter of the central hole in the wheel is 8.69cm. The shaft is cooled using ‘dry ice’. At what temperature of the shaft does the wheel slip on the shaft? Assume the coefficient of linear expansion of the steel to be constant over the required temperature range: αsteel = 1.20 x 10-5 K-1.
Solution:
The given temperature, T = 27°C can be written in Kelvin as
27 + 273 =300K
Outer diameter of the steel shaft at T, d1 = 8.70 cm
Diameter of the central hole in the wheel at T, d2 = 8.69 cm
Coefficient of linear expansion of steel, a steel = 1.20 x 10-5 K -1
After the shaft is cooled using ‘dry ice’, its temperature becomes T1.
The wheel will slip on the shaft if the change in diameter,
Δd = 8.69-8.70 =-0.01 cm

Temperature T1; can be calculated from the relation
Δd = d1αsteel(T1 -T)
-0.01 =8.70 x 1.20 x 10-5(T1 -300)
(T1 – 300) = \(\frac{-0.01}{8.70 \times 1.20 \times 10^{-5}}\)
(T1 -300) = -95.78
∴ T1 = 300 – 95.78 = 204.22 K
= (204.22-273)°C
= -68.78°C ≈ 69°C
Therefore, the wheel will slip on the shaft when the temperature of the shaft is -69°C.

Question 8.
A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0°C. What is the change in the diameter of the hole when the sheet is heated to 227°C? Coefficient of linear expansion of copper = 1.70 x 10-5 K -1.
solution:
Initial temperature, T1 = 27.0°C
Diameter of the hole at T1, d1 = 4.24 cm
Final temperature, T2 = 227°C
Let, diameter of the hole at T2=d2
Coefficient of linear expansion of copper, αCu = 1.70 x 10-5 K-1
For coefficient of superficial expansion β, and change in temperature ΔT, we have the relation:
\(\frac{\text { Change in area }(\Delta \mathrm{A})}{\text { Original area }(\mathrm{A})}=\beta \Delta \mathrm{T}\)
PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 1
Change in diameter = d2 – d1 = 4.2544 – 4.24 = 0.0144 cm
Hence, the diameter increases by 1.44 x 10-2 cm.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 9.
A brass wire 1.8m long at 27°C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of-39°C, what is the tension developed in the wire, if its diameter is 2.0 mm? Coefficient of linear expansion of brass = 2.0 x 10-5K-1; Young’s modulus of brass = 0.91 x 1011 Pa.
Solution:
Initial temperature, T1 = 27°C
Length of the brass wire at T1,l = 1.8 m
Final temperature, T2 = -39 °C
Diameter of the wire, d = 2.0 mm = 2 x 10-3 m
Let, tension developed in the wire = F
Coefficient of linear expansion of brass, a = 2.0 x 10-5 K-1

Young’s modulus of brass, Y = 0.91 x 1011Pa
Young’s modulus is given by the relation ‘
Y = \(\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\frac{\Delta L}{L}}\)
ΔL = \(\frac{F \times L}{A \times Y}\) ……………………………….. (i)
where, F = Tension developed in the wire
A = Area of cross-section of the wire.
ΔL = Change in the length, given by the relation
ΔL = αL(T2 -T1) …………………………… (ii)

Equating equations (i) and (ii), we get
PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 2
= -3.8 x 102 N
(The negative sign indicates that the tension is directed inward.) Hence, the tension developed in the wire is 3.8 x 102 N.

Question 10.
A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at 250°C, if the original lengths are at 40.0°C? Is there a ‘thermal stress’ developed at the junction? The ends of the rod are free to expand (Coefficient of linear expansion of brass = 2.0 x 10-5 K-1, steel = 1.2 x 10-5K-1).
Solution:
Initial temperature, T1 = 40°C
Final temperature, T2 = 250 °C
Change in temperature, ΔT = T2 – T1 = 210°C
Length of the brass rod at T1,l1 = 50 cm
Diameter of the brass rod at T2, d1 = 3.0 mm
Length of the steel rod at T2,l2 = 50 cm
Diameter of the steel rod at T2,d2 = 3.0 mm
Coefficient of linear expansion of brass, α1 = 2.0 x 10-5 K-1
Coefficient of linear expansion of steel, α2 = 1.2 x 10-5 K-1

For the expansion in the brass rod, we have
\(\frac{\text { Change in length }\left(\Delta l_{1}\right)}{\text { Original length }\left(l_{1}\right)}=\alpha_{1} \Delta T\)
∴ Δl1 = 50 x (2.1 x 10-5)X210
= 0.2205cm
For the expansion in the steel rod, we have Change in length
\(\frac{\text { Change in length }\left(\Delta l_{2}\right)}{\text { Original length }\left(l_{2}\right)}=\alpha_{2} \Delta T\)
∴ Δl2 =50 x (1.2 x 10-5)x 210
= 0.126 cm

Total change in the lengths of brass and steel,
Δl = Δl1 + Δl2
=0.2205 + 0.126
= 0.346 cm
Total change in the length of the combined rod = 0.346 cm Since the rod expands freely from both ends, no thermal stress is developed at the junction.

Question 11.
The coefficient of volume expansion of glycerin is 49 x 10-5K-1.
What is the fractional change in its density for a 30°C rise in temperature?
Solution:
Coefficient of volume expansion of glycerin, αv = 49 x 10-5 K-1
Rise in temperature, ΔT = 30°C
Fractional change in its volume = \(\frac{\Delta V}{V}\)
PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 3
where, m = Mass of glycerine
PT1 = Initial density at T1
PT2 = Final density at T2
\(\frac{\rho_{T_{1}}-\rho_{T_{2}}}{\rho_{T_{2}}}=\alpha_{\mathrm{V}} \Delta T\)
Where, \(\frac{\rho_{T_{1}}-\rho_{T_{2}}}{\rho_{T_{2}}}\) = Fractional change in the density
∴ Fractional change in the density of glycerin
= 49 x 10-5 x 30 = 1.47 x 10-2

Question 12.
A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost to the surroundings? Specific heat of aluminium = 0.91 Jg-1K-1.
Solution:
Power of the drilling machine, P =10 kW = 10 x 103 W
Mass of the aluminum block, m = 8.0 kg = 8 x 103 g
Time for which the machine is used, t = 2.5min = 2.5x 60 = 150 s
Specific heat of aluminium, C = 0.91 J g-1K-1
Rise in the temperature of the block after drilling = ΔT

Total energy of the drilling machine = Pt
= 10 x 103 x 150 = 1.5 x 106 J

It is given that only 50% of the power is useful.

Useful energy, ΔQ = \(\frac{50}{100} \times 1.5 \times 10^{6}\) = 7.5×105J
But ΔQ = mCΔT
∴ ΔT = \(\frac{\Delta Q}{m C}=\frac{7.5 \times 10^{5}}{8 \times 10^{3} \times 0.91}\)
=103°C
Therefore, in 2.5 minutes of drilling, the rise in the temperature of the block is 103°C.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 13.
A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500°C and then placed on a large ice block. What is the maximum amount of ice that can melt? (Specific heat of copper = 0.39 Jg-1K-1; heat of fusion of water = 335Jg-1).
Solution:
Mass of the copper block, m = 2.5kg = 2500 g
Rise in the temperature of the copper block, Δθ = 500 °C
Specific heat of copper, C = 0.39 J g-1 °C-1
The heat of fusion of water, L = 335 J g-1

The maximum heat the copper block can lose, Q = mCΔθ
= 2500×0.39×500 =487500J
Let m1 g be the amount of ice that melts when the copper block is placed on the ice block.

The heat gained by the melted ice, Q = m1L
∴ m1 = \(\frac{Q}{L}=\frac{487500}{335}\) =1455.22g
Hence, the maximum amount of ice that can melt is 1.45 kg.

Question 14.
In an experiment on the specific heat of a metal, a 0.20kg block of the metal at 150°C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing 150 cm3 of water at 27°C. The final temperature is 40° C. Compute the specific heat of the metal. If heat losses to the surroundings are not negligible, is your answer greater or smaller than the actual value for specific heat of the metal?
Solution:
Mass of the metal, m = 0.20 kg = 200 g
Initial temperature of the metal, T1 = 150°C
Final temperature of the metal, T2 = 40°C
Calorimeter has water equivalent of mass, m’ = 0.025kg = 25g
Volume of water, V = 150 cm3

Mass (M) of water at temperature T = 27°C,
150×1 =150g
Fall in the temperature of the metal,
ΔT =T1 -T2 =150-40 =110°C
Specific heat of water, Cw = 4.186 J/g/K
Specific heat of metal = C
Heat lost by the metal, Q = mCΔT …………………………….. (i)

Rise in the temperature of the water and calorimeter system,
ΔT’ = 40 -27 = 13°C
Heat gained by the water and calorimeter system,
ΔQ’ = m1CwΔT’
= (M + m’)CwΔT’ ……………………………… (ii)

Heat lost by the metal = Heat gained by the water and colourimeter system
mCΔT =(M + m’)CwΔT’
200 xC x 110 = (150+25) x 4.186 x 13
∴ C = \(\frac{175 \times 4.186 \times 13}{110 \times 200} \) = 0.43 Jg-1K-1
If some heat is lost to the surroundings, then the value of C will be smaller than the actual value.

Question 15.
Given below are observations on molar specific heats at room temperature of some common gases.

Gas Molar specific heat (Cv) (cal mol-1K-1)
Hydrogen 4.87
Nitrogen 4.97
Oxygen 5.02
Nitric oxide 4.99
Carbon monoxide 5.01
Chlorine 6.17

The measured molar specific heats of these gases are markedly different from those for monatomic gases. Typically, molar specific heat of a monatomic gas is 2.92 cal/mol K. Explain this difference. What can you infer from the somewhat larger (than the rest) value for chlorine?
Solution:
The gases listed in the given table are diatomic. Besides the translational degree of freedom, they have other degrees of freedom (modes of motion). Heat must be supplied to increase the temperature of these gases. This increases the average energy of all the modes of motion.

Hence, the molar specific heat of diatomic gases is more than that of monatomic gases. If only rotational mode of motion is considered, then the molar specific heat of a diatomic gas = \(\frac{5}{2} R=\frac{5}{2} \times 1.98\) = 4.95 cal mol-1K-1 With the exception of chlorine, all the observations in the given table agree with(\(\frac{5}{2} R\)) This is because at room temperature, chlorine also has vibrational modes of motion besides rotational and translational modes of motion.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 16.
Answer the following questions based on the P-T phase diagram of carbon dioxide:
(a) At what temperature and pressure can the solid, liquid and vapour phases of CO2 co-exist in equilibrium?
(b)What is the effect of decrease of pressure on the fusion and boiling point of CO2?
(c) What are the critical temperature and pressure for CO2? What is their significance?
(d) Is CO2 solid, liquid or gas at
(a) -70°C under 1 atm,
(b) -60°C under 10 atm,
(c) 15°C under 56 atm?
Solution:
The P-T phase diagram for CO2 is shown in the following figure.
PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 4
(a) C is the triple point of the CO2 phase diagram. This means that at the temperature and pressure corresponding to this point (i.e., at -56.6°C and 5.11 atm), the solid, liquid, and vaporous phases of CO2 co-exist in equilibrium.
(b) The fusion and boiling point of CO2 decrease with a decrease in pressure.
(c) The critical temperature and critical pressure of CO2 are 31.1°C and 73 atm respectively.
Even if it is compressed to a pressure greater than 73 atm, CO2 will not liquefy above the critical temperature.
(d) It can be concluded from the P-T phase diagram of CO2 that:
(i) CO2 is gaseous at -70 °C, under 1 atm pressure
(ii) CO2 is solid at -60 °C, under 10 atm pressure
(iii) CO2 is liquid at 15°C, under 56 atm pressure.

Question 17.
Answer the following questions based on the P-T phase diagram of CO2:
(a) CO2 at 1 atm pressure and temperature -60°C is compressed isothermally. Does it go through a liquid phase?
(b) What happens when C02 at 4 atm pressure is cooled from room temperature at constant pressure?
(c) Describe qualitatively the changes in a given mass of solid CO2 at 10 atm pressure and temperature -65°C as it is heated up to room temperature at constant pressure.
(d) CO2 is heated to a temperature 70°C and compressed isothermally. What changes in its properties do you expect to observe?
The P-T phase diagram for CO2 is shown in the following figure:
PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 5
Solution:
(a) No
Explanation:
At 1 atm pressure and at -60°C, CO2 lies to the left of -56.6°C (triple point C). Hence, it lies in the region of vaporous and solid phases. Thus, CO2 condenses into the solid-state directly, without going through the liquid state.
(b) It condenses to solid directly.
Explanation:
At 4 atm pressure, C02 lies below 5.11 atm (triple point C). Hence, it lies in the region of vaporous and solid phases. Thus, it condenses into the solid-state directly, without passing through the liquid state.

(c) The fusion and boiling points are given by the intersection point where this parallel line cuts the fusion and vaporisation curves.
Explanation:
When the temperature of a mass of solid CO2 (at 10 atm pressure and at -65° C) is increased, it changes to the liquid phase and then to the vaporous phase. It forms a line parallel to the temperature axis at 10 atm. The fusion and boiling points are given by the intersection point where this parallel line cuts the fusion and vaporisation curves.

(d) It departs from ideal gas behaviour as pressure increases.
Explanation:
If CO2 is heated to 70 °C and compressed isothermally, then it will not exhibit any transition to the liquid state. This is because 70 °C is higher than the critical temperature of CO2. It will remain in the vapour state but will depart from its ideal behaviour as pressure increases.

Question 18.
A child running a temperature of 101°F is given an antipyrin (i. e., a medicine that lowers fever) which causes an increase in the rate of evaporation of sweat from his body. If the fever is brought down to 98°F in 20 min, what is the average rate of extra evaporation caused, by the drug? Assume the evaporation mechanism to be the only way by which heat is lost. The mass of the child is 30 kg. The specific heat of human body is approximately the same as that of water, and latent heat of evaporation of water at that temperature is about 580 cal g-1.
Solution:
Initial temperature of the body of the child, T1 = 101°F
Final temperature of the body of the child, T2 = 98°F
Change in temperature, ΔT = \(\left[(101-98) \times \frac{5}{9}\right] \)°c
Time taken to reduce the temperature, t = 20 min
Mass of the child, m = 30 kg = 30 x 103 g

Specific heat of the human body = Specific heat of water = C
= 1000 cal/kg/°C
Latent heat of evaporation of water, L = 580 cal g-1
The heat lost by the child is given as:
ΔQ = mCΔT
= 30 x 1000 x (101-98)x \(\frac{5}{9}\) = 50000cal

Let m1 be the mass of the water evaporated from the child’s body in 20 min.
Loss of heat through water is given by
ΔQ = m1L
∴ m1 = \(\frac{\Delta Q}{L}=\frac{50000}{580}\) = 86.2g
∴ Average rate of extra evaporation caused by the drug = \(\frac{m_{1}}{t}\)
= \(\frac{86.2}{20}\) = 4.3 g/mm.

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 19.
A ‘thermal’ icebox is a cheap and efficient method for storing small quantities of cooked food in summer in particular. A cubical icebox of side 30 cm has a thickness of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of ice remaining after 6 h. The outside temperature is 45°C, and coefficient of thermal conductivity of thermal is 0.01 J s-1m-1 K-1.
[Heat of fusion of water = 335 x 103 Jkg -1 ]
Solution:
Side of the given cubical icebox, s = 30 cm = 0.3 m
Thickness of the icebox, l = 5.0 cm = 0.05 m
Mass of ice kept in the icebox, m = 4 kg
Time gap, t=6h = 6x 60 x 60 s
Outside temperature, T = 45°C

Coefficient of thermal conductivity of thermacole,
K =0.01 Js-1 m-1 K-1
Heat of fusion of water, L = 335 x 103 J kg-1
Let m be the total amount of ice that melts in 6 h.
The amount of heat lost by the food,
Q = \(\frac{K A(T-0) t}{l}\)

where, A = Surface area of the box = 6s2 =6 x (0.3)2 = 0.54 m2
Q = \(\frac{0.01 \times 0.54 \times(45) \times 6 \times 60 \times 60}{0.05}\) = 104976 J
But Q=m’L
∴ m’ = \(\frac{Q}{L}=\frac{104976}{335 \times 10^{3}}\) = 0.313 kg
Mass of ice left = 4-0.313 = 3.687kg .
Hence, the amount of ice remaining after 6 h is 3.687 kg.

Question 20.
A brass boiler has a base area of 0.15m2 and a thickness 1.0 cm. It boils water at the rate of 6.0 kg/min when placed on a gas stove. Estimate the temperature of the part of the flame in contact with the boiler. Thermal conductivity of brass = 109 Js-1m-1 K-1; Heat of vaporisation of water = 2256 x 103 Jkg-1.
Solution:
Base area of the boiler, A = 0.15 m2
Thickness of the boiler,l = 1.0 cm = 0.01 m
Roiling rate of water, R = 6.0 kg/min
Mass, m = 6 kg
Time, t = 1 min = 60 s

Thermal conductivity of brass, K = 109 J s-1 m-1 K-1
Heat of vaporisation, L = 2256 x103 J kg-1
The amount of heat flowing into water through the brass base of the boiler is given by
Q = \(\frac{K A\left(T_{1}-T_{2}\right) t}{l}\) ………………………. (i)
where, T1 = Temperature of the flame in contact with the boiler
T2 = Boiling point of water = 100 °C
Heat required for boiling the water
Q = mL …………………………………. (ii)

Equating equations (i) and (ii), we get
∴ mL = \(\frac{K A\left(T_{1}-T_{2}\right) t}{l}\)
T1 -T2= \(\frac{m L l}{K A t}\)
= \(\frac{6 \times 2256 \times 10^{3} \times 0.01}{109 \times 0.15 \times 60}\) = 137.98°C
T1 -T2 = 137.98°C
∴ T1=137.98+100 = 237.98°C
Therefore, the temperature of the part of the flame in contact with the boiler is 237.98°C.

Question 21.
Explain why:
(a) a body with large reflectivity is a poor emitter
(b) a brass tumbler feels much colder than a wooden tray on a chilly day.
(c) an optical pyrometer (for measuring high temperatures) calibrated for an ideal black body radiation gives too low a value for the temperature of a red hot iron piece in the open but gives a correct value for the temperature when the same piece is in the furnace
(d) the earth without its atmosphere would be inhospitably cold
(e) heating systems based on circulation of steam are more efficient in warming a building than those based on circulation of hot water
Solution:
(a) A body with a large reflectivity is a poor absorber of light radiations. A poor absorber will in turn be a poor emitter of radiations. Hence, a body with a large reflectivity is a poor emitter.

(b) Brass is a good conductor of heat. When one touches a brass tumbler, heat is conducted from the body to the brass tumbler easily. Hence, the temperature of the body reduces to a lower value and one feels cooler. Wood is a poor conductor of heat. When one touches a wooden tray, very little heat is conducted from the body to the wooden tray. Hence, there is only a negligible drop in the temperature of the body and one does not feel cool. •
Thus, a brass tumbler feels colder than a wooden tray on a chilly day.

(c) An optical pyrometer calibrated for an ideal black body radiation gives too low a value for temperature of a red hot iron piece kept in the open. Black body radiation equation is given by
E = σ(T4 -T04) where, E – Energy radiation
T = Temperature of optical pyrometer
T0 = Temperature of open space
σ = Constant
Hence, an increase in the temperature of open space reduces the radiation energy.
When the same piece of iron is placed in a furnace, the radiation energy, E =σT4

(d) Without its atmosphere, earth would be inhospitably cold. In the absence of atmospheric gases, no extra heat will be .trapped. All the heat would be radiated back from earth’s surface.

(e) A heating system based on the circulation of steam is more efficient in warming a building than that based on the circulation of hot water. This is because steam contains surplus heat in the form of latent heat (540 cal/g).

PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter

Question 22.
A body cools from 80°C to 50°C in 5 minutes. Calculate the time it takes to cool from 60°C to 30°C. The temperature of the surroundings is 20 C.
Solution:
According to Newton’s law of cooling, the rate of cooling cc difference in temperature.
Here, average of 80 °C and 50 °C, T = \(\frac{T_{1}+T_{2}}{2}=\frac{80+50}{2}\) = 65°C
Temperature of surroundings, T0 = 20 °C .
∴Difference, ΔT = T – T0 = 65 – 20 = 45°C
Under these conditions, the body cools 30 °C in time 5 minutes.
∴  PSEB 11th Class Physics Solutions Chapter 11 Thermal Properties of Matter 6
or \(\frac{30}{5}\) = k x 45 ……………………………….. (i)
The average of 60°C and 30 °C is 45°C which is 25°C (45 – 20) above the room temperature and the body cools by 30 °C (60 – 30) in a time t (say).
∴\(\frac{30}{t}\) = k x 25 ……………………………….. (ii)

where k is same for this situation as for the original.
Dividing eq. (i) from eq. (ii), we get
\(\frac{30 / 5}{30 / t}=\frac{k \times 45}{k \times 25}\)
or \(\frac{t}{5}=\frac{9}{5}\)
or t = 9 min

PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration

Punjab State Board PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration Important Questions and Answers.

PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration

very Short Answer Type Questions

Question 1.
There are many endocrine glands in human body. Name the gland, which is absent in male and the one absent in female. [NCERT Exemplar]
Answer:
The glands, which are absent in male are ovaries and which are absent in female are testes.

Question 2.
Which of the two adrenocortical layers, zona glomerulosa and zona reticularis lies outside enveloping the other?
[NCERT Exemplar]
Answer:
Zona glonierulosa (outer layer) envelopes zona reticularis (inner layer) from the outside.

Question 3.
Name the only hormone secreted by pars intermedia of pituitary gland. [NCERT Exemplar]
Answer:
Melanocyte Stimulating Hormone (MSH).

Question 4.
Mention the name of the largest and the smallest endocrine gland found in man.
Answer:
Thyroid gland is the largest endocrine gland and pituitary gland is the smallest endocrine gland.

Question 5.
A patient complains of constant thirst, excessive passing of urine and low the level blood pressure. When the doctor checked the patient’s blood glucose and blood insulin level, the level were normal or slightly low. The doctor diagnosed the condition as diabetes insipidus. But he decide to measure one more hormone in patient’s blood. Which hormone does the doctor intend to measure? [NCERT Exemplar]
Answer:
Glucagon.

PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration

Question 6.
The outermost layer of adrenal cortex is responsible for secretion of which hormone. Identify?
Answer:
Mineralocorticoids.

Question 7.
Identify the neurohormone that has its functioning in inhibiting the secretion of growth hormone from anterior lobe of pituitary.
Answer:
Somatostatin inhibits the secretion of growth hormone from anterior lobe of pituitary gland.

Question 8.
State the reason for the occurrence of diabetes insipidus in a individual.
Answer:
Deficiency in the secretion of vasopressin (ADH) leads to the disorder known as diabetes insipidus.

Question 9.
Define the term erythropoiesis. Also name the hormone that stimulates it. [NCERT Exemplar]
Answer:
Erythropoiesis is the process of formation of RBCs. The juxtaglomerular cells of kidney produce a peptide hormone called erythropoietin which stimulates it.

Question 10.
What do you understand by the term ANF?
Answer:
Atrial wall of human heart secretes a peptide hormone called atrial natriuretic factor which decreases blood pressure by dilation of the blood vessels.

Question 11.
Mention the name given to the hormones produced by some non-endocrine tissues.
Answer:
Hormones produced by some non-endocrine tissues are called growth factors.

Question 12.
Which two hormones are steroids chemically?
Answer:
Cortisol and testosterone are chemically steroid in nature.

PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration

Short Answer Type Questions

Question 1.
Explain the function of melanin.
Answer:
Melanin controls the circadian variations of the body. During 24 hours different organ system of our body works at different pace. During sleep certain body functions slow down. All of this is known as circadian rhythm. Additionally, melanin influences metabolism, pigmentation, menstruation and defence capability.

Question 2.
How does parathyroid hormone influences calcium uptake in the body?
Answer:
Parathyroid hormone (PTH) increases the Ca2+ levels in the blood. PTH acts on bones and stimulates the process of bone reabsorption (dissolution/demineralization). PTH also stimulates reabsorption of Ca2+ by the renal tubules and increases Ca2+ absorption from the digested food. It is, thus, clear that PTH is a hypercalcemic hormone, i.e., it increases the blood Ca2+ levels. Along with TCT, it plays a significant role in calcium balance in the body.

Question 3.
How do fight or flight hormones prepare our body to fight emergency?
Answer:
Adrenaline and noradrenaline are rapidly secreted in response to stress of any kind and during emergency situations and are called emergency hormones or hormones of fight or flight. These hormones increase alertness, pupillary dilation, piloerection (raising of hairs), sweating etc. Both the hormones increase the heartbeat, the strength of heart contraction, and the rate of respiration. Finally, the body is ready to counter the emergency situations.

Question 4.
What are secondary sexual characters?
Answer:
Characters which do not play direct role in sexual reproduction but are basically means of sexual differentiation are called secondary sexual characters. For example, facial hair and deep voice in males and thin voice in females are secondary sexual characters.

Question 5.
What is acromegaly?
Answer:
Excess secretion of growth hormone in adults, especially in middle age can result in severe disfigurement (especially of the face). This is called acromegaly. This can lead to serious complications and even death; if unchecked. The disease is hard to diagnose in the early stages and is frequently missed for many years, until changes in external features become noticeable.

Long Answer Type Questions

Question 1.
Hypothalamus is a super master endocrine gland. Elaborate. [NCERT Exemplar]
Answer:
Hypothalamus regulates a wide spectrum of body functions. It contains several groups of neurosecretory cells called nuclei, which produce hormones. These hormones regulate the synthesis and secretion of pituitary hormones. However, the hormones produced by hypothalamus are of two types, the releasing hormones (which stimulate secretion of pituitary hormones) and the inhibiting hormones (which inhibit secretions of pituitary hormones).
The hormones reach the pituitary gland through a portal circulatory system and regulate the functions of the anterior pituitary. The posterior pituitary is under the direct regulation of hypothalamus. The oxytocin and vasopressin are the two hormones synthesized by hypothalamus that are transported to posterior pituitary.

Question 2.
A sample of urine was diagnosed to contain high content of glucose and ketone bodies. Based on this observation, answer the following: (NCERT Exemplar)
(i) Which endocrine gland and hormone is related to this condition? %
(ii) Name the cells on which this hormone acts.
(iii) What is the condition called and how can it be rectified?
Answer:
(i) Pancreas gland and insulin hormone is related to this condition.
(ii) The (3-cells of islets of Langerhans of pancreas.
(iii) Prolonged hyperglycemia leads to a complex disorder, called diabetes mellitus, which is associated with loss of glucose through urine and formation of harmful compounds known as ketone bodies. Diabetic patients are successfully treated with insulin therapy.

PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration

Question 3.
(i) Give a diagrammatic representation of the mechanism of protein hormone (e. g., FSH) action.
(ii) Illustrate the differences between the mechanism of action of, a protein and a steroid hormone. [NCERT Exemplar]
Answer:
PSEB 11th Class Biology Important Questions Chapter 22 Chemical Coordination and Integration 1
(ii) Differences between mechanism of action of a protein and a steroid hormone

Protein Hormone Steroid Hormone
Protein hormones interact with membrane-bound receptors. They interact with intracellular receptors.
They generate second messengers (cyclic AMP, IP3, Ca2+, etc.) They regulate gene expression or chromosome function by the interaction of the hormone-receptor complex with the genome.
The second messengers regulate. cellular metabolism. Cumulative biochemical action of hormone-receptor complex results in physiological and developmental effects.

PSEB 11th Class Biology Solutions Chapter 22 Chemical Coordination and Integration

Punjab State Board PSEB 11th Class Biology Book Solutions Chapter 22 Chemical Coordination and Integration Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Biology Chapter 22 Chemical Coordination and Integration

PSEB 11th Class Biology Guide Chemical Coordination and Integration Textbook Questions and Answers

Question 1.
Define the following:
(a) Exocrine gland
(b) Endocrine gland
(c) Hormone
Answer:
(a) Exocrine Gland: It is a gland that pours its secretion on the surface or into a particular region by means of ducts for performic a metabolic activity, e.g., sebaceous glands, sweat glands, salivary glands, etc.

(b) Endocrine Gland: It is a gland that pours its secretion into blood or lymph for reaching the target organ because the gland is not connected with the target organ by any duct. It is also known as ductless gland.

(c) Hormone: Hormones are non-nutrient chemicals which act as intercellular messengers and are produced in trace amounts.
PSEB 11th Class Biology Solutions Chapter 22 Chemical Coordination and Integration

Question 2.
Diagrammatically indicate the location of the various endocrine glands in our body.
PSEB 11th Class Biology Solutions Chapter 22 Chemical Coordination and Integration 1
Fig- Location of Endocrine Glands

Question 3.
List the hormones secreted by the following:
(a) Hypothalamus
(b) Pituitary
(c) Thyroid
(d) Parathyroid
(e) Adrenal
(f) Pancreas
(g) Testis
(h) Ovary
(i) Thymus
(j) Atrium
(k) Kidney
(l) G-I Tract
Answer:
(a) Hypothalamus secrets Thyrotropin-releasing hormone, Adrenocorticotropin releasing hormone, Gonadotropin-releasing hormone, Somatotropin releasing hormone, Prolactin releasing hormone, Melanocyte stimulating hormone, releasing hormone.

(b)
(i) Pars Distalis Part of Pituitary (anterior pituitary) secrets Growth Hormone (GH), Prolactin (PRL), Thyroid Stimulating Hormone (TSH), Adrenocorticotrophic Hormone (ACTH), Luteinising Hormone (LH), Follicle Stimulating Hormone (FSH).
(ii) Pars Intermedia secrets Melanocyte Stimulating Hormone (MSH), Oxytocin, Vasopressin.

(c) Thyroid secrets Thyroxine (T4) and triiodothyronine (T3)
(d) Parathyroid secrets Parathyroid hormone (PTH).

(e) Adrenal
(i) secrets Adrenaline, Noradrenaline from adrenal medulla. ‘
(ii) also secretes corticoids (glucocorticoid and mineralocorticoid) and sexocorticoids from adrenal cortex.

(f) Pancreas: The a-cells secrete glucagon, while the β-cells secrete insulin.
(g) Testis: Androgens mainly testosterone.
(h) Ovary: Estrogen and progesterone.
(i) Thymus: Thymosins.
(j) Atrium: Atrial Natriuretic Factor (ANF).
(k) Kidney: Erythropoietin
(l) G-I Tract: Gastrin, secretin, cholecystokinin (CCK), and Gastric Inhibitory Peptide (GIP).

Question 4.
Fill in the blanks:

Hormones Target gland
Hypothalamic hormones ……………………………
Thyrotrophin (TSH) ……………………………..
Corticotrophin (ACTH) ………………………………….
Gonadotrophins (LH, FSH) ………………………………..
Melanotrophin (MSH) ………………………………

Answer:

Hormones Target gland
Hypothalamic hormones Pituitary gland
Thyrotrophin (TSH) Thyroid gland
Corticotrophin (ACTH) Adrenal glands
Gonadotrophins (LH, FSH) Testis and ovary
Melanotrophin (MSH) Hypothalamus

PSEB 11th Class Biology Solutions Chapter 22 Chemical Coordination and Integration

Question 5.
Write short notes on the functions of the following hormones:
(a) Parathyroid hormone (PTH)
(b) Thyroid hormones
(c) Thymosins
(d) Androgens
(e) Estrogens
(f) Insulin and Glucagon
Answer:
(a) Parathyroid Hormone (PTH): The parathyroid glands secrete a peptide hormone called parathyroid hormone (PTH). PTH acts on bones and stimulates the process of bone resorption (dissolution/demineralization). PTH also stimulates reabsorption of Ca2+ by the renal tubules and increases Ca2+ absorption from the digested food. It plays a significant role in calcium balance in the body.

(b) Thyroid Hormones: Thyroid hormones play an important role in the regulation of the basal metabolic rate. These hormones also support the rocess of red blood cell formation. Thyroid hormones control the metabolism of carbohydrates, proteins and fats. The maintenance of water and electrolyte balance is also influenced by thyroid hormones. Thyroid gland also secretes a protein hormone called thyrocalcitonin (TCT), which regulates the blood calcium levels.

(c) Thymosins: The thymus gland secretes the peptide hormones called thymosins. Thymosins play a major role in the differentiation of T-lymphocytes, which provide cell-mediated immunity. In addition, thymosins also promote production of antibodies to provide humoral immunity.

(d) Androgens: Androgens regulate the development, maturation, and functions of the male accessory sex organs like epididymis, vas deferens, seminal vesicles, prostate gland, urethra, etc. These hormones stimulate muscular growth, growth of facial and axillary hair, aggressiveness, low pitch of voice, etc. Androgens play a major stimulatory role in the process of spermatogenesis (formation of spermatozoa), influence the male sexual behavior (libido).

(e) Estrogens: Estrogens produce wide-ranging actions such as stimulation of growth and activities of female secondary sex organs, development of growing ovarian follicles, appearance of female secondary sex characters (e.g., high pitch of voice, etc.), mammary gland development. Estrogens also regulate female sexual behavior.

(f) Insulin and Glucagon: Glucagon acts mainly on the liver cells and stimulates glycogenolysis resulting in increased blood sugar (hyperglycemia). In addition, this hormone stimulates the process of gluconeogenesis, which also contributes to hyperglycemia. Glucagon reduces the cellular glucose uptake and utilization.

Insulin is a peptide hormone, which plays a major role in the regulation of glucose homeostasis. Insulin acts mainly on hepatocytes and adipocytes and enhances cellular glucose uptake and utilization. Insulin also stimulates conversion of glucose to glycogen (glycogenesis) in the target cells. The glucose homeostasis in blood is thus maintained jointly by the two insulin and glucagons.

Question 6.
Give example(s) of:
(a) Hyperglycemic hormone and hypoglycemic hormone
(b) Hypercalcemic hormone
(c) Gonadotrophic hormones
(d) Progestational hormone ‘
(e) Blood pressure lowering hormone
(f) Androgens and estrogens
Answer:
(a) Glucagon and insulin respectively
(b) Parathyroid hormone
(c) Follicle-stimulating hormone and luteinizing hormones
(d) Progesterone
(e) Atrial Natriuretic IFactor (ANF)
(f) Androgens are mainly testosterone and estrogens include estrogen

Question 7.
Which hormonal deficiency is responsible for the following:
(a) Diabetes mellitus
(b) Goitre
(c) Cretinism
Answer:
(a) Diabetes mellitus is due to deficiency of insulin.
(b) Goitre is due to deficiency of thyroxine (T4) and triiodothyronine (T3).
(e) Cretinism is due to deficiency of thyroxine hormone.

Question 8.
Briefly mention the mechanism of action of FSH.
Answer:
Follicle Stimulating Hormone (FSH): In males, FSH and androgens regulate spermatogenesis. FSH stimulates growth and development of the ovarian follicles in females. It stimulates the secretion of estrogens in ovaries.

Question 9.
Match the following columns:

Column I Column II
A. T4 1. Hypothalamus
B. PTH 2. Thyroid
C. GnRH 3. PituItary
D. LH 4. Parathyroid

Answer:

Column I Column II
A.T4 2. Thyroid
B. PTH 4. Parathyroid
C. GnRH 1. Hypothalamus
D. LH 3. Pituitary

 

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Very short answer type questions

Question 1.
When do we say two vectors are orthogonal?
Solution:
If the dot product of two vectors is zero, then the vectors are orthogonal.
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 1

Question 2.
What is the property of two vectors \(\overrightarrow{\boldsymbol{A}}\) and \(\overrightarrow{\boldsymbol{B}}\) such that \(\overrightarrow{\boldsymbol{B}}+\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{C}}\) and \(\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{C}}\)?
Solution:
The two vectors are parallel and acting in the same direction i. e., θ = 0 °.

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Question 3.
What are the minimum number of forces which are numerically equal whose vector sum can be zero?
Answer:
Two only, provided that they are acting in opposite directions.

Question 4.
Under what condition the three vectors cannot give zero resultant?
Answer:
When the three vectors are not lying in one plane, they cannot produce zero resultant.

Question 5.
Can the scalar product of two vectors be negative?
Solution:
Yes, it will be negative if the angle between the two vectors lies between 90° to 270°.

Question 6.
Can the walking on a road be an example of resolution of vectors?
Answer:
Yes, when a man walks on the road, he presses the road along an oblique direction. The horizontal component of the reaction helps the man to walk on the road.

Question 7.
A particle cannot accelerate if its velocity is constant, why?
Answer:
When the particle is moving with a constant velocity, there is no change – in velocity with time and hence, its acceleration is zero.

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Question 8.
A football is kicked into the air vertically upwards. What is its (i) acceleration and (ii) velocity at the highest point?
(NCERT Exemplar)
Answer:
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 2
(i) Acceleration at the highest point = -g
(ii) Velocity at the highest point = 0.

Question 9.
Why does a tennis ball bounce higher on bills than in plains?
Answer:
Maximum height attained by a projectile ∝ 1/ g. As the value of g is less on hills than on plains, so a tennis ball bounces higher on hills than on plains.

Short answer type quetions

Question 1.
Explain the property of two vectors \(\overrightarrow{\boldsymbol{A}}\) and \(\overrightarrow{\boldsymbol{B}}\) if \(|\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}|=|\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}|\).
Solution:
As we know that
\(|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}\)
and \(|\vec{A}-\vec{B}|=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}\)
But as per question, we have
\(\sqrt{A^{2}+B^{2}+2 A B \cos \theta}=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}\)
Squaring both sides, we have (4 AB cos θ) = 0
⇒ cosθ = 0 or θ = 90°
Hence, the two vectors \(\vec{A}\) and \(\vec{B}\) are perpendicular to each other.

Question 2.
The sum and difference of two vectors are perpendicular to each other. Prove that the vectors are equal in magnitude.
Solution:
As the vectors \(\vec{A}+\vec{B}\) and \(\vec{A}-\vec{B}\) are perpendicular to each other, therefore
\((\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})\) = 0
\(\vec{A} \cdot \vec{A}-\vec{A} \cdot \vec{B}+\vec{B} \cdot \vec{A}-\vec{B} \cdot \vec{B}\) = 0
or A2 – B2 = 0     [∵ \(\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}\)]
⇒ A = B

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Question 3.
The dot product of two vectors vanishes when vectors are orthogonal and has maximum value when vectors are parallel to each other. Explain.
Solution:
We know that \(\vec{A} \cdot \vec{B}\) = AB cos θ, when vectors are orthogonal, then, θ = 90°.
So, \(\vec{A} \cdot \vec{B}\) = AB cos 90 ° = 0, when vectors are parallel, then, θ = 0°
So, \(\vec{A} \cdot \vec{B}\) = AB cos ° = AB (maximum)

Question 4.
Can a flight of a bird, an example of composition of vectors. Why?
Answer:
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 3
Yes, the flight of a bird is an example of composition of vectors as the bird flies, it strikes the air with its wings W, W along WO. According to Newton’s third law of motion, air strikes the wings in opposite directions with the same force in reaction. The reactions are \(\overrightarrow{O A}\) and \(\overrightarrow{O B}\). From law of parallelogram vectors, \(\overrightarrow{O C}\) is the resultant of \(\overrightarrow{O A}\) and \(\overrightarrow{O B}\). This resultant upwards force \(\overrightarrow{O C}\) is responsible for the flight of the bird.

Question 5.
How does the knowledge of projectile help, a player in the baseball game?
Answer:
In the baseball game, a player has to throw a ball so that it goes a certain distance in the minimum time. The time would depend on velocity of ball and angle of throw with the horizontal. Thus, while playing a baseball game, die speed and angle of projection have to be adjusted suitable so that the ball covers the desired distance in minimum time. So, a player has to see the distance and air resistance while playing with a baseball game.

Question 6.
A skilled gun man always keeps his gun slightly tilted above the line of sight while shooting. Why?
Answer:
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 4
When a bullet is fired from a gun with its barrel directed towards the target, it starts falling downwards on account of acceleration due to gravity.
Due to which the bullet hits below the target. Just to avoid it, the barrel of the gun is lined up little above the target, so that the bullet after traveling in parabolic path hits the distant target.

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Question 7.
Establish a relation between angular velocity and time period.
Answer:
We know that angular velocity A0
ω = \(\frac{\Delta \theta}{\Delta t}\)
For motion with uniform angular velocity, in one complete revolution A0 = 2JI radian and At = T s, hence
ω = \(\frac{2 \pi}{T}\) or T = \(\frac{2 \pi}{\omega}\).

Question 8.
A fighter plane is flying horizontally at an altitude of 1.5 km with speed 720 km/h. At what angle of sight (w.r.t. horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target? (NCERT Exemplar)
Answer:
Consider the adjacent diagram. Let a fighter plane, when it be at position P, drops a bomb to hit a target T.
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 5
Let < P’PT= θ
Speed of the plane = 720 km/h
= 720 × \(\frac{5}{18}\) m/s = 200m/s
Altitude of the plane (PT) = 1.5km = 1500 m
If bomb hits the target after time t, then horizontal distance travelled by the bomb.
PP’ = u × t = 200t
Vertical distance travelled by the bomb,
P’T = \(\frac{1}{2}\)gt2 ⇒ 1500 = \(\frac{1}{2}\) × 9.8t2
⇒ t2 = \(\frac{1500}{49}\) ⇒ t = \($\sqrt{\frac{1500}{49}}$\) = 17.49s
Using value oft in Eq. (i),
PP’ = 200 × 17.49 m
Now,
tanθ = \($\frac{P^{\prime} T}{P^{\prime} P}=\frac{1500}{200 \times 17.49}$\) 0.49287 = tan23°12′
θ = 23°12′
Note Angle is with respect to target. As seen by observer in the plane motion of the bomb will be vertically downward below tbe plane.

Long answer type questions

Question 1.
An airline passenger late for a flight walks on an airport moving sidewalk at a speed of 5.00 km/h relative to the sidewalk, in the direction of its motion. The sidewalk is moving at 3.00 km/h relative to the ground and has a total length of 135 m.
(i) What is the passenger’s speed relative to the ground?
(ii) How long does it take him to reach the end of the sidewalk?
(iii) How much of the sidewalk has he covered by the time he reaches Hie end?
Solution:
The situation is sketched in figure. We assign a letter to each body in relative motion, P passenger, S sidewalk, G ground. The relative velocities υ ps and υ SG are given
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 6
υPS = 5.00 km/h, to the right
υSG = 3.00 km/h, to the right

(i) Here, we must find the magnitude of the vector υPG, given the magnitude and direction of two other vectors. We find the velocity υPG by using the relation
υPG = υPS + υSG
Here, the vectors are parallel, and so the vector addition is quite simple (see figure). We add vectors by adding magnitudes.
υPG = υPSSG
= 5.00 km/h + 3.00 km/h
= 8.00 km/h
= 8 × \(\frac{5}{18}\) m/s = \(\frac{40}{18}\) = 2.22 m/s

(ii) The length of the sidewalk is 135 m, and so this is the distance Δ xG the passenger travels relative to the ground. So, our problem is to find Δt when ΔxG =135 m. The rate at which this distance along the ground is covered by the passenger is υPG, where
υPG = \(\frac{\Delta x_{G}}{\Delta t}\)
Therefore, Δ t = \(\frac{\Delta x_{G}}{v_{P G}}\) = \(\frac{135 \mathrm{~m}}{2.22 \mathrm{~m} / \mathrm{s}}\) = 60.8 s

(iii) The problem here is to determine how much of the sidewalk’s surface the passenger moves over. If he was standing still and not walking along the surface, he would cover none of it. Because he is moving relative to the surface at velocity υPS, he does move some distance Δ xs relative to the surface. The problem is to find Δ XS when Δt = 60.8 s, since we found in part (ii) that this is the time interval during which he is on the moving sidewalk. His velocity relative to the sidewalk is υPS = ΔxS / Δt, and so
ΔXS = υPS = Δt = (5.00 km/h) × (60.8s)
= \(\frac{25}{18}\) × 60.8 (∵ 1 km/h = \(\frac{5}{18}\) m/s)
= 84.4 m

PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane

Question 2.
A hunter aims his gun and fires a bullet directlyiafoi monkey in a tree. At the instant, the bullet leaves the barrebdi,;the gun, the monkey drops. Will the bullet hit the monkey? Substantiate your answer with proper reasoning.
Solution:
Let the monkey stationed at A, be fired with a gun fromO with a velocityu at an angle 0 with the horizontal direction OX.
Draw AC, perpendicular to OX. Let the bullet cross the vertical line AC at B after time t and coordinates of B (x, y) be w.r.t. origin O as shown in figure.
∴ t = \(\frac{O C}{u \cos \theta}=\frac{x}{u \cos \theta}\) ………….. (i)
In ∆ OAC, AC = OC tanO = x tanθ ……………. (ii)
Clearly, CB = y = the vertical distance travelled by the bullet in time t. Taking motion of the bullet from O to B along Y-axis, we have y0 = 0, y = y,Uy = usin0, ay = -g,t = t
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 7
PSEB 11th Class Physics Important Questions Chapter 4 Motion in a Plane 8

It means the bullet will pass through the point B on vertical line AC at a vertical distance \(\frac {1}{2}\)gt2 below point A.
The distance through which the monkey falls vertically in time t = \(\frac {1}{2}\)gt2
= AB. It means the bullet and monkey will pass through the point B simultaneously.
Therefore, the bullet will hit the monkey.

PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids

Very Short Answer Type Questions

Question 1.
Three vessels have same base area and different neck area. Equal volume of liquid is poured into them, which will possess more pressure at the base?
Answer:
If the volumes are same, then height of the liquid will be highest in which the cross-section area is least at the top. So, the vessel having least cross-section area at the top possess more pressure at the base (∵ P = ρgh).

Question 2.
What is the use of barometer?
Answer:
Barometer is used to measure the atmospheric pressure.

Question 3.
What is the use of open tube manometer?
Answer:
Open tube manometer is used for measuring pressure difference.

Question 4.
‘What is the gauge pressure?
Solution:
The difference between absolute pressure and atmospheric pressure is known as gauge pressure.
As, Pabsolute = Pa+ ρgh
So, Pabsolute – Pa = ρgh
i.e., Pgauge = ρgh
Here ρ is the density of a fluid of depth h.

PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids

Question 5.
If a wet piece of wood bums, then water droplets appear on the other end, why?
Answer:
When a piece of the wet wood bums, then steam formed and water appear in the form of droplets due to surface tension on the other end.

Question 6.
Why soap bubble bursts after some time?
Answer:
Soap bubble bursts after some time because the pressure inside it become more than the outside pressure.

Question 7.
Can two streamlines cross each other? Why?
Answer:
Two streamlines can never cross each other because if they cross them at the point of intersection there will be two possible direction of flow of fluid which is impossible for streamlines.

Question 8.
A hot liquid moves faster than a cold liquid. Why?
Answer:
The viscosity of liquid decreases with the increase in temperature. Therefore, viscosity of hot liquid is less than that of cold liquid. Due to this hot liquid moves faster than the cold liquid.

Question 9.
Is viscosity a vector? (NCERT Exemplar)
Answer:
Viscosity is a property of liquid it does not have any direction, hence it is a scalar quantity.

Question 10.
Is surface tension a vector? (NCERT Exemplar)
Answer:
No, surface tension is a scalar quantity.
Surface tension = \(\frac{\text { Work done }}{\text { Surface area }} \) , where work done and surface area both Surface area are scalar quantities.

Short Answer Type Questions

Question 1.
A large force is needed to normally separate two glass plates having a thin layer of water between them. Why?
Answer:
The thin layer of water between the glass plates forms a concave surface all around. This decreases the pressure on the inner side of the liquid film. Thus, a large amount of force is required to pull them apart against the atmospheric pressure.

Question 2.
Two soap bubbles in vacuum having radii 3 cm and 4 cm respectively coalesce under isothermal conditions to form a single bubble. What is the radius of the new bubble?
Solution:
Surface energy of first bubble = Surface area x Surface tension
= 2 x 4 πr21T = 8πr21T
Surface energy of second bubble = 8πr22T
Let r be the radius of the coalesced bubbles.
∴ Surface energy of new bubble = 8πr2 T
According to the law of conservation of energy,
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 1
∴ r = 5 cm

Question 3.
A balloon with hydrogen in it rises up but a balloon with air comes down. Why?
Answer:
The density of hydrogen is less than air. So, the buoyant force on the balloon will be more than its weight in case of the hydrogen. So, in this case the balloon rises up. In case of air, the weight of balloon is more than the buoyant force acting on it, so balloon will come down.

PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids

Question 4.
It is easier to spray water in which some soap is dissolved. Explain why?
Answer:
When the liquid is sprayed, it is broken into small drops. The surface area increases and hence the surface energy is also increased. Therefore, work has to be done to supply the additional energy. Since surface energy is numerically equal to the surface tension, so when soap is dissolved in water, the surface tension of the solution decreases and hence less energy is spent to spray it.

Question 5.
Why are the wings of an aeroplane rounded outwards while flattened inwards?
Answer:
The special design of the wings increases velocity at the upper surface and decreases velocity at the lower surface. So, according to Bernoulli’s theorem, the pressure on the upper side is less than the pressure on the lower side. This difference of pressure provides lift.

Question 6.
The surface tension and vapour pressure of water at 20°C is 7.28 x 10-2 Nm-1 and 233x 103 Pa, respectively. What is the radius of the smallest spherical water droplet which can form without evaporating at 20°C?
Answer:
Given, surface tension of water (S) = 7.28 x 10-2 N/m
Vapour pressure (p) = 2.33 x 103 Pa
The drop will evaporate if the water pressure is greater than the vapour pressure.
Let a water droplet or radius R can be formed without évaporating.
Vapour pressure = Excess pressure in drop.
∴ p = \(\frac{2 S}{R}\) or R= \(\frac{2 S}{p}=\frac{2 \times 7.28 \times 10^{-2}}{2.33 \times 10^{3}}\)
= 6.25 x 10-5 m

Long Answer Type Questions

Question 1.
if a sphere of radius r falls under gravity through a liquid of viscosity q, its average acceleration is half that of in starting of the motion. Then, show that the time taken by it to attain the term mal velocity is independent of the liquid density.
Solution:
Let the density of sphere’s material is ρ and that of liquid is σ.
When the sphere just enters in the liquid.
Downward force on the sphere, F = weight of the sphere – weight of the fluid displaced by it.
F= \(\frac{4}{3} \pi r^{3}\) ρg – \(\frac{4}{3} \pi r^{3}\)σg
∵ Mass = Volume xDensity = \(\frac{4}{3} \pi r^{3}\) (ρ-σ)g
∴ Acceleration of the sphere at this instant.
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 2
When the sphere approches to terminal velocity, its acceleration becomes zero.
∴ Average acceleration of the sphere = \(\frac{a+0}{2}\)
= \(\frac{\left(1-\frac{\sigma}{\rho}\right) g}{2}=\left(1-\frac{\sigma}{\rho}\right) \frac{g}{2}\)

If time t taken by the sphere to attain the terminal velocity As we know that,
Terminal velocity, ν = \(\frac{2}{3} \frac{r^{2}}{\eta}(\rho-\sigma) g\)
∵ The sphere falls from rest,
∴ u=O
Using ν=u+at
Putting values in above eqdation, we get
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 3
Thus, t is independent of the liquid density.

PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids

Question 2.
(a) Derive the expression for excess of pressure inside:
(i) a liquid drop.
(ii) a liquid bubble.
(iii) an air bubble.
(b) Derive the relation between the surface tension and the surface energy
Solution:
(a) (i) Let r = radius of a spherical liquid drop of centre O.
T = surface teñsion of the liquid.
Let pi and p0 be the values of pressure inside and outside the drop.
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 4
∴ Excess of pressure inside the liquid drop = pi -p0
Let Δr be the increase in its radius due to excess of pressure. It has one free surface outside it.
∴ increase in surface area of the liquid drop
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 5
= 8πr Δr …………………………… (i)

(∵ Δr is small ∴ Δr2 is neglected.)
∴ increase in surface energy of the drop is
W = surface tension x increase in area
=T x8πr Δr …………………………………… (ii)

Also W = Force due to excess of pressure x displacement
W = Excess of pressure x area of drop x increase in radius
= (pi -p0 )4πr2 Δr ………………………………… (iii)
From eqs. (ii) and (iii), we get
(pi -p0 ) x 4 πr2 Δr = T x8πr A r Δr
or pi -p0 = \(\frac{2 T}{r}\)

(ii) In a liquid bubble : A liquid bubble has air both inside and outside it and therefore it has two free surfaces.
r,Δr, T = ? as above
Thus increase in its surface area
= 2 [ 4 π(r+Δr)2 – 4 πr²]
= 2 x 8 πrΔr
= 16πrΔr
∴ W = T x 16πrΔr, …………………… (iv)

Also W= (pi -p0 ) x 4πr² x Δr ………………………. (v)
∴ From (iv) and (v), we get
(pi -p0 ) x 4πr² x Δr = T. 16πrΔr
or pi -p0 = \(\frac{4 T}{r}\)

(iii) Inside an air bubble: Air bubble is formed inside liquid, thus air bubble has one free surface inside it and liquid is outside.
If r = radius of the air bubble.
Δr = increase in its radius due to excess of pressure (pi -p0 ) inside it.
T = surface tension of the liquid in which bubble is formed, increase in surface area = 8 πrΔr
∴ W = T x 8 πrΔr
Also W = (pi -p0)x 4 πr²Δr
∴ (pi -p0) x 4 πr²Δr = T x 8 πrΔr
or pi -p0 = \(\frac{2 T}{r}\)

(b) Let ABCD be a rectangular frame of wire. Let LM be a slidable cross-piece. Now dip the wireframe in the soap solution so that a film is formed over the frame. Due to surface tension, the film has a tendency to shrink and thereby, the cross-piece LM will be pulled in inward direction which can be kept in its position by applying an equal and opposite force F on it.
∴ F = T × 2l
where T = surface tension and l = length of LM.
It has been taken 21 as the film has two free surfaces.
Let x = small distance by which LM moves to L’M’.
∴ 2l × x = increase in the area of the film
if W = work done in increasing the area by 2l × x,
then W = F × x = (T × 2l) × x
PSEB 11th Class Physics Important Questions Chapter 10 Mechanical Properties of Fluids 6
If U be the surface energy, then by definition
U = \(\frac{\text { Work done in increasing the surface area }}{\text { increase in surface area }} \)
= \(\frac{T \times 2 l \times x}{2 l \times x}\)
U = T
Thus, U is numerically equal to the surface energy.

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

very short answer type questions

Question 1.
Bodies of larger mass need greater initial effort to put them in motion. Why?
Answer:
According to the Newton’s second law of motion, F = ma, for given acceleration a, if m is large, F should be more i. e., greater force will be required to put a larger mass in motion.

Question 2.
The distance travelled by a moving body is directly proportional to time. Is any external force acting on it?
Solution:
When S ∝ t, so acceleration = 0. Therefore, no external force is acting on the body.

Question 3.
A body is acted upon by a number of external forces. Can it remain at rest?
Answer:
Yes, if the external forces acting on the body can be represented in magnitude and direction by the sides of a closed polygon taken in the same order.

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Question 4.
If force is acting on a moving body perpendicular to the direction of motion, then what will be its effect on the speed and direction of the body?
Answer:
No change in speed, but change in direction is possible. Forces acting on a body in circular motion is an example.

Question 5.
An impulse is applied to a moving object with a force at an angle of 20° w.r.t. velocity vector, what is the angle between the impulse vector and change in momentum vector?
Answer:
Impulse and change in momentum are along the same direction. Therefore, angle between these two vectors is zero degree.

Question 6.
A body is moving in a circular path such that its speed always remains constant. Should there be a force acting on the body?
Answer:
When a body is moving along a circular path, speed always remains constant and a centripetal force is acting on the body.

Question 7.
The mountain road is generally made winding upwards rather than going straight up. Why?
Solution:
When we go up a mountain, the opposing force of friction
F = μR = μ mg cosθ.
where θ is angle of slope with horizontal. To avoid skidding, F should be large.
∴ cosθ should be large and hence, θ must be small.
Therefore, mountain roads are generally made winding upwards. The road straight up would have large slope.

Short answer type questions

Question 1.
A body of mass 500 g tied to a string of length 1 m is revolved in the vertical circle with a constant speed. Find the minimum speed at which there will not be any slack on the string. Take g = 10ms-2
Solution:
The tension T in the string will provide the necessary centripetäl force
\(\frac{m v^{2}}{r}\) i.e., T = \(\frac{m v^{2}}{r}\)
Here, m = 500g = \(\frac{1}{2}\)kg; r = 1m
T = \(\frac{1}{2}\)υ2N ……………. (i)
There will not be slack 1f T ≥ weight of the body
i.e., T ≥ mg or \(\frac{1}{2}\)υ2 ≥\(\frac{1}{2}\) × 10
υ2 ≥ 10 or υ ≥ \(\sqrt{10}\) ms-1
So the minimum speed = \(\sqrt{10}\) ms-1 = 3.162 ms-1

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Question 2.
A light, inextensible string as shown in figure connects two blocks of mass M1 and M2. A force F as shown acts upon M1. Find acceleration of the system and tension in string.
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 1
Solution:
Here as the string is inextensible, acceleration of two blocks will be same. Also, string is massless so tension throughout the string will be same. Contact force will be normal force only. Let acceleration of each block is a, tension in string is T and contact force between M1 and surface is N1 and contact force between M2 and surface is N2
Applying Newton’s second law for the blocks;
For M1, F – T = M1 a ……………. (i)
M1 g – N1 = 0 …………….. (ii)
For M2, T = M2 ……………… (iii)
M2g – N = 0 ……………… (iv)
Solving equations (i) and (iii), we get
a = \(\frac{F}{M_{1}+M_{2}}\)
and T = \(\frac{M_{2} F}{M_{1}+M_{2}}\)
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 2

Question 3.
A block of mass m is held against a rough vertical wall by pressing it with a finger. If the coefficient of friction between the block and the wall is μ and the acceleration due to gravity is g, calculate the minimum force required to be applied by finger to hold the block against the wall? (NCERT Exemplar)
Solution:
Given, mass of the block = m
Coefficient of friction between the block and the wall = μ
Let a force F be applied on the block to hold the block against the wall.
The normal reaction of mass be N and force of friction acting upward be f.
In equilibrium, vertical and horizontal forces should be balanced separately.
f = mg …………….. (i)
∴ and F = N …………… (ii)
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 3

But force of friction (f) = μN
= μF [using eq. (ii) ] ………….. (iii)
From eqs. (i) and (iii), we get
μF = mg
or F = \(\frac{m g}{\mu}\)

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Question 4.
A bird is sitting on the floor of a closed glass cage and the cage is in the hand of a girl. Will the girl experience any change in the weight of the cage when the bird (i) starts flying in the cage with a constant velocity, (ii) flies upwards with acceleration and (iii) flies downwards with acceleration?
Solution:
In a closed glass cage, air inside is bound with the cage. Therefore,
(i) there would be no change in weight of the cage if the bird flies with a constant velocity.
(ii) the cage becomes heavier, when bird flies upwards with an acceleration.
(iii) the cage appears lighter, when bird flies downwards with an acceleration.

Question 5.
When walking on ice, one should take short steps rather than long steps. Why?
Solution:
Let R represent the reaction offered by the ground. The vertical component R cosθ will balance the weight of the person and the horizontal component R sinθ will help the person to walk forward.
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 4
Now, normal reaction = R cosθ
Friction force = R sinθ
Coefficient of friction, μ = \(\frac{R \sin \theta}{R \cos \theta}\) = tanθ
In a long step, θ is more. So tanθ is more. But μ has a fixed value. So, there is danger of slipping in a long step.

Question 6.
A body of mass m is suspended by two strings making angles α and β with the horizontal as shown in fig. Calculate the tensions in the two strings.
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 5
Solution:
Considering components of tensions T1 and T2 along the horizontal and vertical directions,
We have
-T1cosα + T2cosβ = 0
or T1cosα = T2cosβ …………… (i)
and T1 sinα + T2 sinβ = mg
From eq. (i) T2 = \(\frac{T_{1} \cos \alpha}{\cos \beta}\) and substituting it in eq. (ii), we get
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 6

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Question 7.
State the law of conservation of momentum. Establish the same for a ‘n’ body system.
Solution:
When no external force acts on a system the momentum will remain conserved. Consider a system of a n bodies of masses m1 ,m2 ,m3 , ………… ,mn. If p1 , p2 , P3 , ………. ,Pn are the momentum associated then the rate of change of momentum with the system,
\(\frac{d p}{d t}=\frac{d p_{1}}{d t}+\frac{d p_{2}}{d t}+\frac{d p_{3}}{d t}\) + ………. + \(\frac{d p_{n}}{d t}=\frac{d}{d t}\) = (p+1 +p2 +p3+ ………. +pn )
If no external force acts, \(\frac{d p}{d t}\) = 0
∴ p = constant, i.e., P1 + p2 + P3 +………… +Pn = constant.

Question 8.
A block slides down from top of a smooth inclined plane of elevation θ fixed in an elevator going up with an acceleration a0. The base of incline has length L. Find the time taken by the block to reach the bottom.
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 7
Solution:
The free body force diagram is shown. The forces are
(i) N normal to the plane (ii) mg acting vertically down (iii) ma0 (pseudo-force).
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 8
If a is the acceleration of the body with respect to incline, taking components of forces parallel to the incline mg sinθ + ma0 sinθ = ma
a = (g + a0)sinθ
This is the acceleration with respect to elevator.
The distance travelled is \(\frac{L}{\cos \theta}\) If t is the time for reaching the bottom of
incline, using equation of motion, s = ut + \(\frac{1}{2}\)at2, we get
\(\frac{L}{\cos \theta}\) = 0 + \(\frac{1}{2}\)(g + a0)sinθ.t2
t = [latex]\frac{2 L}{\left(g+a_{0}\right) \sin \theta \cos \theta}[/latex]1/2

Long answer type questions

Question 1.
Figure shows (x – t), (y – t) diagram of a particle moving in 2-dimensions.
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 9
If the particle has a mass of 500 g, find the force (direction and magnitude) acting on the particle. (NCERT Exemplar)
Given, mass of the particle (m) = 500 g = 0.5 kg
x – t graph of the particle is a straight line.
Hence, particle is moving with a uniform velocity along x-axis, i. e., its acceleration along x-axis is zero and hence, force acting along x-axis is zero.
y – t graph of particle is a parabola. Therefore, particle is in accelerated motion along y – axis.
At t = 0, uy = 0
Along y – axis, at t = 2s, y = 4m
Using equation of motion, y = uyt + \(\frac{1}{2}\) ayt2
4 = 0 × 2 + \(\frac{1}{2}\) × ay × (2)2
or ay = 2 m/s2
∴ Force acting along y – axis (fy) = may = 0.5 × 2 = 1.0 N (along y – axis)

PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion

Question 2.
When a body slides down from rest along a smooth inclined plane making an angle of 45° with the horizontal, it takes time T. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time pT, where p is some number greater than 1. Calculate the coefficient of friction between the body and the rough plane. (NCERT Exemplar)
Solution:
On smooth inclined plane Acceleration of a body sliding down a smooth inclined plane, a = g sinθ
Here, θ = 45°
a = gsin45°= \(\frac{g}{\sqrt{2}}\)
Let the travelled distance be s.
Using the equation of motion, s = ut + \(\frac{1}{2}\) at2 ,
We get
s = 0 .t + \(\frac{1}{2} \frac{g}{\sqrt{2}}\)T2
or s = \(\frac{g T^{2}}{2 \sqrt{2}}\) ………… (i)

On rough inclined plane
Acceleration of the body,
a = g (sinθ – μ cosθ)
= g (sin 45° – μ cos 45°)
= \(\frac{g(1-\mu)}{\sqrt{2}}\) [as sin 45°= cos 45° = \(\frac{1}{\sqrt{2}}\)]
Again using equation of motion,
PSEB 11th Class Physics Important Questions Chapter 5 Laws of Motion 10

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 10 Mechanical Properties of Fluids Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 10 Mechanical Properties of Fluids

PSEB 11th Class Physics Guide Mechanical Properties of Fluids Textbook Questions and Answers

Question 1.
Explain why
(a) The blood pressure in humans is greater at the feet than at the brain
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km
(c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area.
Answer:
(a) The pressure of a liquid is given by the relation
P =hρg
where, P = Pressure
h = Height of the liquid column
ρ = Density of the liquid ‘ .
g = Acceleration due to the gravity

It can be inferred that pressure is directly proportional to height. Hence, the blood pressure in human vessels depends on the height of the blood column in the body. The height of the blood column is more at the feet than it is at the brain. Hence, jthe blood pressure at the feet is more than it is at the brain.

(b) Density of air is the maximum near the sea level. Density of air decreases with increase in height from the surface. At a height of about 6 km, density decreases to nearly half of its value at the sea level. Atmospheric pressure is proportional to density. Hence, at a height of 6 km from the surface, it decreases to nearly half of its value at the sea level.

(c) When force is applied on a liquid, the pressure in the liquid is transmitted in all directions. Hence, hydrostatic pressure does not have a fixed direction and it is a scalar physical quantity.

Question 2.
Explain why
(a) The angle of contact of mercury with glass is obtuse, while that of water with glass is acute.
(b) Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not.)
(c) Surface tension of a liquid is independent of the area of the surface
(d) Water with detergent dissolved in it should have small angles of contact.
(e) A drop of liquid under no external forces is always spherical in shape
Solution:
(a) The angle between the tangent to the liquid surface at the point of contact and the surface inside the liquid is called the angle of contact (0), as shown in the given figure.
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 17
Sla, Ssa, and Ssl are the respective interfacial tensions between the liquid-air, solid-air, and solid-liquid interfaces. At the line of contact, the surface forces between the three media must be in equilibrium, i. e.,
cos θ = \(\frac{S_{s a}-S_{s l}}{S_{l a}}\)
The angle of contact 0, is obtuse if Ssa < Sla (as in the case of mercury on glass). This angle is acute if Ss < Sa (as in the case of water on glass).

(b) Mercury molecules (which make an obtuse angle with glass) have a strong force of attraction between themselves and a weak force of attraction toward solids. Hence, they tend to form drops. On the other hand, water molecules make acute angles with glass. They have a weak force of attraction between themselves and a strong force of attraction toward solids. Hence, they tend to spread out.

(c) Surface tension is the force acting per unit length at the interface between the plane of a liquid and any other surface. This force is independent of the area of the liquid surface. Hence, surface tension is also independent of the area of the liquid surface.

(d) Water with detergent dissolved in it has small angles of contact (0). This is because for a small 0, there is a fast capillary rise of the detergent in the cloth. The capillary rise of a liquid is directly proportional to the cosine of the angle of contact (0). If 0 is small, then cos 0 will be large and the rise of the detergent water in the cloth will be fast.

(e) A liquid tends to acquire the minimum surface area because of the presence of surface tension. The surface area of a sphere is the minimum for a given volume. Hence, under no external forces, liquid drops always take spherical shape.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 3.
Fill in the blanks using the word(s) from the list appended with each statement:
(a) Surface tension of liquids generally…with temperatures (increases/ decreases)
(b) Viscosity of gases …………………. with temperature, whereas viscosity of liquids ………………………… with temperature (increases/decreases)
(c) For solids with elastic modulus of rigidity, the shearing force is proportional to …………………………… while for fluids it is proportional to ………………………………… (shear strain/rate of shear strain)
(d) For a fluid in a steady flow, the increase in flow speed at a constriction follows (conservation of mass / Bernoulli’s principle)
(e) For the model of a plane in a wind tunnel, turbulence occurs at a ………………………….. speed for turbulence for an actual plane (greater /smaller)
Solution:
(a) decreases
The surface tension of a liquid is inversely proportional to temperature.

(b) increases; decreases
Most fluids offer resistance to their motion. This is like internal mechanical friction, known as viscosity. Viscosity of gases increases with temperature, while viscosity of liquids decreases with temperature.

(c) shear strain; rate of shear strain
With reference to the elastic modulus of rigidity for solids, the shearing force is proportional to the shear strain. With reference to the elastic modulus of rigidity for fluids, the shearing force is proportional to the rate of shear strain.

(d) conservation of mass/Bernoulli’s principle
For a steady-flowing fluid, an increase in its flow speed at a constriction follows the conservation of mass/Bemoulli’s principle.

(e) greater
For the model of a plane in a wind tunnel, turbulence occurs at a greater speed than it does for an actual plane. This follows from Bernoulli’s principle and different Reynolds numbers are associated with the motions of the two planes. ,

Question 4.
Explain why
(a) To keep a piece of paper horizontal, you should blow over, not under, it
(b) When we try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c) The size of the needle of a syringe controls flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d) A fluid flowing out of a small hole in a vessel results in a backward thrust on the vessel
(e) A spinning cricket ball in air does not follow a parabolic trajectory
Answer:
(a) When air is blown under a paper, the velocity of air is greater under the paper than it is above it. As per Bernoulli’s principle, atmospheric pressure reduces under the paper. This makes the paper fall. To keep a piece of paper horizontal, one should blow over it. This increases the velocity of air above the paper. As per Bernoulli’s principle, atmospheric pressure reduces above the paper and the paper remains horizontal.

(b) According to the equation of continuity,
Area x Velocity = Constant
For a smaller opening, the velocity of flow of a fluid is greater than it is when the opening is bigger. When we try to close a tap of water with our fingers, fast jets of water gush through the openings between our fingers. This is because very small openings are left for the water to flow out of the pipe. Hence, area and velocity are inversely proportional to each other.

(c) The small opening of a syringe needle controls the velocity of the blood flowing out. This is because of the equation of continuity. At the constriction point of the syringe system, the flow rate suddenly increases to a high value for a constant thumb pressure applied.

(d) When a fluid flows out from a small hole in a vessel, the vessel receives a backward thrust. A fluid flowing out from a small hole has a large velocity according to the equation of continuity,
Area x Velocity = Constant
According to the law of conservation of momentum, the vessel attains a backward velocity because there are no external forces acting on the system.

(e) A spinning cricket ball has two simultaneous motions-rotatory and linear. These two types of motion oppose the effect of each other. This decreases the velocity of air flowing below the ball. Hence, the pressure on the upper side of the ball becomes lesser than that on the lower side. An upward force acts upon the ball. Therefore, the ball takes a curved path. It does not follow a parabolic path.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 5.
A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal floor?
Solution:
Mass of the girl, m = 50 kg
Diameter of the heel, d = 1 cm = 0.01 m
Radius of the heel, r = \(\frac{d}{2}\) = 0.005 m
Area of the heel = πr²
= 3.14 x (0.005)2
= 7.85 x 10-5 m2

Force exerted by the heel on the floor,
F = mg
= 50 x 9.8 = 490 N
Pressure exerted by the heel on the floor,
P = \(\frac{\text { Force }}{\text { Area }}\)
= \(\frac{490}{7.85 \times 10^{-5}}\) = 6.24 x 106Nm-2
Therefore, the pressure exerted by the heel on the horizontal floor is 6.24 x 106Nm-2 .

Question 6.
Torieelli’s barometer used mercury. Pascal duplicated it using French wine of density 984kg m3. Determine the height of the wine column for normal atmospheric pressure.
Solution:
Density of mercury, ρ1 = 13.6 x 103 kg / m3
Height of the mercury column, h1 = 0.76 m
Density of French wine, ρ2 = 984 kg / m3
Height of the French wine column = h2
Acceleration due to gravity, g = 9.8 m / s2

The pressure in both the columns is equal, i. e.,
Pressure in the mercury column = Pressure in the French wine column
ρ1h1g = ρ2h2g
h2 = \(\frac{\rho_{1} h_{1}}{\rho_{2}}\)
= \(\frac{13.6 \times 10^{3} \times 0.76}{984}\)
= 10.5m
Hence, the height of the French wine column for normal atmospheric pressure is 10.5 m.

Question 7.
A vertical off-shore structure is built to withstand a maximum stress of 109 Pa. Is the structure suitable for putting up on top of an oil well in the ocean? Take the depth of the ocean to bet roughly 3 km, and ignore ocean currents.
Solution:
Yes The maximum allowable stress for the structure, P = 109Pa
Depth of the ocean, d = 3 km = 3 x 103 m
Density of water, ρ = 103 kg / m3
Acceleration due to gravity, g = 9.8 m / s2

The pressure exerted because of the sea water at depth, d = ρdg
= 3 x 103 x 103 x 9.8 = 2.94 x 107 Pa
The maximum allowable stress for the structure (109 Pa) is greater than the pressure of the seawater (2.94 x 107 Pa). The pressure exerted by the ocean is less than the pressure that the structure can withstand. Hence, the structure is suitable for putting up on top of an oil well in the ocean.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 8.
A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of cross-section of the piston carrying the load is 425cm2. What maximum pressure would the smaller piston have to bear?
Solution:
The maximum mass of a car that can be lifted, m = 3000 kg
Area of cross-section of the load-carrying piston, A = 425 cm2 = 425x 10-4m2
The maximum force exerted by the load, F = mg
= 3000 x 9.8 = 29400N
The maximum pressure exerted on the load-carrying piston, P = \(\frac{F}{A}\)
= \(\frac{29400}{425 \times 10^{-4}}\)
= 6.917 x 105 Pa
Pressure is transmitted equally in all directions in a liquid. Therefore, the maximum pressure that the smaller piston would have to bear is 6.917 x 105Pa.

Question 9.
A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the specific gravity of spirit?
Solution:
The given system of water, mercury, and methylated spirit is shown as follows:
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 1
Height of the spirit column, h1 = 12.5cm = 0.125m
Height of the water column, h2 = 10 cm = 0.1 m
P0 = Atmospheric pressure
ρ1 = Density of spirit
ρ2 = Density of water
Pressure at point B = P0 + h1ρ1g
Pressure at point D = P0 + h2ρ2g
Pressure at points B and D is the same.
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 2
Therefore, the specific gravity of spirit is 0.8.

Question 10.
In the previous problem, if 15.0 cm of water and spirit each are further poured into the respective arms of the tube, what is the difference in the levels of mercury in the two arms? (Specific gravity of mercury = 13.6)
Solution:
Height of the water column, h1 =10+15 = 25cm
Height of the spirit column, h2 = 12.5 +15 = 27.5cm
Density of water, ρ1 = 1 g cm-3
Density of spirit, ρ2 = 0.8 g cm-3
Density of mercury = 13.6 g cm-3

Let h be the difference between the levels of mercury in the two arms. Pressure exerted by height h, of the mercury column:
= hρg = h x 13.6g ……………………………….. (i)
Difference between the pressures exerted by water and spirit
h1ρ1g – h2ρ1g
= g (25 x 1 – 27.5 x 0.8) = 3g ……………………………….. (ii)
Equating equations (i) and (ii), we get
13.6 hg = 3g
h = 0.220588 ≈ 0.221 cm .
Hence, the difference between the levels of mercury in the two arms is 0.221 cm.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 11.
Can Bernoulli’s equation be used to describe the flow of water through a rapid in a river? Explain.
Answer:
No Explanation: Bernoulli’s equation cannot be used to describe the flow of water through a rapid in a river because of the turbulent flow of water. This principle can only be applied to a streamlined flow.

Question 12.
Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s equation? Explain.
Answer:
No Explanation: It does not matter if one uses gauge pressure instead of absolute pressure while applying Bernoulli’s equation. The two points where Bernoulli’s equation is applied should have significantly different atmospheric pressures.

Question 13.
Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0 cm. If the amount of glycerine collected per second at one end is 4.0 x 10-3 kgs-1, what is the pressure difference between the two ends of the tube?(Density of glycerine = 1.3 x 103 kg m -3 and viscosity of glycerine = 0.83Pas). [You may also like to check if the assumption of laminar flow in the tube is correct].
Solution:
Length of the horizontal tube, l = 1.5m
Radius of the tube, r = 1 cm = 0.01 m
Diameter of the tube, d = 2r = 0.02 m
Glycerine is flowing at a rate of 4.0 x 10 kgs .
M = 4.0 x 10-3 kgs-1
Density of glycerine, ρ = 1.3 x 10-3 kg m-3
Viscosity of glycerine, η = 0.83Pas
Volume of glycerine flowing per sec,
V = \(\frac{M}{\rho}=\frac{4.0 \times 10^{-3}}{1.3 \times 10^{3}}\)
= 3.08 x 10-6 m3 s-1
According to Poisevelle’s formula, we have the relation for the rate of flow,
V = \(\frac{\pi p r^{4}}{8 \eta l} \)
where, p is the pressure difference between the two ends of the tube
∴ p = \(\frac{V 8 \eta l}{\pi r^{4}}\)
= \(\frac{3.08 \times 10^{-6} \times 8 \times 0.83 \times 1.5}{3.14 \times(0.01)^{4}} \)
= 9.8 x 102 Pa
Reynold’s number is given by the relation,
R = \(\frac{4 \rho V}{\pi d \eta}=\frac{4 \times 1.3 \times 10^{3} \times 3.08 \times 10^{-6}}{3.14 \times(0.02) \times 0.83}\)
= 0.3
Reynold’s number is about 0.3. Hence, the flow is laminar.

Question 14.
In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are 70ms-1 and 63 ms-1 respectively. What is the lift on the wing if its area is 2.5m2? Take the density of air to be 1.3 kg m-3.
Solution:
Speed of wind on the upper surface of the wing, V1 = 70 m/s
Speed of wind on the lower surface of the wing, V2 = 63 m/s
Area of the wing, A = 2.5 m2
Density of air, ρ = 1.3 kg m
According to Bernoulli’s theorem, we have the relation:
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 3
where, P1 = Pressure on the upper surface of the wing
P2 = Pressure on the lower surface of the wing
The pressure difference between the upper and lower surfaces of the wing provides lift to the aeroplane.
Lift on the wing = (P2 – P1 )A
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 4
Therefore, the lift on the wing of the aeroplane is 1.51 x 103N.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 15.
Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect? Why?
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 5
Solution:
Figure (a) is incorrect.
Take the case given in figure (b).
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 6
where, A1 = Area of pipe 1
A2 = Area of pipe 2
V1 = Speed of the fluid in pipe 1
V2 = Speed of the fluid in pipe 2
From the law of continuity, we have
A1V1 = A2V2
When the area of a cross-section in the middle of the venturi meter is small, the speed of the flow of liquid through this part is more. According to Bernoulli’s principle, if speed is more, then pressure is less. Pressure is directly proportional to height. Hence, the level of water in pipe 2 is less. Therefore, figure (a) is not possible.

Question 16.
The cylindrical tube of a spray pump has a cross-section of 8.0 cm2 one end of which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube is 1.5 m min-1, what is the speed of ejection of the liquid through the holes?
Solution:
Area of cross-section of the spray pump. A = 8 cm2 = 8 x 10-4 m2
number of holes, n = 40
Diameter of each hole, d = 1 mm = 1 x 10-3 m
Radius of each hole,r = d/2 = 0.5 x 10-3 m
Area of cross-section of each hole, a = πr² = π(0.5 x 10-3)2m2
Total area of 40 holes, A2 = n x a
= 40 x 3.14 x (0.5 x 10-3)2 m2
= 31.41 x 10-6 m2

Speed of flow of liquid inside the tube, V1 = 1.5 m/min = 0.025m/s
Speed of ejection of liquid through the holes = V2
According to the law of continuity, we have A1V1 = A2V2
V2 = \(\frac{A_{1} V_{1}}{A_{2}}=\frac{8 \times 10^{-4} \times 0.025}{31.41 \times 10^{-6}}\)
= 0.636 m/s
Therefore, the speed of ejection of the liquid through the holes is 0.636 m/s.

Question 17.
A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and the light slider supports a weight of 1.5 x 10-2 N (which includes the small weight of the slider). The length of the slider is 30 cm. What is the surface tension of the film?
Solution:
The weight that the soap film supports, W = 1.5 x 10-2 N
Length of the slider, l = 30 cm = 0.3 m
A soap film has two free surfaces.
∴ Total length = 2l = 2 x 0.3 = 0.6 m
Surface tension, T = \(\frac{\text { Force or Weight }}{2 l} \)
= \(\frac{1.5 \times 10^{-2}}{0.6}\) =  2.5 x10-2  N/m
Therefore, the surface tension of the film is 2.5 x10-2Nm-1.

Question 18.
Figure (a) shows a thin liquid film supporting a small weight = 4.5 x 10-2 N.
What is the weight supported by a film of the same liquid at the same temperature in fig. (b) and (c)? Explain your answer physically.
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 7
Solution:
Take case (a):
The length of the liquid film supported by the weight, l = 40 cm = 0.4 m
The weight supported by the film, W = 4.5 x 10-2 N
A liquid film has two free surfaces.
∴ Surface tension = \(\frac{W}{2 l}=\frac{4.5 \times 10^{-2}}{2 \times 0.4}\) = 5.625 x 10-2 Nm-1
In all the three figures, the liquid is the same. Temperature is also the same for each case. Hence, the surface tension in figure (b) and figure (c) is the same as in figure (a), i.e., 5.625x 10 ~2Nm-1.
Since the length of the film in all the cases is 40 cm, the weight supported in each case is 4.5 x 10-2 N.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 19.
What is the pressure inside the drop of mercury of radius 3.00 mm at room temperature? Surface tension of mercury at that temperature (20°C) is 4.65 x 10-1 Nm-1. The atmospheric pressure is 1.01 x 105 Pa. Also give the excess pressure inside the drop.
Solution:
Radius of the mercury drop, r = 3.00 mm = 3 x 10-3 m
Surface tension of mercury, T = 4.65 x 10-1 N m-1
Atmospheric pressure, P0 = 1.01 x 105 Pa
Total pressure inside the mercury drop = Excess pressure inside mercury + Atmospheric pressure
= \(\frac{2 T}{r}+P_{0}\)
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 8
Excess pressure = \(\frac{2 T}{r}=\frac{2 \times 4.65 \times 10^{-1}}{3 \times 10^{-3}}\) = 310 Pa

Question 20.
What is the excess pressure inside a bubble of soap solution of ‘ radius 5.00 mm, given that the surface tension of soap solution at the temperature (20°C) is 2.50 x 10-2 Nm-1? If an air bubble of the same dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble? (1 atmospheric pressure is 1.01 x 105 Pa).
Solution:
Soap bubble is of radius, r = 5.00 mm = 5 x 10-3 m
Surface tension of the soap solution, T = 2.50 x 10-2 Nm-1
Relative density of the soap solution = 1.20
∴ Density of the soap solution, ρ = 1.2 x 103 kg/m3
Air bubble formed at a depth, h = 40 cm = 0.4 m
Radius of the air bubble, r = 5 mm = 5 x 10-3 m
1 atmospheric pressure = 1.01 x 105Pa

Acceleration due to gravity, g = 9.8 m/s2
Hence, the excess pressure inside the soap bubble is given by the relation
P = \(\frac{4 T}{r}=\frac{4 \times 2.5 \times 10^{-2}}{5 \times 10^{-3}}\) = 20 Pa
Therefore, the excess pressure inside the soap bubble is 20 Pa.
The excess pressure inside the air bubble is given by the relation
P’ = \(\frac{2 T}{r}\)
= \(\frac{2 \times 2.5 \times 10^{-2}}{5 \times 10^{-3}}\)
=10 Pa

Therefore, the excess pressure inside the air bubble is 10 Pa.
At a depth of 0.4 m, the total pressure inside the air bubble =Atmospheric pressure + hρg + P’
= 1.01 x 105 + 0.4 x 1.2 x 103 x 9.8 + 10 ,
= 1.057 x 105 Pa = 1.06 x 105 Pa
Therefore, the pressure inside the air bubble is 1.06 x 105 Pa.

Additional Exercises

Question 21.
A tank with a square base of area 1.0 m2 is divided by a vertical partition in the middle. The bottom of the partition has a small-hinged door of area 20 cm2. The tank is filled with water in one compartment, and an acid (of relative density 1.7) in the other, both to a height of 4.0 m. compute the force necessary to keep the door close.
Solution:
Base area of the given tank, A = 1.0 m2
Area of the hinged door, a = 20 cm2 = 20 x 10-4 m2
Density of water, ρ1 = 103 kg/m3
Density of acid, ρ2 = 1.7 x 103 kg/m3
Height of the water column, h1 = 4 m
Height of the acid column, h2 = 4 m
Acceleration due to gravity, g = 9.8 m/s2
Pressure due to water is given as
P1 =h1ρ1g = 4 x 103 x 9.8 = 3.92 x 104Pa
Pressure due to acid is given as, P2 = h2ρ2g
= 4 x 1.7 x103 x 9.8
= 6.664 x 104 Pa

Pressure difference between the water and acid columns,
ΔP=P2– P1
= 6.664 x 104 -3.92 x104
= 2.744 x104 Pa
Hence, the force exerted on the door = ΔP x a
= 2.744 x 104 x 20 x 10-4 = 54.88N
Therefore, the force necessary to keep the door closed is 54.88N.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 22.
A manometer reads the pressure of a gas in an enclosure as shown in figure (a). When a pump removes some of the gas, the manometer reads as in figure (b). The liquid used in the manometers is mercury and the atmospheric pressure is 76 cm of mercury.
(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and (b), in units of cm of mercury.
(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with mercury) are poured into the right limb of the manometer? (Ignore the small change in the volume of the gas).
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 9
Solution:
(a) For figure (a)
Atmospheric pressure, P0 = 76 cm of Hg
The difference between the levels of mercury in the two limbs gives gauge pressure Hence, gauge pressure is 20 cm of Hg.
Absolute pressure = Atmospheric pressure + Gauge pressure
= 76+20 =96 cm of Hg

For figure (b)
Difference between the levels of mercury in the two limbs = -18 cm Hence, gauge pressure is -18 cm of Hg.
Absolute pressure = Atmospheric pressure + Gauge pressure
= 76 cm-18cm = 58 cm

(b) 13.6 cm of water is poured into the right limb of figure (b).
Relative density of mercury = 13.6
Hence, a column of 13.6 cm of water is equivalent to 1 cm of mercury. Let h be the difference between the levels of mercury in the two limbs. The pressure in the right limb is given as,
PR = Atmospheric pressure + 1 cm of Hg
= 76+1 = 77 cm of Hg …………………………. (i)
The mercury column will rise in the left limb.
Hence, pressure in the left limb,
PL = 58 + h ……………………………. (ii)
Equating equations (i) and (ii), we get
77 = 58 + h
h = 19 cm
Hence, the difference between the levels of mercury in the two limbs will be 19 cm.

Question 23.
Two vessels have the same base area but different shapes. The first vessel takes twice the volume of water that the second vessel requires to fill upto a particular common height. Is the force exerted by the water on the base of the vessel the same in the two cases? If so, why do the vessels filled with water to that same height give different readings on a weighing scale?
Answer:
Yes.
Two vessels having the same base area have identical force and equal pressure acting on their common base area. Since the shapes of the two vessels are different, the force exerted on the sides of the vessels has non-zero vertical components. When these vertical components are added, the total force on one vessel comes out to be greater than that on the other vessel. Hence, when these vessels are filled with water to the same height, they give different readings on a weighing scale.

Question 24.
During blood transfusion the needle is inserted in a vein where the gauge pressure is 2000Pa. At what height must the blood container be placed so that blood may just enter the vein? [Take the density of whole blood = 1.06 x 103 kg m-3 ].
Solution:
Given, gauge pressure, P = 2000 Pa
Density of whole blood, p = 1.06 x 103 kg m-3
Acceleration due to gravity, g = 9.8 m/s2
Height of the blood container = h
Pressure of the blood container, P = hρg
h = \(\frac{P}{\rho g}=\frac{2000}{1.06 \times 10^{3} \times 9.8}\)
= 0.1925 m
The blood may enter the vein if the blood container is kept at a height greater than 0.1925m, i. e., about 0.2 m.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 25.
In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube to its change in the potential and kinetic energy,
(a) What is the largest average velocity of blood flow in an artery of diameter 2 x 10-3 m if the flow must remain laminar?
(b) Do the dissipative forces become more important as the fluid velocity increases? Discuss qualitatively.
Solution:
(a) Diameter of the artery, d = 2×10-3 m
Viscosity of blood, η = 2.084 x 10-3 Pas
Density of blood, ρ = 1.06 x 103 kg/m3
Reynolds’ number for laminar flow, NR = 2000
The largest average velocity of blood is given as
Vavg = \(\frac{N_{R} \eta}{\rho d}\)
= \(\frac{2000 \times 2.084 \times 10^{-3}}{1.06 \times 10^{3} \times 2 \times 10^{-3}}\)
= 1.966 m/s
Therefore, the largest average velocity of blood is 1.966 m/s
(b) Yes, as the fluid velocity increases, the dissipative forces become more important. This is because of the rise of turbulence. Turbulent flow causes dissipative loss in a fluid.

Question 26.
(a) What is the largest average velocity of blood flow in an artery of radius 2 x 10-3 m if the flow must remain laminar?
(b) What is the corresponding flow rate? (Take viscosity of blood to be 2.084 x 10-3 Pas).
Solution:
(a) Radius of the artery, r = 2 x 10-3 m
Diameter of the artery, d=2 x 2x 10-3 m = 4 x 10-3m
Viscosity of blood, η = 2.084 x 10-3 Pa s
Density of blood, ρ = 1.06 x 103 kg/m3
Reynolds’ number for laminar flow, NR = 2000
The largest average velocity of blood is given by the relation
VAvg = \(\frac{N_{R} \eta}{\rho d}=\frac{2000 \times 2.084 \times 10^{-3}}{1.06 \times 10^{3} \times 4 \times 10^{-3}}\)
= 0.983 m/s
Therefore, the largest average velocity of blood is 0.98,3 m/s.

(b) Flow rate is given by the relation
R = πr² Vavg
= 3.14 x (2 x 10-3)2 x 0.983
= 1.235 x 10-5m3s-1
Therefore, the corresponding flow rate is 1.235 x 10-5m3s-1.

Question 27.
A plane is in level flight at constant speed and each of its two wings has an area of 25m2. If the speed of the air is 180km/h over the lower wing and 234 km/h over the upper wing surface, determine the plane’s mass. (Take air density to be 1kg m-3).
Solution:
The area of the wings of the plane, A = 2 x 25 = 50 m2
Speed of air over the lower wing,
V1 = 180 km/h = 180 x \(\frac{5}{18}\) m/s = 50 m/s
Speed of air over the upper wing,
V2 = 234 km/h = 234 x \(\frac{5}{18}\) m/s = 65 m/s
Density of air, ρ = 1 kg m-3
Pressure of air over the lower wing = P1
Pressure of air over the upper wing = P2
The upward force on the plane can be obtained using Bernoulli’s equation as
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 10
The upward force (F) on the plane can be calculated as
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 11
Using Newton’s force equation, we can obtain the mass (m) of the plane as
F = mg
m = \(\frac{43125}{9.8}\)
= 4400.51 kg ≈ 4400 kg
Hence, the mass of the plane is about 4400 kg.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 28.
In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop of radius 2.0 x 10-5 m and density 1.2 x 10-5 kg m?
Take the viscosity of air at the temperature of the experiment to be 1.8x 105 Pas. How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to air.
Solution:
Terminal speed = 5.8cm/s; Viscous force = 3.9 x 10-10 N
Radius of the given uncharged drop, r = 2.0 x 10-5 m
Density of the uncharged drop, ρ = 1.2 x 103 kg m-3
Viscosity of air, η = 1.8 x 10-5 Pa s
Density of air (ρ0) can be taken as zero in order to neglect buoyancy of air.
Acceleration due to gravity, g = 9.8 m/s2
Terminal velocity (ν) is given by the relation
ν = \(\frac{2 r^{2} \times\left(\rho-\rho_{0}\right) g}{9 \eta}\)
= \(\frac{2 \times\left(2.0 \times 10^{-5}\right)^{2}\left(1.2 \times 10^{3}-0\right) \times 9.8}{9 \times 1.8 \times 10^{-5}}\)
= 5.807 x 10-2ms-1
= 5.8 cm s-1
Hence, the terminal speed of the drop is 5.8 cms-1.
The viscous force on the drop is given by:
F = 6πηrν
∴ F = 6 x 3.14 x 1.8 x 10-5 x 2.0 x 10-5 x 5.8 x 10-2
= 3.9 x 10-10N
Hence, the viscous force on the drop is 3.9 x 10-10N.

Question 29.
Mercury has an angle of contact equal to 140° with soda-lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside? Surface tension of mercury at the temperature of the experiment is 0.465 Nm-1. Density of mercury = 13.6 x 103 kgm-3.
Solution:
Angle of contact between mercury and soda-lime glass, θ = 140°
Radius of the narrow tube, r = 1 mm = 1 x 10-3 m
Surface tension of mercury at the given temperature, T = 0.465N m-1
Density of mercury, ρ = 13.6 x 103 kg/m3
Dip in the height of mercury = h

Acceleration due to gravity, g = 9.8 m/s2
Surface tension is related with the angle of contact and the dip in the height as
T = \(\frac{h \rho g r}{2 \cos \theta}\)
∴ h = \(\frac{2 T \cos \theta}{r \rho g}\)
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 12
= -5.34 mm
Here, the negative sign shows the decreasing level of mercury. Hence, the mercury level dips by 5.34 mm

Question 30.
Two narrow bores of diameters 3.0mm and 6.0mm are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube?
Surface tension of water at the temperature of the experiment is 7.3 x 10-2Nm-1.
Take the angle of contact to be zero and density of water to be 1.0x 103 kg m-3 (g = 9.8ms-2).
Solution:
Diameter of the first bore, d1 = 3.0 mm = 3 x 10-3 m
Hence, the radius of the first bore, r1 = \(\frac{d_{1}}{2}\) =1.5 x 10-3m
Diameter of the second bore, d2 =6.0 mm
Hence, the radius of the second bore, r2 = \(\frac{d_{2}}{2} \) = 3 x 10-3 m
Surface tension of water, T = 7.3 x 10-2 N m-1
Angle of contact between the bore surface and water, θ=0
Density of water, ρ = 1.0 x 103 kg/m-3
Acceleration due to gravity, g =9.8 m/s2
Let h1 and h2 be the heights to which water rises in the first and second tubes respectively.

These heights are given by the relations
h1 = \(\frac{2 T \cos \theta}{r_{1} \rho g}\) …………………..(i)
h2 = \(\frac{2 T \cos \theta}{r_{2} \rho g}\) …………………… (ii)
The difference between the levels of water in the two limbs of the tube can be calculated as
= h1 – h2
= \(\frac{2 T \cos \theta}{r_{1} \rho g}-\frac{2 T \cos \theta}{r_{2} \rho g}\)
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 13
= 4.966 x 10-3m = 4.97 mm
Hence, the difference between levels of water in the two bores is 4.97 mm.

PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids

Question 31.
(a) It is known that density p of air decreases with height y as ρ = ρoe-y/yo
where ρo = 1.25kg m-3 is the density at sea level, and a constant. This density variation is called the law of atmospheres. Obtain this law assuming that the temperature of atmosphere remains a constant (isothermal conditions). Also assume that the value of g remains constant.

(b) A large He balloon of volume 1425m3 is used to lift a payload of 400 kg. Assume that the balloon maintains constant radius as it rises. How high does it rise?
[Take y0 =8000m and ρHe = 018 kg m-3]
Solution:
Volume of the balloon, V = 1425m3
Mass of the payload, m = 400 kg
Acceleration due to gravity, g = 9.8 m/s2
yo =8000m
ρHe =0.18kgm-3
ρo =1.25kg/m3

Density of the balloon = ρ
Height to which the balloon rises = y
Density (ρ) of air decreases with height (y) as
ρ = ρ0e-y/yo
\(\frac{\rho}{\rho_{0}}=e^{-y / y_{0}}\) …………………………… (i)

This density variation is called the law of atmospheres.
It can be inferred from equation (i) that the rate of decrease of density with height is directly proportional to ρ, i. e.,
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 14
where, k is the constant of proportionality
Height changes from 0 to y, while density changes from ρo to ρ).
Integrating the sides between these limits, we get
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 15
Comparing equations (i) and (ii) we get
y0 = \(\frac{1}{k}\)
k = \(\frac{1}{y_{0}}\) ……………………………………. (iii)

From equations (ii) and (iii), we get
ρ = ρ0e-y/yo
(b) Density,
ρ = \(\frac{\text { Mass }}{\text { Volume }}\)
PSEB 11th Class Physics Solutions Chapter 10 Mechanical Properties of Fluids 16
= 0.46 kg/m3
From equations (ii) arid (iii), we can obtain y as
ρ = ρ0e-y/yo
log e\(\frac{\rho}{\rho_{0}}=-\frac{y}{y_{0}}\)
∴ y =-8000 x loge \(\frac{0.46}{1.25}\)
=-8000 x-1=8000m8 km
Hence, the balloon will rise to a height of 8 km.