PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 11 Constructions Ex 11.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 11 Constructions Ex 11.2

Question 1.
Construct a triangle ABC in which BC = 7cm, ∠B = 75° and AB + AC = 13cm.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2 1

Steps of construction:

  1. Draw any ray BX. With centre B and radius 7 cm draw an arc to intersect BX at C.
  2. At B, construct ∠YBC with measure 75°.
  3. With centre B and radius 13 cm, draw an arc to intersect BY at M.
  4. Draw line segment MC. Draw the perpendicular bisector of MC to intersect BM at A.
  5. Draw line segment AC.
    Then, ∆ ABC is the required triangle.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 2.
Construct a triangle ABC in which BC = 8 cm, ∠B = 45° and AB – AC = 3.5 cm.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2 2

Steps of construction:

  1. Draw any ray BX and from that obtain the line segment BC of length 8 cm.
  2. At B, draw ray BY such that ∠YBC = 45°.
  3. With centre B and radius 3.5 cm, draw an arc to intersect ray BY at D.
  4. Draw line segment DC. Draw the perpendicular bisector of DC to intersect ray BY at A.
  5. Draw line segment AC.
    Then, ∆ ABC is the required triangle.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 3.
Construct a triangle PQR in which QR = 6 cm, ∠Q = 60° and PR – PQ = 2 cm.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2 3

Steps of construction:

  1. Draw any ray QX and from that obtain the line segment QR of length 6 cm.
  2. At Q, construct ray QY such that Z YQR = 60°.
  3. Produce ray QY on the side of Q to obtain ray QZ. Obtain point S on ray QZ such that QS = 2 cm.
  4. Draw line segment RS. Draw the perpendicular bisector of RS to intersect QY at E
  5. Draw line segment PR.
    Then, ∆ PQR is the required triangle.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 4.
Construct a triangle XYZ in which ∠Y = 30°, ∠Z = 90° and XY + YZ + ZX = 11 cm.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2 4

Steps of construction:

  1. Draw any ray AP and from that obtain the line segment AB of length 11 cm.
  2. Construct ray AL such that ∠LAB = 30°.
  3. Construct ray BM such that ∠MBA = 90°.
  4. Draw the bisectors of ∠LAB and ∠MBA to intersect each other at X.
  5. Draw line segment XB. Draw the perpendicular bisector of XB to intersect AB at Z.
  6. Draw line segment XA. Draw the perpendicular bisector of XA to intersect AB at Y.
  7. Draw line segments XY and XZ.
    Then, ∆ XYZ is the required triangle.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2

Question 5.
Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.2 5

Steps of construction:

  1. Draw any ray BX and from that obtain the line segment BC of length 12 cm.
  2. Construct ray BY such that ∠YBC = 90°.
  3. Taking B as centre and radius 18 cm, draw an arc to intersect BY at M.
  4. Draw line segment CM. Draw the perpendicular bisector of CM to intersect BM at A.
  5. Draw line segment AC.
    Then, ∆ ABC is the require triangle in which ∠B is a right angle, BC = 12 cm and AB + AC = 18 cm.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.3

Punjab State Board PSEB 7th Class Maths Book Solutions Chapter 13 Exponents and Powers Ex 13.3 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Maths Chapter 13 Exponents and Powers Ex 13.3

1. Write the following numbers in the expanded exponential form :

(i) 104278
Solution:
104278 = 1 × 105 + 4 × 103 + 2 × 102 + 7 × 101 + 8 × 100

(ii) 20068
Solution:
20068 = 1 × 104 + 6 × 101 + 8 × 100

(iii) 120719
Solution:
120719 = 1 × 105 + 2 × 104 + 7 × 102 + 1 × 101 + 9 × 100

(iv) 3006194
Solution:
3006194 = 3 × 106 + 6 × 103 + 1 × 102 + 9 × 101 + 4 × 100

(v) 28061906
Solution:
28061906 = 2 × 107 + 8 × 106 + 6 × 104 + 1 × 103 + 9 × 102 + 6 × 100

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.3

2. Find the number from each of the following expanded form :

(i) 4 × 104 + 7 × 103 + 5 × 102 + 6 × 101 + 1 × 100
Solution:
4 × 104 + 7 × 103 + 5 × 102 + 6 × 101 + 1 × 100
= 40000 + 7000 + 500 + 60 + 1
= 47561

(ii) 3 × 104 + 7 × 102 + 5 × 100
Solution:
3 × 104 + 7 × 102 + 5 × 100
= 30000 + 700 + 5 × 1
= 30705

(iii) 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100
Solution:
4 × 105 + 5 × 103 + 3 × 102 + 2 × 100
= 400000 + 5000 + 300 + 2 × 1
= 4053202

(iv) 8 × 107 + 3 × 104 + 7 × 103 + 5 × 102 + 8 × 101
Solution:
8 × 107 + 3 × 104 + 7 × 103 + 5 × 102 + 8 × 101
= 80000000 + 30000 + 7000 + 500 + 80
= 80037580

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.3

3. Express the following numbers in standard form :

(i) 3,43,000
Solution:
3.43 × 105

(ii) 70,00,000
Solution:
7.0 × 106

(iii) 3,18,65,00,000
Solution:
3.1865 × 109

(iv) 530.7
Solution:
5.307 × 102

(v) 5985.3
Solution:
5.9853 × 103

(vi) 3908.78
Solution:
3.90878 × 103

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.3

4. Express the number appearing in the following statements in standard form :

(i) The distance between the earth and die moon is 384,000,000 m
Solution:
3.84 × 108

(ii) The diameter of the earth is 1,27,56,000 m.
Solution:
1.2756 × 197 m

(iii) The diameter of the sun is 1,400,000,000 m.
Solution:
1.40 × 109 m

(iv) The universe is estimated to be about 12,000,000,000 years old.
Solution:
1.2 × 1010 years

(v) Mass of uranis is 86,800,000, 000,000,000,000,000,000 kg
Solution:
8.68 × 1028 kg.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.3

5. Compare the following numbers :

(i) 4.3 × 1014 ; 3,01 × 1017.
Solution:
Given numbers are 4.3 × 1014 and 3.01 × 1017 since the numbers are in standard form. As the power of 10 in 3.01 × 1017 is greater than the power of 10 in 4.3 × 1014.
∴ 3.01 × 1017 > 4.3 × 1014

(ii) 1.439 × 1012 ; 1.4335 × 1012.
Solution:
1.439 × 1012 ; 1.4335 × 1012
The numbers are in standard form
As 1.439 > 1.433
∴ 1.439 × 1012 > 1.4335 × 1012

PSEB 8th Class Agriculture Notes Chapter 7 Crop Diversification

This PSEB 8th Class Agriculture Notes Chapter 7 Crop Diversification will help you in revision during exams.

PSEB 8th Class Agriculture Notes Chapter 7 Crop Diversification

→ Crop diversification is also known as multiple cropping.

→ Crop diversification is to reduce some area under rice-wheat crops and to increase the area under alternate crops like maize, pulses, oilseeds, sugarcane, potato, etc.

→ Crop diversification helps in natural resource sustainability.

→ Maincrop rotation in Punjab is wheat-rice.

PSEB 8th Class Agriculture Notes Chapter 7 Crop Diversification

→ There is a consumption of 215 cm water for the wheat-rice cycle in Punjab in a year, but 80% of this water is consumed by rice alone.

→ Punjab is divided into three agroclimatic zones-sub mountainous zones, central zone, and southwestern zone.

→ Kandi belt is included in the sub-mountainous zone.

→ The sub-mountainous zone receives heavy rainfall and there persist problem of soil erosion in this zone.

→ Crops cultivated in, sub-mountainous zones are wheat, maize, paddy, basmati, potato, oilseed, etc.

→ The crop cycle in the central zone of Punjab is wheat-paddy rotation.

→ The crop cycle in the southwestern zone is cotton-wheat rotation.

→ An intensive cropping system means growing more than two crops in a year.

→ Green manuring must be done before cultivating Kharif crops like basmati rice and maize.

→ Maize-based cropping cycle is maize-potato-Summer Moong. or sunflower, maize-potato or Toria-sunflower, etc.

→ The soybean-based cropping system is soybean-wheat-cowpea. This cycle helps in maintaining soil fertility.

→ Groundnut-based cropping system is groundnut-potato or toriya or pea or wheat, groundnut-potato-bajra (fodder), groundnut- toria, or gobhi sarson.

PSEB 8th Class Agriculture Notes Chapter 7 Crop Diversification

→ Fodder-based cropping system is maize-berseem-bajra, maize-berseem-maize, or cowpea (rawanh).

→ Vegetable-based cropping system: potato-onion-green manure-potato-ladyfinger-early cauliflower, potato (seed)- radish or carrot (seed)-ladyfinger (seed).

PSEB 12th Class Hindi पारिभाषिक शब्दावली

Punjab State Board PSEB 12th Class Hindi Book Solutions Hindi पारिभाषिक शब्दावली Exercise Questions and Answers, Notes.

PSEB 12th Class Hindi पंजाबी से हिन्दी में अनुवाद

नूतन पाठ्य क्रमानुसार ‘J’ से ‘Z’ पारिभाषिक एवं प्रशासनिक शब्द

J

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Journalist पत्रकार रमेशचंद्र दैनिक हिन्दुस्तान का पत्रकार है।
Judicial न्यायिक हमें हमारी न्यायिक प्रक्रिया पर पूरा विश्वास है।
Judiciary न्यायपालिका प्रजातंत्र में न्यायपालिका स्वतंत्र है।
Jurisdiction अधिकार क्षेत्र पंजाब स्कूल शिक्षा बोर्ड का अधिकार क्षेत्र पंजाब राज्य तक है।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

K

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Kindergarten बालवाड़ी रमा का पुत्र बालवाड़ी में जाता है।
Keynote address आधार व्याख्यान विश्व विज्ञान सम्मेलन में आधार व्याख्यान डॉ० अब्दुल कलाम का था।

L

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Labour श्रम मानव जीवन में श्रम का बहुत महत्त्व है।
Law and order कानून और व्यवस्था देश में कानून और व्यवस्था बनाए रखने का दायित्व पुलिस पर है।
Layout नक्शा मैंने अपने घर का नक्शा नगर निगम से पास करवा लिया है।
Ledger खाता सोहन लाला खाता लिखने का काम करता है।
Ledger Folio खाता पन्ना मेरा बैंक में खाता पन्ना संख्या 8/341 है।
Legislative वैधानिक हमें हमारे वैधानिक नियमों का ज्ञान होना चाहिए।
Liability दायित्व हमें हमारा दायित्व समझना चाहिए।
Lump sum एक राशि मेरा सारा भुगतान एक राशि में कर दो।

M

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Madam Magistrate सुश्री / श्रीमती हमारी प्राचार्य श्रीमती रमा देवी जी हैं।
Maintenance. दण्डाधिकारी सुहास दण्डाधिकारी बन गया है।
Majority अनुरक्षण मैंने घर के अनुरक्षण पर एक लाख रुपए खर्च किए हैं।
Mandate बहुमत ममता बनर्जी बहुमत से सरकार बना रही हैं।
Manifesto अधिदेश / आज्ञा सरकार ने चुनाव अधिदेश जारी कर दिया है।
Manager घोषणा पत्र सरकार ने अपना पंचवर्षीय घोषणा पत्र जारी कर दिया है।
Memorandom प्रबन्धक देवेंद्र बैंक में प्रबन्धक के पद पर कार्य कर रहा है।
Minority ज्ञापन कर्मचारियों ने अपनी मांगों का ज्ञापन दिया।
Minutes अल्पसंख्यक सरकार अल्पसंख्यकों के उद्धार के लिए चिंतित है।
Misuse कार्यवृत संस्था ने अपनी सभा का कार्यवृत भेज दिया है।
Mortgage दुरुपयोग समय का दुरुपयोग उचित नहीं है।
Mourning बन्धक राम सिंह ने अपना घर बन्धक रखकर बैंक से ऋण लिया है।
Municipal Corporation शोक देश प्रेमी की मृत्यु पर शोक मनाया गया।

N

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Nationalism राष्ट्रीयता हमें अपनी राष्ट्रीयता पर गावे है।
Negligence उपेक्षा बूढ़ों की उपेक्षा नहीं करनी चाहिए।
Negotiation समझौते की बातचीत प्रतिपक्ष से हमारी आपसी समझौते की बातचीत चल रही है।
Net amount शुद्ध आय कर देने के बाद आपकी शुद्ध आय कितनी बनती है?
Nomination नामांकन नेता जी ने अपना नामांकन प्रपत्र अध्यक्ष पद के लिए भर दिया है।
Nominee नामित पुरस्कार के लिए नामित व्यक्ति कोई नहीं मिला।
Notification अधिसूचना सरकार ने चुनाव की अधिसूचना जारी कर दी है।
Notified Area अधिसूचित क्षेत्र सरकार द्वारा अधिसूचित क्षेत्र में निर्माण अवैध है।
Noting & Drafting टिप्पण और मसौदा लेखन सरकार ने टिप्पण और मसौदा लेखन पर कार्यशाला का चैतन्य कानून स्नातक बनने के बाद ।।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

O

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Oath Commissioner शपथ अधिकारी सरकार की ओर से शपथ अधिकारी नियुक्त किया गया है।
Objection आपत्ति हमें आपके अनुचित व्यवहार पर आपत्ति है।
Observor पर्यवेक्षक सरकार ने चुनाव में पर्यवेक्षक नियुक्त किए हैं।
Occupation व्यवसाय उसने अपना व्यवसाय बहुत फैला लिया है।
Offence अपराध कोई भी व्यक्ति अपराध करके बच नहीं सकता।
Office Bearer पदाधिकारी आज सभा के पदाधिकारी चुने जाएंगे।
Office Copy कार्यालय प्रति मुझे इस पत्र की कार्यालय प्रति की एक प्रति लिपि चाहिए।
Officiating स्थानापन्न आज डॉ० रवि का स्थानापन्न डॉ० महीप सिंह हैं।
Opinion राय, मत देश की आर्थिक दशा के संबंध में आपकी क्या राय है?
Ordinance अध्यादेश सरकार ने अध्यादेश जारी कर आतंकवादी गतियों पर नियंत्रण लगाया है।
Organisation संगठन हमारा संगठन राष्ट्रव्यापी है।
Out of Stock अनुपलब्ध यह पुस्तक अनुपलब्ध है।
Overtime समयोपरि कार्यालय में निर्धारित समय के बाद कार्य करने वालों को समयोपरि भत्ता दिया जाता है।
Over-writing अधिलेखन चैक पर अधिलेखन मान्य नहीं है।

P

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Panel नामिका सेवा आयोग ने चुने हुए प्रार्थियों की नामिका बना दी है।
Part-time अंशकालिक रमेश को अंशकालिक नौकरी मिल गई है।
Pending लंबित, रुका हुआ सुधा को लंबित पेंशन मिल गई है।
Petition याचिका राम ने कचहरी में पड़ोसी के विरुद्ध याचिका दाखिल की है।
Petitioner याचिकदाता/प्रार्थी याचिकादाता/प्रार्थी को निश्चित तिथि से अवगत कराया जा चुका है।
Post पद, आसामी महमूद को निदेशक का पद मिल गया है।
Post-dated उत्तर-दिनांकित मैंने बिल का भुगतान उत्तर-दिनांकित चैक से कर दिया है।
Postpone स्थगित करना आज की सभा स्थगित करनी पड़ी।
Pre-mature Retirement समय पूर्व-सेवानिवृत्ति सचदेव ने समय पूर्व-सेवानिवृत्ति ले ली है।
Presiding officer पीठासीन अधिकारी शुभा को पीठासीन अधिकारी नियुक्त किया गया है।
President राष्ट्रपति राष्ट्रपति विदेश यात्रा पर जा रहे हैं।
Promotion पदोन्नति पूनम की पदोन्नति हो गई है, अब वह प्राचार्य बन गई है।
Prospectus विवरण पत्रिका अपने महाविद्यालय की विवरण-पत्रिका ले आना।
Proposal प्रस्ताव विधान सभा में वित्त विभाग की मांगों का प्रस्ताव पारित हो गया।
Prime Minister प्रधानमंत्री आज प्रधानमंत्री देश को संबोधित करेंगे।
Put-up प्रस्तुत करना शमीम को निदेशक बनाने का प्रस्ताव प्रबंधक समिति में प्रस्तुत करना है।

Q

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Qualification अर्हता/योग्यता प्राध्यापक के पद की अर्हता क्या होती है?
Quality गुण राधा के गुणों का वर्णन करना कठिन है।।
Quantity मात्रा बाज़ार से लाने वाले समान की मात्रा का ध्यान रखना।
Quarterly त्रैमासिक/तिमाही सप्रसिंधु त्रैमासिक पत्रिका है।
Quotation भाव दर भवन निर्माण सामग्री का भाव-दर मंगवाना है।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

R

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Ratio अनुपात चाय बनाते समय दूध, पानी, चीनी पत्ती का सही अनुपात रखना।
Recipt रसीद मकान मालिक से किराए की रसीद अवश्य ले लेना।
Recipt Book रसीद बही मकान मालिक के पास आज रसीद बही नहीं थी।
Recruitment भर्ती भारतीय सेना में भर्ती हेतु सूचना दी जा चुकी थी।
Rectification सुधारना/परिशोधन अपनी ग़लतियों को सुधारना शुरू करो।।
Rehabilitation पुनर्वास राज्य विस्थापितों के पुनर्वास की योजना बना रहा है।
Registered letter पंजीकृत पत्र आवेदन-पत्र पंजीकृत-पत्र के रूप में भेजना।
Reminder अनुस्मारक कोई उत्तर नहीं आने पर कार्यालय को अनुस्मारक भेज देना।
Report प्रतिवेदन विद्यालय के उत्सव का प्रतिवेदन तैयार कर देना।
Resignation त्याग-पत्र सुमन ने नौकरी से त्याग-पत्र दे दिया है।
Retirement सेवानिवृत्ति सरकारी विद्यालयों में सेवानिवृत्ति की आयु 58 वर्ष है।
Reinstate बहाल करना मारुति ने निकाले गए कर्मचारियों को बहाल कर दिया है।
Returning Officer निर्वाचन अधिकारी फूसगढ़ के निर्वाचन अधिकारी ने मध्यावधि निर्वाचन की तिथियाँ घोषित कर दी हैं।
Requisite आवश्यक/अपेक्षित केवल आवश्यक वस्तुएँ खरीदना।
Resolution संकल्प हमें देश की रक्षा का संकल्प लेना है।
Reservation आरक्षण बस में महिलाओं को आरक्षण दिया जाता है।
Rumour अफवाह हमें अफवाह फैलाने से बचना चाहिए।

S

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Salary वेतन सुभाष का वेतन चालीस हज़ार रुपए है।
Salient प्रमुख सोहन अपनी सेना में प्रमुख वक्ता है।
Sanction स्वीकृति/मंजूरी नेहा को खेलों में भाग लेने की स्वीकृति मिल गई है।
Screening छानबीन पुलिस मनोज के चरित्र की छानबीन कर रही है।
Secrecy गोपनीयता हमें अपने कार्यालय की गोपनीयता बना कर रखनी चाहिए।
Secretary सचिव मनिंद्र सिंह नगर-निगम का सचिव है।
Secular धर्म-निरपेक्ष भारत धर्म-निरपेक्ष देश है।
Section-officer विभागीय अधिकारी शर्मा जी विभागीय अधिकारी बन गए हैं।
Senior वरिष्ठ देवेंद्र सिंह वरिष्ठ अधिवक्ता बन गया है।
Service Book सेवा पुस्तिका कर्मचारियों की सेवा पुस्तिका निदेशक के पास हैं।
Session सत्र विद्यालय का अगला सत्र पहली जुलाई में शुरू होगा।
Session Judge सत्र न्यायाधीश मेरा मुकदमा सत्र न्यायाधीश के पास चल रहा है।
Sir श्रीमान् कहिए श्रीमान् ! आप कैसे हैं?
Souvenir स्मारिका व्यापारी मंडल ने अपनी स्मारिका प्रकाशित की है।
Specimen नमूना बैंक में अपने हस्ताक्षर के नमूने दे आना।
Speaker सभापति बैठक में सभापति नही पहुँच पाए।
Specimen signature नमूना हस्ताक्षर डाकखाने में नमूना हस्ताक्षर देना ज़रूरी है।
Subordinate अधीनस्थ आज अधीनस्थ कार्यालय का ज़िलाधीश निरीक्षण करेंगे।
Substandard अवमानक संसद् में अवमानक भाषा का प्रयोग निषेध है।
Supplementary अनुपूरक संसद् में अनुपूरक मांगों का प्रस्ताव पारित हो गया।
Surcharge अधिभार सोने पर दो प्रतिशत अधिभार अधिक हो गया है।

T

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Temporary अस्थायी विनोद को अस्थायी नौकरी मिल गई है।
Taxable income कर योग्य आय हमें अपनी कर योग्य आय पर कर देना होता है।
Travelling Allowance यात्रा-भत्ता सरकार ने कर्मचारियों का यात्रा-भत्ता बढ़ा दिया है।
Telephone दूरभाष आपके दूरभाष का नम्बर क्या है?
Tele-Communication दूरसंचार जालंधर में दूरसंचार कार्यालय रेलवे रोड पर है।
Tenure अवधि तुम्हारी सेवा अवधि कब समाप्त हो रही है।
Terms निबंधन नौकरी के निबंधन क्या तुम्हें सवीकार है?
Terms & Conditions निबंधन और शर्ते मैं इस निबंधन और शर्तों पर काम करने के लिए तैयार है।
Transaction लेन-देन हमारा लेन-देन साफ है।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

U

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Unanimous एकमत पार्टी ने एकमत से अपना नेता सुशील को चुन लिया है।
Unauthorized अप्राधिकृत सरकार अप्राधिकृत निर्माण गिरा रही है।
Unavailable अनुपलब्ध यह सूचना अनुपलब्ध है।
Unavoidable अपरिहार्य मुझे अपरिहार्य कार्य से शहर से बाहर जाना है।
Un-official गैर-सरकारी वह गैर-सरकारी कार्यालय में कार्य करता है।
Undue अनुचित हमें अनुचित कार्य नहीं करने चाहिए।
Un-employment बेरोज़गारी देश में बेरोज़गारी दिन-प्रतिदिन बढ़ रही है।
Universit विश्वविद्यालय वह गुरु नानक देव विश्वविद्यालय में पढ़ रहा है।

V

अंग्रेजी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Venue स्थान विवाह किस स्थान पर होना है?
Vacancy खाली आसामी इस कार्यालय में कोई खाली आसामी नहीं है।
Validity वैद्यता इस चैक की वैद्यता तीन माह तक है।
Valedicatory विदा सम्बन्धी भाषण प्राचार्य ने सेवानिवृत लेने पर अपना विदा संबंधी भाषण दिया।
Verifiction सत्यापन इन प्रमाणपत्रों का सत्यापन राजपत्रित अधिकारी से कराएँ।
Vice-Versa विपरीत क्रम से अब वर्गों को विपरित क्रम से लिखें।
Vigilance सतर्कता हमें गाड़ी चलाते समय सतर्कता बरतनी चाहिए।
Visitor आगंतुक बाहर देखो तो कौन आगंतुक बैठा है।
Volunteer स्वयं सेवक मुझे गिरने से एक स्वयं सेवक ने बचाया है।
Vote मत हमें अपने मत का प्रयोग अवश्य करना चाहिए।
Vote of thanks धन्यवाद प्रस्ताव सभा के अंत में आयोजकों ने धन्यवाद प्रस्ताव पारित किया।

W

अंग्रेज़ी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Wage वेतन/पगार आज वेतन का दिन है।
Waiting list प्रतीक्षा सूची उस का नाम प्रतीक्षा सूची में है।
Warrant अधिपत्र नंदी के विरुद्ध अधिपत्र जारी हो गया है।
Welcome स्वागत बच्चों ने मुख्य अतिथि का स्वागत किया।
Welcome Address स्वागत-भाषण प्राचार्य ने स्वागत-भाषण दिया।
Where about अता-पता तुम्हारा अता-पता ही नहीं चलता।
Whole time पूर्णकालिक उसे पूर्णकालिक नौकरी मिल गई है।
Withdrawal निकासी/वापसी राम स्वरूप ने अपना नामांकन वापसी के लिए आवेदन कर दिया है।
Withdrawal-slip कार्य भार रुपया निकालने की पर्ची
Work load कार्यशाला डाकखाने से रुपया निकालने की पर्ची भर कर एक हज़ार रुपए निकाल लेना।
Workshop रिट/याचिका नए प्राचार्य ने अपना कार्यभार संभाल लिया है।
Writ हिन्दी पर्याय यहाँ बाल विज्ञान पर कार्यशाला चल रही है।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

Y

अंग्रेज़ी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Yearly वार्षिक विद्यालय की वार्षिक पत्रिका प्रकाशित हो गई है।
Year to year वर्षानुवर्ष फसलों में वर्षानुवर्ष वृद्धि हो रही है।
Yes-man हाँ में हाँ मिलाने वाला गोबिन्द तो सब की हाँ में हाँ मिलाने वाला व्यक्ति है।
Yours आपका/भवदीय आपका आज्ञाकारी हूँ।

Z

अंग्रेज़ी शब्द हिन्दी पर्याय वाक्य में प्रयोग
Zonal आंचलिक राजधानी में आंचलिक खेलों का आयोजन हो रहा है।
Zonal Office आंचलिक-कार्यालय भारत बैंक का आंचलिक-कार्यालय अब लुधियाना में है।

प्रशासनिक एवं सांस्कृतिक शब्दावली

(पाठ्यक्रम में निर्धारित हिन्दी भाषा बोध और व्याकरण के अनुसार)

  1. Act (अधिनियम)-इस बार संसद् में कई अधिनियम पास किए गए।
  2. Accept (स्वीकार करना, मानना)-वैट के नियमों को स्वीकार करना व्यापारी वर्ग को अखरता है।
  3. Acceptance (स्वीकृति)-वित्त विभाग ने सौ नई बसें खरीदने की स्वीकृति दे दी है।
  4. Adhoc (तदर्थ)-पंजाब सरकार ने अध्यापकों की नियुक्ति तदर्थ आधार पर करने का निर्णय लिया है।
  5. Amendment (संशोधन)-संशोधन करके प्रारूप अनुमोदन के लिए प्रस्तुत है।
  6. Annexture (अनुबंध)-सहायक पुस्तक सूची इस पुस्तक के अनुबन्ध दो में दी जा रही है।
  7. Attested (अनुप्रमाणित)-आवेदन-पत्र के साथ सभी प्रमाण पत्रों की अनुप्रमाणित प्रतियाँ संलग्न की जाएँ।
  8. Bond Paper (बंध-पत्र)-डॉ. मनमोहन सिंह को उच्च शिक्षा प्राप्ति के लिए पंजाब विश्वविद्यालय को बन्ध-पत्र भरना पड़ा था।
  9. Bungling (घपला)-देश में करोड़ों रुपए के घपले हुए किन्तु कोई भी कार्यवाई नहीं की गई।
  10. Cash Book (रोकड़ बही)-नए कानून के अनुसार हर दुकानदार को रोकड़ बही रखना अनिवार्य बना दिया गया है।
  11. Custom duty (सीमा शुल्क)-नए बजट में कई वस्तुओं पर सीमा शुल्क घटा दी गई है।
  12. Disciplinary Action (अनुशासनिक कार्यवाही)-सरकारी आदेशों की पालना न करने वाले सभी कर्मचारियों के विरुद्ध अनुशासनिक कार्यवाही की जाएगी।
  13. Discretionary Power (विवेकाधिकार)-सुनामी पीड़ितों के लिए अपने विवेकाधिकार का प्रयोग करते हुए मन्त्री महोदय ने पाँच लाख रुपए की धनराशि देने की घोषणा की।
  14. Forwarding Letter (अग्रेषण पत्र)-सम्पादक के नाम पत्र लिखते समय अग्रेषण पत्र अवश्य लगाना चाहिए।
  15. Maintenance (अनुरक्षण)-पंजाब रोडवेज की बसों का अनुरक्षण सही ढंग से नहीं हो रहा।

PSEB 12th Class Hindi पारिभाषिक शब्दावली

सांस्कृतिक शब्दावली

  1. Abandonment (त्याग)-जीवन में त्याग कोई-कोई ही कर सकता है।
  2. Adoration (आराधना)-ईश्वर की आराधना करने से आत्मिक शान्ति मिलती है।
  3. Affinity (आत्मीयता)-सिरचन ने आत्मीयता के कारण ही मान के लिए शीतलपाटी आदि भेंट किए।
  4. Benevolence (परोपकार)-परोपकार की भावना मनुष्य को मनुष्य के लिए जीना सिखाती है।
  5. Benediction (कल्याण)-गोस्वामी तुलसीदास ने हिन्दू जाति के कल्याण के लिए ‘मानस’ की रचना की।
  6. Courtesy (शिष्टाचार)-शिष्टाचार निभाने के लिए हम कई बार मुसीबत में फंस जाते हैं।
  7. Civilization (सभ्यता)-भारतीय सभ्यता अत्यन्त प्राचीन है।
  8. Dress (वेशभूषा)-सरकारी कर्मचारियों के लिए भी एक निश्चित वेशभूषा होनी चाहिए।
  9. Ethics (मूल्य)-आधुनिक युग में नैतिक मूल्यों का ह्रास हो रहा है।
  10. Forgiveness (क्षमाशीलता)-क्षमाशीलता उसे ही सुहाती है जो शक्ति सम्पन्न हो।
  11. Generosity (दानशीलता)-दधीची ऋषि अपनी दानशीलता के लिए याद किए जाते हैं।
  12. Gratification (सन्तोष)-ईश्वर जो दे उसी पर हमें सन्तोष करना चाहिए।
  13. Humanity (मानवता)-परोपकार मानवता का लक्ष्य होना चाहिए।
  14. Life-Style (रहन-सहन)- मध्यवर्गीय परिवारों ने अपने रहन-सहन मे काफ़ी बदलाव कर लिए हैं।
  15. Morality (नैतिकता)-नैतिकता के आधार पर स्वर्गीय लाल बहादुर शास्त्री जी ने रेल मन्त्रालय से त्याग-पत्र दे दिया।

बोर्ड परीक्षा में पूछे गए प्रश्न

किन्हीं चार शब्दों के हिन्दी पर्याय लिखकर वाक्यों में प्रयोग करें।

2010
Set A- Journalist, Law & order, Majority, Namination offence.
Set B- Kidergarten, Ledger, Misuse, Opinion, Overtime.
Set C- Judiciary, Layout, Minutes, Nationalism, Occupation.

2011
Set A- Judiciary, Labour, Misuse, Nationalism, Objection, Overtime.
Set B- Journalist, Law & Order, Minority, Mourning, Opinion, Office Copy.
Set C- Jouridiction, Liability, Mandate, Minutes, Negotiation, Offence.
Set A- Pending, Postmortem, examination, Receipt, Rumour, surcharge, Tenure, Venue, Visitor.
Set B- Panel, Proposal, Recruitment, Salient, Senior, Transaction, Unanimous, waitinglist.
Set C- Part-time, Pendown Strike, Pre-mature Retirement, specimen, unemployment, Selection Board; Yesman, Zonal.

2012
Set A- Part time, Pendown Strike, Recruitment, Secrecy, Senior, Session, Vigilance, Workload.
Set B- Petitioner, Postage, Quantity, Ratio, Remour, Selection Board, Tenure, unemployment.
Set C- Petition, Rehabilitation, Self addressed envelop, Receipt, Reinstate, Transaction, Waiting list, Whear about

2013
Set A- Judicial, Majority, Opinion, Postage, Rumour.
Set B- Law and Order, Misuse, Objection, Out of Stock, Pen Down Strike, Selection Board.
Set C- Labour, Notification, Organisation, Per Annum, Quality, Undue.

2014
Set A- Journalist, Ledger, Misuse, Office copy, Net a mount, Venue.
Set B- Judiciary, Mandate, Maintenance, Occupation, Part Time.
Set C- Jurisdiction, Minority, Pending, Quality, Volunteer, Workshop.

2015
Set A- Journalist, Labour, Mondate, Overtime, Tenure, Secrecy
Set B- Maintenance, Majority Offence, Petition, Transaction, Workshop.
Set C- Liability, Opinion, Partime, Remour, Unemployment, Written Warning.

PSEB 12th Class Hindi पारिभाषिक शब्दावली

2016
Set A- Kindergarten, Liability, Mourning, Offence, Quality, Ratio.
Set B- Judicial, Labour, Misuse, Overhauling, Yes-Man, Written Warning.
Set C- Judiciary, Lump Sum, Occupation, Transaction, Unemployment.

2017
Set A- Kindergarten, Liability, Out of Stock, Transaction, Work-Shop.
Set B- Jurisdiction, Mandate, Occupation, Part-Time, Quality, Secrecy.
Set C- Judiciary, Law of Order, Recruitment, Pen down Strike, Maintenance, Postpone.

2018 A, B, C
Jurisdiction, Minority, Over Writing, Petitioner, Ratio, Venue.

2019 A, B, C
Quality, Receipt, Salary, Surcharge, Transaction, University

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 7 Algebra MCQ Questions with Answers.

PSEB 6th Class Maths Chapter 7 Algebra MCQ Questions

Multiple Choice Questions

Question 1.
Each side of square is represented by ‘s’ then perimeter of square is:
(a) 4 + s
(b) s – 4
(c) 4s
(d) s.
Answer:
(c) 4s

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Question 2.
Write commutative property of multiplication using variables x and y:
(a) xy = yx
(b) x + y = y + x
(c) x + y
(d) xy.
Answer:
(a) xy = yx

Question 3.
How many terms in expression 7l – 3l?
(a) 1
(b) 3
(c) 2
(d) 4.
Answer:
(c) 2

Question 4.
5 is subtracted from m = ……………….. .
(a) 5 – m
(b) m + 5
(c) 5 + m
(d) m – 5.
Answer:
(d) m – 5.

Question 5.
Multiply p by 3 then 2 is added = ……………. .
(a) 2p + 3
(b) 3p – 2
(c) 3p + 2
(d) 2p – 3.
Answer:
(c) 3p + 2

Question 6.
If Armaan’s present age is x years then what will be his age after 4 years?
(a) x – 4
(b) x + 4
(c) 4x
(d) 4 – x.
Answer:
(b) x + 4

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Question 7.
Write as algebraic equation: 7 more than 4 times ofy gives 23 :
(a) 4 + 7y = 23
(b) 7 + y = 23
(c) 4y – 7 = 23
(d) 4y + 7 = 23.
Answer:
(d) 4y + 7 = 23.

Question 8.
Find x if x – 3 = 2 :
(a) 3
(b) 6
(c) 5
(d) 2.
Answer:
(c) 5

Question 9.
Solve:
4l – 3 = 5
(a) 3
(b) 4
(c) 1
(d) 2.
Answer:
(d) 2.

Question 10.
If \(\frac {a}{4}\) = 5 then a = ……………. .
(a) 5
(b) 20
(c) 4
(d) 18.
Answer:
(b) 20

Question 21.
What is algebraic expression for subtracting 7 from – m?
(a) m – 1
(b) m + 7
(c) 7 – m
(d) – m – 7.
Answer:
(d) – m – 7.

Question 22.
What is algebraic expression for subtracting 7 from p?
(a) p – 7
(b) p + 7
(c) 7 – p
(d) 7 × p.
Answer:
(a) p – 7

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Question 23.
What is algebraic expression for multiplying p by 16?
(a) 16 p
(b) p + 6
(c) p – 16
(d) \(\frac {p}{16}\)
Answer:
(a) 16 p

Question (iv)
What is algebraic expression for first multiplying x by 3 and then adding 2 to the product?
(a) x + 6
(b) 3x + 2
(c) 3x – 2
(d) 6x
Answer:
(b) 3x + 2

Question (v)
What is algebraic expression for first multiplying y by 2 and then subtracting 5 from the product?
(a) 2y + 5
(b) y + 10
(c) 2y – 5
(d) 10y.
Answer:
(c) 2y – 5

Fill in the blanks:

Question (i)
The algebraic expression for first multiplying y by 10 and then adding 7 to the product is ………… .
Answer:
10y + 7

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Question (ii)
The algebraic expression for first multiplying n by 2 and then subtracting l from the product ………… .
Answer:
2n – l

Question (iii)
7 × 20 – 82 is expression of only ………………. .
Answer:
Numbers

Question (iv)
Each side of a square is l, then perimeter of square is ……………. .
Answer:
4l

Question (v)
5 is added to x = …………….. .
Answer:
x + 5

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Write True/False:

Question (i)
If \(\frac {a}{5}\) = 4, then a = 20. (True/False)
Answer:
True

Question (ii)
If x – 3 = 2, then x = l. (True/False)
Answer:
False

Question (iii)
If 4l – 3 = 5, then l = 2. (True/False)
Answer:
True

Question (iv)
Number of terms in expression 3p + 2 is two. (True/False)
Answer:
True

PSEB 6th Class Maths MCQ Chapter 7 Algebra

Question (v)
The letters which can take any numerical value are called variables. (True/False)
Answer:
True

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

Punjab State Board PSEB 7th Class Maths Book Solutions Chapter 13 Exponents and Powers Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Maths Chapter 13 Exponents and Powers Ex 13.2

1. Using laws of exponents, simplify and write the following in the exponential form :

(i) 27 × 24
(ii) p5 × p3
(iii) (-7)5 × (-7)11
(iv) 2015 ÷ 2013
(v) (-6)7 ÷ (-6)3
(vi) 7x × 73
Solution:
(i) 27 × 24 = 27+4 = 211
(ii) p5 × p3 = p5+3 = p8
(iii) (-7)5 × (-7)11 = (-7)5+11 = (-7)16
(iv) 2015 ÷ 2013 = 2015-13 = 202
(v) (-6)7 ÷ (-6)3 = (-6)7-3 = (-6)4
(vi) 7x × 73 = 7x+3

2. Simplify and write the following in exponential form.

(i) 53 × 57 × 512
Solution:
53 × 57 × 512 = 53+7+12
= 522

(ii) a5 × a3 × a7
Solution:
a5 × a3 × a7 = a5+3+7
= a15

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

3. Simplify and write the following in the exponential form :

(i) (22)100
Solution:
(22)100 = 22 × 100
= 2200

(ii) (53)7
Solution:
(53)7 = 53 × 7
= 521

4. Simplify and write in the exponential form:

(i) (23)4 ÷ 25
Solution:
(23)4 ÷ 25 = 212 ÷ 25
= 212-5
= 27

(ii) 23 × 22 × 55
Solution:
23 × 22 × 55 = 23+2 × 55
= 25 × 55
= (2 × 5)5
= 105

(iii) [(22)3 × 36] × 56
Solution:
[(22)3 × 36] × 56 = [22×3 × 36] × 56
= [26 × 36] × 56
= 66 × 56
= (6 × 5)6
= 306.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

5. Simplify and write in the exponential form:

(i) 54 × 84
Solution:
54 × 84 = (5 × 8)4
= 404

(ii) (-3)6 × (-5)6
Solution:
(-3)6 × (-5)6 = (-3 × -5)6
= (+15)6

6. Simplify and express each of the following in the exponential form :

(i) \(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}\)
Solution:
\(\frac{\left(3^{2}\right)^{3} \times(-2)^{5}}{(-2)^{3}}=\frac{3^{2 \times 3} \times(-2)^{5}}{(-2)^{3}}\)
= 36 × (-2)5-3
= 36 × (-2)2
= 36 × 22

(ii) \(\frac{3^{7}}{3^{4} \times 3^{3}}\)
Solution:
\(\frac{3^{7}}{3^{4} \times 3^{3}}=\frac{3^{7}}{3^{4+3}}=\frac{3^{7}}{3^{7}}\)
= 37-7
= 30
= 11

(iii) \(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}\)
Solution:
\(\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}=\frac{2^{8}}{\left(2^{2}\right)^{3}} \times \frac{a^{5}}{a^{3}}\)
= \(\frac{2^{8}}{2^{6}} \times a^{5-3}\)
= \(2^{8-6} \times a^{5-3}\)
= \(2^{2} \times a^{2}\)
= (2a)2

(iv) 30 × 40 × 50
Solution:
30 × 40 × 50
= 1 × 1 × 1
= 1

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

7. Express each of the following rational number in the exponontial form :

(i) \(\frac {25}{64}\)
Solution:
\(\frac {25}{64}\) = \(\frac{5 \times 5}{8 \times 8}=\frac{5^{2}}{8^{2}}\)
= \(\left(\frac{5}{8}\right)^{2}\)

(ii) \(\frac {-64}{125}\)
Solution:
\(\frac {-64}{125}\) = \(\frac{-4 \times 4 \times 4}{5 \times 5 \times 5}\)
= \(\frac{(-4)^{3}}{5^{3}}\)
= \(\left(-\frac{4}{5}\right)^{3}\)

(iii) \(\frac {-125}{216}\)
Solution:
\(\frac {-125}{216}\) = \(\frac{-5 \times 5 \times 5}{6 \times 6 \times 6}\)
= \(\frac{(-5)^{3}}{6^{3}}\)
= \(\left(-\frac{5}{6}\right)^{3}\)

(iv) \(\frac {-343}{729}\)
Solution:
\(\frac {-343}{729}\) = \(\frac{-7 \times 7 \times 7}{9 \times 9 \times 9}\)
= \(\frac{(-7)^{3}}{9^{3}}\)
= \(\left(-\frac{7}{9}\right)^{3}\)

8. Simplify :

(i) \(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\)
Solution:
\(\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}\) = \(\frac{2^{5 \times 2} \times 7^{3}}{\left(2^{3}\right)^{3} \times 7}\)
= \(\frac{2^{10} \times 7^{3}}{2^{9} \times 7}\)
= 210-9 × 73-1
= 21 × 72
= 2 × 7 × 7
= 98

(ii) \(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\)
Solution:
\(\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}\) = \(\frac{2 \times 2^{5} \times 3^{4}}{3 \times 3 \times\left(2^{2}\right)^{2}}\)
= \(\frac{2^{1+5} \times 3^{4}}{3^{2} \times 2^{4}}\)
= 26-4 × 34-2
= 22 × 32
= 2 × 2 × 3 × 3
= 36.

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

9. Express each of the following as a product of prime factors in the exponential form

(i) 384 × 147
Solution:
384 × 147
384 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
= 27 × 31
147 = 7 × 7 × 3
= 72 × 31
\(\begin{array}{l|l}
2 & 384 \\
\hline 2 & 192 \\
\hline 2 & 96 \\
\hline 2 & 48 \\
\hline 2 & 24 \\
\hline 2 & 12 \\
\hline 2 & 6 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)

\(\begin{array}{l|l}
7 & 147 \\
\hline 7 & 21 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)

384 × 147 = 27 × 31 × 72 × 31
= 27 × 32 × 72

(ii) 729 × 64
Solution:
729 × 64
729 = 3 × 3 × 3 × 3 × 3 × 3
= 36
\(\begin{array}{l|l}
3 & 729 \\
\hline 3 & 243 \\
\hline 3 & 81 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
64 = 2 × 2 × 2 × 2 × 2 × 2
= 26
\(\begin{array}{l|l}
2 & 64 \\
\hline 2 & 32 \\
\hline 2 & 16 \\
\hline 2 & 8 \\
\hline 2 & 4 \\
\hline 2 & 2 \\
\hline & 1
\end{array}\)
= 729 × 64 = 36 × 26

(iii) 108 × 92
Solution:
108 = 2 × 2 × 3 × 3 × 3
= 22 × 33
\(\begin{array}{c|c}
2 & 108 \\
\hline 2 & 54 \\
\hline 3 & 27 \\
\hline 3 & 9 \\
\hline 3 & 3 \\
\hline & 1
\end{array}\)
92 = 2 × 2 × 23
= 22 × 23
\(\begin{array}{l|l}
2 & 92 \\
\hline 2 & 46 \\
\hline & 23
\end{array}\)
108 × 92 = 23 × 33 × 22 × 231
= 24 × 33 × 231

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

10. Simplify and write the following in the exponential form :

(i) 33 × 22 + 22 × 50
Solution:
33 × 22 + 22 × 50
= 3 × 3 × 3 × 2 × 2 + 2 × 2 × 5°
= 27 × 4 + 4 × 1
= 108 + 4
= 112
\(\begin{array}{c|c}
2 & 112 \\
\hline 2 & 56 \\
\hline 2 & 28 \\
\hline 2 & 14 \\
\hline 7 & 7 \\
\hline & 1
\end{array}\)
= 2 × 2 × 2 × 2 × 7
= 24 × 71

(ii) \(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\)
Solution:
\(\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}\) = (37-2) × 35
= 35 × 35
= 35+5
= 310

(iii) 82 ÷ 23
Solution:
82 ÷ 23 = (23)2 ÷ 23
= 26 ÷ 23
= 26-3
= 23

PSEB 7th Class Maths Solutions Chapter 13 Exponents and Powers Ex 13.2

Multiple Choice Questions :

11. \(\left(\frac{-5}{8}\right)^{0}\) is equal to :
(a) 0
(b) 1
(c) \(\frac {-5}{8}\)
(d) \(\frac {-8}{5}\)
Answer:
(b) 1

12. (52)3 is equal to :
(a) 56
(b) 55
(c) 59
(d) 103
Answer:
(b) 55

13. a × a × a × b × b × b is equal to :
(a) a3b2
(b) a2b3
(c) (ab)3
(d) a6b6
Answer:
(c) (ab)3

14. (-5)2 × (-1)1 is equal to :
(a) 25
(b) -25
(c) 10
(d) -10
Answer:
(b) -25

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 11 Constructions Ex 11.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 11 Constructions Ex 11.1

Question 1.
Construct an angle of 90° at the initial point of a given ray and justify the construction.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 1

Steps of construction :

  1. Ray AB is given. Produce ray AB on the side of A to get line MAB.
  2. Taking A as centre and some radius, draw an arc of a circle to intersect line MAB at X and Y.
  3. Taking X and Y as centres and radius more than \(\frac{1}{2}\)XY, draw arcs to intersect at P on one side of line MAB.
  4. Draw ray AC passing through E
    Thus, ∠CAB is the required angle of 90°.

Justification:
Draw PX and PY.
In ∆ PAX and ∆ PAY,
AX = AY (Radii of same arc)
PX = PY (Radii of congruent arcs)
PA = PA (Common)
∴ By SSS rule, ∆ PAX ≅ ∆ PAY
∴ ∠PAX = ∠PAY (CPCT)
But, ∠PAX + ∠PAY = 180° (Linear pair)
∴ ∠PAY = \(\frac{180^{\circ}}{2}\) = 90°
∴ ∠CAB = 90°

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 2.
Construct an angle of 45° at the initial point of a given ray and justify the construction.
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 2

Steps of construction:

  1. Ray AB is given. Produce ray AB on the side of A to get line MAB.
  2. Taking A as centre and some radius, draw an arc of a circle to intersect line MAB at X and Y.
  3. Taking X and Y as centres and radius more than \(\frac{1}{2}\)XY, draw arcs to intersect at P on one side of line MAB.
  4. Draw ray AC passing through E Thus, ∠CAB of 90° is received.
  5. Name the point of intersection of the arc with centre A and ray AC as Z.
  6. Taking Y and Z as centres and radius more than \(\frac{1}{2}\)YZ, draw arcs to intersect each other at Q.
  7. Draw ray AQ.
    Thus, ∠QAB is the required angle of 45°.

Justification:
In example 1, we have already justified that ∠CAB = 90°. So, we do not repeat that part’ here.
Draw QZ and QY.
In ∆ AYQ and ∆ AZQ,
AY = AZ (Radii of same arc)
YQ = ZQ (Radii of congruent arcs)
AQ = AQ (Common)
∴ By SSS rule, ∆ AYQ ≅ ∆ AZQ
∴ ∠QAY = ∠QAZ (CPCT)
But, ∠QAY + ∠QAZ = ∠ZAY = ∠CAB = 90°
∴ ∠QAY = \(\frac{90^{\circ}}{2}\) = 45°
∴ ∠QAB = 45°

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 3.
Construct the angles of the following measurements:
(i) 30°
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 3

Steps of construction:

  1. Draw any ray AB. With centre A and any radius, draw an arc to intersect AB at X.
  2. With centre X and the same radius [as in step (1)], draw an arc to intersect the previous arc at Y. Draw ray AY. Then, ∠YAB = 60°.
  3. Draw ray AT, the bisector of ∠YAB.
    Thus, ∠TAB is the required angle of 30°.

(ii) 22\(\frac{1}{2}\)°
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 4

Steps of construction:

  1. Draw any ray AB. Produce AB on the side of A to get line CAB.
  2. Taking A as centre and any radius, draw an arc of a circle to intersect line CAB at X and Y.
  3. Taking X and Y as centres and radius more than \(\frac{1}{2}\)XY, draw arcs to intersect each other at L on one side of line CAB. Draw ray AL. Then, ∠LAB = 90°.
  4. Draw ray AM, the bisector of ∠LAB. Then, ∠MAB = 45°.
  5. Draw ray AN, the bisector of ∠MAB. Then, ∠NAB = 22\(\frac{1}{2}\)°.
    Thus, ∠NAB is the required angle of 22\(\frac{1}{2}\)°.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

(iii) 15°
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 5

Steps of construction:

  1. Draw any ray AB. Taking A as centre and any radius, draw an arc of a circle to intersect AB at X.
  2. Taking X as centre and the same radius as before, draw an arc to intersect the previous arc at Y. Draw ray AY. Then, ∠YAB = 60°.
  3. Draw ray AL, the bisector of ∠YAB. Then, ∠LAB = 30°.
  4. Draw ray AM, the bisector of ∠LAB. Then, ∠MAB = 15°.
    Thus, ∠MAB is the required angle of 15°.

Question 4.
Construct the following angles and verify by measuring them by a protractor:
(i) 75° and (ii) 105°
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 6
Steps of construction:

  1. Draw any ray AB and produce it on the side of A to get line CAB. Taking A as centre and any radius draw an arc of a circle to intersect line CAB at X and Y.
  2. Taking X and Y as centres and radius more than \(\frac{1}{2}\)XY, draw arcs to intersect each other at point L on one side of line CAB. Draw ray AL. Then, ∠LAB = 90°.
  3. Taking X as centre and radius AX, draw an arc of a circle to Intersect the first arc (arc XY) with centre A at Z.
  4. Draw ray AZ. Then, ∠ZAB = 60°.
  5. Now, draw ray AM, the bisector of ∠LAZ. Then, ∠MAB = 75° and ∠MAC = 105°.
    Thus, ∠MAB and ∠MAC are the required angles of measure 75° and 105° respectively.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

(iii) 135°
Answer:
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 7

Steps of construction:

  1. Draw line CAB. Taking A as centre and any radius, draw an arc of a circle to Intersect line CAB at X and Y.
  2. Taking X and Y as centres and radius more them \(\frac{1}{2}\)XY, draw arcs to intersect each other at P on one side of line CAB.
  3. Draw ray AP Then, ∠PAB = ∠PAC = 90°.
  4. Draw ray AQ, the bisector of ∠PAC.
  5. Then, ∠QAB = 135°.
    Thus, ∠QAB is the required angle of 135°.

PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1

Question 5.
Construct an equilateral triangle, given its side and justify the construction.
Answer:
Line segment XY is given. We have to construct an equilateral triangle with each side being equal to XY.
PSEB 9th Class Maths Solutions Chapter 11 Constructions Ex 11.1 8

Steps of construction:

  1. Draw any ray BM.
  2. With centre B and radius XY, draw an arc of a circle to intersect BM at C.
  3. Taking B and C as centres and rhdius XY, draw arcs to intersect each other at A on one side of line AC.
  4. Draw AB and AC.
    Thus, ∆ ABC is the required equilateral triangle with each side being equal to XY.

Justification:
The arc drawn with centre B and radius XY intersects ray BM at C. ∴ BC = XY. The arcs drawn with centres B and C and radius XY intersect at A.
∴ AB = XY and AC = XY.
Thus, in ∆ ABC, AB = BC = AC = XY.
Hence, ∆ ABC is an equilateral triangle in which all sides are equal to XY.
Note: If the measure of sides are given numerically, e.g., 4 cm, 5 cm, etc., then we have to use graduated scale instead of straight edge.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 6 Triangles Ex 6.4 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 6 Triangles Ex 6.4

Question 1.
Let △ABC ~ △DEF and their areas be respectively 64 cm2 and 121 cm2. If EF = 15.4 cm, find BC.
Solution:
△ABC ~ △DEF ;
area of △ABC = 64 cm2;
area of △DEF = 121 cm2;
EF= 15.4 cm

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 1

△ABC ~ △DEF

∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\)
(If two traingles are similar, ratio of their area is square of corresponding sides }

\(\frac{64}{121}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\) \(\left(\frac{8}{11}\right)^{2}=\left(\frac{\mathrm{BC}}{15.4}\right)^{2}\)

⇒ \(\frac{8}{11}=\frac{\mathrm{BC}}{15.4}\)

BC = \(\frac{8 \times 15.4}{11}\)
BC = 8 × 1.4
BC = 11.2 cm.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 2.
Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2 CD. Find the ratio of the areas of traingles AOB and COD.
Solution:
ABCD is trapezium AB || DC. Diagonals AC and BD intersects each other at the point O. AB = 2 CD

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 2

In △AOB and △COD,
∠1 = ∠2 (alternate angles)
∠3 = ∠4 (alternate angles)
∠5 = ∠6 (vertically opposite angle)
∴ △AOB ~ △COD [AA, A similarity criterion]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 10

(If two triangles are similar ratio of their areas is square of corresponding sides)

= \(\frac{(2 \mathrm{CD})^{2}}{\mathrm{CD}^{2}}\) [∵ AB = 2 CD] (Given)

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 11

∴ Required ratio of ar △AOB and △COD = 4 : 1.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 3.
In the fig., △ABC and △DBC are two triangles on the same base BC. If AD intersects BC at O show that

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 12

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 3

Solution:
Given. ∆ABC and ∆DBC are the triangles on same base BC. AD intersects BC at O

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 4

To Prove: PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 12
Construction: Draw AL ⊥ BC, DM ⊥ BC
Proof: In ∆ALO and ∆DMO.
∠1 = ∠2 (vertically opposite angle)
∠L = ∠M (each 90°)
∴ ∆ALO ~ ∆DMO [AA similarity criterion]
∴ \(\frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}\) ……………(1)
[If two triangles are similar, corrosponding sides are proportional

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 13

[∵ ∆ = \(\frac{1}{2}\) × b × p]

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 14

Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 4.
If the areas of two similar triangles are equal, prove that they are congruent.
Solution:
Given: Two ∆s ABC and DEF are similar and equal in area.
To Prove : ∆ABC ≅ ∆DEF

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 5

Proof: Since ∆ABC ~ ∆DEF,
∴ \(\frac{\text { area }(\Delta \mathrm{ABC})}{\text { area }(\Delta \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}\)

⇒ \(\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=1\) [∵ area (∆ABC) = area (∆DEF)]
⇒ BC2 = EF2
⇒ BC = EF.
Also, since ∆ABC ~ ∆DEF,
therefore they are equiangular and hence
∠B = ∠E
and ∠C = ∠F.
Now in ∆s ABC and DEF,
∠B = ∠E, ∠C = ∠F
and BC = EF
∴ ∆ABC ≅ ∆DEF (ASA congruence).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 5.
D, E and F are respectively the mid points of the sides BC, CA and AB of ∆ABC. Determine the ratio of the areas of triangles DEF and ABC.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 6

Given. D, E, F are the mid-point of the sides BC, CA and AB respectively of a tABC.
To find : ar (∆DEE) : ar (∆ABC)
Proof: In ∆ABC,
F is the mid-point of AB …(given)
E is the mid-point of AC …(given)
So, by the Mid-Foint Theorem
FE || BC and FE = \(\frac{1}{2}\) BC
⇒ FE || BD and FE = BD [∵ BD = \(\frac{1}{2}\) BC]
∴ BDEF is a || gm.
(∵ Opp. sides are || and equal)
In △s FBD and DEF,
FB = DE (opp. sides of || gm BDEF)
FD = FD .. .(common)
BD = FE
. ..(opp. sides of || gm BDEF)
∴ △FBD ≅ △DEF … (SSS Congruency Theorem)

Similary we can prove that:
△AFE ≅ △DEF
and △EDC ≅ △DEF
if △s are , then they are equal in area.
∴ ar (∆FBD) = ar. (∆DEF) ……………(1)
ar (∆AFE) = ar (∆DEF) ……………(2)
ar (∆EDC) = ar (∆DEF) ……………(3)
Now ar ∆ (ABC)
= ar (∆FBD) + ar (∆DEF) + ar (∆AFE) + ar (∆EDC)
= ar.(∆DEF) + ar (∆DEF) + ar (∆DEF) + ar. (∆DEF) [Using (1), (2) and (3)]
= 4 ar (∆DEF)
⇒ (∆DEF) = \(\frac{1}{4}\) ar(∆ABC)
⇒ \(\frac{{ar} .(\Delta \mathrm{DEF})}{{ar} .(\Delta \mathrm{ABC})}=\frac{1}{4}\)
∴ ar (∆DEF) : ar (∆ABC) = 1 : 4.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 6.
Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
Solution:
Given: ∆ABC ~ ∆DEF.
AX and DY are the medians to the side BC and EF respectively.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 7

To prove: \(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\frac{\mathrm{AX}^{2}}{\mathrm{DY}^{2}}\)
Proof: ∆ABC ~ ∆DEF (Given)
∴ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{2 \mathrm{BX}}{2 \mathrm{EY}}\)
[∵ AX and DY are medians
∴ BC = 2BX and EF = 2EY]

⇒ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BX}}{\mathrm{EY}}\) ………………(1)
In ∆ABX and ∆DEY, [∵ ∆ABC ~ ∆DEF]
\(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BX}}{\mathrm{EY}}\) [Prove in (1)]
∴ ∆ABC ~ ∆DEY [By SAS criterion of similarity]
∴ \(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AX}}{\mathrm{DY}}\) …………(2)
As the areas of two similar triangles are proportional to the squares of the corresponding sides, so
∴ \(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AX}^{2}}{\mathrm{D} \mathrm{Y}^{2}}\)
Hence proved.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 7.
Prove that the areas of the equilateral triangle described on the side of a square Is half the area of the equilateral triangle described on its diagonal.
Solution:
Given: ABCD is a square. Equilateral ∆ABE is described on the side AB of the square and equilateral ∆ACF is desribed on the diagonal AC.

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 8

To prove: \(\frac{{ar} .(\Delta \mathrm{ABE})}{{ar} .(\Delta \mathrm{ACF})}=\frac{1}{2}\)
Proof: In rt. ∆ABC,
⇒ AB2 + BC2 = AC2 [By Pathagoras theorem]
= AB2 + AB2 = AC2 [∵ AB = BC, being the sides of the same square]
⇒ 2AB2 = AC2 ………….(1)
Now each of ∆ABE and ∆ACF are equilateral and therefore equiangular and hence similar.
i.e., ∆ABE ~ ∆ACF.
Here any side of one ∆ is proportional to any side of other.
∴ \(\frac{\text { ar. }(\Delta \mathrm{ABE})}{\text { ar. }(\Delta \mathrm{ACF})}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}^{2}}\)

[∵ The ratio of the areas of two similar∆s is equal to their corresponding sides]
= \(\frac{\mathrm{AB}^{2}}{2 \mathrm{AB}^{2}}=\frac{1}{2}\) [Using (1)]

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 8.
Tick the correct answer and justify: ABC and BDE are two equilateral triangles such that D is the mid point of BC. Ratio of the areas of triangles ABC and BDE is
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4.
Solution:
∆ABC and ∆BDE are two equilateral thangles. D is mid point of BC.
∴ BD = DC = \(\frac{1}{2}\) BC,
Let each side of triangles are 2a
∴ ∆ABC ~ ∆BDE
∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\triangle \mathrm{BDE})}=\frac{\mathrm{AB}^{2}}{\mathrm{BD}^{2}}\)

= \(\frac{(2 a)^{2}}{(a)^{2}}\)
= \(\frac{4 a^{2}}{a^{2}}\)
= \(\frac{4}{1}\) = 4 : 1
∴ Correct option is (C).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4

Question 9.
Tick the correct answer and justify: Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are ¡n the ratio
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81.
Solution:

PSEB 10th Class Maths Solutions Chapter 6 Triangles Ex 6.4 9

∆ABC ~ ∆DEF (given)

\(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{4}{9}\)

∴ \(\frac{\text { ar. }(\Delta \mathrm{ABC})}{\text { ar. }(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}\)

[If two triangles are similar ratio of their areas is equal to square of corresponding sides]
\(\frac{{ar} .(\Delta \mathrm{ABC})}{{ar} .(\Delta \mathrm{DEF})}=\left(\frac{4}{9}\right)^{2}\) = \(\frac{16}{81}\) = 16 : 81
∴ Correct option is (D).

PSEB 9th Class Maths MCQ Chapter 10 Circles

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 10 Circles MCQ Questions with Answers.

PSEB 9th Class Maths Chapter 10 Circles MCQ Questions

Multiple Choice Questions and Answer

Answer each question by selecting the proper alternative from those given below each question to make the statement true:

Question 1.
In a circle with centre P, AB and CD are congruent chords. If ∠PAB = 40°, then ∠CPD = ………………..
A. 40°
B. 80°
C. 100°
D. 50°
Answer:
C. 100°

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 2.
In a circle with radius 5 cm, the length of a chord lying at distance 4 cm from the centre is …………………. cm.
A. 3
B. 6
C. 12
D. 15
Answer:
B. 6

Question 3.
In a circle with radius 13 cm, the length of a chord is 24 cm. Then, the distance of the chord from the centre is ……………….. cm.
A. 10
B. 5
C. 12
D. 6.5
Answer:
B. 5

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 4.
In a circle with radius 7 cm, the length of a minor arc is always less than ………………… cm.
A. 11
B. 22
C. 15
D. π
Answer:
B. 22

Question 5.
In a circle with centre P, AB is a minor arc. Point R is a point other than A and B on major arc AB. If ∠APB = 150°, then ∠ARB = …………… .
A. 150°
B. 75°
C. 50°
D. 100°
Answer:
B. 75°

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 6.
In a circle with centre P, AB is a minor arc. Point R is a point other than A and B on major arc AB. If ∠ARB = 80°, then ∠APB = ……………. .
A. 40°
B. 80°
C. 160°
D. 60°
Answer:
C. 160°

Question 7.
In cyclic quadrilateral ABCD, ∠A – ∠C = 20°.
Then, ∠A = ………………. .
A. 20°
B. 80°
C. 100°
D. 50°
Answer:
C. 100°

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 8.
In cyclic quadrilateral PQRS, 7∠P = 2∠R.
Then, ∠P = ………………….. .
A. 20°
B. 40°
C. 140°
D. 100°
Answer:
B. 40°

Question 9.
The measures of two angles of a cyclic quadrilateral are 40° and HOP. Then, the measures of other two angles of the quadrilateral are ……………….. .
A. 40° and 110°
B. 50° and 100°
C. 140° and 70°
D. 20° and 120°
Answer:
C. 140° and 70°

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 10.
In cyclic quadrilateral PQRS, ∠SQR = 60° and ∠QPR = 20°. Then, ∠QRS = ……………… .
A. 40°
B. 60°
C. 80°
D. 100°
Answer:
D. 100°

Question 11.
In cyclic quadrilateral ABCD, ∠CAB = 30° and ∠ABC = 100°. Then, ∠ADB =
A. 50°
B. 100°
C. 75°
D. 60°
Answer:
A. 50°

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 12.
Equilateral ∆ ABC is inscribed in a circle with centre P. Then, ∠BPC = ……………. .
A. 60°
B. 90°
C. 120°
D. 75°
Answer:
C. 120°

Question 13.
∆ ABC is inscribed in a circle with centre O and radius 5 cm and AC is a diameter of the circle. If AB = 8 cm, then BC = ………………… cm.
A. 10
B. 8
C. 6
D. 15
Answer:
C. 6

PSEB 9th Class Maths MCQ Chapter 10 Circles

Question 14.
In cyclic quadrilateral ABCD, ∠A = 70° and ∠B + ∠C = 160°. Then, ∠B = ………………. .
A. 35°
B. 25°
C. 50°
D. 130°
Answer:
C. 50°

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 10 Circles Ex 10.6 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 10 Circles Ex 10.6

Question 1.
Prove that the line segment joining the centres of two intersecting circles subtends equal angles at the two points of intersection.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 1
Circles with centres O and P intersect each other at points A and B.
In ∆ OAP and ∆ OBR
OA = OB (Radii of circle with centre O)
PA = PB (Radii of circle with centre P)
OP = OP (Common)
∴ By SSS rule, ∆ OAP = ∆ OBP
∴ ∠OAP = ∠OBP (CPCT)
Thus, OP subtends equal angles at A and B. Hence, the line segment joining the centres of two intersecting circles subtends equal angles at the two points of intersection.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 2.
Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 2
Draw the perpendicular bisector of AB to intersect AB at M and draw the perpendicular bisector of CD to intersect CD at N.
Both these perpendicular bisectors pass through centre O and since AB || CD; M, O and N are collinear points.
Now, MB = \(\frac{1}{2}\)AB = \(\frac{5}{2}\) = 2.5 cm,
CN = \(\frac{1}{2}\)CD = \(\frac{11}{2}\) = 5.5 cm and MN = 6 cm.
Let ON = x cm s
∴ OM = MN – ON = (6 – x) cm
Suppose the radius of the circle is r cm.
∴ OB = OC = r cm
In ∆ OMB, ∠M = 90°
∴OB2 = OM2 + MB2
∴ r2 = (6 – x)2 + (2.5)2
∴ r2 = 36 – 12x + x2 + 6.25 ………….. (1)
In ∆ ONC, ∠N = 90°
∴ OC2 = ON2 + CN2
∴ r2 = (x)2 + (5.5)2
∴ r2 = x2 + 30.25 ………………. (2)
From (1) and (2),
36 – 12x + x2 + 6.25 = x2 + 30.25
∴ – 12x = 30.25 – 6.25 – 36
∴- 12x = – 12
∴x = 1
Now, r2 = x2 + 30.25
∴ r2 = (1)2 + 30.25
∴ r2 = 31.25
∴ r = √31.25 (Approximately 5.6)
Thus, the radius of the circle is √31.25 (approximately 5.6) cm.
Note: If the calculations are carried out in simple fractions, then MB = \(\frac{5}{2}\) cm, CN = \(\frac{11}{2}\) cm and radius is \(\frac{5 \sqrt{5}}{2}\) (approximately 5.6) cm.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 3.
The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chords is at distance 4 cm from the cehtre, what is the distance of the other chord from the centre?
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 3
In a circle with centre O, chord AB is parallel to chord CD, AB = 8 cm and CD = 6 cm.
Draw OM ⊥ AB, ON ⊥ CD, radius OB and radius OC.
Then, MB = \(\frac{1}{2}\)AB = \(\frac{1}{2}\) × 8 = 4 cm,
NC = \(\frac{1}{2}\)CD = \(\frac{1}{2}\) × 6 = 3cm and ON = 4cm.
In ∆ ONC, ∠N = 90°
∴ OC2 = ON2 + NC2 = 42 + 32 = 16 + 9 = 25
∴ OC = 5 cm
∴ OB = 5 cm (OB = OC = Radius)
In ∆ OMB, ∠M = 90°
∴ OB2 = OM2 + MB2
∴ 52 = OM2 + 42
∴ 25 = OM2 + 16
∴ OM2 = 9
∴ OM = 3 cm
Thus, the distance of the other chord from the centre is 3 cm.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 4.
Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 4
In ∆ ABE, ∠AEC is an exterior angle.
∴ ∠AEC = ∠ABE + ∠BAE
∴ ∠ABE = ∠AEC – ∠BAE
∴ ∠ABC = ∠AEC – ∠DAE ……………. (1)
Now, ∠AEC = \(\frac{1}{2}\) ∠AOC (Theorem 10.8)
and ∠ DAE = \(\frac{1}{2}\) ∠DOE (Theorem 10.8)
Substituting above values in (1),
∠ABC = \(\frac{1}{2}\) ∠AOC – \(\frac{1}{2}\)∠DOE
∴ ∠ABC = \(\frac{1}{2}\) (∠AOC – ∠DOE)
Here, ∠AOC is the angle subtended by chord AC at the centre and ∠DOE is the angle subtended by chord DE at the centre.
Thus, ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
Note: There is no need for chords AD and CE to be equal.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 5.
Prove that the circle drawn with any side of a rhombus as diameter passes through the point of intersection of its diagonals.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 5
ABCD is a rhombus and its diagonals intersect at M.
∴ ∠BMC is a right angle.
A circle is drawn with diameter BC.
There are three possibilities for point M:
(1) M lies in the interior of the circle,
(2) M lies in the exterior of the circle.
(3) M lies on the circle.
According to (1), if M lies in the interior of the circle, then BM produced will intersect the circle at E. Then, ∠BEC is an angle in a semicircle and hence a right angle, i.e.,
∠MEC = 90°.
In ∆ MEC, ∠ BMC is an exterior angle.
∴ ∠ BMC > ∠ MEC, i.e., ∠ BMC > 90°. In this situation, ∠ BMC is an obtuse angle which contradicts that ∠ BMC = 90°.
Similarly, according to (2), if M lies in the exterior of the circle, then ∠BMC is an acute angle which contradicts that ∠BMC 90°. Thus, possibilities (1) and (2) cannot be true.
Hence, only possibility (3) is true, i.e., M lies on the circle.
Thus, the circle drawn with any side of a rhombus as diameter passes through the point of intersection of its diagonals.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 6.
ABCD is a parallelogram. The circle through A, B and C intersects CD (produced if necessary at) E. Prove that AE = AD.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 6
Here, the circle through A, B and C intersects CD at E.
∴ Quadrilateral ABCE is cyclic.
ABCD is a parallelogram.
∴ ∠ABC = ∠ADC
∴ ∠ABC = ∠ADE
In cyclic quadrilateral ABCE,
∠ABC + ∠AEC = 180°
∴ ∠ADE + ∠AEC = 180° ……………… (1)
Moreover, ∠AEC and ∠AED form a linear pair.
∴ ∠AED + ∠AEC = 180° ………………. (2)
From (1) and (2),
∠ADE + ∠AEC = ∠AED + ∠AEC
∴ ∠ ADE = ∠ AED
Thus, in ∆ AED, ∠ADE = ∠AED.
∴ AE = AD (Sides opposite to equal angles)
Note: If the circle intersect CD produced, l then also the result can be proved in similar way.
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 7

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 7.
AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is a rectangle.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 8
Chords AC and BD of a circle bisect each other at point O.
Hence, the diagonals of quadrilateral ABCD bisect each other.
∴ Quadrilateral ABCD Is a parallelogram.
∴ ∠BAC = ∠ACD (Alternate angles formed by transversal AC of AB || CD)
Moreover, ∠ACD = ∠ABD (Angles in same segment)
∴ ∠BAC = ∠ABD
∴ ∠BAO = ∠ABO
∴ In A OAB, OA = OB.
But, OA = OC and OB = OD
∴ OA = OB = OC = OD
∴ OA + OC = OB + OD
∴ AC = BD
Thus, the diagonals of parallelogram ABCD are equal.
∴ ABCD is a rectangle.
∴ ∠ABC = 90°
Hence, ∠ABC is an angle in a semicircle and AC is a diameter.
Similarly, ∠BAD = 90°.
Hence, ∠BAD is an angle in a semicircle and BD is a diameter.

Question 8.
Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are 90° – \(\frac{1}{2}\)A, 90° – \(\frac{1}{2}\)B and 90° – \(\frac{1}{2}\)C.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 9
The bisectors of ∠A, ∠B and ∠ C of ∆ ABC intersect the circumcircle of ∆ ABC at D, E and F respectively. .
∠FDE = ∠FDA + ∠EDA (Adjacent angles)
= ∠ FCA + ∠ EBA (Angles in same segment)
= \(\frac{1}{2}\)∠C + \(\frac{1}{2}\)∠B (Bisector of angles in ∆ ABC)
= \(\frac{1}{2}\)(∠ B + ∠ C)
= \(\frac{1}{2}\)(180° – ∠A) [∠A + ∠B + ∠C = 180°)
= 90° – \(\frac{1}{2}\) ∠A
Thus, ∠FDE = 90° – \(\frac{1}{2}\) ∠A.
Similarly, ∠ DEF = 90° – \(\frac{1}{2}\) ∠B and
∠ EFD = 90° – \(\frac{1}{2}\) ∠C.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 9.
Two congruent circles intersect each Other at points A and B. Through A any line segment PAQ is drawn so that P 9 lie-on. , the two circles. Prove that BP = BQ.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 10
Two congruent circles with centres X and Y intersect at A and B.
Hence, AB is their common chord.
In congruent circles, equal chords subtend equal angles at the centres.
∴ ∠AXB = ∠AYB
In the circle with centre X, ∠AXB = 2∠APB and in the circle with centre Y, ∠AYB = 2∠AQB.
∴ 2∠ APB = 2∠ AQB
∴ ∠APB = ∠AQB
∴ ∠QPB = ∠PQB
Thus, in ∆ BPQ, ∠QPB = ∠PQB
∴ QB = PB (Sides opposite to equal angles)
Hence, BP = BQ.

PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6

Question 10.
In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.
Answer:
PSEB 9th Class Maths Solutions Chapter 10 Circles Ex 10.6 11
In ∆ ABC, the bisector of ∠A intersects the circumcircle of ∆ ABC at D.
∴∠BAD = ∠CAD
Aso, ∠BAD = ∠BCD and ∠CAD = ∠CBD (Angles in same segment)
∴ ∠BCD = ∠CBD
Thus, in ∆ BCD, ∠BCD = ∠CBD
∴BD = CD (Sides opposite to equal angles)
Thus, point D is equidistant from B and C.
Hence, D is a point on the perpendicular bisector of BC.
Thus, the bisector of ∠ A and the perpendicular bisector of side BC intersect at D and D is a point on the circumcircle of ∆ ABC.
Thus, in ∆ ABC, if the angle bisector of ∠A and the perpendicular bisector of side BC intersect, they intersect on the circumcircle of ∆ ABC.
Note: In ∆ ABC, if AB = AC, then the bisector of ∠A and the perpendicular bisector of side BC will coincide , and would not intersect in a single point.