PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 8 Quadrilaterals MCQ Questions with Answers.

PSEB 9th Class Maths Chapter 8 Quadrilaterals MCQ Questions

Multiple Choice Questions and Answer

Answer each question by selecting the proper alternative from those given below each question to make the statement true:

Question 1.
The ratio of four angles in order of a quadrilateral is 2 : 4 : 5 : 4. Then, the measure of the smallest angle of the quadrilateral is
A. 120°
B. 96°
C. 48°
D. 60°
Answer:
C. 48°

PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Question 2.
In quadrilateral PQRS, ∠P = 5x, ∠Q = 3x, ∠R = 4x and ∠S = 6x. Then, the measure of the greatest angle of quadrilateral PQRS is …………… .
A. 100°
B. 60°
C. 80°
D. 120°
Answer:
D. 120°

Question 3.
In quadrilateral ABCD, ∠A + ∠B = 150°.
Then ∠C + ∠D =
A. 105°
B. 210°
C. 150°
D. 300°
Answer:
B. 210°

Question 4.
In trapezium PQRS, PQ || RS. If ∠P = 150°, then ∠S = …………. .
A. 75°
B. 150°
C. 60°
D. 30°
Answer:
D. 30°

Question 5.
The perimeter of parallelogram ABCD is 22 cm.
If AB = 4 cm, then BC = ……………. cm.
A. 7
B. 6
C. 5.5
D. 4
Answer:
A. 7

PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Question 6.
In parallelogram ABCD, ∠A – ∠B = 30°. Then, ∠C = ……………… .
A. 105°
B. 75°
C. 150°
D. 60°
Answer:
A. 105°

Question 7.
In parallelogram ABCD, the bisectors of ∠A and ∠B intersect at M. If ∠A = 80°, then ∠AMB = ……………. .
A. 40°
B. 50°
C. 80°
D. 90°
Answer:
D. 90°

Question 8.
In parallelogram ABCD, the ratio ∠A : ∠B : ∠C : ∠D can be
A. 3 : 4 : 5 : 6
B. 2 : 3 : 3 : 2
C. 2 : 3 : 2 : 3
D. 2 : 3 : 5 : 8
Answer:
C. 2 : 3 : 2 : 3

Question 9.
In parallelogram ABCD, 3 ∠ A = 2 ∠ B. Then, ∠ D = ………………. .
A. 120°
B. 108°
C. 72°
D. 60°
Answer:
B. 108°

PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Question 10.
In ∆ ABC, E and F are the midpoints of AB and AC respectively. If EF = 4 cm, then BC = …………… cm.
A. 8
B. 2
C. 4
D. 12
Answer:
A. 8

Question 11.
In ∆ ABC, P is the midpoint of AB and Q is the midpoint of AC. Then, PQCB is a ………….. .
A. trapezium
B. parallelogram
C. rectangle
D. rhombus
Answer:
A. trapezium

Question 12.
In ∆ ABC, D, E and F are the midpoints of AB, BC and CA respectively. If the perimeter of ∆ DEF is 30 cm, then the perimeter of ∆ ABC is ……………. cm.
A. 15
B. 30
C. 45
D. 60
Answer:
D. 60

PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Question 13.
∆ ABC is an equilateral triangle. D, E and F are the midpoints of AB, BC and CA respectively. If AB = 8 cm, the perimeter of ∆ DEF is …………… cm.
A. 24
B. 12
C. 6
D. 48
Answer:
B. 12

Question 14.
ABCD is a rectangle. If AB = 5 cm and BC = 12
cm, then BD = ………………. cm
A. 17
B. 13
C. 8.5
D. 1
Answer:
B. 13

PSEB 9th Class Maths MCQ Chapter 8 Quadrilaterals

Question 15.
ABCD is a rhombus. If AC = 10 cm and BD = 24 cm, the perimeter of ABCD is …………………. cm.
A. 13
B. 26
C. 52
D. 48
Answer:
C. 52

PSEB 12th Class Hindi Vyakaran समास

Punjab State Board PSEB 12th Class Hindi Book Solutions Hindi Grammar samas समास Exercise Questions and Answers, Notes.

PSEB 12th Class Hindi Grammar समास

प्रश्न 1.
समास किसे कहते हैं ? उदाहरण सहित लिखें।
उत्तर:
परस्पर सम्बन्ध रखने वाले दो या दो से अधिक शब्दों को मिलकर बनने वाले एक स्वतन्त्र सार्थक शब्द को समास कहते हैं। जैसे:
राजा और कुमार से मिलकर-राजकुमार
राजा और पुरुष से मिलकर-राजपुरुष

प्रश्न 2.
समास परस्पर सम्बन्ध रखने वाले कौन से शब्दों के मेल से बनता है?
उत्तर:
संज्ञा के साथ संज्ञा का, संज्ञा के साथ विशेषण का, विशेषण के साथ विशेषय का तथा अव्यय के साथ संज्ञा का परस्पर मेल होने से समास बनता है।

PSEB 12th Class Hindi Vyakaran समास

प्रश्न 3.
‘समास’ शब्द का अर्थ सोदाहरण स्पष्ट करें।
उत्तर:
‘समास’ शब्द संस्कृत भाषा का है जिसका अर्थ है संक्षेपीकरण अर्थात् संक्षिप्त करना। जैसे ‘कपड़े से छना हुआ’ शब्द समूह का संक्षिप्त रूप होगा कपड़छन।
याद रखें : समास की विशेषता यह है कि यह जिस शब्द समूह का संक्षिप्त रूप होता है उसके अर्थ में किसी प्रकार का परिवर्तन नहीं होता जैसे कि ऊपर दिए गए उदाहरण ‘कपड़छन’ से स्पष्ट होता है।

प्रश्न 4.
समस्तपद या सामासिक शब्द किसे कहते हैं? सोदाहरण लिखें।
उत्तर:
समास करते समय परस्पर मेल होने वाले शब्दों के बीच की विभक्तियों या योजक शब्दों का लोप होकर जो शब्द बनते हैं, उन्हें ‘समस्त पद’ या ‘सामासिक शब्द’ कहते हैं। जैसे-
राम और लक्ष्मण = राम लक्ष्मण
चक्र है पाणि (हाथ) में जिसके = चक्रपाणि
यहाँ ‘राम लक्ष्मण’ तथा ‘चक्रपाणि’ समस्त पद या सामासिक शब्द हैं।

प्रश्न 5.
विग्रह किसे कहते हैं? सोदाहरण स्पष्ट करें।
उत्तर:
किसी शब्द में समास का पता करने के लिए समस्त पद के खण्डों को अलग-अलग करना पड़ता है, उसे विग्रह कहते हैं। अर्थात् समस्त पदों का विग्रह करके ही किसी शब्द का समास जाना जा सकता है। अतः विग्रह की परिभाषा हम इस तरह कर सकते हैं-
समस्त पदों के खण्ड करके विभक्तियाँ आदि लगाकर परस्पर सम्बन्ध दिखलाने की रीति को ‘विग्रह’ कहते हैं। जैसे-
राह-खर्च का विग्रह होगा-रास्ते के लिए खर्च
नीलकमल का विग्रह होगा-नीला है जो कमल

याद रखें: कभी विग्रह के आधार पर एक ही शब्द कई समासों का उदाहरण हो जाता है। जैसे ‘नीलकंठ’ का विग्रह यदि नीला है जो कंठ किया जाएगा तो यह ‘कर्मधारय’ समास होगा। किन्तु यदि इसी शब्द का विग्रह नीला है कंठ जिसका अर्थात् शंकर भगवान् किया जाएगा तो यह ‘बहुब्रीहि’ समास होगा।

समास के सम्बन्ध में कुछ याद रखने वाली बातें

1. हिन्दी में समास प्रायः दो शब्दों से ही बनते हैं जबकि संस्कृत में अनेक शब्दों से बनते हैं। हिन्दी में ‘सुत-वितनारी-भवन-परिवारा’ ही सबसे लम्बा समास है। इसके अतिरिक्त तन-मन-धन, जन-मन-गण, धूप-दीप-नैवैध आदि बहुत थोड़े शब्द हैं जो दो से अधिक शब्दों के मेल से बने हैं।

2. सामासिक शब्द बनते समय परस्पर मिलने वाले दोनों शब्दों की विभक्तियों या योजक शब्दों का लोप हो जाता है। जैसे राम और कृष्ण का समास राम-कृष्ण होने पर ‘और’ योजक शब्द का लोप हो गया है।

3. समास कुछ अपवादों को छोड़कर प्रायः दो सजातीय शब्दों में ही होता है। जैसे रसोई-घर का रसोईशाला नहीं बनेगा अथवा पाठशाला का पाठ घर शब्द नहीं बनेगा।
रेल-गाड़ी, जिला-धीश, धन-दौलत, मनमौजी, दुःख-सुख आदि इनके अपवाद हैं।

4. हिन्दी में मुख्यतः तीन ही प्रकार के शब्दों के सामासिक-शब्द प्रयोग में आते हैं। जैसे-
संस्कृत के-यथा-शक्ति, मनसिज, पुरुषोत्तम, युधिष्ठिर आदि।
हिन्दी के-भरपेट, अनबन, नीलकमल, दही-बड़ा, बैलगाड़ी, अलोना-सलोना आदि।
उर्दू-फ़ारसी के-नालायक, खुशबू, सौदागर, बेशक, चारदीवारी आदि।
इसके अतिरिक्त हिन्दी में कुछ अंग्रेजी शब्दों के मेल से अथवा हिन्दी अंग्रेजी शब्दों के मेल से भी समास बनते हैं। जैसे-
रेलवे स्टेशन, बुकिंग-ऑफिस, टिकट-चैकर, टाइम-टेबल तथा बस-अड्डा, पुलिस-चौकी, दल-बन्दी, पार्टी-बाज़ी आदि।

समास के भेद

प्रश्न 1.
समास के भेद किस आधार पर किये जाते हैं ?
उत्तर:
समास के भेद उसके पदों की प्रधानता-अप्रधानता के आधार पर किये जाते हैं। अर्थात् समास में कभी पहला पद प्रधान होता है तो कभी दूसरा और कभी-कभी दोनों ही पद प्रधान होते हैं अथवा कोई भी पद प्रधान नहीं होता। जैसे
रमेश गान्धी-भक्त है। यहां गान्धी-भक्त में भक्त प्रधान है क्योंकि रमेश भक्त है गान्धी नहीं।

प्रश्न 2.
समास के कितने भेद हैं?
उत्तर:
समास के मुख्यतः चार भेद माने जाते हैं। जो निम्नलिखित हैं-
1. अव्ययीभाव-इसमें पहला पद प्रधान होता है।
2. तत्पुरुष-इसमें दूसरा पद प्रधान होता है।
3. द्वन्द्व-इसमें दोनों पद प्रधान होते हैं।
4. बहुब्रीहि-इसमें कोई भी पद प्रधान नहीं होता।
कुछ विद्वान् समास के दो अन्य भेद भी मानते हैं-
1. कर्मधारय
2. द्विगु

किन्तु अनेक विद्वान् इन्हें तत्पुरुष समास का ही एक भेद मानते हैं।
इस तरह समास के कुल छः भेद माने जा सकते हैं-
1. अव्ययीभाव
2. तत्पुरुष
3. कर्मधारय
4. द्विगु
5. द्वन्द्व तथा
6. बहुब्रीहि

अव्ययी भाव

प्रश्न 1.
अव्ययीभाव समास की परिभाषा उदाहरण सहित लिखें।
उत्तर:
जिस समास में पहला पद प्रधान हो और समस्त पद अव्यय (क्रिया विशेषण) का काम करे, उसे अव्ययी भाव समास कहते हैं। जैसे-
संस्कृत शब्दों से-यथा शक्ति, प्रतिदिन, यावज्जीवन, व्यर्थ
हिन्दी शब्दों से-भरपेट, हाथों-हाथ, दिनों-दिन, हर घड़ी आदि।

याद रखें-1. अव्ययीभाव समास में समस्त शब्द अव्यय होता है। अतः उसके साथ विभक्ति चिह्न नहीं लगता। जैसे-
यह पुस्तक हाथों हाथ बिक गयी।
वे रातों रात शहर छोड़ कर चले गए।

2. यथा, प्रति, भर तथा आ जिस शब्द के पहले पद होते हैं, वे सब अव्ययीभाव समास कहलाते हैं। जैसा प्रत्येक, प्रतिवर्ष, भरसक, आमरण आदि।

3. द्विरुक्त शब्द बहुधा अव्ययीभाव होते हैं। जैसे-घड़ी-घड़ी, पल-पल, रोज़-रोज़, घर-घर, दर-दर, वन-वन आदि।

4. द्विरुक्त शब्दों के बीच में ‘ही’ अथवा ‘आ’ लगने पर भी अव्ययीभाव ही होता है। जैसे-दिल ही दिल, मन ही मन, साथ ही साथ, एकाएक, मुँहा-मुँह, धड़ाधड़, सरासर आदि।

2. तत्पुरुष

प्रश्न 1.
तत्पुरुष समास की परिभाषा उदाहरण सहित लिखें।
उत्तर:
जिस समास का दूसरा पद प्रधान होता है और दोनों पदों के बीच कर्ता तथा सम्बोधन कारक के अतिरिक्त शेष किसी भी कारक की विभक्ति का लोप हो जाता है। जैसे-
ग्रन्थकार = ग्रन्थ के करने वाला
तुलसीकृत = तुलसी से कृत।
देश-भक्ति = देश के लिए भक्ति
भयभीत = भय से भीत
हिमालय = हिम (बर्फ) का घर
शोकमग्न = शोक में मग्न

ऊपर के उदाहरणों में क्रमशः कर्म, करण, सम्प्रदान, अपादान, सम्बन्ध तथा अधिकरण कारक चिह्नों का लोप हुआ है। इन उदाहरणों में दूसरे पद ही प्रधान हैं। जैसे राज पुरुष में पुरुष प्रधान है क्योंकि यदि हम कहें राज पुरुष पधार रहे हैं तो इसका अर्थ होगा ऐसा पुरुष पधार रहा है जिसका सम्बन्ध राजा से है वह राजा नहीं है।

PSEB 12th Class Hindi Vyakaran समास

प्रश्न 2.
तत्पुरुष समास के कितने भेद हैं ? उदाहरण सहित लिखें।
उत्तर:
तत्पुरुष समास में प्रथम पद के साथ जिस कारक की विभक्ति आती है तथा जो समास करते समय लुप्त हो जाती है, उसी कारक के अनुसार तत्पुरुष का नाम भी होता है। जैसे-

  1. कर्म तत्पुरुष-यशप्राप्त (यश को प्राप्त)
  2. करण तत्पुरुष-हस्तलिखित (हस्त (हाथ) से लिखित) .
  3. सम्प्रदान तत्पुरुष-गुरुदक्षिणा (गुरु के लिए दक्षिणा)
  4. अपादान तत्पुरुष-ऋण मुक्त (ऋण से मुक्त)
  5. सम्बन्ध तत्पुरुष-पवन पुत्र (पवन का पुत्र)
  6. अधिकरण तत्पुरुष-घुड़सवार (घोड़े पर सवार)

कुछ अन्य प्रश्न
सामासिक शब्द सूची

परीक्षा में प्रायः सामासिक शब्द देकर उनके समास का नाम लिखने को भी कहा जाता है अथवा कभी-कभी कुछ शब्द देकर यह पूछा जाता है कि इस शब्द में समास कौन-सा है। इसी बात को ध्यान में रखते हुए एक विस्तृत सूची यहाँ दी जा रही है।

1. अव्ययीभाव समास

अजानु-जानुओं (घुटनों) तक
अनुगमन-पीछे चलना
अतिकष्ट-बहुत कष्ट
आजीवन-जीवन पर्यन्त
आमरण-मरण पर्यन्त
उपकण्ठ-कण्ठ के समीप
उपकुल-कुल के समीप
उपकृष्ण-कृष्ण के समीप
उपनगर-नगर के समीप
प्रतिदिन-दिन-दिन
अनजाने-जाने बिना
घड़ी-घड़ी-हर घड़ी
घर-घर-हर घर
ज्ञानपूर्वक-ज्ञान के अनुसार
निडर-बिना डर
गली-गली-प्रत्येक गली
प्रत्येक-एक-एक
यथामति–मति के अनुसार
यथा विधि-विधि के अनुसार
यथा शक्ति-शक्ति के अनुसार
यथा शीघ्र-जितना शीघ्र हो सके उतना शीघ्र
यथा संख्य-संख्या के अनुसार
यथा सम्भव-जैसा सम्भव हो
यथा साध्य-जो हो सके
यथा सामर्थ्य-सामर्थ्य के अनुसार
यथोचित -जितना उचित हो
निस्संदेह-संदेह के बिना
बीचों-बीच-ठीक बीच में
भर पेट-पेट भर कर
भरसक-पूरी शक्ति से
हाथों हाथ-हाथ ही हाथ
साफ-साफ-बिलकुल साफ

2. तत्पुरुष

परलोकगमन-परलोक को गमन
यशप्राप्त-यश को प्राप्त
विदेशगत-विदेश को गया हुआ
शरणागत-शरण को आगत (आया हुआ)
स्वर्गगत-स्वर्ग को गत (गया हुआ)
मोक्षप्राप्त-मोक्ष को प्राप्त

कर्म तत्पुरुष-
गंगा प्राप्त-गंगा को प्राप्त
ग्रन्थकार-ग्रन्थ को करने (रचने) वाला
ग्रामगत-ग्राम को गया हुआ
जलपिपासु-जल पीने की इच्छा रखने वाला
जेबकतरा-जेब को कतरने (काटने) वाला
देशगत-देश को गया हुआ

करण तत्पुरुष-
अकाल-पीड़ित-अकाल से पीड़ित
अनुभव-जन्य-अनुभव से जन्य (उत्पन्न)
आचार-हीन-आचार से रहित
ईश्वर-प्रदत्त-ईश्वर से प्रदत्त प्रदत्त (दिया हुआ)
कपड़छन-कपड़े से छना हुआ
कलंकयुक्त-कलंक से युक्त
कष्टसाध्य-कष्ट से साध्य

धनहीन-धन से रहित
प्रेमातुर-प्रेम से आतुर
बाढ़-पीड़ित-बाढ़ से पीड़ित
बाणबिद्ध-बाण से बिद्ध
बिहारी रचित-बिहारी द्वारा रचित
भुखमरा-भूख से मरा हुआ
मदमाता-मद से माता (मस्त)
कीर्तियुक्त-कीर्ति से युक्त
मदाँध-मद से अंधा
गुणयुक्त-गुण से युक्त
मदोन्मत्त-मद से उन्मत्त
गुण हीन-गुण से रहित
मनगढन्त-मन से गढ़ी हुई
गुन भरा-गुण से भरा हुआ
मन चाहा-मन से चाहा
गुरुकृत-गुरु से कृत (किया हुआ)
मन माना-मन से माना हुआ
गुरुदत्त-गुरु से दत्त (दिया हुआ)
मुँह माँगा-मुँह से माँगा हुआ
जन्मरोगी-जन्म से रोगी
रेखांकित-रेखा से अंकित
ज्ञान मुक्त–ज्ञान से मुक्त
रेलयात्रा-रेल से यात्रा
ज्ञान युक्त–ज्ञान से युक्त
वाग्दत्ता-वाक् से दत्ता
तुलसीकृत-तुलसी से कृत
शोकाकुल-शोक से आकुल
दयार्द्र-दया से आर्द्र
श्रीयुक्त-श्री (लक्ष्मी) से युक्त
दर्द भरा-दर्द से भरा हुआ
श्रीहीन–श्री (लक्ष्मी) से हीन
दुःर्खात–दुःख से आर्त (व्याकुल)
हस्तलिखित-हाथ से लिखित
दोषपूर्ण-दोष से पूर्ण

PSEB 12th Class Hindi Vyakaran समास

सम्प्रदान तत्पुरुष

आराम कुर्सी-आराम के लिए कुर्सी
प्रयोगशाला-प्रयोग के लिए शाला
क्रीड़ा क्षेत्र-क्रीड़ा के लिए क्षेत्र
बलिपशु-बलि के लिए पशु
कृष्णापर्ण-कृष्ण के लिए अर्पण
मार्गव्यय-मार्ग के लिए व्यय
गुरुदक्षिणा-गुरु के लिए दक्षिणा
यज्ञशाला-यज्ञ के लिए शाला
गौशाला-गौओं के लिए शाला
युद्धक्षेत्र-युद्ध के लिए क्षेत्र
जेब खर्च-जेब के लिए खर्च
युद्धभूमि-युद्ध के लिए भूमि
डाकगाड़ी-डाक के लिए गाड़ी
रसोई घर-रसोई के लिए घर
देवबलि-देवता के लिए बलि
राज्यलिप्सा-राज्य के लिए लिप्सा
देशभक्ति-देश के लिए भक्ति
राहखर्च-राह के लिए खर्च
देशापर्ण देश के लिए अपर्ण
रेलभाड़ा-रेल के लिए भाड़ा
परोपकार-पर (दूसरे) के लिए उपकार
सत्याग्रह-सत्य के लिए आग्रह
पाठशाला-पाठ के लिए शाला
हथकड़ी-हाथ के लिए घड़ी
पुत्रशोक-पुत्र के लिए शोक
हवनसामग्री-हवन के लिए सामग्री
पुत्रहित-पुत्र के लिए हित

अपादान तत्पुरुष

आकाशवाणी-आकाश से आने वाली वाणी
देशनिर्वासन-देश से निर्वासन
आशातीत-आशा से अधिक
धनहीन-धन से हीन
ईश्वरविमुख-ईश्वर से विमुख
धर्मभ्रष्ट-धर्म से भ्रष्ट
ऋणमुक्त-ऋण से मुक्त
पथभ्रष्ट-पथ से भ्रष्ट
कामचोर-काम से जी चुराने वाला
पदच्युत-पद से च्युत
गुरुभाई-गुरु से पढ़कर भाई
बन्धनमुक्त-बन्धन से मुक्त
जन्मांध-जन्म से अन्धा
भयभीत-भय से भीत
जन्मपूर्व-जन्म से पूर्व
रोगमुक्त-रोग से मुक्त
जलजात-जल से जात (उत्पन्न)
लक्ष्यभ्रष्ट-लक्ष्य से भ्रष्ट
देशनिकाला-देश से निकालना
सर्वोत्तम-सर्व से उत्तम
भवसागर-भव का सागर
भारतरत्न-भारत का रत्न
भारतवासी-भारत के वासी
भ्रातृस्नेह-भ्राता का स्नेह
मृगशावक-मृग का शावक (बच्चा)
यमलोक-यम का लोक
यमुनातट-यमुना का तट
रघुकुलमणि-रघुकुल की मणि
राजकुमार-राजा का कुमार
राजनीतिज्ञ-राजनीति का ज्ञाता
राजपुरुष-राजा का पुरुष
राजवंश-राजा का वंश
रामकहानी-राम की कहानी
लखपति–एक लाख का पति
वनमाली-वन का माली

सम्बन्ध तत्पुरुष

अछूतोद्धार-अछूतों का उद्धार
अमचूर-आम का चूरा
अमृतरस-अमृत का रस
आत्महत्या-आत्मा (अपनी) की हत्या
कनकघट-कनक (सोने) का घट (घड़ा)
कालिदास-काली का दास
कुलदीप-कुल का दीपक
गंगातट-गंगा का तट
गजराज-गजों का राजा
गुरुसेवा-गुरु की सेवा
गौरीपुत्र-गौरी (पार्वती) का पुत्र
घुड़दौड़-घोड़ों की दौड़
जलधारा-जल की धारा
जीवनसाथी-जीवन का साथी
तरणितनूजा-तरणि (सूर्य) की तनूजा (पुत्री)
दिनचर्या-दिन की चर्या
दिनमान-दिन का मान
दीनानाथ-दिनों का नाथ
देवकन्या-देवता की कन्या
देवराज-देवताओं का राजा
देवालय-देव का आलय
देशसेवक-देश का सेवक
परनिन्दा-पर (दूसरे) की निन्दा
पराधीन-पर (दूसरे) के अधीन
पशुपति-पशुओं का पति
प्रजापति-प्रजाओं का पति
प्रेमसागर-प्रेम का सागर
बैलगाड़ी-बैलों की गाड़ी
वायुसेना-वायु की सेना
विचाराधीन-विचार के अधीन
विद्यार्थी-विद्या का अर्थी (इच्छुक)
विद्यालय-विद्या का आलय
विश्वविद्यालय–विश्व की विद्यालय
सचिवालय-सचिवों का आलय
सिरदर्द-सिर का दर्द
सुखसागर-सुख का सागर
सूर्यपुत्र-सूर्य का पुत्र
सेनापति-सेना का पति
हिन्दुस्थान-हिन्दुओं का स्थान
हिमालय-हिम (बर्फ) का घर

PSEB 12th Class Hindi Vyakaran समास

अधिकरण तत्पुरुष

आत्मविश्वास-आत्म (अपने) पर विश्वास
आनन्दमग्न-आनन्द में मग्न
आपबीती-अपने पर बीती।
कानाफूसी-कानों में फुसफुसाहट
कलाप्रवीण-कला में प्रवीण
गृहप्रवेश-गृह में प्रवेश
घुड़सवार-घोड़े पर सवार
जनप्रिय-जनता में प्रिय
दानवीर-दान (देने) में वीर
देशाटन-देश में अटन (भ्रमण)
धर्मवीर-धर्म में वीर
रणकौशल-रण में कौशल
लोकप्रिय-लोक में प्रिय
वनवास-वन में वास
शोकमग्न-शोक में मग्न

(क) नञ् तत्पुरुष

निषेध या अभाव के अर्थ में किसी शब्द से पूर्व ‘अ’ या ‘अन्’ लगाने से जो समास बनता है, उसे नञ् तत्पुरुष समास कहते हैं। जैसे-
अहित = न हित
अपूर्ण = न पूर्ण
अधर्म = न धर्म
असंभव = न संभव
अब्राह्मण = न ब्राह्मण
अन्याय = न न्याय
अनुदार = न उदार
अनाश्रित =न आश्रित
अनिष्ट =न इष्ट
अनाचार = न आचार

विशेष-(क) प्रायः संस्कृत शब्दों में जिस शब्द के आदि में व्यंजन होता है, तो ‘नञ्’ समास में उस शब्द से पूर्व ‘अ’ जुड़ता है और यदि शब्द के आदि में स्वर होता है, तो उससे पूर्व ‘अन्’ जुड़ता है, जैसे-
अन् + अन्य = अनन्य
अन् + उत्तीर्ण = अनुत्तीर्ण
अ + वांछित = अवांछित
अ + स्थिर = अस्थिर।

(ख) किंतु उक्त नियम प्रायः तत्सम शब्दों पर ही लागू होता है, हिंदी शब्दों पर नहीं। हिंदी शब्दों में सर्वत्र ऐसा नहीं होता, जैसे-
अन् + चाहा = अनचाहा
अ + काज = अकाज
अन + होनी = अनहोनी है
अन + बन = अनबन
अ + न्याय = अन्याय
अन + देखा = अनदेखा
अ + टूट = अटूट
अ + सुंदर = असुंदर।

(ग) हिंदी और संस्कृत शब्दों के अतिरिक्त ‘गैर’ और ‘ना’ वाले शब्द भी ‘न’ तत्पुरुष के अंतर्गत आ जाते हैं, जैसे-
नागवार नापसंद
गैर हाज़िर नाबालिग
नालायक गैरवाज़िब।

(ख) अलुक् तत्पुरुष

जिस तत्पुरुष समास में पहले पद की विभक्ति का लोप नहीं होता, उसे ‘अलुक्’ तत्पुरुष समास कहते हैं, जैसे-
मनसिज = मन में उत्पन्न
वाचस्पति = वाणी का पति
विश्वंभर = विश्व को भरने वाला
युधिष्ठिर = युद्ध में स्थिर
धनंजय = धन को जय करने वाला
खेचर = आकाश में विचरने वाला।

(ग) उपपद तत्पुरुष

जिस तत्पुरुष समास का स्वतंत्र रूप में प्रयोग नहीं किया जा सकता, ऐसे सामासिक शब्दों को ‘उपपद’ तत्पुरुष समास कहते हैं, जैसे-
जलज = जल + ज (‘ज’ का अर्थ उत्पन्न अर्थात् पैदा होने वाला है, पर इस शब्द को अलग से प्रयोग नहीं किया जा सकता है।)
इसी प्रकार
तटस्थ = तट + स्थ
गृहस्थ = गृह + स्थ
पंकज = पंक + ज
जलद = जल + द
कृतघ्न = कृत + न
उरग = उर + ग
तिलचट्टा = तिल + चट्टा
लकड़फोड़ = लकड़ + फोड़
बटमार = बट + मार
घरघुसा = घर + घुसा
पनडुब्बी = पन + डुब्बी
घुड़चढ़ी = घुड़ + चढ़ी
कलमतराश = कलम + तराश
सौदागर = सौदा + गर
ग़रीबनिवाज़ = ग़रीब + निवाज़
चोबदार = चोब + दार।

PSEB 12th Class Hindi Vyakaran समास

3. कर्मधारय

जिस समास के दोनों पदों के बीच विशेष्य-विशेषण अथवा उपमेय-उपमान का संबंध हो और दोनों पदों में एक ही कारक (कर्ता कारक) की विभक्ति आए, उसे कर्मधारय समास कहते हैं, जैसे-
नीलकमल = नीला है जो कमल
लाल-मिर्च = लाल है जो मिर्च
पुरुषोत्तम = पुरुषों में है जो उत्तम
महाराजा = महान् है जो राजा
चंद्रमुख = चंद्र के समान है जो मुख
पुरुषसिंह = सिंह के समान है जो पुरुष
नील-कंठ = नीला है जो कंठ
महाजन = महान् है जो जन
पीतांबर = पीत है जो अंबर
सज्जन = सत् (अच्छा) है जो जन
भलामानस = भला है जो मानस (मनुष्य)
सद्गुण = सद् (अच्छे) हैं जो गुण
शुभागमन = शुभ है जो आगमन
नीलांबर = नीला है जो अंबर
महाविद्यालय = महान् है जो विद्यालय
काला-पानी = काला है जो पानी
चरण-कमल = कमल रूपी चरण
प्राण-प्रिय = प्राणों के समान प्रिय
वज्र-देह = वज्र के समान देह
विद्या धन = विद्या रूपी धन
देहलता = देह रूपी लता
घनश्याम = घन के समान श्याम
काली-मिर्च = काली है जो मिर्च
महारानी = महान् है जो रानी
नील-गाय = नीली है जो गाय
कर-कमल = कमल के समान
कर मुखचंद्र = मुख रूपी चंद्र
नरसिंह = सिंह के समान है जो नर
भव-सागर = भव रूपी सागर
बुद्धिबल = बुदधि रूपी बल
गुरुदेव = गुरु रूपी देव
कर-पल्लव = पल्लव रूपी कर
कमल-नयन = कमल के समान नयन
कनक-लता = कनक की सी लता
चंद्रमुख = चंद्र के समान मुख
मृगनयन = मृग के नयन के समान नयन
कुसुम-कोमल = कुसुम के समान कोमल
सिंह-नाद = सिंह के नाद के समान नाद
जन्मांतर = अंतर (अन्य) जन्म
नराधम = अधम है जो नर
दीनदयालु = दीनों पर है जो दयालु
मुनिवर = मुनियों में है जो श्रेष्ठ
मानवोचित = मानवों के लिए है जो उचित
पुरुष-रत्न = पुरुषों में है जो रत्न
घृतांत = घृत में मिला हुआ अन्न
पर्णशाला = पर्ण (पत्तों से) निर्मित शाला
छाया-तरु = छाया-प्रधान तरु
वन-मानुष = वन में निवास करने वाला मानुष
गुरु-भाई = गुरु के संबंध से भाई
बैलगाड़ी = बैलों से खींची जाने वाली गाड़ी
माल-गाड़ी = माल ले जाने वाली गाड़ी
गुडंबा = गुड से पकाया हुआ आम
दही-बड़ा = दही में डूबा हुआ बड़ा
जेब-घड़ी = जेब में रखी जाने वाली घड़ी
पन-चक्की = पानी से चलने वाली चक्की

4. द्विगु

जिस समास में पहला पद संख्यावाचक हो और समस्त समूह या समाहार का ज्ञान कराए, उसे द्विगु समास कहते हैं, जैसे-
शताब्दी = शत (सौ) अब्दों (वर्षों) का समूह
सतसई = सात सौ दोहों का समूह
चौराहा = चार राहों (रास्तों) का समाहार
चौमासा = चार मासों का समाहार
अठन्नी = आठ आनों का समूह
पंसेरी = पाँच सेरों का समाहार
दोपहर = दो पहरों का समाहार
त्रिफला = तीन फलों का समूह
चौपाई = चार पदों का समूह
नव-रत्न = नौ रत्नों का समूह
त्रिवेणी = तीन वेणियों (नदियों) का समाहार
सप्ताह = सप्त (सात) अह (दिनों) का समूह
सप्तर्षि = सात ऋषियों का समूह
अष्टाध्यायी = अष्ट (आठ) अध्यायों का समूह
त्रिभुवन = तीन भुवनों (लोकों) का समूह
पंचवटी = पाँच वट (वृक्षों) का समाहार
नवग्रह = नौ ग्रहों का समाहार
चतुर्वर्ण = चार वर्णों का समूह
चतुष्पदी = चार पदों का समाहार
पंचतत्व = पाँच तत्वों का समूह।

बहब्रीहि समास

बहुब्रीहि समास की परिभाषा उदाहरण सहित लिखें।
उत्तर:
जिस समास का कोई भी पद प्रधान नहीं होता और दोनों पद किसी अन्य शब्द (संज्ञा) के विशेषण होते हैं, उसे बहुब्रीहि समास कहते हैं। जैसे-
नीलकण्ठ-नीला है कण्ठ जिसका अर्थात् शिव
दिगम्बर-दिशाएं ही हैं वस्त्र जिसके अर्थात् नग्न
चन्द्रमुखी-चन्द्र के समान है मुख है जिसका (कोई स्त्री)
मनचला-मन रहता हो चंचल जिसका
दशानन-दश है आनन (मुख) जिसके अर्थात् रावण

PSEB 12th Class Hindi Vyakaran समास

द्वन्द्व समास

द्वन्द्व समास की परिभाषा उदाहरण सहित लिखें।
उत्तर:
जिस समस्त पद के दोनों पद प्रधान हों तथा विग्रह (अलग-अलग) करने पर दोनों पदों के बीच ‘और’, ‘तथा’, ‘अथवा’, ‘या’ आदि योजक शब्द लगें, उन्हें द्वन्द्व समास कहते हैं। जैसे-
पाप-पुण्य-पाप अथवा पुण्य।
पति-पत्नी-पति और पत्नी।
अन्न-जल-अन्न और जल
भीम-अर्जुन-भीम और अर्जुन।
राधा-कृष्ण-राधा और कृष्ण
सीता-राम-सीता और (राम)
निशि-वासर-निशि और वासर
दालभात-दाल और भात
देश-विदेश-देश और विदेश
जल-थल-जल और थल
दीन-ईमान-दीन और ईमान
पूर्वपश्चिम-पूर्व और पश्चिम।

सामासिक शब्द सूची

बहब्रीहि समास

अंशुमाली–अंशु (किरणें) है माला जिसकी-सूर्य
अजातशत्रु-अजात (नहीं पैदा हुआ हो) है शत्रु जिसका
अजानुबाहु-अजानु (घुटनों तक लम्बी) है भुजाएं जिसकी-अवतारी पुरुष
अनहोनी-न होने वाली घटना
उदारहृदय-उदार हृदय है जिसका
कनकटा-कान कटा हुआ है जिसका
कनफटा-कान फटे हुए हैं जिसके
कुसुमाकर-कुसमों का खजाना है जो-वसंत ऋतु।
गजानन-गज का मुख है जिसका गणेश
विषधर-विष को धारण करने वाला सर्प।
कुसुमाकर-कुसुमों का आकार (समूह) है जो-बसन्त ऋतु
गिरिधर-गिरि (पर्वत) को धारण करने वाला-श्रीकृष्ण
घनश्याम-घन के समान श्याम (काला) है जो-श्रीकृष्ण
चन्द्रमुखी-चन्द्रमा के समान मुख है जिसका।
चन्द्रवदनि-चन्द्रमा के समान बदन (मुख) है जिसका
चन्द्रशेखर-शेखर (मस्तक) पर है चन्द्र जिसके-शिवजी
चक्रपाणि-चक्र है पाणि (हाथ) में जिसके-विष्णु
चतुर्भुज-चार भुजाएं हैं जिसकी-विष्णु
चारपाई-चार हैं पैर जिसके-खाट
तिमंजिला-तीन हैं मंजिल जिसकी
त्रिनेत्र-तीन हैं नेत्र जिसके अर्थात् शिव।
दशानन–दश हैं आनन (मुख) जिसके-रावण
दिगम्बर-दिशाएं हैं वस्त्र जिसके-शिवजी
दुरात्मा-दुष्ट (बुरी) आत्मा वाला
धर्मात्मा-धर्म में आत्मा वाला
नीलकण्ठ-नीला है कण्ठ जिसका-शिवजी
पंकज-पंक (कीचड़) में पैदा हुआ है जो-कमल
पंचानन–पाँच हैं मुख जिसके-ब्रह्मा जी
पंचवटी-पाँच हैं वट (वृक्ष) जहाँ
पद्मासना-पद्म (कमल) है आसन जिसका-सरस्वती
पीताम्बर-पीले हैं अम्बर (कपड़े) जिसके-श्रीकृष्ण, विष्णु
प्रधानमन्त्री–मन्त्रियों में प्रधान है जो
बड़बोला-बड़े बोल बोलने वाला
मनचला-मन है चलायमान (चंचल) जिसका
मयूरवाहन-मयूर (मोर) है वाहन जिसका-शिवजी पुत्र कार्तिकेय
महावीर-महान् है वीर जो-हनुमान जी
मीनाक्षी-मीन (मछली) जैसी आँखें हैं जिसकी
मृगाक्षी/मृगनयनी-मृग की आँखों जैसी आँखें हैं जिसकी स्त्री विशेष।
मृगेन्द्र-मृगों का इन्द्र (राजा) है जो-सिंह
मृत्युञ्जय-मृत्यु को जीतने वाला है जो-शिवजी
मेघनाद-मेघ के समान नाद है जिसका-रावण पुत्र इन्द्रजीत
लम्बोदर-लम्बा है उदर जिसका-गणेश
महादेव-महान् है जो देव-शिव।
त्रिलोचन-तीन हैं नेत्र जिसके-शिव
बारहसिंगा-बारह है सींग जिसके (वह हिरन)
वीणापाणि-वीणा है पाणि (हाथ) में जिसके-सरस्वती
चक्रधर-चक्र को धारण करने वाला-विष्णु
सहस्रबाहु-सहस्र (हज़ार) भुजाओं वाला-एक रक्षक का नाम
सिरकटा-सिर है कटा हआ जिसका।
सुलोचना-सुन्दर है लोचन जिस (स्त्री) के
षटकोण-षट (छ:) है जिसके कोण
षडानन-छ: मुख हैं जिसके
पतझड़-झड़ते हैं पत्ते जिसमें वह ऋतु
अष्टाध्यायी-आठ अध्यायों वाला (पणिनी व्याकरण)
महात्मा-महान् है आत्मा जिसकी
गुरुद्वारा-गुरु का द्वारा है जो (सिक्ख धर्म का परम-पवित्र धार्मिक स्थल)

द्वन्द्व समास

अन्न-जल-अन्न और जल
नमक-मिर्च-नमक और मिर्च
अमीर-गरीब-अमीर और ग़रीब
नर-नारी-नर और नारी
आचार-व्यवहार-आचार और व्यवहार
नाच-रंग-नाच और रंग
आब-हवा-आब (पानी) और हवा
नाम-निशान-नाम और निशान
ऊँचा-नीचा-ऊँचा और नीचा
निशि-वासर-निशि (रात) और वासर (दिन)
खरा-खोटा-खरा और खोटा
रुपया-पैसा-रुपया और पैसा
गुण-दोष-गुण और दोष
नोन-तेल-नोन और तेल
चाल-चलन-चाल और चलन
पाप-पुण्य-पाप और पुण्य
जन्म-मरण-जन्म और मरण
पास-पड़ोस-पास और पड़ोस
जञान-विज्ञान-ज्ञान और विज्ञान
बीस-पच्चीस-बीस और पच्चीस
तिल-चावल-तिल और चावल
भूखा-प्यासा-भूखा और प्यासा
थोड़ा बहुत-थोड़ा और बहुत
माँ-बाप-माँ और बाप
दस-बीस-दस और बीस
राजा-रंक-राजा और रंक
दाल-रोटी-दाल और रोटी
रात-दिन-रात और दिन
दीन-ईमान-दीन और ईमान
राम-कृष्ण-राम और कृष्ण
आचार-व्यवहार-आचार और व्यवहार
राम-लक्ष्मण–राम और लक्ष्मण
दो-चार-दो और चार
लूट-मार-लूट और मार
धनी-निर्धन-धनी और निर्धन
वेद-पुराण-वेद और पुराण
धर्म-अधर्म-धर्म और अधर्म
सुख-दुःख-सुख और दुःख
नदी-नाले-नदी और नाले
राजा-रानी-राजा और रानी।
गंगा-यमुना-गंगा और यमुना
माता-पिता-माता और पिता,
धूप-दीप-धूप और दीप।।
लोभ-मोह-लोभ और मोह।

PSEB 12th Class Hindi Vyakaran समास

बोर्ड परीक्षा में पूछे गए प्रश्न

किन्हीं पाँच के समास/समास विग्रह कीजिए।
1. यथा शक्ति, आजीवन, देश निकाला, राह के लिए खर्च, राजा का कुमार।
2. विधि के अनुसार, हाथ ही हाथ में, सेनापति, सिरदर्द, चतुर्भुज।
3. जन्म से लेकर, प्रत्येक गली, रोजगार के बिना, मधुमक्खी, पदच्युत।
4. पति-पत्नी, मेघनाद महात्मा, पूर्व-पश्चिम, लम्बा है उदर जिसका, आचार और व्यवहार, दश हैं आनन जिसके, गंगा और यमुना।
5. महान है आत्मा जिसकी, अन्न और जल, झड़ते हैं पत्ते जिसमें, नर और नारी, गणेश, मृत्युंजय, सीता-राम, ‘ भीम-अर्जुन।
6. रात और दिन, पीत है अम्बर जिसका, सुख और दुःख, कुसुमों का खजाना है, जो धूप-दीप, पंकज, दालभात, चक्रधर।
7. धनहीन, महात्मा, त्रिलोकी, नवरत्न, सत्य के लिए आग्रह, पथ से भ्रष्ट, राजा की नीति, दूध और दही।
8. कुरूप, घनश्याम, पंचवटी, पञ्चानन, महान् है जो देव, न होने वाली घटना, तीन हैं मंज़िल जिसकी, गिरि को धारण करने वाला।
9. चौमासा, अनन्त, दोपहर, विद्यासागर, आठ अध्यायों का समाहार, राह के लिए खर्चे, गणों का पति, पीत हैं अम्बर जिसके।
10. आचार और व्यवहार, मेघ के समान है नाद, सात दिनों का समूह, मालगाड़ी, हस्तलिखित, विद्यालय।
11. जल और थल, महान् है आत्मा जिसकी, तीन रंगों का समूह आजीवन, धनहीन, घुड़सवार।
12. सीता और गीता, झड़ते हैं पत्ते जिसमें, चार भुजाओं का समूह, धर्मवीर, बेखटके, पीताम्बर।
13. पूर्व और पश्चिम, पीला है जो अम्बर, चार भुजाओं वाला, दशानन, यथाशक्ति, अमीर-ग़रीब।
14. देश और विदेश, माल ढोने वाली गाड़ी, नौ ग्रहों का समूह, राजकमार, यथानियम, अन्न-जल।
15. गंगा और यमुना, रेल पर चलने वाली गाड़ी, जन्म से लेकर, सत्याग्रह, गुरुदक्षिणा, पति-पत्नी।
16. शक्ति के अनुसार, महान है आत्मा जिसकी, सिर में दर्द, धनहीन, अन्न-जल, चतुर्भुज।
17. तीन फलों का समूह, रात और दिन, झड़ते हैं पले जिसमें, यथानियम, गौशाला, राष्ट्रपति।
18. रुचि के अनुसार, राजा और रानी, नौ ग्रहों का समूह, गिरिधर , देशवासी नीलाम्बर।
19. नर और नारी, महान है जो देव, सात दिनों का समूह, पतझड़, यथानियम, पाप-पुण्य।
20. भीम और अर्जुन, लाल है जो रूमाल, दो पहरों का समूह, रामभक्ति, यथाकाल, माता-पिता।
21. दाल और भात, महान है जो जन, जन्म से लेकर, बाढ़ पीड़ित, राह खर्च, धूप-दीप।

बोर्ड परीक्षा में पूछे गए प्रश्न

Set-A
निम्नलिखित पदों का समास करें
I. माता और पिता का समास करें।
II. ‘रसोई घर’ के निम्नलिखित विकल्पों में से सही समास-विग्रह विकल्प को चुनें:
(क) रसोई का घर (ख) रसोई के लिए घर (ग) रसोई में घर (घ) रसोई से घर।

III. निम्नलिखित कथने में सही अथवा ग़लत लिखें:
‘तिरंगा’ शब्द का समास विग्रह होगा-‘तीन रंगों का समूह’।

Set-B
I. ‘उत्तर और दक्षिण’ का समास करें।
II. ‘राह खर्च’ पद के निम्नलिखित विकल्पों में से सही समास विकल्पों में से सही समास-विग्रह को चुनें
(क) राह में खर्च (ख) राह को खर्च (ग) राह से खर्च (घ) राह के लिए खर्च।
III. ‘त्रिनेत्र’ शब्द का समास विग्रह होगा-तीन हैं नेत्र जिसके अर्थात् शिव

Set-C
I. निम्नलिखित पदों का समास करें। राजा का कुमार।
II. ‘यथानियम’ पद के निम्नलिखित विकल्पों में से सही समास-विग्रह विकल्प को चुनें:
(क) यथा का नियम (ख) नियम के अनुसार (ग) यथा और नियम (घ) यथा के नियम। .
III. निम्नलिखित कथन में सही अथवा ग़लत लिखें
‘पीताम्बर’ शब्द का समास विग्रह होगा-पी लिया है अम्बर जिसने।

Set-A, B, C
(i) निम्नलिखित पदों का समास करें: लोभ और मोह।
(ii) ‘घनश्याम’ पद के निम्नलिखित में से सही समास-विग्रह विकल्प को चुनें :
(अ) घन के लिए श्याम (ब) घन के समान श्याम (स) घन से श्याम (द) घन से श्याम।
(iii) निम्नलिखित कथन में सही अथवा ग़लत लिखें :
‘त्रिफला’ शब्द का समास विग्रह होगा-‘तीन फलों का समूह’।

Set-A, B, C
(i) ‘गुरु दक्षिणा’ के लिए विग्रह का सही विकल्प चुनकर लिखें:
(क) गुरु और दक्षिणा (ख) गुरु के लिए दक्षिणा (ग) गुरु की दक्षिणा (घ) गुरु द्वारा दक्षिणा।
(ii) ‘जन्माध’ का विग्रह होगा-‘जन्म से अंधा’, सही या गलत लिखकर उत्तर दें।

Set-A, B, C
I. निम्नलिखित पदों का समास करें
देश का वासी।
II. ‘रसोई घर’ पद के निम्नलिखित विकल्पों में से सही समास-विग्रह विकल्प को चुनें :
(क) रसोई घर (ख) रसोई के लिए घर (ग) रसोई में घर (घ) रसोई से घर।
III. ‘मालगाड़ी’ शब्द का समास विग्रह होगा-‘माल की गाड़ी’।

बहुविकल्पीय प्रश्नोत्तर

प्रश्न 1.
जिस समास में पूर्व और उत्तर दोनों पद प्रधान होते हैं उसे कहते हैं?
(क) द्विगु
(ख) द्वन्द्व
(ग) कर्मधारय
(घ) अव्ययीभाव।
उत्तर:
(ख) द्वन्द्व

प्रश्न 2.
जिसमें अन्य पद प्रधान हो उसे कहते हैं?
(क) अव्ययीभाव
(ख) बहुव्रीहि
(ग) तत्पुरुष
(घ) द्विगु।
उत्तर:
(ख) बहुब्रीहि

प्रश्न 3.
‘आजीवन’ में कौन-सा समास है?
(क) तत्पुरुष
(ख) कर्मधारय
(ग) बहुव्रीहि
(घ) अव्ययीभाव।
उत्तर:
(घ) अव्ययीभाव

प्रश्न 4.
‘आबोहवा’ में निहित समास है
(क) द्विगु
(ख) कर्मधारय
(ग) द्वन्द्व
(घ) तत्पुरुष।
उत्तर:
(ग) द्वन्द्व

PSEB 12th Class Hindi Vyakaran समास

प्रश्न 5.
‘सत् जो जन’ में कौन-सा समास निहित है?
(क) कर्मधारय
(ख) बहुब्रीहि
(ग) अव्ययीभाव
(घ) द्वन्द्व।
उत्तर:
(क) कर्मधारय।

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 5 Arithmetic Progressions Ex 5.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2

Question 1
Fill in the blanks in the following table, given that a is the first term, d the common difference and a the nth term of the
AP:

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 1

Solution:
(i) Here a = 7, d = 3, n = 8
∵ an = a + (n – 1)d
∴ a8 = 7 + (8 – 1)3
= 7 + 21 = 28.

(ii) Here a = – 18, n = 10, an = 0
∵ an = a + (n – 1)d
∴ a10 = – 18 + (10 – 1)d
or 0 = – 18 + 9d .
or 9d = 18
d = \(\frac{18}{2}\) = 2.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(iii) Here d = – 3, n = 18, an = – 5
∵ an = a + (n – 1)d
∴ a18 = a + (18 – 1)(-3)
or -5 = a – 51
or a = – 5 + 51 = 46.

(iv) Here a = – 18.9, d = 2.5 an = 3.6
∵ an = a + (n – 1)d
∴ 3.6 = – 18.9 + (n – 1) 2.5
or 3.6 + 18.9 = (n – 1) 2.5
or (n – 1) 2.5 = 22.5
or n – 1 = \(\frac{22.5}{2.5}\)
or n = 9 + 1 = 10.

(v) Here a = 3.5, d = 0, n = 105
∵ an = a + (n – 1) d
∴ an = 3.5 + (105 – 1) 0
an = 3.5 + 0 = 3.5.

Question 2.
Choose the correct choice in the following and justify:
(i) 30th term of the AP: 10, 7, 4, …………….. is
(A) 97 (B) 77 (C) – 77 (D) – 87

(ii) 11th term of the AP: – 3, – \(\frac{1}{2}\), 2, ………. is
(A) 28 (B) 22 (C) – 38 (D) – 48\(\frac{1}{2}\)

Solution:
(i) Given A.P. is 10, 7, 4 ……………
T1 = 10, T2 = 7, T3 = 4
T2 – T1 = 7 – 10 = – 3
T3 – T2 = 4 – 7 = – 3
∵ T2 – T1 = T3 – T2 = – 3 = d(say)
∵ Tn = a + (n – 1) d
Now, T30 = 10 + (30 – 1)(-3)
= 10 – 87 = – 77
∴ Correct choice is (C).

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A.P. is – 3, –\(\frac{1}{2}\), 2, ……….
T1 = – 3 T2 = –\(\frac{1}{2}\), T3 = 2, …………..
T2 – T1 = –\(\frac{1}{2}\) + 3 = \(\frac{-1+6}{2}=\frac{5}{2}\)
T3 – T2 = 2 + \(\frac{1}{2}\) = \(\frac{4+1}{2}=\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{5}{2}\) = d(say)
∵ Tn = a + (n – 1) d
Now, T11 = -3 + (11 – 1) \(\frac{5}{2}\)
= -3 + 10 × \(\frac{5}{2}\) = – 3 + 25 = 22
∴ Correct choice is (B).

Question 3.
In the following APs, find the missing terms in the boxes:
(i) 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 26
(ii)PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 13, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 3
(iii) 5,PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 9
(iv) – 4, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 6
(v) PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, 38, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 2, – 22
Solution:
Let a be the first term and ‘d’ be the common difference of given A.P.
(i) Here T1 = a = 2
and T3 = a + 2d = 26
or 2 + 2d = 26
or 2d = 26 – 2 = 24
or d = 12
∴ Missing term = T2 = a + d = 2 + 12 = 14.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Here, T2 = a + d = 13 ……………(1)
and T4 = a + 3d = 3 …………….(3)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 3

Substitute this value of d in (1), we get
a – 5 = 13
a = 13 + 5 = 18.
∴ T1 = a = 18
T3 = a + 2d = 18 + 2(-5)
= 18 – 10 = 8.

(iii)Here T1 = a = 5
and T4 = a + 3d = 9
or a + 3d = \(\frac{19}{2}\)
or 5 + 3d = \(\frac{19}{2}\)
or 3d = \(\frac{19}{2}\) – 5
or 3d = \(\frac{19-10}{2}=\frac{9}{2}\)
or d = \(\frac{9}{2} \times \frac{1}{3}=\frac{3}{2}\)
T2 = a + d = 5 + \(\frac{3}{2}\)
= \(\frac{10+3}{2}=\frac{13}{2}\)
T3 = a + 2d = 5 + 2(\(\frac{3}{2}\)) = 5 + 3 = 8.

(iv) Here T1 = a = —
T6 = a + 5d = 6
or -4 + 5d = 6
or 5d = 6 + 4
or 5d = 10
or d = \(\frac{10}{2}\) = 2
Now, T2 = a + d = -4 + 2 = -2
T3 = a + 2d = – 4 + 2(2)
= – 4 + 4 = 0
T4 = a + 3d = – 4 + 3(2)
= – 4 + 6 = 2
T5 = a + 4d = – 4 + 4(2)
= – 4 + 8 = 4

(v) Here T2 = a + d = 38 ………….(1)
and T6 = a + 5d = -22 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 4.

Substitute this value of d in (1), we get
a + (-15) = 38
a = 38 + 15 = 53
∴ T1 = a = 53
T3 = a + 2d = 53 + 2(-15) = 53 – 30 = 23.
T4 = a + 3d = 53 + 3(-15) = 53 – 45 = 8
T5 = a + 4d = 53 + 4(-15) = 53 – 60 = – 7.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 4
Which term of the A.P. 3, 8, 13, 18, …………… is 78?
Solution:
Given A.P. is 3, 8, 13, 18, ………….
T1 = 3, T2 = 8, T3 = 13, T4 = 18
T2 – T1 =8 – 3=5
T3 – T2= 13 – 8=5
T2 – T1 = T3 – T,= 5 = d (say)
Using, Tn = a + (n – I) d
or 78 = 3 + (n – 1) 5
or 5(n – 1) = 78 – 3 = 75
or n – 1 = 15
or n = 15 + 1 = 16
Hence, 16th term of given AP. is 78.

Question 5.
Find the number of terms in each of the following APs:
(i) 7, 13, 19,…, 205
(ii) 18, 15\(\frac{1}{2}\), 13, ………….., – 47
Solution:
(i) Given A.P. is 7, 13, 19, …………..
T1 = 7, T2 = 13, T3 = 19
T2 – T1 = 13 – 7 = 6
T3 – T2 = 19 – 13 = 6
T2 – T1 = T3 – T2 = 6 = d(say)
Using formula, Tn = a + (n – 1) d
205 = 7 + (n – 1) 6
or (n – 1) 6 = 205 – 7 = 198
or (n – 1) = \(\frac{198}{6}\)
or n – 1 = 33
n = 33 + 1 = 34
Hence, 34th term of an AP. is 205.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

(ii) Given A P. is 18, 15\(\frac{1}{2}\), 13, …………..
T1 = 18, T2 = 15\(\frac{1}{2}\) = \(\frac{31}{2}\), T3 = 13
T2 – T1 = \(\frac{31}{2}\) – 18 = \(\frac{31-36}{2}=-\frac{5}{2}\)
T3 – T2 = 13 – \(\frac{31}{2}\) = \(\frac{26-31}{2}=-\frac{5}{2}\)
∵ T2 – T1 = T3 – T2 = \(\frac{-5}{2}\) = d (say)
Using formula. Tn = a + (n – 1) d
– 47 = 18 + (n – 1) \(\frac{-5}{2}\)
or (n – 1) (\(\frac{-5}{2}\)) = – 47 – 18
or (n – 1) (\(\frac{-5}{2}\)) = – 65
or n – 1 = – 65 × – \(\frac{2}{5}\)
or n – 1 = 26
or n = 26 + 1 = 27
Hence, 27th term of an A.P. is – 47.

Question 6.
Is – 150 a term of 11, 8, 5, 2….? why?
Solution:
Given sequence is 11, 8, 5, 2, ………..
T1 = 11, T2 = 8, T3 = 5, T4 = 2
T2 – T1 = 8 – 11 = – 3
T3 – T2 = 5 – 8 = – 3
T4 – T3 = 2 – 5 = – 3
T2 – T1 = T3 – T2 = T4 – T3 = – 3 = d (say).
Let – 150 be any term of given A.P.
then Tn = – 150
a+(n – 1)d = – 150
or 11 +(n – 1)(- 3) = – 150
or (n – 1)( – 3) = – 150 – 11 = – 161
or n – 1 = \(\frac{161}{3}\)
or n = \(\frac{161}{3}\) + 1 = \(\frac{161+3}{3}\)
n = \(\frac{164}{3}\) = 54\(\frac{2}{3}\),
which is not a natural number.
Hence, – 150 cannot be a term of given A.P.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 7.
Find the 31st term of an AP whose 11th term is 38 and 16th term is 73.
Solution:
Let ‘a’ and 4d’ be the first term and common difference of given A.P.
Given that T11 = 38
a +(11 – 1) d = 38
[∵ Tn = a + (n – 1) d]
a + 10 d = 38
and T16 = 73
a + (16 – 1) d = 73
[∵ Tn = a + (n – 1) d]
a + 15 d = 73
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 5

Substitute this value of d in (1), we get
a + 10 (7) = 38
or a + 70 = 38
or a = 38 – 70 = – 32
Now, T31 = a + (31 – 1) d
= – 32 + 30 (7) = – 32 + 210 = 178.

Question 8.
An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 291h term.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that, T3 = 12
a + (3 – 1) d = 12
∵ Tn = a + (n – 1) d
or a + 2d = 12 ………………(1)
and Last term = T50 = 106
a + (50 – 1) d = 106
∵ Tn = a + (n – 1) d
a + 49 d = 106 ……………(2)
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 6

Substitute this value of d in (1), we get
a + 2(2) = 12
or a + 4 = 12
or a + 12 – 4 = 8
Now, T29 = a + (29 – 1) d
= 8 + 28 (2) = 8 + 56 = 64.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 9.
If the 3rd and 9th tenus of an A.P. are 4 and – 8 respectively, which term of this A.P. is zero.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given AP.
Given that: T3 = 4
a + (3 – 1) d = 4
∵ Tn = a + (n – 1) d
a + 2d = 4 …………..(1)
and T9 = – 8
a + (9 – 1) d = 8
and T9 = – 8
a + (9 – 1)d = 8
∵ Tn = a + (n – 1) d
or a + 8d = – 8
Now, (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 7

Substitute this value of d in (1), we get
a + 2(- 2) = 4
or a – 4 = 4
or a = 4 + 4 = 8
Now, Tn = 0 (Given)
a + (n – 1) d = 0
or 8 + (n – 1)(- 2)=0
or -2 (n – 1) = – 8
or n – 1 = 4
or n = 4 + 1 = 5
Hence, 5th term of an AP. is zero.

Question 10.
The 17th term of an A.P. exceeds its 10th term by 7. Find the common difference.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Now, T17 = a + (17 – 1) d = a + 16 d
and T10 = a + (10 – 1) d = a + 9 d
According to question
T17 – T10 = 7
(a + 16 d) – (a + 9 d) = 7
or a + 16 d – a – 9 d = 7
7 d = 7
or d = \(\frac{7}{7}\) = 1
Hence, common difference is 1.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 11.
Which term of the A.P. 3, 15, 27, 39, …………. will be 132 more than its 54th term?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given A.P. is 3, 15, 27, 39, …
T1 = 3, T2 = 15, T3 = 27, T4 = 39
T2 – T1 = 15 – 3 = 12
T3 – T2 = 27 – 15 = 12
:. d=T2 – T1 = T3 – T2 =12
Now, T54 = a + (54 – 1) d
= 3 + 53 (12) = 3 + 636 = 639
According to question
T = T54 + 132
a + (n – 1)d = 639 + 132
3 + (n – 1)(12) = 771
(n – 1) 12 = 771 – 3 = 768
or n – 1 = \(\frac{768}{12}\) = 64
or n = 64 + 1 = 65
Hence, 65th term of A.P. is 132 more than its 54th term.

Question 12.
Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of first AP.
Also, ‘A’ and ‘d’ be the first term and common difference of second A.P.
According to question
[T100 of second A.P.] – [T100 of first A.P.] = 100
or[A +(100 – 1)d] – [a +(100 – 1)d] = 100
or A + 99d – a – 99d = 100
or A – a = 100
Now, [T1000 of second A.P.] – [T1000 of first A.P.]
= [A + (1000 – 1) d) – (a + (1000 – 1) d]
= A + 999 d – a – 999 d
= A – a = 100 [Using (I)].

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 13.
How many three-digits numbers are divisible by 7?
Solution:
Three digits numbers which divisible by 7 are 105, 112, 119 , 994
Here a = T1 = 105, T2 = 112, T3 = 119 and Tn = 994
T2 – T1 = 112 – 105=7
T3 – T2 = 119 – 112=7
∴ d = T2 – T1 = T3 – T2 = 7
Given that, Tn = 994
a + (n – 1) d = 994
or 105 + (n – 1) 7 = 994
or (n – 1) 7 = 994 – 105
or (n – 1) 7 = 889
or n – 1 = \(\frac{889}{7}\) = 127
or n = 127 + 1 = 128.
Hence, 128 terms of three digit number are divisible by 7.

Question 14.
How many multiples of 411e between 10 and 250?
Solution:
Multiples of 4 lie between 10 and 250 are 12, 16, 20, 24, … 248
Here a = T1 = 12, T2 = 16, T3 = 20 and Tn = 248
T2 – T1 = 16 – 12 = 4
T3 – T2 = 20 – 16 = 4
∴ d = T2 – T1 = T3 – T2 = 4
Given that, Tn = 248
a + (n – 1) d = 248
or 12 + (n – 1)4 = 248
or 4(n – 1) = 248 – 12 = 236
or n – 1 = \(\frac{236}{4}\) = 59
or n = 59 + 1 = 60
Hence, there are 60 terms which are multiples of 4 lies between 10 and 250.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 15.
For what value of n, are the n terms of two A.P.s 63, 65, 67, …………. and 3, 10, 17, …………….. equal?
Solution:
Given A.P. is 63, 65, 67, ……………..
Here a = T1 = 63, T2 = 65, T3 = 67
T2 – T1 = 65 – 63 = 2
T3 – T2 = 67 – 65 = 2
∴ d = T2 – T1 = T3 – T2 = 2
and second A.P. is 3, 10, 17, …
Here a = T1 = 3, T2 = 10, T3 = 17
T2 – T1 = 10 – 3 = 7
T3 – T2 = 17 – 10 = 7
According to question.
[nth term of first A.P.] = [nth term of second A.P.]
63 + (n – 1)2 = 3 + (n – 1) 7
or 63 + 2n – 2 = 3 + 7n – 7
or 61 + 2n = 7n – 4
or 2n – 7n = – 4 – 61
– 5n = – 65
n = \(\frac{65}{5}\) = 13.

Question 16.
Determine the AP. whose third term is 16 and 7 term exceeds the by 12.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
Given that T3 = 16
a + (3 – 1) d = 16
a + 2d = 16
According to question
T7 – T5 = 12
[a + (7 – 1) d] – [a + (5 -1) d] = 12
a + 6 d – a – 44 = 12
2d = 12
d = \(\frac{12}{2}\) = 6
Substitute this value of d in (1), we get
a + 2(6) = 16
a = 16 – 12 = 4 .
Hence, given A.P. are 4, 10, 16, 22, 28, ………….

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 17.
Find the 20th term from the last term of the AP: 3, 8, 13, ………., 253.
Solution:
Given A.P. is 3, 8, 13, …………., 253
Here, a = T1 = 3, T2 = 8, T3 =13 and Tn = 253
T2 – T1 = 8 – 3 = 5
T3 – T2 = 13 – 8 = 5
∴ d = T2 – T1 = T3 – T1 = 5
Now, Tn = 253
3 + (n – 1)5 = 253
∵ Tn = a + (n – 1) d
(n – 1) 5 = 250
n-1 = \(\frac{250}{5}\) = 50
n = 50 + 1 = 51
20th term from the end of AP = (Total number of terms) – 20 + 1
= 51 – 20 + 1 = 32nd term
∴ 20th term from the end of AP
= 32nd term from the starting
= 3 + (32 – 1)5
∵ Tn = a + (n – 1)d
= 3 + 31 × 5
= 3 + 155 = 158.

Question 18.
The sum of the 4th and 8th term of an AP is 24 and the sum of the 6’ and 10th terms is 44. FInd the first three terms of the A.P.
Solution:
Let ‘a’ and ‘d’ be the first term and common difference of given A.P.
According to 1st condition
T4 + T8 = 24
a + (4 – 1) d + a + (8 – 1) d = 24
∵ Tn = a + (n – 1) d
or 2a + 3d + 7d = 24
2a + 10d = 24
a + 5d = 12 …………(1)
According to 2nd condition
T6 + T10 = 44
a + (6 – 1) d + a +(10 – 1) d = 44
∵ Tn = a + (n – 1) d
2a + 5d + 9d = 44
2a + 14d = 44
a + 7d = 22
Now (2) – (1) gives

PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2 8

Substitute this value of d in (I). we get
a + 5(5) = 12
a + 25 = 12
a = 12 – 25 = -13
T1 = a = -13
T2 = a + d = 13 + 5 = -8
T2 = a + 2d = – 13 + 2(5) = – 13 + 10 = -3
Hence, given A.P. is -13, -8, -3, ……………

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 19.
Subba Rao started work in 1995 at an annual salary of ₹ 5000 and received an increment of ₹ 200 each year. In which year did his income reach ₹ 7000?
Solution:
Subba Rao’s starting salary = ₹ 5000
Annual increment = ₹ 200
Let ‘n’ denotes number of years.
∴ first term = a = ₹ 5000
Common diflerence = d = ₹ 200
and Tn = ₹ 7000
5000 + (n – 1) 200 = 7000
∵ Tn = a + (n – 1) d
(n – 1) 200 = 7000 – 5000
or (n – 1) 200 = 2000
or n – 1 = \(\frac{2000}{200}\) = 10
or n = 10 + 1 = 11
Now, in case of year the sequence are 1995. 1996, 1997, 1998, ……………
Here a = 1995, d = 1 and n = 11
Let Tn denotes the required year.
∴ Tn = 1995 + (11 – 1) 1
= 1995 + 10 = 2005
Hence, in 2005, Subba Rao’s salary becomes 7000.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter 5 Arithmetic Progressions Ex 5.2

Question 20.
Ramkali saved ₹ 5 in the first week of a year and then increased her weekly saving by ₹ 1.75. If in the nth week, her weekly saving becomes ₹ 20.75, find n.
Solution:
Amount saved in first week = ₹ 5
Increment in saving every week = ₹ 1.75
It is clear that, it form an A.P. whose terms are
T1 = 5, d = 1.75
∴ T2 = 5 + 1.75 = 6.75
T3 = 6.75 + 1.75 = 8.50
Also. Tn = 20. 75 (Given)
5 + (n – 1) 1.75 = 20.75
∵ Tn = a + (n – 1) d
or (n – 1) 1.75 = 20.75 – 5
or (n – 1) 1.75 = 15.75
or (n – 1) = \(\frac{1575}{100} \times \frac{100}{175}\)
or n – 1 = 9
or n = 9 + 1 = 10
Hence, in 10th week, Ramkali’s saving becomes ₹ 20.75.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 8 Quadrilaterals Ex 8.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 8 Quadrilaterals Ex 8.2

Question 1.
ABCD is a quadrilateral in which F Q, R and S are midpoints of the sides AB, BC, CD and DA respectively (see the given figure 1). AC is a diagonal. Show that:
(i) SR || AC and SR = \(\frac{1}{2}\) AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 1
Answer:
In ∆ DAC, S and R are the midpoints of DA and DC respectively.
Through C draw a line parallel to AD which intersects line SR at T.
In ∆ DRS and ∆ CRT
∠ DRS = ∠ CRT (Vertically opposite angles)
∠ RSD = ∠ RTC (Alternate angles formed by transversal ST of DS || TC)
DR = CR (R is the midpoint of DC.)
∴ ∆ DRS ≅ ∆ CRT (AAS rule)
∴ DS = CT and SR = RT (CPCT)
As S is the midpoint of DA, we have DS = SA.
∴ SA = CT
And, by construction, SA || CT.
∴ Quadrilateral SACT is a parallelogram.
∴ ST || AC
∴ SR || AC ………… (1)
Now, SR = RT gives SR = \(\frac{1}{2}\)ST
In parallelogram SACT, ST = AC.
∴ SR = \(\frac{1}{2}\)AC ……………. (2)
Taking (1) and (2) together,
SR || AC and SR = \(\frac{1}{2}\)AC ….. Result (1)
Similarly, in ∆ ABC, P and Q are the midpoints of AB and BC respectively. ,
∴ PQ || AC and PQ = \(\frac{1}{2}\)AC
Now, SR = \(\frac{1}{2}\)AC and PQ = \(\frac{1}{2}\)AC
∴ PQ = SR …… Result (ii)
Similarly, SR || AC and PQ || AC.
∴ PQ || SR
Thus, in quadrilateral PQRS, PQ = SR and PQ || SR.
Hence, by theorem 8.8, PQRS is a parallelogram. … Result (iii)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 2.
ABCD is a rhombus and F Q, R and S are the midpoints of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 2
ABCD is a rhombus and F Q, R and S are the midpoints of sides AB, BC, CD and DA respectively.
∴ In ∆ ABC, PQ || AC and PQ = \(\frac{1}{2}\)AC.
∴ In ∆ ADC, SR || AC and SR = \(\frac{1}{2}\)AC.
Hence, in quadrilateral PQRS, PQ || SR and PQ = SR.
∴ Quadrilateral PQRS is a parallelogram.
Now, since ABCD is a rhombus, AC and BD bisect each other at right angles at M.
∴ ∠ AMB = 90°
Now, AC || PQ and MN is their transversal.
∴ ∠ AMN + ∠ MNP = 180° (Interior angles on the same side of transversal)
∴ ∠ AMB + ∠MNP = 180°
∴ 90° + ∠ MNP = 180°
∴ ∠ MNP = 90°
In ∆ ABD, P and S are the midpoints of AB and AD respectively.
∴ PS || BD and NP is their transversal.
∴ ∠ DNP + ∠ NPS = 180°
∴ ∠ MNP + ∠ NPS =180°
∴ 90° + ∠ NPS = 180°
∴ ∠ NPS = 90°
∴ ∠ SPQ = 90°
Thus, in parallelogram PQRS, one angle ∠P is a right angle.
Hence, quadrilateral PQRS is a rectangle.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 3.
ABCD is a rectangle and P, Q, R and S are midpoints of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 3
Since ABCD is a rectangle, its diagonals are equal.
∴ AC = BD
∴ \(\frac{1}{2}\)AC = \(\frac{1}{2}\)BD
In ∆ ABC, P and Q are the midpoints of AB and BC respectively.
∴ PQ = \(\frac{1}{2}\)AC
Similarly, in ∆ ADC, SR = \(\frac{1}{2}\)AC; in ∆ ABD, SP = \(\frac{1}{2}\) BD and in ∆ BCD, QR = \(\frac{1}{2}\) BD.
Now, PQ = SR = \(\frac{1}{2}\)AC, SP = QR = \(\frac{1}{2}\)BD and \(\frac{1}{2}\)AC = \(\frac{1}{2}\)BD
Hence, in quadrilateral PQRS,
PQ = QR = RS = SP
Thus, all the sides of quadrilateral PQRS are equal.
Hence, quadrilateral PQRS is a rhombus.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 4.
ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the midpoint of AD. A line is drawn through E parallel to AB intersecting BC at F (see the given figure). Show that F is the midpoint of BC.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 4
Answer:
Suppose line EF drawn through E and parallel to AB intersects BD at M.
EF || AB and AB || DC
∴ EF || DC
Trapezium ABCD is divided into two triangles, ∆ ABD and ∆ BCD, by diagonal BD.
In ∆ ABD, E is the midpoint of AD and a line through E and parallel to AB intersects BD at M.
Hence, by theorem 8.10, M is the midpoint of BD.
Now, in ∆ BCD, M is the midpoint of BD and a line through M and parallel to CD intersects BC at F.
Hence, by theorem 8.10, F is the midpoint of BC.
Note: The following result about the length of EF can also be derived:
EF = \(\frac{1}{2}\)(AB + CD)
Moreover, if X and Y are the midpoints of the diagonals of above trapezium ABCD, then XY = \(\frac{1}{2}\)|AB – CD|.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 5.
In a parallelogram ABCD, E and F are the midpoints of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 5
Answer:
E and F are the midpoints of AB and CD respectively.
∴ AE = \(\frac{1}{2}\)AB and CF = \(\frac{1}{2}\)CD
In parallelogram ABCD, AB = CD and AB || CD.
∴ AE = CF and AE || CF
Hence, quadrilateral AECF is a parallelogram.
∴ AF || EC
∴ AP || EQ
In ∆ ABP E is the midpoint of AB and EQ || AR
∴ Q is the midpoint of PB. (Theorem 8.10)
∴PQ = QB …………… (1)
Similarly, in ∆ DQC, F is the midpoint of DC and FP || CQ.
∴ P is the midpoint of DQ. (Theorem 8.10)
∴ DP = PQ …………….. (2)
From (1) and (2), DP = PQ = QB.
Moreover, DP + PQ + QB = BD.
Thus, AF and EC trisect the diagonal BD.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 6.
Show that the line segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 6
In quadrilateral ABCD, P Q, R and S are the midpoints of sides AB, BC, CD and DA respectively.
In ∆ ABC, P and Q are the midpoints of AB and BC respectively.
∴ PQ || AC and PQ = \(\frac{1}{2}\)AC …………….. (1)
In ∆ ADC, S and R are the midpoints of DA and DC respectively.
∴ SR || AC and SR = \(\frac{1}{2}\)AC ……………… (2)
From (1) and (2),
PQ = SR and PQ || SR.
Thus, in quadrilateral PQRS, sides in one pair of opposite sides are equal and parallel. Hence, quadrilateral PQRS is a parallelogram. The diagonals of a parallelogram bisect each other. [Theorem 8.6]
∴ PR and SQ bisect each other.
Thus, the line segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2

Question 7.
ABC is a triangle right angled at C. A line through the midpoint M of hypotenuse AB and parallel to BC intersects AC at D. Show that:
(i) D is the midpoint of AC.
(ii) MD ⊥ AC
(iii) CM = MA = \(\frac{1}{2}\)AB
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.2 7
In ∆ ABC, ∠ C is a right angle and M is the midpoint of hypotenuse AB. A line through M and parallel to BC intersects AC at D.
Hence, by theorem 8.10, DM bisects AC.
∴ D is the midpoint of AC. ….. Result (i)
In ∆ ABC, ∠ C is a right angle.
∴ ∠ C = 90°
Now, BC || DM and DC is their transversal.
∴ ∠ MDC + ∠ DCB = 180° (Interior angles on the same side of transversal)
∴ ∠ MDC + 90° = 180°
∴ ∠ MDC = 90°
Thus, MD is perpendicular to AC.
∴ MD ⊥ AC …… Result (ii)
Now, in ∆ ADM and ∆ CDM,
AD = CD (D is the midpoint of AC)
∠ ADM = ∠ CDM (Right angles)
DM = DM (Common)
∴ ∆ ADM ≅ ∆ CDM (SAS rule)
∴ AM = CM (CPCT) ……………. (1)
Now, M is the midpoint of AB.
∴ AM = \(\frac{1}{2}\)AB …… (2)
< Prom (1) and (2),
CM = MA = \(\frac{1}{2}\)AB …… Result (iii)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 8 Quadrilaterals Ex 8.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 8 Quadrilaterals Ex 8.1

Question 1.
The angles of a quadrilateral are in the ratio 3: 5 : 9: 13. Find all the angles of the quadrilateral.
Answer:
Let, ABCD be a given quadrilateral.
∴ ∠A : ∠B : ∠C : ∠D = 3 : 5 : 9 : 13
Sum of ratios = 3 + 5 + 9 + 13 = 30
In quadrilateral ABCD, ∠A + ∠B + ∠C + ∠D = 360°
∴ ∠A = \(\frac{3}{30}\) × 360° = 3 × 12 = 36°
∴ ∠B = \(\frac{5}{30}\) × 360° = 5 × 12 = 60°
∴ ∠C = \(\frac{9}{30}\) × 360° = 9 × 12 = 108°
∴ ∠D = \(\frac{13}{30}\) × 360° = 13 × 12 = 156°
Thus the angles of the given quadrilateral are 36°, 60°, 108° and 156°.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 2.
If the diagonals of a parallelogram are equal, then show that it is a rectangle.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 1
Answer:
In parallelogram ABCD, diagonals are equal.
∴ AC = BD.
In ∆ DAB and ∆ CBA.
DA = CB (Theorem 8.2)
AB = BA (Common)
DB = CA (Given)
∴ ∆ DAB ≅ ∆ CBA sss rule)
∴ ∠ DAB = ∠CBA (CPCT)
In parallelogram ABCD, AD || BC and AB is their transversal.
∴ ∠ DAB + ∠ CBA = 180°
(Interior angles on the same side of transversal)
Thus, in parallelogram ABCD, two angles ∠A and∠B are right angles. Hence, all the angles are right angle.
Hence, the parallelogram ABCD having equal diagonals is a rectangle.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 3.
Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 11
Answer:
In quadrilater ABCD. diagonals AC and BD bisect each other at M at right angles.
∴ AM = CM, BM = DM and
∠AMB = ∠CMB = ∠CMD = ∠AMD = 90°.
In ∆ AMB and ∆ CMB,
AM = CM
∠ AMB = ∠CMB
BM = BM (Common)
∴ ∆ AMB ≅ ∆ CMB (SAS rule)
∴ AB = CB (CPCT)
Similarly, proving ∆ BMC ≅ ∆ DMC and ∆ DMA ≅ ∆ BMA, we get BC = DC and DA = BA.
Thus, in quadrilateral. ABCD.
AB = BC CD = DA.
Therefore, quadrilateral ABCD is a rhombus.
Thus, if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 4.
Show that the diagonals of a square are equal and bisect each other at right angles.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 2
Answer:
ABCD is a square in which diagonals AC and BD intersect at M.
Every square is a parallelogram.
∴ AC and BD bisect each other. …………… (1)
In ∆ DAB and ∆ CBA,
DA = CB (Sides of a square)
∠ DAB = ∠ CBA (Right angles in a square)
AB = BA (Common)
∴ ∆ DAB ≅ ∆ CBA (SAS rule)
∴ BD = AC (CPCT) ……………….. (2)
Now, in ∆ AMB and ∆ CMB,
AM = CM (BD bisects AC at M).
BM = BM (Common)
AB = CB (Sides of a square)
∴ ∆ AMB ≅ ∆ CMB (SSS rule)
∴ ∠ AMB = ∠CMB (CPCT)
But, ∠ AMB and ∠ CMB form a linear pair.
∴ ∠ AMB + ∠ CMB = 180°
Hence, ∠AMB = ∠ CMB = 90° (3)
(1), (2) and (3) taken together proves that the diagonals of a square are equal and bisect each other at right angles.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 5.
Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 3
Answer:
In quadrilateral ABCD, diagonals AC and BD are equal and bisect each other at right angles.
∴ AC = BD,
MA = MC = MB = MD = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)BD and
∠AMB = ∠CMB= ∠DMC = ∠DMA= 90°.
In ∆ AMB and ∆ CMB,
AM = CM
∠ AMB = ∠ CMB (Right angles)
BM = BM (Common)
∴ ∆ AMB ≅ ∆ CMB (SAS rule)
∴ AB = CB (CPCT)
Similarly, we can prove that BC = DC and
DA = BA.
Thus, in quadrilateral ABCD,
AB = BC = CD = DA …………… (1)
Now, in ∆ DAB and ∆ CBA,
DA = C B
BD = AC (Given)
AB = BA (Common)
∴ ∆ DAB ≅ ∆ CBA (SSS rule)
∴ ∠DAB = ∠CBA (CPCT)
Thus, in quadrilateral ABCD, ∠A = ∠B.
Similarly, we can prove that ∠B = ∠C and ∠C = ∠D.
Thus, in quadrilateral ABCD,
∠A = ∠B = ∠C = ∠D.
Moreover. In quadrilateral ABCD,
∠A + ∠B + ∠C + ∠D = 360°
∴ ∠A = ∠B = ∠C = ∠D = \(\frac{360^{\circ}}{4}\) = 90° ……………… (2)
Thus, (1) and (2) taken together proves that in quadrilateral ABCD, all the sides are equal and all the angles are equal.
Therefore, quadrilateral ABCD is a square.
Thus, if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 6.
Diagonal AC of a parallelogram ABCD bisects ∠A (see the given figure). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 4
Answer:
Diagonal AC of parallelogram ABCD bisects ∠A.
∴ ∠DAC = ∠BAC …………… (1)
Now, ∠BAC and ∠DCA are alternate angles formed by transversal AC of AB || CD.
∴ ∠BAC = ∠DCA …………… (2)
Similarly, ∠DAC and ∠BCA are alternate angles formed by transversal AC of AD || BC.
∴ ∠DAC = ∠BCA ……………… (3)
From (1), (2) and (3),
∠DCA = ∠BCA.
But, ∠DCA + ∠BCA = ∠BCD (Adjacent angles)
∴ AC bisects ∠C also.
In parallelogram ABCD,
∠A = ∠C (Theorem 8.4)
∴ \(\frac{1}{2}\)∠A = \(\frac{1}{2}\)∠C
∴ ∠ DAC = ∠ DCA
∴ In ∆ DAC, DA = DC (Sides opposite to equal angles)
Moreover, in parallelogram ABCD,
AB = CD and BC = DA (Theorem 8.2)
∴ AB = BC = CD = DA
Thus. In parallelogram ABCD, all the sides are equal.
Hence, ABCD is a rhombus.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 7.
ABCD is a rhombus. Show that diagonal AC bisects ∠A as well as ∠C and diagonal BD bisects ∠B as well as ∠D.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 5
ABCD is a rhombus
∴ AB || DC, BC || AD and AB = BC = CD = DA.
AB || DC and AC is their transversal.
∴ ∠CAB = ∠ACD (Alternate angles)
In, ∆ DAC, CD = DA
∴ ∠ACD = ∠CAD
Then, ∠CAB = ∠CAD
But, ∠CAB + ∠CAD = ∠ DAB (Adjacent angles)
∴ ∠ CAB = ∠CAD = \(\frac{1}{2}\) ∠DAB
This shows that AC bisects ∠A.
Again, BC || AD and AC is their transversal.
∴ ∠ BCA = ∠ DAC (Alternate angles)
In, ∆ DAC, DA = DC
∴ ∠ DAC = ∠ DCA
Then, ∠BCA = ∠DCA
But, ∠ BCA + ∠ DCA = ∠ DCB (Adjacent angles)
∴ ∠ BCA = ∠ DCA = \(\frac{1}{2}\)∠ DCB
This shows that AC bisects ∠C.
Thus, AC bisects ∠A as well as ∠C.
Similarly, taking BD as transversal of AB || DC, and BC || AD, it can be proved that BD bisects ∠B as well as ∠D.

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 8.
ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square. (ii) Diagonal BD bisects ∠B as well as ∠D.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 6
In rectangle ABCD, AB = CD, BC = AD, AB || CD and BC || AD.
AC bisects ∠A as well as ∠C.
∴ ∠DAC = ∠BAC = \(\frac{1}{2}\)∠A and
∠ DCA = ∠ BCA = \(\frac{1}{2}\)∠C
Now, AB || CD and AC is their transversal.
∴ ∠ BAC = ∠ DCA (Alternate angles)
∴ ∠ DAC = ∠ DCA
Thus, in ∆ DAC, ∠DAC = ∠DCA
∴ AD = CD (Sides opposite to equal angles)
From this, we get AB = BC = CD = DA.
Also, in rectangle ABCD,
∠A = ∠B = ∠C = ∠D = 90°
Hence, ABCD is a square. …..Result (i)
In ∆ BCD, BC = CD
∴ ∠ CBD = ∠ CDB
Moreover, AB || CD and BD is their transversal.
∴ ∠ CDB = ∠ ABD (Alternate angles)
∴ ∠ CBD = ∠ ABD
Now, ∠ CBD + ∠ ABD = ∠ ABC
∴ ∠ CBD = ∠ ABD = \(\frac{1}{2}\) ∠ ABC
Thus, BD bisects ∠B.
Similarly, diagonal BD bisects ∠ D.
Hence, diagonal BD bisects ∠B as well as ∠D …….. Result (ii)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 9.
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see the given figure). Show that:
(i) ∆ APD ≅ ∆ CQB
(ii) AP = CQ
(iii) ∆ AQB ≅ ∆ CPD
(iv) AQ = CP
(v) APCQ is a parallelogram.
Answer:
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 7
ABCD is a parallelogram.
∴ AD || BC and BD is their transversal.
∴ ∠ADB = ∠CBD (Alternate angles)
∴ ∠ADP = ∠CBQ …………… (1)
Similarly, CD || BA and BD is their transversal.
∴ ∠ ABD = ∠ CDB (Alternate angles)
∴ ∠ABQ = ∠CDP ……………… (2)
In ∆ APD and ∆ CQB,
AD = CB (Opposite sides of a parallelogram)
∠ ADP = ∠ CBQ [by (1)]
DP = BQ (Given)
∴ ∆ APD ≅ ∆ CQB (SAS rule) ……. Result (i)
∴ AP = CQ (CPCT) …… Result (ii)
In ∆ AQB and ∆ CPD,
AB = CD (Opposite sides of a parallelogram)
∠ ABQ = ∠ CDP [by (2)]
BQ = DP (Given)
∴ ∆ AQB ≅ ∆ CPD (SAS rule) …….. Result (iii)
∴ AQ = CP (CPCT) ………….. Result (iv)
Now, in quadrilateral APCQ, AP = CQ and AQ = CP
Hence, by theorem 8.3, APCQ is a parallelogram. ………. Result (v)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 10.
ABCD is a parallelogram and AP and Cg are perpendiculars from vertices A and C on diagonal BD (see the given figure). Show that
(i) ∆ APB ≅ ∆ CQD
(ii) AP = CQ
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 8
Answer:
In parallelogram ABCD, AB || CD and BD is their transversal.
∴ ∠ ABD = ∠ CDB (Alternate angles)
∴ ∠ABP = ∠CDQ ……………. (1)
Now, in ∆ APB and ∆ CQD,
AB = CD (Opposite sides of a parallelogram)
∠ ABP = ∠ CDQ [by (1)]
∠ APB = ∠ CQD (Right angles)
∆ APB ≅ ∆ CQD (AAS rule) ………… Result (i)
∴ AP = CQ (CPCT) ……….. Result (ii)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 11.
In ∆ ABC and ∆ DBF, AB = DE, AB || DE, j BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see the given figure). Show that:
(i) Quadrilateral ABED is a parallelogram
(ii) Quadrilateral BEFC is a parallelogram
(iii) AD || CF and AD = CF
(iv) Quadrilateral ACFD is a parallelogram
(v ) AC = DF
(vi) ∆ ABC ≅ ∆ DEF.
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 9
Answer:
In quadrilateral ∆ BED, AB = DE and AB || DE. Thus, in quadrilateral ABED, sides in one s pair of opposite sides are equal and parallel. Hence, by theorem 8.8, quadrilateral ABED is a parallelogram. …… Result (i)
Similarly, in quadrilateral BEFC, BC = EF and BC || EF.
Hence, by theorem 8.8, quadrilateral BEFC is a parallelogram. …………. Result (ii)
In parallelogram ABED, AD || BE and in parallelogram BEFC, BE || CE Thus, AD and CF both are parallel to BE.
∴ AD || CF ……….(1)
In parallelogram ABED, AD = BE and in parallelogram BEFC, BE = CF.
∴ AD = CF ……… (2)
Taking (1) and (2) together, we get
AD || CF and AD = CF ………. Result (iii)
In quadrilateral ACFD, AD || CF and AD = CF. Hence, by theorem 8.8, quadrilateral ACFD is a parallelogram. ………. Result (iv)
AC and DF are opposite sides of parallelogram ACFD.
∴ AC = DF ………….. Result (v)
Now, in ∆ ABC and ∆ DEF,
AB = DE (Given)
BC = EF (Given)
AC = DF [by result (v)l
∴ ∆ ABC ≅ ∆ DEF (SSS rule) …… Result (vi)

PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1

Question 12.
ABCD is a trapezium in which AB || CD and AD = BC (see the given figure). Show that:
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ ABC ≅ ∆ BAD
(iv) diagonal AC = diagonal BD
[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.)
PSEB 9th Class Maths Solutions Chapter 8 Quadrilaterals Ex 8.1 10
Answer:
AB is extended to E, and AB || CD.
∴ AE || CD
In quadrilateral ADCE, AE || CD and by consturction CE || DA.
∴ Quadrilateral ADCE is a parallelogram.
∴ AD = CE
Moreover, AD = BC (Given)
∴ BC = CE
In ∆ BCE, BC = CE
∴ ∠CBE = ∠CEB
∴ ∠CBE = ∠CEA ………….. (1)
In parallelogram ADCE, AD || CE and AE is their transversal.
∴ ∠ DAE + ∠ CEA = 180° (Interior angles on the same side of transversal)
∴ ∠ DAE + ∠ CBE = 180° [by (1)]
∴ ∠ DAE = 180° – ∠ CBE …………… (2)
Moreover, ∠ ABC + ∠ CBE = 180° (Linear pair)
∴ ∠ ABC = 180° – ∠ CBE …………. (3)
From (2) and (3),
∠ DAE = ∠ ABC
∴ ∠A = ∠B ……… Result (i)
AB || CD and AD is their transversal.
∴ ∠A + ∠D = 180°
∴ ∠D = 180°- ∠A ………….. (4)
AB || CD and BC is their transversal.
∴ ∠B + ∠C = 180°
∴ ∠C = 180°- ∠B
∴ ∠C = 180° – ∠ A [by result (i)] ……… (5)
From (4) and (5),
∠C = ∠D …….. Result (ii)
Draw diagonals AC and BD.
In ∆ ABC and ∆ BAD,
BC = AD (Given)
∠ ABC = ∠ BAD [by result (i)]
AB = BA (Common)
∴ ∆ ABC ≅ ∆ BAD (SAS rule) ………. Result (iii)
∴ AC = BD (CPCT)
Thus, diagonal AC = diagonal BD … Result (iv)
Note: A trapezium in which non-parallel sides are equal is called an isosceles trapezium. As proved above, in an isosceles trapezium, the diagonals are equal and the angles on each parallel side are equal.

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

Punjab State Board PSEB 7th Class Maths Book Solutions Chapter 11 Perimeter and Area Ex 11.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 7 Maths Chapter 11 Perimeter and Area Ex 11.2

1. Estimate the area of the following figures by counting unit squares.

Question (i).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 1
Solution:
In the given figure, number of squares covered completely = 135
Area of a square = 1 sq. unit
Area of (135 square) figure = 135 sq. units, (approx.)

Question (ii).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 2
Solution:
In the given figure number of square covered completely = 114
Area of one square = 1 unit
∴ Area of 114 squares = 114 sq units approx
Thus area of given figure = 114 sq units approx.

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

2. In the following figures find the area of 

Question (i).
ΔABC
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 3
Solution:
Given length of rectangle = 15 cm
Breadth of rectangle = 8 cm
The diagonal AC divides the rectangle into two triangles ΔABC and ΔADC
So, area of ΔABC = \(\frac {1}{2}\) × Area of rectangle ABCD
= \(\frac {1}{2}\) × length × breadth
= \(\frac {1}{2}\) × 15 × 8
= 60 cm2

Question (ii).
ΔCOD
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 4
Solution:
Given side of square = 6 cm
The diagonals AC and BD divides the square into four equal posses (triangles)
So, area of ΔCOD = \(\frac {1}{4}\) × Area of square
= \(\frac {1}{4}\) × 6 × 6
= 9 cm2

3. Find the area of following parallelograms.

Question (i).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 5
Solution:
Given base of parallelogram = 9 cm
Height of parallelogram = 6 cm
Area of parallelogram = Base × height
= 9 × 6
= 54 cm2

Question (ii).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 6
Solution:
Given base of parallelogram = 6.5 cm
Height of parallelogram= 8.4 cm
Area of parallelogram = Base × height
= 6.5 × 8.4
= 54.6 cm2

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

4. Find the value of x in the following parallelograms.

Question (i).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 7
Solution:
Given base (AD) of parallelogram = 5.6 cm
Corresponding height of parallelogram = 9 cm
Area of parallelogram = 5.6 × 9 cm2 ….(1)
Also in the paralleogram, base (AB) = x
Corresponding height of parallelogram = 7 cm
Area of parallelogram will be = x × 7 ….(2)
From (1) and (2), we get
x × 7 = 5.6 × 9
x = \(\frac{5.6 \times 9}{7}\)
= 7.2

Question (ii).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 8
Solution:
Given base (AB) of parallelogram = 15 cm
Corresponding height = 6 cm
Area of parallelogram =15 × 6 cm2 ….(1)
Also Base (AD || BC) of parallelogram = 9 cm
Corresponding height = x
So area of parallelogram = 9 × x ….(2)
From (1) and (2)
9 × x = 15 × 6
x = \(\frac{15 \times 6}{9}\)
= 10 cm.

5. The adjacent sides of a parallelogram are 28 cm and 45 cm and the altitude on longer side is 18 cm. Find the area of parallelogram.
Solution:
Given base of the parallelogram = 45 cm
Corresponding height = 18 cm
Area of parallelogram = Base × Height
= 45 × 18
= 810 cm2

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

6. ABCD is a parallelogram given in figure. DN and DM are the altitudes on side AB and CB respectively. If area of the parallelogram is 1225 cm2, AB = 35 cm and CB = 25 cm, find DN and DM.
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 9
Solution:
In the given parallelogram ABCD
Base (AB) = 35 cm
Let height (DN) = x cm
So area of parallelogram = 35 × x cm2
But given area of parallelogram (ABCD) = 1225 cm2
Therefore 35x = 1225
x = \(\frac {1225}{35}\)
= 35 cm
Similarly, for base (BC) and height (DM)
1225 = BC × DM
\(\frac{1225}{\mathrm{BC}}\) = DM
or DM = \(\frac {1225}{25}\)
= 49 cm.

7. Find the area of the following triangles.

Question (i).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 10
Solution:
Given base of triangle = 7 cm
Height of triangle = 4.8 cm
Area of triangle = \(\frac {1}{2}\) × Base × Height
= \(\frac {1}{2}\) × 7 × 4.8
= 16.8 cm2.

Question (ii).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 11
Solution:
Given base of triangle =6 cm
Height of triangle = 9 cm
Area of triangle = \(\frac {1}{2}\) × Base × Height
= \(\frac {1}{2}\) × 6 × 9
= 27 cm2

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

8. Find the value of x in the following triangles.

Question (i).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 12
Solution:
In ΔABC, BC = 8 cm, AC = 15 cm
Area of triangle ABC = \(\frac {1}{2}\) × Base × height
= \(\frac {1}{2}\) × BC × AC
= \(\frac {1}{2}\) × 8 × 15
= 60 cm2 …(1)
Also, in ΔABC, AB = 20 cm
height = x
Area of triangle ABC = \(\frac {1}{2}\) × Base × Height
= \(\frac {1}{2}\) × 20 × x ….(2)
From (1) and (2)
\(\frac {1}{2}\) × 20 × x = 60
x = \(\frac{60 \times 2}{20}\)
x = 6 cm.

Question (ii).
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 13
Solution:
In ΔABC, base (AC) = 25 cm
height = 14 cm
Area of triangle ABC = \(\frac {1}{2}\) × Base × height
\(\frac {1}{2}\) × 14 × 25 ….(1)
Also, in ΔABC, base AB = x cm
height = 20 cm
So, area of ΔABC = \(\frac {1}{2}\) × Base × Height
= \(\frac {1}{2}\) × x × 20 ….(2)
From (1) and (2) we get
\(\frac {1}{2}\) × x × 20 = \(\frac {1}{2}\) × 14 × 25
x = 17.5 cm

9. ABCD is a square, M is a point on AB such that AM = 9 cm and area of ΔDAM is 171 cm2. What is the area of the square ?
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 14
Solution:
Given area of ΔDAM = 171 cm2
Base of triangle = 9 cm
As, area of triangle ΔDAM = \(\frac {1}{2}\) × base × height
171 = \(\frac {1}{2}\) × 9 × (DA)
Hence height (DA) = \(\frac{171 \times 2}{9}\)
= 18 cm
Hence side of square (DA) = 18 cm
Therefore area of square = (side)2
= (18)2
= 324 cm2

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

10. ΔABC is right angled at A as shown in figure. AD is perpendicular to BC, if AB = 9 cm, BC = 15 cm and AC = 12 cm. Find the area of ΔABC, also find file length of AD.
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 15
Solution:
Given AB = 9 cm
BC = 15 cm
AC = 12 cm
Let AD = x cm
Area of triangle = \(\frac {1}{2}\) × Base × height
= \(\frac {1}{2}\) × 12 × 9 cm2.
= 54 cm2 ….(1)
Since, AD is perpendicular to BC
So, area of triangle = \(\frac {1}{2}\) × BC × AD
= \(\frac {1}{2}\) × 15 × AD ….(2)
From (1) and (2) we get
\(\frac {1}{2}\) × 15 × AD = 54
AD = \(\frac{54 \times 2}{15}\)
AD = 7.2 cm

11. ΔABC is isosceles with AB = AC = 9 cm, BC = 12 cm and the height AD from A to BC is 4.5 cm. Find the area of ΔABC. What will be the height from B to AC i.e. BN ?
PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2 16
Solution:
In triangle ABC, Base (BC) = 12 cm
AD = 4.5 cm
AD is perpendicular to BC
So, Area of ΔABC = \(\frac {1}{2}\) × base × height
= \(\frac {1}{2}\) × 12 × 4.5 cm
= 27 cm ….(1)
Also, in ΔABC, Base (AC) = 9 cm
Let corresponding height (BN) = x
So area of ΔABC = \(\frac {1}{2}\) × base × height
= \(\frac {1}{2}\) × 9 × BN ….(2)
From (1) and (2)
\(\frac {1}{2}\) × 9 × BN = 27
BN = \(\frac{27 \times 2}{9}\)
= 6 cm.

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

12. Multiple choice questions :

Question (i).
Find the height of a parallelogram whose area is 246 cm2 and base is 20 cm.
(a) 1.23 cm2
(b) 13.2 cm2
(c) 12.3 cm2
(d) 1.32 cm2
Answer:
(c) 12.3 cm2

Question (ii).
One of the side and the corresponding height of a parallelogram are 7 cm and 3.5 cm respectively. Find the area of the parallelogram.
(a) 21 cm2
(b) 24.5 cm2
(c) 21.5 cm2
(d) 24 cm2
Answer:
(b) 24.5 cm2

Question (iii).
The height of a triangle whose base is 13 cm and area is 65 cm2 is :
(a) 12 cm
(b) 15 cm
(c) 10 cm
(d) 20 cm
Answer:
(c) 10 cm

Question (iv).
Find the area of an isosceles right angled triangle, whose equal sides are of length 40 cm each.
(a) 400 cm2
(b) 200 cm2
(c) 600 cm2
(d) 800 cm2
Answer:
(d) 800 cm2

PSEB 7th Class Maths Solutions Chapter 11 Perimeter and Area Ex 11.2

Question (v).
If the sides of a parallelogram are increased to twice of its original length, how much will be the perimeter of the new parallelogram ?
(a) 1.5 times
(b) 2 times
(c) 3 times
(d) 4 times
Answer:
(b) 2 times

Question (vi).
In a right angled triangle one leg is double the other and area is 64 cm2 find the smaller leg.
(a) 8 cm
(b) 16 cm
(c) 24 cm
(d) 32 cm.
Answer:
(a) 8 cm

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.2

1. Classify the following as proper and improper fractions:

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

2. Express each of the following as mixed fractions, Also represent with diagrams:

Question (i)
\(\frac {27}{5}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 3
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(5\frac {2}{5}\)

Question (ii)
\(\frac {13}{4}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 4
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(3\frac {1}{4}\)

Question (iii)
\(\frac {43}{8}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 5
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(5\frac {3}{8}\)

Question (iv)
\(\frac {51}{7}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 6
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(7\frac {2}{7}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

Question (v)
\(\frac {20}{3}\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 7
∴ Mixed fraction
= Quotient \(\frac {Remainder}{Divisor}\) = \(6\frac {2}{3}\)

3. Express each of the following mixed fractions as improper fractions:

Question (i)
(i) \(\)2 \frac{1}{3}\(\)
(ii) \(\)5 \frac{2}{7}\(\)
(iii) \(\)4 \frac{3}{5}\(\)
(iv) \(\)3 \frac{3}{4}\(\)
(v) \(\)9 \frac{5}{8}\(\)
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 8

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2

4. Express the shaded portion as Improper Fraction and Mixed fraction:

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 9
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.2 10

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2

Punjab State Board PSEB 10th Class Maths Book Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

Question1.
A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of it.
Solution:
Radius of cone = Radius of hemisphere = 1 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 1

R = 1 cm
Height of cone (H) = 1 cm
Volume of solid = volume of cone + volume of hemisphere
= \(\frac{1}{3}\) πR2H + \(\frac{2}{3}\) πR3
= \(\frac{1}{3}\) πR22 [H + 2R]
= \(\frac{1}{3}\) π × 1 × 1 [1 + 2 × 1]
= \(\frac{1}{3}\) π × 3 = π cm3
Hence, Volume of solid = π cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 2.
Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is 3 cm and its length is 12 cm. If each cone has a height of 2 cm, find the volume of air contained in the model the Rachel made. (Assume the outer and inner dimensions of the model to be nearly the same.)
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 2

Radius of cone = Radius of cylinder (R) = \(\frac{3}{2}\) cm
∴ R = 1.5 cm
Height of eah cone (h) = 2 cm
∴ Height of cylinder = 12 – 2 – 2 = 8 cm
Volume of air in cylinder = volume of cylinder + 2 (volume of cone)

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 3

Volume of air in cylinder = \(\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3}\)
= 22 × 3 = 66 cm3

Hence, Volume of air in cylinder =66 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 3.
A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 4

Solution:
Gulab Jamun is in the shape of cylinder
Diameter of cylinder = Diameter of hemisphere = 2.8 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 11

Radius of cylinder = Radius of hemisphere (R)
= \(\frac{28.2}{2}\) = 1.4 cm
R = 1.4 cm
Height of cylindrical part = 5 – 1.4 – 1.4
= (5 – 2.8) cm = 2.2 cm.
Volume of one gulab Jamun = Volume of cylinder + 2 [Volume of hemisphere]
= πR2H + 2 \(\frac{2}{3}\) πR3

= πR2 H + \(\frac{4}{3}\) R

= \(\frac{4}{4}\) × 1.4 × 1.4 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{14}{10}\) × \(\frac{14}{10}\) 2.2 + \(\frac{4}{3}\) × 1.4

= \(\frac{22}{7}\) × \(\frac{196}{100}\) [2.2 + 1.86]

= \(\frac{22 \times 28}{100}\) [4.06]

Volume of one gulab Jamun = 25.05 cm3
Now volume of 45 gulab Jamuns = 45 × 25.05 cm3 = 1127.25 cm3
Volume of sugar syrup = 30% volume of 45 gulab Jamuns
= \(\frac{30 \times 1127.25}{100}\) = 338.175 cm3
Hence, Approximately sugar syrup = 338 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 4.
A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are 15 cm by 10 cm by 3.5 cm. The radius of each of the depressions is 0.5 cm and the depth is 1.4 cm. Find the volume of wood in the entire stand.

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 5

Solution. Length of cuboid (L) = 15 cm
Width of cuboid (B) = 10 cm
Height of cuboid (H) = 3.5 cm
Radius of conical cavity (r) = 0.5 cm
Height of conical cavity (h) = 1.4 cm
Volume of wood in Pen stand = volume of cuboid – 4 [volume of cone]
= LBH – 4 \(\frac{1}{3}\) πr2h

= 15 × 10 × 3.5 – \(\frac{4}{3}\) × \(\frac{22}{7}\) × 0.5 × 0.5 × 1.4

= \(\frac{15 \times 10 \times 35}{10}-\frac{4}{3} \times \frac{22}{7} \times \frac{5}{10} \times \frac{5}{10} \times \frac{14}{10}\)

= \(15 \times 35-\frac{22}{3 \times 5}\)
= 525 – 1.466 = 523.534 cm3
Hence, Volume of wood in Pen stand = 523.53 cm3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 5.
A vessel is in the form of an inverted cone. Its height ¡s 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.
Solution:

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 6

Radius of cone (R) = 5 cm
Height of cone (H) = 8 cm
Radius of each spherical lead shot (r) = 0.5 cm
Let number of shot put into the cone = N
According to Question,
N [Volume of one lead shot] = \(\frac{1}{4}\) Volume of water in cone

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 7

= 10 × 10 = 100
Hence, Number of lead shots = 100.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 6.
A solid iron pole consists of a cylinder of height 220 cfi and base diameter 24 cm, which is surmounted by another cylinder of height 60 cm and radius 8 cm. Find the mass of the pole, given that 1 cm3 of Iron has approximately 8 g mass. (Use n = 3.14)
Solution:
Diameter of lower cylinder = 24 cm
Radius of lower cylinder (R) = 12 cm
Height of lower cylinder (H) = 220 cm
Radius of upper cylinder (r) = 8 cm
Height of upper cylinder (h) = 60 cm
Volume of pole = Volume of Lower cylinder + volume of upper cylinder
= πR2H + πr2h
= 3.14 × 12 × 12 × 220 + 3.14 × 8 × 8 × 60
= 99475.2 + 12057.6

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 8

Volume of pole = 111532.8 cm3
Mass of 1 cm3 = 8 gm
Mass of 111532.8 cm3 = 8 × 111532.8 = 892262.4 gm
= \(\frac{892262.4}{1000}\) kg = 892.2624 kg
Hence, Mass of Pole = 892.2624 kg.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 7.
A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm.
Solution:
Radius of cone = Radius of hemisphere = Radius of cylinder

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 9

Height of cone (h) = 120 cm
Height of cylinder (H) = 180 cm
Volume of cylindrical vessel = πR2H
= \(\frac{22}{7}\) × 60 × 60 × 180 = 2036571.4 cm3
Volume of solid inserted in cylinder = Volume of hemisphere + Volume of cone
= \(\frac{2}{3}\) πR3 + \(\frac{1}{3}\) πR2h

= \(\frac{1}{3}\) πR2 [2R + h]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 60 × 60 [2 × 60 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 [120 + 120]

= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 3600 × 240 = 905142.86 cm3
Volume of water flows out = 90514186 cm3
∴ Volume of water left in cylinder = Volume of cylinder – Volume of solid inserted in th’e vessel
= (2036571.4 – 905142.86) cm3 = 1131428.5 cm3
= \(\frac{1131428.5}{100 \times 100 \times 100}\) m3 = 1.131 m3
Hence, Volume of water left in cylinder = 1.131 m3.

PSEB Solutions PSEB 10th Class Maths Solutions Chapter Surface Areas and Volumes Ex 13.2

Question 8.
A spherical glass vessel has a cylindrical neck 8 cm long, 2 cm in diameter; the diameter of the spherical part is 8.5 cm. By measuring the amount of water it holds, a child finds its volume to be 345 cm3. Check whether she is correct, taking the above as the inside measurements, and π = 3.14.
Solution:
Diameter of neck (cylindrical Portion) = 2 cm

PSEB 10th Class Maths Solutions Chapter 13 Surface Areas and Volumes Ex 13.2 10

Radius of neck (r) = 1 cm
Height of cylindrical portion (H) = 8 cm
Diameter of spherical portion = 8.5 cm
Radius of spherical portion (R) = \(\frac{8.5}{2}\) cm = 4.25 cm
Volume of water in vessel = Volume of sphere + Volume of cylinder
= \(\frac{4}{3}\) πR3 + πR2h
= \(\frac{4}{3}\) × 3.14 × 4.25 × 4.25 × 4.25 × 3.14 × 1 × 1 × 8
= 321.39 + 25.12 = 346.51 cm3
Hence, Volume of water in vessel = 346.51 cm3 and She is wrong.

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Punjab State Board PSEB 6th Class Maths Book Solutions Chapter 5 Fractions Ex 5.1 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 6 Maths Chapter 5 Fractions Ex 5.1

1. Write the fraction representing the shaded portion:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 1
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 2

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

2. Colour the part according to the given fraction:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 3
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 4

3. Write the fraction for each of the following:

Question (i)
(i) Three-Fourth
(ii) Seven-Tenth
(iii) A Quarter
(iv) Five-Eighth
(v) Three-Twelvth.
Solution:
(i) \(\frac {3}{4}\)
(ii) \(\frac {7}{10}\)
(iii) \(\frac {1}{4}\)
(iv) \(\frac {5}{8}\)
(v) \(\frac {3}{12}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

4. Write the fraction for the followings:

Question (i)
numerator = 5
denominator = 9
Answer:
\(\frac {5}{9}\)

Question (ii)
numerator = 2
denominator = 11
Answer:
\(\frac {2}{11}\)

Question (iii)
numerator = 6
denominator = 7
Answer:
\(\frac {6}{7}\)

5. Write the numerator and the denominator for the followings:

Question (i)
\(\frac {2}{3}\)
Solution:
Given fraction is \(\frac {2}{3}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 2
and Denominator = 3

Question (ii)
\(\frac {1}{4}\)
Solution:
Given fraction is \(\frac {1}{4}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 1
and Denominator = 4

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (iii)
\(\frac {5}{11}\)
Solution:
Given fraction is \(\frac {5}{11}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 5
and Denominator = 11

Question (iv)
\(\frac {9}{13}\)
Solution:
Given fraction is \(\frac {9}{13}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 9
and Denominator = 13

Question (iv)
\(\frac {17}{16}\) = \(\frac {Numerator}{Denominator}\)
∴ Numerator = 17 and
Denominator = 16

6. Express:

Question (i)
1 day as a fraction of 1 week.
Solution:
We know 1 week = 7 days
∴ Required fraction= \(\frac {1}{7}\)

Question (ii)
40 seconds as a fraction of 1 minute.
Solution:
We know 1 minute = 60 seconds
∴ Required fraction = \(\frac {40}{60}\) or \(\frac {2}{3}\)
(Dividing both terms by 20)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (iii)
15 hours as fraction of 1 day.
Solution:
We know 1 day = 24 hours
∴ Required fraction = \(\frac {15}{24}\) or \(\frac {5}{8}\)
(Dividing both terms by 3)

Question (iv)
2 months as a fraction of 1 year.
Solution:
We know 1 year = 12 months
∴ Required fraction = \(\frac {2}{12}\) or \(\frac {1}{6}\)
(Dividing both terms by 2)

Question (v)
45 cm as a fraction of 1 metre.
Solution:
We know 1 metre = 100 cm
∴ Required fraction = \(\frac {45}{100}\) or \(\frac {9}{20}\)
(Dividing both terms by 5)

7. Write the numbers from 1 to 25.

Question (i)
What fraction of them are even numbers?
Solution:
Numbers from 1 to 25 are:
1,2, 3, 4,5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 i.e. 25 in number.
Even numbers out of these numbers are:
2, 4, 6, 8, 10, 12, 14, 16, 18; 20, 22, 24 i.e. 12 in number
∴ Required fraction = \(\frac {12}{25}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question (ii)
What fraction of them are prime numbers?
Solution:
Prime number out of these numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23 i.e. 9 in number
∴ Required fraction = \(\frac {9}{25}\)

Question (iii)
What fraction of them are multiples of 3?
Solution:
Multiples of 3 out of these numbers are:
3, 6, 9, 12, 15, 18, 21, 24 i.e. 8 in number
∴ Required fraction = \(\frac {8}{25}\)

8. In class 6th, there are 24 boys and 18 girls. What fraction of total students represent boys and girls?
Solution:
Boys = 24
Girls = 18
Total students = 24 + 18 = 42
Fraction which represents boys
= \(\frac {24}{42}\) or \(\frac {4}{7}\)
(Dividing both terms by 6)
Fraction which represents girls
= \(\frac {18}{42}\) or \(\frac {3}{7}\)
(Dividing both terms by 6)

9. A bag contains 6 red balls and 7 blue balls. What fraction of balls represent red and blue colour?
Solution:
Red balls = 6
Blue balls = 7
Total number of red and blue balls = 6 + 7 = 13
Fraction which represents red balls = \(\frac {6}{13}\)
Fraction which represents blue balls = \(\frac {7}{13}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

10. Sidharth has a cake. He cuts it into 10 equal parts. He gave 2 parts to Naman, 3 parts to Nidhi, 1 parts to Seema and the remaining four parts he kept for himself. Find:

Question (i)
What fraction of cake, he gave to Naman?
Solution:
Total parts = 10
Fraction of cake, he gave to Naman = \(\frac {2}{10}\) or \(\frac {1}{5}\)

Question (ii)
What fraction of cake, he gave to Nidhi?
Solution:
Fraction of cake, he gave to Nidhi = \(\frac {3}{10}\)

Question (iii)
What fraction of cake, he kept for himself?
Solution:
Fraction of cake, he kept for himself = \(\frac {4}{10}\) or \(\frac {2}{5}\)

Question (iv)
Who has more cake than others?
Solution:
Sidharth has more cake than others

11. In a box, there are 12 apples, 7 oranges and 5 guavas. What fraction of fruits in box represents each?
Solution:
Apples = 12, Oranges = 7
and Gauvas = 5
Total fruits = 12 + 7 + 5 = 24.
Fraction which represents apples
= \(\frac {12}{24}\) or \(\frac {1}{2}\)
Fraction which represents oranges
= \(\frac {7}{24}\)
Fraction which represents Gauvas
= \(\frac {5}{24}\)

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

12. Dishmeet has 20 pens. He gives one-fourth to Balkirat. How many pens Dishmeet and Balkirat have?
Solution:
Total pens = 20
Pens Balkirat has = One-fourth of 20
= \(\frac {22}{7}\) × 20 = 5
Pens Dishmeet has = 20 – 5 = 15

13. Represent the following fraction on the number line?

Question (i)
\(\frac {2}{5}\)
Solution:
In order to represent \(\frac {2}{5}\) on number line, we divide the gap between 0 and 1 into 5 equal parts, which are, (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 5

Question 2.
\(\frac {5}{7}\)
Solution:
In order to represent \(\frac {5}{7}\) on number line, we divide the gap between 0 and 1 into 7 equal parts, which are, (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 6

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

Question 3.
\(\frac {3}{10}\), \(\frac {5}{10}\), \(\frac {1}{10}\)
Solution:
In order to represent \(\frac {3}{10}\), \(\frac {5}{10}\), \(\frac {1}{10}\) on number line, we divide the gap between 0 and 1 into 10 equal parts, which are (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 7

Question 4.
\(\frac {3}{8}\), \(\frac {5}{8}\), \(\frac {7}{8}\)
Solution:
In order to represents \(\frac {3}{8}\), \(\frac {5}{8}\), \(\frac {7}{8}\) on number line, we divide the gap between 0 and 1 into 8 equal parts, which are (as shown)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 8

14. Find:

(i) \(\frac {3}{5}\) of 20 books
(ii) \(\frac {5}{8}\) of 32 pens
(iii) \(\frac {1}{6}\) of 36 copies 6
(iv) \(\frac {4}{7}\) of 21 apples
(v) \(\frac {3}{4}\) of 28 pencils.
Solution:
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 9
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 10

PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1

15. Balkirat had a box of 36 erasers. He gave \(\frac {1}{2}\) of them to Rani, \(\frac {2}{9}\) of them to Yuvraj and keeps the rest.

Question (i)
(i) How many erasers does Rani get?
(ii) How many erasers does Yuvraj get?
(iii) How many erasers does Harnik keep?
Solution:
Total erasers = 36
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 11
(iii) Erasers Harnik gets = 36 – (18 + 8)
= 36 – 26
= 10

16. State True/False

Question (i)
PSEB 6th Class Maths Solutions Chapter 5 Fractions Ex 5.1 12
Solution:
(i) False
(ii) True
(iii) True
(iv) True

PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5

Punjab State Board PSEB 9th Class Maths Book Solutions Chapter 7 Triangles Ex 7.5 Textbook Exercise Questions and Answers.

PSEB Solutions for Class 9 Maths Chapter 7 Triangles Ex 7.5

Question 1.
ABC is a triangle. Locate a point in the interior of ∆ ABC which is equidistant from all the vertices of ∆ ABC.
Answer:
PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5 1
In ∆ ABC, draw l, the perpendicular bisector of side AB and m, the perpendicular bisector of side BC. Name the point of intersection of l and m as P.
P is a point on the perpendicular bisector of AB. Hence, P is equidistant from A and B.
∴ PA = PB
P is a point on the perpendicular bisector of BC. Hence, P is equidistant from B and C.
∴ PB = PC
Thus, PA = PB = PC
Hence, P is the required point which is equidistant from all the vertices of ∆ ABC.
Note: Since ∆ ABC given here is an acute angled triangle, point P lies in the interior of ∆ ABC. If ∆ ABC is a right angled Mangle, point P lies on the hypotenuse. Actually, in that case, point P will be the midpoint of the hypotenuse. Lastly, if ∆ ABC is an obtuse angled triangle, point P lies in the exterior of ∆ ABC. This point P is called the circumcentre of ∆ ABC.

PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5

Question 2.
In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.
PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5 2
Answer:
In ∆ ABC, draw the bisectors of ∠B and ∠C to intersect each other at point I.
I is a point on the bisector of ∠ B. Hence, I is equidistant from sides BA and BC. Similarly, I is a point on the bisector of ZC. Hence, I is equidistant from sides BC and CA.
Thus, point I is the required point which is equidistant from all the three sides AB, BC and CA of ∆ ABC.
This point I is called the incentre of ∆ ABC. It always lies in the interior of ∆ ABC irrespective of the type of ∆ ABC.

Question 3.
In a huge park, people are concentrated at three points (see the given figure):
PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5 3

A: where there are different slides and swings for children.
B: near which a man-made lake is situated.
C: which is near to a large parking and exit.
Where should an ice cream parlour be set up so that maximum number of persons can approach it ?
(Hint: The parlour should be equidistant from A, B and C.)
Answer:
First of all, construct ∆ ABC with the given points A, B and C as vertices. Then, as shown in example 1, draw the perpendicular s bisectors of any two sides of ∆ ABC and name their point of intersection as P.

Now, the ice cream parlour should be set up at the location given by point P as it is equidistant from all the three places (points) A, B and C.

PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5

Question 4.
Complete the hexagonal and star shaped < Rangolies [see figure (1) and (2)] by filling them with as many equilateral triangles of > side 1 cm as you can. Count the number < of triangles in each case. Which has more triangles?
PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5 4
Answer:
In figure (1), if we join the opposite vertices, we get three longest diagonals of hexagon ABCDEE By the intersection of these diagonals we get point O and six equilateral triangles – ∆ OAB, ∆ OBC, ∆ OCD, ∆ ODE, ∆ OEF and ∆ OFA. Each side of all these equilateral triangles will measure 5 cm. In each of these six triangles, we can fill 25 (1 + 3 + 5 + 7 + 9) equilateral triangles with side 1 cm each. Hence in the hexagonal Rangoli ABCDEF, we can fill 25 × 6 = 150 triangles.
PSEB 9th Class Maths Solutions Chapter 7 Triangles Ex 7.5 5
Similarly, in figure (2), we can fill 150 triangles in the inner hexagon and 150 triangles in the six triangles on the boundary of the hexagon. Thus, in figure (2), 150 + 150 = 300 triangles can be filled.
Hence, more triangles can be filled in figure (2).